1
|
Larder M, Crowley J, Hossain SI, Deplazes E. Steroids and steroid-like compounds alter the ion permeability of phospholipid bilayers via distinct interactions with lipids and interfacial water. Phys Chem Chem Phys 2025; 27:2101-2113. [PMID: 39764716 DOI: 10.1039/d4cp03254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities via an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes. While the effect of cholesterol on phospholipid bilayer properties has been extensively studied, much less is known about the effect of other steroids and steroid-like molecules. Here, we combine electrical impedance spectroscopy (EIS) experiments with molecular dynamics (MD) simulations to study the effect of the steroids cortisone, prednisolone and progesterone and the steroid-like compounds enoxolone and carbenoxolone on the ion permeability and structure of phospholipid bilayers composed of the zwitterionic lipid POPC. The EIS data shows that all five compounds increase permeability, while the simulations suggest that this is accompanied by a thinning of the bilayer and reduced lipid order. We show that for steroids, a previously proposed structure-activity relationship that classifies steroids into order-promoting or order-disrupting compounds based on domain formations translates to ion permeability. We confirmed this by additional experiments with cholesterol and 7-ketocholesterol. In contrast, the previously reported relationship between log P and molecular area and a steroid being a promoter does not translate to the steroid-like compounds enoxolone and carbenoxolone. We propose that their membrane-disruption activity can be explained by their hydrogen-bonding capacity that dictates the compound's orientation at the water-lipid interface. Specifically, their membrane-disrupting ability is a result of the steroids to intercalate between lipids and form stable interactions with lipid headgroups and interfacial water, thereby pushing lipids apart and lowering the energy required for ion-induced pores, an effect previously reported for other membrane-altering small molecules.
Collapse
Affiliation(s)
- Morgan Larder
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia.
| | - Jackson Crowley
- School of Life Sciences, University of Technology Sydney, Ultimo NSW 2007, Australia
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS & University of Lyon, Lyon, France
| | - Sheikh I Hossain
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia.
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia.
- School of Life Sciences, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
2
|
Chou JC, Dassama LMK. Lipid Trafficking in Diverse Bacteria. Acc Chem Res 2025; 58:36-46. [PMID: 39680024 PMCID: PMC11713862 DOI: 10.1021/acs.accounts.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
ConspectusLipids are essential for life and serve as cell envelope components, signaling molecules, and nutrients. For lipids to achieve their required functions, they need to be correctly localized. This requires the action of transporter proteins and an energy source. The current understanding of bacterial lipid transporters is limited to a few classes. Given the diversity of lipid species and the predicted existence of specific lipid transporters, many more transporters await discovery and characterization. These proteins could be prime targets for modulators that control bacterial cell proliferation and pathogenesis.One overarching goal of our research is to understand the molecular mechanisms of bacterial metabolite trafficking, including lipids, and to leverage that understanding to identify or engineer inhibitory ligands. In recent years, our work has revealed two novel lipid transport systems in bacteria: bacterial sterol transporters (Bst) A, B, and C in Methylococcus capsulatus and the TatT proteins in Enhygromyxa salina and Treponema pallidum. Both systems are composed of transporters bioinformatically identified as being involved in the transport of other metabolites, but substrates were never revealed. However, the genetic colocalization of the genes encoding BstABC with sterol biosynthetic enzymes in M. capsulatus suggested that they might recognize sterols as substrates. Also, homologues of TatTs are present in diverse bacteria but are overrepresented in bacteria deficient in de novo lipid synthesis or residing in nutrient-poor environments; we reasoned that these proteins might facilitate the transport of lipids. Our efforts to reveal the substrate scope of two TatT proteins revealed their engagement with long-chain fatty acids.Enabling the discovery of the BstABC system and the TatT proteins were bioinformatic analyses, quantitative measurements of protein-ligand equilibrium affinities, and high-resolution structural studies that provided remarkable insights into ligand binding cavities and the structural basis for ligand interaction. These approaches, in particular our bioinformatics and structural work, highlighted the diversity of protein sequence and structures amenable to lipid engagement. These observations allowed the hypothesis that lipid handling proteins, in general and especially so in the bacterial domain, can have diverse amino acid compositions and three-dimensional structures. As such, bioinformatics geared at identifying them in poorly characterized genomes is likely to miss many candidates that diverge from well-characterized family members.This realization spurred efforts to understand the unifying features in all of the lipid handling proteins we have characterized to date. To do this, we inspected the ligand binding sites of the proteins: they were remarkably hydrophobic and sometimes displayed a dichotomy of hydrophobic and hydrophilic amino acids, akin to the ligands that they accommodate in those cavities. Because of this, we reasoned that the physicochemical features of ligand binding cavities could be accurate predictors of a protein's propensity to bind lipids. This finding was leveraged to create structure-based lipid-interacting pocket predictor (SLiPP), a machine-learning algorithm capable of identifying ligand cavities with physico-chemical features consistent with those of known lipid binding sites. SLiPP is especially useful in poorly annotated genomes (such as with bacterial pathogens), where it could reveal candidate proteins to be targeted for the development of antimicrobials.
Collapse
Affiliation(s)
- Jonathan
Chiu-Chun Chou
- Department
of Chemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology and Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
3
|
Sagarika P, Dobriyal N, Deepsika P, Vairagkar A, Das A, Sahi C. Specificity of Membrane-Associated J-Domain Protein, Caj1, in Amphotericin B Tolerance in Budding Yeast. Mol Microbiol 2024; 122:819-830. [PMID: 39289920 DOI: 10.1111/mmi.15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Hsp70:J-domain protein (JDP) machineries play pivotal roles in maintaining cellular proteostasis and governing various aspects of fungal physiology. While Hsp70 is known for its involvement in conferring tolerance to diverse antifungal drugs, the specific contribution of JDPs remains unclear. In this study, we examined the sensitivity of cytosolic JDP deletion strains of budding yeast to amphotericin B (AmB), a polyene antifungal agent widely utilized in fungal disease treatment due to its ability to disrupt the fungal plasma membrane (PM). Deleting Caj1, a PM-associated class II JDP, heightened susceptibility to AmB, and the protection conferred by Caj1 against AmB necessitated both its N-terminal J-domain and C-terminal lipid binding domain. Moreover, Caj1 deficiency compromised PM integrity as evidenced by increased phosphate efflux and exacerbated AmB sensitivity, particularly at elevated temperatures. Notably, phytosphingosine (PHS) addition as well as overexpression of PMP3, a positive PM integrity regulator, significantly rescued AmB sensitivity of caj1Δ cells. Our results align with the notion that Caj1 associates with the PM and cooperates with Hsp70 to regulate PM proteostasis, thereby influencing PM integrity in budding yeast. Loss of Caj1 function at the PM compromises PM protein quality control, thereby rendering yeast cells more susceptible to AmB.
Collapse
Affiliation(s)
| | | | | | - Avanti Vairagkar
- Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, IISER, Bhopal, India
| |
Collapse
|
4
|
Dahlin P, Ruthes AC. Loss of Sterol Biosynthesis in Economically Important Plant Pests and Pathogens: A Review of a Potential Target for Pest Control. Biomolecules 2024; 14:1435. [PMID: 39595611 PMCID: PMC11591786 DOI: 10.3390/biom14111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Sterol biosynthesis is a crucial metabolic pathway in plants and various plant pathogens. Their vital physiological role in multicellular organisms and their effects on growth and reproduction underline their importance as membrane compounds, hormone precursors, and signaling molecules. Insects, nematodes, and oomycetes of the Peronosporales group, which harbor important agricultural pests and pathogens, have lost the ability to synthesize their own sterols. These organisms rely on the acquisition of sterols from their host and are dependent on the sterol composition of the host. It is thought that sterol-synthesizing enzymes were lost during co-evolution with the hosts, which provided the organisms with sufficient amounts of the required sterols. To meet the essential requirements of these organisms, some sterol auxotrophs retained a few remaining sterol-modifying enzymes. Several molecular and biochemical investigations have suggested promising avenues for pest and pathogen control by targeting host sterol composition, sterol uptake, or sterol modification in organisms that have lost the ability to biosynthesize sterol de novo. This review examines the loss of sterol biosynthesis de novo in insects, nematodes, and oomycetes with the aim of investigating the sterol metabolic constraints and sterol acquisition of these organisms. This will shed light on its potential as a control target for the management of sterol-dependent organisms in a comprehensive agronomic approach.
Collapse
Affiliation(s)
- Paul Dahlin
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | | |
Collapse
|
5
|
Ullah Z, Öztürk M. Assessment of anti-cancer evaluation of new metabolites isolated from baked Sarcosphaera crassa: An edible poisonous mushroom. Steroids 2024; 212:109523. [PMID: 39477180 DOI: 10.1016/j.steroids.2024.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The growing demand for wild mushrooms as functional foods has increased due to their pharmacological significance. Sarcosphaera crassa is a deadly poisonous mushroom consumed by people living in northern and eastern Europe after being cooked adequately due to its significant properties. Herein, the baked Sarcosphaera crassa was studied for its ingredients. The cytotoxicity of hexane, acetone, and methanol extracts of baked Sarcosphaera crassa was investigated against MCF-7, HT-29, and HeLa cancer cell lines while toxicity against PDF fibroblast healthy cell lines using MTT assay. Acetone and methanol extracts of the baked mushroom exhibited significant cytotoxic activity. Further investigation of cytotoxic extracts afforded three new secondary metabolites, namely, (3β, 22E) ergosta-5, 22-dienyl 3-O-α-yl decanoate (Brassicasteryl decanoate) (1), bis (2- ethylpentadecyl) benzene-1,2-dicarboxylate (2), and (2S)-4-(aziridine-1-yl)-4-oxobutan-2-yl hexadecanoate (3), and six known compounds including ᴅ-sorbitol (4), 3β-ergosta-5,22-dien (5), two ergosterol-endoperoxides (6 and 7), nigerasterol A (8) and 5α,9α-epoksiergosta-7,22-dien, 3β,6α-diol (9). Among them, 2 exhibited effective cytotoxic activity against MCF-7 (IC50: 33.45 ± 2.9 μg/mL) and HT-29 (IC50: 45.53 ± 0.8 μg/mL) cancer cell lines. Compound 3 demonstrated high activity against HeLa (IC50: 30.45 ± 0.35 μg/mL) and MCF-7 (IC50: 33.55 ± 0.49 μg/mL) cancer cell lines, respectively. On the other hand, compound 1 demonstrated moderate cytotoxic activity against MCF-7 and HT-29 cancer cell lines. Besides, against PDF healthy cell lines, all extracts demonstrated lower toxicity. This discovery highlights the significance of Sarcosphaera crassa as a natural functional food reservoir.
Collapse
Affiliation(s)
- Zain Ullah
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China; Department of Chemistry, Faculty of Sciences, Muğla Sıtkı Koçman University, 48121 Kötekli, Muğla, Turkiye.
| | - Mehmet Öztürk
- Department of Chemistry, Faculty of Sciences, Muğla Sıtkı Koçman University, 48121 Kötekli, Muğla, Turkiye.
| |
Collapse
|
6
|
Tanwar S, Kalra S, Bari VK. Insights into the role of sterol metabolism in antifungal drug resistance: a mini-review. Front Microbiol 2024; 15:1409085. [PMID: 39464401 PMCID: PMC11502366 DOI: 10.3389/fmicb.2024.1409085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Sterols are essential for eukaryotic cells and are crucial in cellular membranes' structure, function, fluidity, permeability, adaptability to environmental stressors, and host-pathogen interactions. Fungal sterol, such as ergosterol metabolism, involves several organelles, including the mitochondria, lipid droplets, endoplasmic reticulum, and peroxisomes that can be regulated mainly by feedback mechanisms and transcriptionally. The majority of sterol transport in yeast occurs via non-vesicular transport pathways mediated by lipid transfer proteins, which determine the quantity of sterol present in the cell membrane. Pathogenic fungi Candida, Aspergillus, and Cryptococcus species can cause a range of superficial to potentially fatal systemic and invasive infections that are more common in immunocompromised patients. There is a significant risk of morbidity and mortality from these infections, which are very difficult to cure. Several antifungal drugs with different modes of action have received clinical approval to treat fungal infections. Antifungal drugs targeting the ergosterol biosynthesis pathway are well-known for their antifungal activity; however, an imbalance in the regulation and transport of ergosterol could lead to resistance to antifungal therapy. This study summarizes how fungal sterol metabolism and regulation can modulate sterol-targeting antifungal drug resistance.
Collapse
|
7
|
Singh H, Wiscovitch-Russo R, Kuelbs C, Espinoza J, Appel AE, Lyons RJ, Vashee S, Förtsch HE, Foster JE, Ramdath D, Hayes VM, Nelson KE, Gonzalez-Juarbe N. Multiomic Insights into Human Health: Gut Microbiomes of Hunter-Gatherer, Agropastoral, and Western Urban Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611095. [PMID: 39282340 PMCID: PMC11398329 DOI: 10.1101/2024.09.03.611095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Societies with exposure to preindustrial diets exhibit improved markers of health. Our study used a comprehensive multi-omic approach to reveal that the gut microbiome of the Ju/'hoansi hunter-gatherers, one of the most remote KhoeSan groups, exhibit a higher diversity and richness, with an abundance of microbial species lost in the western population. The Ju/'hoansi microbiome showed enhanced global transcription and enrichment of complex carbohydrate metabolic and energy generation pathways. The Ju/'hoansi also show high abundance of short-chain fatty acids that are associated with health and optimal immune function. In contrast, these pathways and their respective species were found in low abundance or completely absent in Western populations. Amino acid and fatty acid metabolism pathways were observed prevalent in the Western population, associated with biomarkers of chronic inflammation. Our study provides the first in-depth multi-omic characterization of the Ju/'hoansi microbiome, revealing uncharacterized species and functional pathways that are associated with health.
Collapse
Affiliation(s)
- Harinder Singh
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Rosana Wiscovitch-Russo
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Claire Kuelbs
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Josh Espinoza
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Amanda E. Appel
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Ruth J. Lyons
- Garvan Institute of Medical Research, New South Wales, Australia
| | - Sanjay Vashee
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Jerome E. Foster
- Faculty of Medical Sciences, University of the West Indies, Trinidad
| | - Dan Ramdath
- Faculty of Medical Sciences, University of the West Indies, Trinidad
| | - Vanessa M. Hayes
- Garvan Institute of Medical Research, New South Wales, Australia
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Karen E. Nelson
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| |
Collapse
|
8
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Ishikawa T, Domergue F, Amato A, Corellou F. Characterization of Unique Eukaryotic Sphingolipids with Temperature-Dependent Δ8-Unsaturation from the Picoalga Ostreococcus tauri. PLANT & CELL PHYSIOLOGY 2024; 65:1029-1046. [PMID: 38252418 DOI: 10.1093/pcp/pcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Sphingolipids (SLs) are ubiquitous components of eukaryotic cell membranes and are found in some prokaryotic organisms and viruses. They are composed of a sphingoid backbone that may be acylated and glycosylated. Assembly of various sphingoid base, fatty acyl and glycosyl moieties results in highly diverse structures. The functional significance of variations in SL chemical diversity and abundance is still in the early stages of investigation. Among SL modifications, Δ8-desaturation of the sphingoid base occurs only in plants and fungi. In plants, SL Δ8-unsaturation is involved in cold hardiness. Our knowledge of the structure and functions of SLs in microalgae lags far behind that of animals, plants and fungi. Original SL structures have been reported from microalgae. However, functional studies are still missing. Ostreococcus tauri is a minimal microalga at the base of the green lineage and is therefore a key organism for understanding lipid evolution. In the present work, we achieved the detailed characterization of O. tauri SLs and unveiled unique glycosylceramides as sole complex SLs. The head groups are reminiscent of bacterial SLs, as they contain hexuronic acid residues and can be polyglycosylated. Ceramide backbones show a limited variety, and SL modification is restricted to Δ8-unsaturation. The Δ8-SL desaturase from O. tauri only produced E isomers. Expression of both Δ8-SL desaturase and Δ8-unsaturation of sphingolipids varied with temperature, with lower levels at 24°C than at 14°C. Overexpression of the Δ8-SL desaturase dramatically increases the level of Δ8 unsaturation at 24°C and is paralleled by a failure to increase cell size. Our work provides the first characterization of O. tauri SLs and functional evidence for the involvement of SL Δ8-unsaturation for temperature acclimation in microalgae, suggesting that this function is an ancestral feature in the green lineage.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570 Japan
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, University of Bordeaux, CNRSUMR 5200, Av. Edouard Bourlaux, Villenave d'Ornon 33140, France
| | - Alberto Amato
- Laboratoire de Physiologie Végétale et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique UMR 5168, Université Grenoble Alpes, CEA, IRIG, 17 Av. Des Martyrs, Grenoble 38000, France
| | - Florence Corellou
- Laboratoire de Physiologie Végétale et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique UMR 5168, Université Grenoble Alpes, CEA, IRIG, 17 Av. Des Martyrs, Grenoble 38000, France
| |
Collapse
|
10
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
11
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
12
|
Yang Y, Hou J, Luan J. Resistance mechanisms of Saccharomyces cerevisiae against silver nanoparticles with different sizes and coatings. Food Chem Toxicol 2024; 186:114581. [PMID: 38460669 DOI: 10.1016/j.fct.2024.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
To investigate the underlying resistance mechanisms of Saccharomyces cerevisiae against Ag-NPs with different particle sizes and coatings, transcriptome sequencing (RNA-seq) technology was used to characterize the transcriptomes from S. cerevisiae exposed to 20-PVP-Ag, 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag, respectively. The steroid biosynthesis was found as a general pathway for Ag-NPs stress responding, in which ERG6 and ERG3 were inhibited and ERG11, ERG25 and ERG5 were significantly up-regulated to resist the stress by supporting the later mutation and resistance and modulate drug efflux indirectly. The resistance mechanism of S. cerevisiae to 20-PVP-Ag seems different from that of 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag. Under the 20-PVP-Ag, transmembrane transporter activity, transition metal ion homeostasis and oxidative phosphorylation pathway were main resistance pathways to enhance cell transport processes. While 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag mainly impacted RNA binding, structural constituent of ribosome and ribosome pathway which can provide more energy to maintain the number and function of protein in cells. This study reveals the differences in resistance mechanisms of S. cerevisiae to Ag-NPs with different particle sizes and coatings, and explains several main regulatory mechanisms used to respond to silver stress. It will provide theoretical basis for the study of chemical risk assessment.
Collapse
Affiliation(s)
- Yue Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Jian Luan
- College of Life Sciences, Jilin Normal University, Jilin, 136000, PR China
| |
Collapse
|
13
|
Wei J, Wong LC, Boland S. Lipids as Emerging Biomarkers in Neurodegenerative Diseases. Int J Mol Sci 2023; 25:131. [PMID: 38203300 PMCID: PMC10778656 DOI: 10.3390/ijms25010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Biomarkers are molecules that can be used to observe changes in an individual's biochemical or medical status and provide information to aid diagnosis or treatment decisions. Dysregulation in lipid metabolism in the brain is a major risk factor for many neurodegenerative disorders, including frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Thus, there is a growing interest in using lipids as biomarkers in neurodegenerative diseases, with the anionic phospholipid bis(monoacylglycerol)phosphate and (glyco-)sphingolipids being the most promising lipid classes thus far. In this review, we provide a general overview of lipid biology, provide examples of abnormal lysosomal lipid metabolism in neurodegenerative diseases, and discuss how these insights might offer novel and promising opportunities in biomarker development and therapeutic discovery. Finally, we discuss the challenges and opportunities of lipid biomarkers and biomarker panels in diagnosis, prognosis, and/or treatment response in the clinic.
Collapse
|
14
|
Zong G, Cao G, Fu J, Zhang P, Chen X, Yan W, Xin L, Wang Z, Xu Y, Zhang R. Novel mechanism of hydrogen peroxide for promoting efficient natamycin synthesis in Streptomyces. Microbiol Spectr 2023; 11:e0087923. [PMID: 37695060 PMCID: PMC10580950 DOI: 10.1128/spectrum.00879-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/21/2023] [Indexed: 09/12/2023] Open
Abstract
The mechanism of regulation of natamycin biosynthesis by Streptomyces in response to oxidative stress is unclear. Here, we first show cholesterol oxidase SgnE, which catalyzes the formation of H2O2 from sterols, triggered a series of redox-dependent interactions to stimulate natamycin production in S. gilvosporeus. In response to reactive oxygen species, residues Cys212 and Cys221 of the H2O2-sensing consensus sequence of OxyR were oxidized, resulting in conformational changes in the protein: OxyR extended its DNA-binding domain to interact with four motifs of promoter p sgnM . This acted as a redox-dependent switch to turn on/off gene transcription of sgnM, which encodes a cluster-situated regulator, by controlling the affinity between OxyR and p sgnM , thus regulating the expression of 12 genes in the natamycin biosynthesis gene cluster. OxyR cooperates with SgnR, another cluster-situated regulator and an upstream regulatory factor of SgnM, synergistically modulated natamycin biosynthesis by masking/unmasking the -35 region of p sgnM depending on the redox state of OxyR in response to the intracellular H2O2 concentration. IMPORTANCE Cholesterol oxidase SgnE is an indispensable factor, with an unclear mechanism, for natamycin biosynthesis in Streptomyces. Oxidative stress has been attributed to the natamycin biosynthesis. Here, we show that SgnE catalyzes the formation of H2O2 from sterols and triggers a series of redox-dependent interactions to stimulate natamycin production in S. gilvosporeus. OxyR, which cooperates with SgnR, acted as a redox-dependent switch to turn on/off gene transcription of sgnM, which encodes a cluster-situated regulator, by masking/unmasking its -35 region, to control the natamycin biosynthesis gene cluster. This work provides a novel perspective on the crosstalk between intracellular ROS homeostasis and natamycin biosynthesis. Application of these findings will improve antibiotic yields via control of the intracellular redox pressure in Streptomyces.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Xi Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Wenxiu Yan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Lulu Xin
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Zhongxue Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Abstract
Invasive fungal infections in humans are common in people with compromised immune systems and are difficult to treat, resulting in high mortality. Amphotericin B (AmB) is one of the main antifungal drugs available to treat these infections. AmB binds with plasma membrane ergosterol, causing leakage of cellular ions and promoting cell death. The increasing use of available antifungal drugs to combat pathogenic fungal infections has led to the development of drug resistance. AmB resistance is not very common and is usually caused by changes in the amount or type of ergosterol or changes in the cell wall. Intrinsic AmB resistance occurs in the absence of AmB exposure, whereas acquired AmB resistance can develop during treatment. However, clinical resistance arises due to treatment failure with AmB and depends on multiple factors such as the pharmacokinetics of AmB, infectious fungal species, and host immune status. Candida albicans is a common opportunistic pathogen that can cause superficial infections of the skin and mucosal surfaces, thrush, to life-threatening systemic or invasive infections. In addition, immunocompromised individuals are more susceptible to systemic infections caused by Candida, Aspergillus, and Cryptococcus. Several antifungal drugs with different modes of action are used to treat systemic to invasive fungal infections and are approved for clinical use in the treatment of fungal diseases. However, C. albicans can develop a variety of defenses against antifungal medications. In fungi, plasma membrane sphingolipid molecules could interact with ergosterol, which can lead to the alteration of drug susceptibilities such as AmB. In this review, we mainly summarize the role of sphingolipid molecules and their regulators in AmB resistance.
Collapse
Affiliation(s)
- Kashish Madaan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
16
|
Aguilera-Romero A, Lucena R, Sabido-Bozo S, Muñiz M. Impact of sphingolipids on protein membrane trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159334. [PMID: 37201864 DOI: 10.1016/j.bbalip.2023.159334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Membrane trafficking is essential to maintain the spatiotemporal control of protein and lipid distribution within membrane systems of eukaryotic cells. To achieve their functional destination proteins are sorted and transported into lipid carriers that construct the secretory and endocytic pathways. It is an emerging theme that lipid diversity might exist in part to ensure the homeostasis of these pathways. Sphingolipids, a chemical diverse type of lipids with special physicochemical characteristics have been implicated in the selective transport of proteins. In this review, we will discuss current knowledge about how sphingolipids modulate protein trafficking through the endomembrane systems to guarantee that proteins reach their functional destination and the proposed underlying mechanisms.
Collapse
Affiliation(s)
- Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - Rafael Lucena
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
17
|
Smita N, Anusha R, Indu B, Sasikala C, Ramana CV. In silico analysis of sporulene biosynthesis pathway genes in the members of the class Bacilli. Arch Microbiol 2023; 205:233. [PMID: 37171632 DOI: 10.1007/s00203-023-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Sporulene, a pentacyclic triterpenoid, was discovered in Bacillus subtilis and is associated with bacterial endospores. However, the study was not further extended, leaving a trail of questions. One such question is what diversity of sporulenes exists among spore-forming members? Considering the sporulene biosynthesis pathway as a fundamental tool to survey the distribution of this molecule, a genome mining study was conducted. Mining for genes encoding putative proteins of sporulene biosynthesis pathway among the class Bacilli members revealed the presence of hepS, hepT, ytpB, and sqhC genes in the members of the family Bacillaceae, Caryophanaceae, Paenibacillaceae, and Sporolactobacillaceae. However, these genes were completely absent in the members of Staphylococcaceae, Lactobacillaceae, Aerococcaceae, Carnobacteriaceae, and Leuconostocaceae. Unlike other probable pathway related proteins, a conserved amino acid domain of putative terpenoid cyclase (YtpB) appeared deep-rooted among the genus Bacillus members. In-depth analysis showed the constant gene arrangement of hepS, hepT, ytpB, and sqhC genes in these members, there by demonstrating the conserved nature of sporulene biosynthesis pathway in the members of the genus Bacillus. Our study suggests confinement of the sporulene biosynthesis pathway to spore-forming members of the class Bacilli, majorly to the genus Bacillus.
Collapse
Affiliation(s)
- N Smita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - R Anusha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - B Indu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J.N.T. University Hyderabad, Kukatpally, Hyderabad, 500085, India.
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.
| |
Collapse
|
18
|
Zhao M, Fu L, Xu P, Wang T, Li P. Network Pharmacology and Experimental Validation to Explore the Effect and Mechanism of Kanglaite Injection Against Triple-Negative Breast Cancer. Drug Des Devel Ther 2023; 17:901-917. [PMID: 36998242 PMCID: PMC10043292 DOI: 10.2147/dddt.s397969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
Purpose Kanglaite injection (KLTi), made of Coix seed oil, has been shown to be effective in the treatment of numerous cancers. However, the anticancer mechanism requires further exploration. This study aimed to investigate the underlying anticancer mechanisms of KLTi in triple-negative breast cancer (TNBC) cells. Methods Public databases were searched for active compounds in KLTi, their potential targets and TNBC-related targets. KLTi's core targets and signaling pathways were determined through compound-target network, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was carried out to predict the binding activity between active ingredients and key targets. In vitro experiments were conducted to further validate the predictions of network pharmacology. Results Fourteen active components of KLTi were screened from the database. Fifty-three candidate therapeutic targets were selected, and bioinformatics analysis was performed to identify the top two active compounds and three core targets. GO and KEGG enrichment analyses indicated that KLTi exerts therapeutic effects on TNBC through the cell cycle pathway. Molecular docking results showed that the main compounds of KLTi exhibited good binding activity to key target proteins. Results from in vitro experiments showed that KLTi inhibited proliferation and migration of TNBC cell lines 231 and 468, induced apoptosis, blocked cells in the G2/M phase, downregulated the mRNA expression of seven G2/M phase-related genes cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 2 (CDK2), and checkpoint kinase 1 (CHEK1), cell division cycle 25A (CDC25A), cell division cycle 25B (CDC25B), maternal embryonic leucine zipper kinase (MELK), and aurora kinase A (AURKA), as well as downregulated CDK1 protein expression and up-regulated protein expression of Phospho-CDK1. Conclusion By utilizing network pharmacology, molecular docking, and in vitro experiments, KLTi was confirmed to have anti-TNBC effects by arresting cell cycle and inhibiting CDK1 dephosphorylation.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| | - Lijuan Fu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| | - Panling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| | - Ting Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
19
|
Bhaduri S, Scott NA, Neal SE. The Role of the Rhomboid Superfamily in ER Protein Quality Control: From Mechanisms and Functions to Diseases. Cold Spring Harb Perspect Biol 2023; 15:a041248. [PMID: 35940905 PMCID: PMC9899648 DOI: 10.1101/cshperspect.a041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells and is a major site for protein folding, modification, and lipid synthesis. Perturbations within the ER, such as protein misfolding and high demand for protein folding, lead to dysregulation of the ER protein quality control network and ER stress. Recently, the rhomboid superfamily has emerged as a critical player in ER protein quality control because it has diverse cellular functions, including ER-associated degradation (ERAD), endosome Golgi-associated degradation (EGAD), and ER preemptive quality control (ERpQC). This breadth of function both illustrates the importance of the rhomboid superfamily in health and diseases and emphasizes the necessity of understanding their mechanisms of action. Because dysregulation of rhomboid proteins has been implicated in various diseases, such as neurological disorders and cancers, they represent promising potential therapeutic drug targets. This review provides a comprehensive account of the various roles of rhomboid proteins in the context of ER protein quality control and discusses their significance in health and disease.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nicola A Scott
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Sonya E Neal
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
20
|
Belkin TG, Tham YK, McMullen JR. Lipids regulated by exercise and PI3K: potential role as biomarkers and therapeutic targets for cardiovascular disease. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Aji G, Jiang S, Obulkasim H, Lu Z, Wang W, Xia P. Sphingosine kinase 2 regulates insulin receptor trafficking in hepatocytes. Exp Biol Med (Maywood) 2023; 248:44-51. [PMID: 36408724 PMCID: PMC9989153 DOI: 10.1177/15353702221131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disturbed insulin receptor (InsR) trafficking is associated with impaired insulin signaling and the development of diabetes. Sphingosine kinase (SphK), including SphK1 and SphK2, is a key enzyme of sphingolipid metabolism, which has been implicated in the regulation of membrane trafficking. More recently, we have reported that SphK2 is a key regulator of hepatic insulin signaling and glucose homeostasis. However, the role of SphK in InsR trafficking is still undefined. Huh7 cells were treated with specific SphK1 and SphK2 inhibitors or SphK1- and SphK2-specific small interfering RNA (siRNA) in the presence or absence of insulin. Flow cytometry and immunofluorescence assays were carried out to investigate the role of SphK in InsR trafficking. InsR endocytosis, recycling, and insulin signaling were analyzed. Inhibition of SphK2, but not SphK1, by either specific pharmaceutic inhibitors or siRNA, significantly suppressed InsR endocytosis and recycling following insulin stimulation. Consequently, the insulin-stimulated Akt activation was significantly attenuated by SphK2 inhibition in hepatocytes. Moreover, the effect of SphK2 on InsR trafficking was mediated via the clathrin-dependent mechanism. Thus, our results show that SphK2 is able to regulate InsR trafficking. These findings suggest that SphK2 may impinge on hepatic insulin signaling by regulating InsR trafficking, providing further mechanistic evidence that SphK2 could serve as a potential intervention target against insulin resistance and T2D (type 2 diabetes).
Collapse
Affiliation(s)
- Gulibositan Aji
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Sheng Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Halmurat Obulkasim
- Department of General Surgery, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Zhiqiang Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
The Role of Dietary Lipids in Cognitive Health: Implications for Neurodegenerative Disease. Biomedicines 2022; 10:biomedicines10123250. [PMID: 36552006 PMCID: PMC9775642 DOI: 10.3390/biomedicines10123250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a group of disorders characterised by progressive loss of brain function. The most common of these is Alzheimer's disease, a form of dementia. Intake of macro- and micro-nutrients impacts brain function, including memory, learning, mood, and behaviour. Lipids, particularly phospholipids and sphingolipids, are crucial structural components of neural tissues and significantly affect cognitive function. The importance of functional foods in preventing cardiovascular disease is well-documented in the current literature. However, the significance of such foods for central nervous system health and neurodegenerative diseases is less recognized. Gut microbiome composition affects cognitive health and function, and dietary lipids are known to influence gut health. Thus, this review will discuss different sources of dietary lipids and their effect on cognitive functioning and their interaction with the gut microbiome in the context of neurodegenerative disease.
Collapse
|
23
|
Sommer K, Hillinger M, Eigenmann A, Vetter W. Characterization of various isomeric photoproducts of ergosterol and vitamin D2 generated by UV irradiation. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
AbstractVitamin D2 is produced from its precursor ergosterol under the impact of ultraviolet (UV) light which is also commercially carried out to increase vitamin D2 contents in mushrooms (‘Novel Food’). However, this process is accompanied by the formation of various isomers that partly co-elute with the target compound and are currently difficult to analyze. For this reason, vitamin D2 and ergosterol were irradiated with the goal to generate and characterize various isomeric photoproducts with three analytical methods. High-performance liquid chromatography with ultraviolet detection (HPLC–UV) was accompanied by using a chiral detector (CD) which was serially linked with the UV detector. Applied for the first time in this research area, HPLC-CD chromatograms provided complementary information which was crucial for the identification of several co-elutions that would have been overlooked without this approach. Additional information was derived from gas chromatography with mass spectrometry analysis. Diagnostic fragment ions in the GC/MS spectra allowed to distinguish four classes of tri- (n = 2), tetra-, and pentacyclic isomer groups. Despite several drawbacks of each of the applied methods, the shared evaluation allowed to characterize more than ten isomeric photoproducts of vitamin D2 including previtamin D2, lumisterol2, tachysterol2,trans-vitamin D2 isomers, and two pentacyclic isomers (suprasterols2 I and II), which were isolated and characterized by proton magnetic resonance spectroscopy (1H NMR).
Collapse
|
24
|
Sanchez-Arcos C, Paris D, Mazzella V, Mutalipassi M, Costantini M, Buia MC, von Elert E, Cutignano A, Zupo V. Responses of the Macroalga Ulva prolifera Müller to Ocean Acidification Revealed by Complementary NMR- and MS-Based Omics Approaches. Mar Drugs 2022; 20:md20120743. [PMID: 36547890 PMCID: PMC9783899 DOI: 10.3390/md20120743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.
Collapse
Affiliation(s)
- Carlos Sanchez-Arcos
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Debora Paris
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
| | - Valerio Mazzella
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, 87071 Amendolara, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Maria Cristina Buia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Eric von Elert
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| |
Collapse
|
25
|
da Hora GCA, Nguyen JDM, Swanson JMJ. Can membrane composition traffic toxins? Mycolactone and preferential membrane interactions. Biophys J 2022; 121:4260-4270. [PMID: 36258678 PMCID: PMC9703097 DOI: 10.1016/j.bpj.2022.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Mycolactone is a cytotoxic and immunosuppressive macrolide produced by Mycobacterium ulcerans and the sole causative agent of the neglected tropical skin disease Buruli ulcer. The toxin acts by invading host cells and interacting with intracellular targets to disrupt multiple fundamental cellular processes. Mycolactone's amphiphilic nature enables strong interactions with lipophilic environments, including cellular membranes; however, the specificity of these interactions and the role of membranes in the toxin's pathogenicity remain unknown. It is likely that preferential interactions with lipophilic carriers play a key role in the toxin's distribution in the host, which, if understood, could provide insights to aid in the development of needed diagnostics for Buruli ulcer disease. In this work, molecular dynamics simulations were combined with enhanced free-energy sampling to characterize mycolactone's association with and permeation through models of the mammalian endoplasmic reticulum (ER) and plasma membranes (PMs). We find that increased order in the PMs not only leads to a different permeation mechanism compared with that in the ER membrane but also an energetic driving force for ER localization. Increased hydration, membrane deformation, and preferential interactions with unsaturated lipid tails stabilize the toxin in the ER membrane, while disruption of lipid packing is a destabilizing force in the PMs.
Collapse
Affiliation(s)
| | - John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
26
|
Taylor MB, Skophammer R, Warwick AR, Geck RC, Boyer JM, Walson M, Large CRL, Hickey ASM, Rowley PA, Dunham MJ. yEvo: experimental evolution in high school classrooms selects for novel mutations that impact clotrimazole resistance in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:jkac246. [PMID: 36173330 PMCID: PMC9635649 DOI: 10.1093/g3journal/jkac246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
Antifungal resistance in pathogenic fungi is a growing global health concern. Nonpathogenic laboratory strains of Saccharomyces cerevisiae are an important model for studying mechanisms of antifungal resistance that are relevant to understanding the same processes in pathogenic fungi. We have developed a series of laboratory modules in which high school students used experimental evolution to study antifungal resistance by isolating azole-resistant S. cerevisiae mutants and examining the genetic basis of resistance. We have sequenced 99 clones from these experiments and found that all possessed mutations previously shown to impact azole resistance, validating our approach. We additionally found recurrent mutations in an mRNA degradation pathway and an uncharacterized mitochondrial protein (Csf1) that have possible mechanistic connections to azole resistance. The scale of replication in this initiative allowed us to identify candidate epistatic interactions, as evidenced by pairs of mutations that occur in the same clone more frequently than expected by chance (positive epistasis) or less frequently (negative epistasis). We validated one of these pairs, a negative epistatic interaction between gain-of-function mutations in the multidrug resistance transcription factors Pdr1 and Pdr3. This high school-university collaboration can serve as a model for involving members of the broader public in the scientific process to make meaningful discoveries in biomedical research.
Collapse
Affiliation(s)
- Matthew Bryce Taylor
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Program in Biology, Loras College, Dubuque, IA 52001, USA
| | | | - Alexa R Warwick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Josephine M Boyer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - yEvo Students
- Westridge School, Pasadena, CA 91105, USA
- Moscow High School, Moscow, ID 83843, USA
| | - Margaux Walson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher R L Large
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- UW Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Angela Shang-Mei Hickey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Present address: Department of Genetics, Stanford University, Biomedical Innovations Building, Palo Alto, CA 94304, USA
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Mahendrarajan V, Bari VK. A critical role of farnesol in the modulation of Amphotericin B and Aureobasidin A antifungal drug susceptibility. Mycology 2022; 13:305-317. [DOI: 10.1080/21501203.2022.2138599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Venkatramanan Mahendrarajan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
28
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Fang Yang,
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
29
|
Palladino END, Bernas T, Green CD, Weigel C, Singh SK, Senkal CE, Martello A, Kennelly JP, Bieberich E, Tontonoz P, Ford DA, Milstien S, Eden ER, Spiegel S. Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking. Proc Natl Acad Sci U S A 2022; 119:e2204396119. [PMID: 36122218 PMCID: PMC9522378 DOI: 10.1073/pnas.2204396119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Membrane contact sites (MCS), close membrane apposition between organelles, are platforms for interorganellar transfer of lipids including cholesterol, regulation of lipid homeostasis, and co-ordination of endocytic trafficking. Sphingosine kinases (SphKs), two isoenzymes that phosphorylate sphingosine to the bioactive sphingosine-1-phosphate (S1P), have been implicated in endocytic trafficking. However, the physiological functions of SphKs in regulation of membrane dynamics, lipid trafficking and MCS are not known. Here, we report that deletion of SphKs decreased S1P with concomitant increases in its precursors sphingosine and ceramide, and markedly reduced endoplasmic reticulum (ER) contacts with late endocytic organelles. Expression of enzymatically active SphK1, but not catalytically inactive, rescued the deficit of these MCS. Although free cholesterol accumulated in late endocytic organelles in SphK null cells, surprisingly however, cholesterol transport to the ER was not reduced. Importantly, deletion of SphKs promoted recruitment of the ER-resident cholesterol transfer protein Aster-B (also called GRAMD1B) to the plasma membrane (PM), consistent with higher accessible cholesterol and ceramide at the PM, to facilitate cholesterol transfer from the PM to the ER. In addition, ceramide enhanced in vitro binding of the Aster-B GRAM domain to phosphatidylserine and cholesterol liposomes. Our study revealed a previously unknown role for SphKs and sphingolipid metabolites in governing diverse MCS between the ER network and late endocytic organelles versus the PM to control the movement of cholesterol between distinct cell membranes.
Collapse
Affiliation(s)
- Elisa N. D. Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sandeep K. Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Can E. Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Andrea Martello
- UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - John P. Kennelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky and Veteran Affairs Medical Center, Lexington, KY 40536
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - David A. Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
30
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
31
|
Šolinc G, Švigelj T, Omersa N, Snoj T, Pirc K, Žnidaršič N, Yamaji-Hasegawa A, Kobayashi T, Anderluh G, Podobnik M. Pore-forming moss protein bryoporin is structurally and mechanistically related to actinoporins from evolutionarily distant cnidarians. J Biol Chem 2022; 298:102455. [PMID: 36063994 PMCID: PMC9526159 DOI: 10.1016/j.jbc.2022.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/26/2022] Open
Abstract
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information on their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of the monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity were enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tomaž Švigelj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | | | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, Adjeroh DA, Sirbu C, Reddy UK. Peppers in Diet: Genome-Wide Transcriptome and Metabolome Changes in Drosophila melanogaster. Int J Mol Sci 2022; 23:9924. [PMID: 36077322 PMCID: PMC9455967 DOI: 10.3390/ijms23179924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mary Edwards
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Armando Pacheco-Valenciana
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Cristian Sirbu
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV 25304, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Charleston Division, Charleston, WV 25304, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
33
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
34
|
Sanchez Granel ML, Siburu NG, Fricska A, Maldonado LL, Gargiulo LB, Nudel CB, Uttaro AD, Nusblat AD. A novel Tetrahymena thermophila sterol C-22 desaturase belongs to the Fatty Acid Hydroxylase/Desaturase superfamily. J Biol Chem 2022; 298:102397. [PMID: 35988640 PMCID: PMC9485055 DOI: 10.1016/j.jbc.2022.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Sterols in eukaryotic cells play important roles in modulating membrane fluidity and in cell signaling and trafficking. During evolution, a combination of gene losses and acquisitions gave rise to an extraordinary diversity of sterols in different organisms. The sterol C-22 desaturase identified in plants and fungi as a cytochrome P-450 monooxygenase evolved from the first eukaryotic cytochrome P450 and was lost in many lineages. Although the ciliate Tetrahymena thermophila desaturates sterols at the C-22 position, no cytochrome P-450 orthologs are present in the genome. Here, we aim to identify the genes responsible for the desaturation as well as their probable origin. We used gene knockout and yeast heterologous expression approaches to identify two putative genes, retrieved from a previous transcriptomic analysis, as sterol C-22 desaturases. Furthermore, we demonstrate using bioinformatics and evolutionary analyses that both genes encode a novel type of sterol C-22 desaturase that belongs to the large fatty acid hydroxylase/desaturase superfamily and the genes originated by genetic duplication prior to functional diversification. These results stress the widespread existence of nonhomologous isofunctional enzymes among different lineages of the tree of life as well as the suitability for the use of T. thermophila as a valuable model to investigate the evolutionary process of large enzyme families.
Collapse
Affiliation(s)
- María L Sanchez Granel
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Nicolás G Siburu
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, S2000FHQ, Rosario, Argentina
| | - Annamária Fricska
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Lucas L Maldonado
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Laura B Gargiulo
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Clara B Nudel
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, S2000FHQ, Rosario, Argentina.
| | - Alejandro D Nusblat
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Chen C, Li J, Li Z. Sustained injection of miR-499-5p alters the gastrocnemius muscle metabolome in broiler chickens. Arch Anim Breed 2022; 65:275-284. [PMID: 36035876 PMCID: PMC9399912 DOI: 10.5194/aab-65-275-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
To investigate the effects of miR-499-5p on muscle
metabolism in broiler chickens, eight broiler chicks were assigned to the
control group and eight to the treatment group, and then we monitored the effects
using metabolomics. Chicks were fed basal diets without or with miR-499-5p
delivery. Gastrocnemius muscle samples were collected and analyzed by
ultrahigh-performance liquid chromatography–tandem mass spectrometry. The
results showed that miR-499-5p injection altered the concentrations of a
variety of metabolites in the gastrocnemius muscle. Thereby, a total of 46
metabolites were identified at higher (P<0.05) concentrations and
30 metabolites were identified at lower (P<0.05) concentrations in
the treatment group compared with the control group. These metabolites
were primarily involved with the regulation of lipid and carbohydrate
metabolism. Further metabolic pathway analysis revealed that fructose and
mannose metabolism, galactose metabolism, inositol phosphate metabolism, and
terpenoid backbone biosynthesis were the most critical pathway which may
partially interpret the effects of miR-499-5p. To our knowledge, this
research is the first report of metabolic signatures and related metabolic
pathways in the skeletal muscle for miR-499-5p injection and provides new
insight into the effect of miRNA on growth performance.
Collapse
Affiliation(s)
- Chuwen Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource
Reservation and Utilization, Ministry of Education, Southwest Minzu
University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu
University, Chengdu, 610041, China
| | - Jie Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource
Reservation and Utilization, Ministry of Education, Southwest Minzu
University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu
University, Chengdu, 610041, China
| | - Zhixiong Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource
Reservation and Utilization, Ministry of Education, Southwest Minzu
University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu
University, Chengdu, 610041, China
| |
Collapse
|
36
|
Revie NM, Iyer KR, Maxson ME, Zhang J, Yan S, Fernandes CM, Meyer KJ, Chen X, Skulska I, Fogal M, Sanchez H, Hossain S, Li S, Yashiroda Y, Hirano H, Yoshida M, Osada H, Boone C, Shapiro RS, Andes DR, Wright GD, Nodwell JR, Del Poeta M, Burke MD, Whitesell L, Robbins N, Cowen LE. Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nat Commun 2022; 13:3634. [PMID: 35752611 PMCID: PMC9233667 DOI: 10.1038/s41467-022-31308-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections. Here, we use a combinatorial screening approach to identify an imidazopyrazoindole, NPD827, that synergizes with fluconazole against azole-sensitive and -resistant isolates of Candida albicans. NPD827 interacts with sterols, resulting in profound effects on fungal membrane homeostasis and induction of membrane-associated stress responses. The compound impairs virulence in a Caenorhabditis elegans model of candidiasis, blocks C. albicans filamentation in vitro, and prevents biofilm formation in a rat model of catheter infection by C. albicans. Collectively, this work identifies an imidazopyrazoindole scaffold with a non-protein-targeted mode of action that re-sensitizes the leading human fungal pathogen, C. albicans, to azole antifungals.
Collapse
Affiliation(s)
- Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiabao Zhang
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Su Yan
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Caroline M Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Kirsten J Meyer
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Xuefei Chen
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Iwona Skulska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sheena Li
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Hirano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Veteran Administration Medical Center, Northport, NY, USA
| | - Martin D Burke
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Zhu S, Gu H, Peng C, Xia F, Cao H, Cui H. Regulation of Glucose, Fatty Acid and Amino Acid Metabolism by Ubiquitination and SUMOylation for Cancer Progression. Front Cell Dev Biol 2022; 10:849625. [PMID: 35392171 PMCID: PMC8981989 DOI: 10.3389/fcell.2022.849625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and SUMOylation, which are posttranslational modifications, play prominent roles in regulating both protein expression and function in cells, as well as various cellular signal transduction pathways. Metabolic reprogramming often occurs in various diseases, especially cancer, which has become a new entry point for understanding cancer mechanisms and developing treatment methods. Ubiquitination or SUMOylation of protein substrates determines the fate of modified proteins. Through accurate and timely degradation and stabilization of the substrate, ubiquitination and SUMOylation widely control various crucial pathways and different proteins involved in cancer metabolic reprogramming. An understanding of the regulatory mechanisms of ubiquitination and SUMOylation of cell proteins may help us elucidate the molecular mechanism underlying cancer development and provide an important theory for new treatments. In this review, we summarize the processes of ubiquitination and SUMOylation and discuss how ubiquitination and SUMOylation affect cancer metabolism by regulating the key enzymes in the metabolic pathway, including glucose, lipid and amino acid metabolism, to finally reshape cancer metabolism.
Collapse
Affiliation(s)
- Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fanwei Xia
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Huan Cao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui,
| |
Collapse
|
38
|
Distribution of the non-isoprene components in the four Hevea brasiliensis latex centrifugation fractions. J RUBBER RES 2021. [DOI: 10.1007/s42464-021-00133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Liu NJ, Hou LP, Bao JJ, Wang LJ, Chen XY. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. PLANT COMMUNICATIONS 2021; 2:100214. [PMID: 34746760 PMCID: PMC8553973 DOI: 10.1016/j.xplc.2021.100214] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 06/26/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids, which comprise membrane systems together with other lipids, are ubiquitous in cellular organisms. They show a high degree of diversity across plant species and vary in their structures, properties, and functions. Benefiting from the development of lipidomic techniques, over 300 plant sphingolipids have been identified. Generally divided into free long-chain bases (LCBs), ceramides, glycosylceramides (GlcCers) and glycosyl inositol phosphoceramides (GIPCs), plant sphingolipids exhibit organized aggregation within lipid membranes to form raft domains with sterols. Accumulating evidence has revealed that sphingolipids obey certain trafficking and distribution rules and confer unique properties to membranes. Functional studies using sphingolipid biosynthetic mutants demonstrate that sphingolipids participate in plant developmental regulation, stimulus sensing, and stress responses. Here, we present an updated metabolism/degradation map and summarize the structures of plant sphingolipids, review recent progress in understanding the functions of sphingolipids in plant development and stress responses, and review sphingolipid distribution and trafficking in plant cells. We also highlight some important challenges and issues that we may face during the process of studying sphingolipids.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- Corresponding author
| | - Li-Pan Hou
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing-Jing Bao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
Voshall A, Christie NTM, Rose SL, Khasin M, Van Etten JL, Markham JE, Riekhof WR, Nickerson KW. Sterol Biosynthesis in Four Green Algae: A Bioinformatic Analysis of the Ergosterol Versus Phytosterol Decision Point. JOURNAL OF PHYCOLOGY 2021; 57:1199-1211. [PMID: 33713347 PMCID: PMC8453531 DOI: 10.1111/jpy.13164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and β-sitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis of the C. variabilis NC64A, C. sorokiniana, and C. subellipsoidea genomes identified 22 homologs of sterol biosynthetic genes from Arabidopsis thaliana, Saccharomyces cerevisiae, and C. reinhardtii. The presence of CAS1, CPI1, and HYD1 in the four algal genomes suggests the higher plant cycloartenol branch for sterol biosynthesis, confirming that algae and fungi use different pathways for ergosterol synthesis. Phylogenetic analysis for 40 oxidosqualene cyclases (OSCs) showed that the nine algal OSCs clustered with the cycloartenol cyclases, rather than the lanosterol cyclases, with the OSC for C. subellipsoidea positioned in between the higher plants and the eight other algae. With regard to why C. subellipsoidea produced phytosterols instead of ergosterol, we identified 22 differentially conserved positions where C. subellipsoidea CAS and A. thaliana CAS1 have one amino acid while the three ergosterol producing algae have another. Together, these results emphasize the position of the unicellular algae as an evolutionary transition point for sterols.
Collapse
Affiliation(s)
- Adam Voshall
- Division of Genetics and GenomicsBoston Children’s Hospital and Harvard Medical SchoolBostonMassachusetts02115USA
| | - Nakeirah T. M. Christie
- Department of Molecular Biophysics & BiochemistryYale UniversityNew Haven, Connecticut06520USA
| | - Suzanne L. Rose
- School of Biological SciencesUniversity of NebraskaLincolnNebraska68588‐0666USA
| | - Maya Khasin
- Wheat, Sorghum, and Forage Research UnitUSDALincolnNebraska68583‐0937USA
| | - James L. Van Etten
- Department of Plant Pathology, and Nebraska Center for VirologyUniversity of NebraskaLincolnNebraska68583‐0900USA
| | - Jennifer E. Markham
- Department of Biochemistry, and Center for Plant Science InnovationUniversity of NebraskaLincolnNebraska68588‐0664USA
| | - Wayne R. Riekhof
- School of Biological SciencesUniversity of NebraskaLincolnNebraska68588‐0666USA
| | | |
Collapse
|
41
|
Hu S, Morrin H, Wynne C, Meaney S. 3-Hexanoyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl-cholesterol (3-NBD-cholesterol) is a versatile cholesterol tracer. Steroids 2021; 171:108840. [PMID: 33862044 DOI: 10.1016/j.steroids.2021.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Membrane cholesterol influences a large number of cellular processes and the dynamics of cholesterol exchange between membranes is an area of active study. However, analogs containing a fluorophore on the isooctyl side chain of cholesterol are commonly used without regard for the potential impact of the fluorophore on membrane structure. We investigated the capacity of 3-hexanoyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl-cholesterol (3-NBD-cholesterol), which is labelled at the C3 position, to trace cholesterol dynamics in cellular systems. Transfer of 3-NBD-cholesterol from erythrocytes to lipoproteins replicated known properties of cholesterol. Labelled cells were also readily detected by flow-cytometry and microscopy. Using flow-cytometry it was also possible to follow the uptake of 3-NBD-cholesterol labelled extracellular vesicles. These data indicate that 3-NBD-cholesterol is a versatile cholesterol tracer in different cell models and extracellular vesicles.
Collapse
Affiliation(s)
- ShuaiShuai Hu
- School of Biological and Health Sciences, College of Sciences and Health, Technological University Dublin, Grangegorman, Dublin, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin, Ireland
| | - Hannah Morrin
- School of Biological and Health Sciences, College of Sciences and Health, Technological University Dublin, Grangegorman, Dublin, Ireland
| | - Claire Wynne
- School of Biological and Health Sciences, College of Sciences and Health, Technological University Dublin, Grangegorman, Dublin, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin, Ireland
| | - Steve Meaney
- School of Biological and Health Sciences, College of Sciences and Health, Technological University Dublin, Grangegorman, Dublin, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin, Ireland.
| |
Collapse
|
42
|
Unexpected Role of Sterol Synthesis in RNA Stability and Translation in Leishmania. Biomedicines 2021; 9:biomedicines9060696. [PMID: 34205466 PMCID: PMC8235615 DOI: 10.3390/biomedicines9060696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023] Open
Abstract
Leishmania parasites are trypanosomatid protozoans that cause leishmaniasis affecting millions of people worldwide. Sterols are important components of the plasma and organellar membranes. They also serve as precursors for the synthesis of signaling molecules. Unlike animals, Leishmania does not synthesize cholesterol but makes ergostane-based sterols instead. C-14-demethylase is a key enzyme involved in the biosynthesis of sterols and an important drug target. In Leishmania parasites, the inactivation of C-14-demethylase leads to multiple defects, including increased plasma membrane fluidity, mitochondrion dysfunction, hypersensitivity to stress and reduced virulence. In this study, we revealed a novel role for sterol synthesis in the maintenance of RNA stability and translation. Sterol alteration in C-14-demethylase knockout mutant leads to increased RNA degradation, reduced translation and impaired heat shock response. Thus, sterol biosynthesis in Leishmania plays an unexpected role in global gene regulation.
Collapse
|
43
|
Guo X, Zhang J, Li X, Xiao E, Lange JD, Rienstra CM, Burke MD, Mitchell DA. Sterol Sponge Mechanism Is Conserved for Glycosylated Polyene Macrolides. ACS CENTRAL SCIENCE 2021; 7:781-791. [PMID: 34079896 PMCID: PMC8161476 DOI: 10.1021/acscentsci.1c00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 05/07/2023]
Abstract
Amphotericin-like glycosylated polyene macrolides (GPMs) are a clinically and industrially important family of natural products, but the mechanisms by which they exert their extraordinary biological activities have remained unclear for more than half a century. Amphotericin B exerts fungicidal action primarily via self-assembly into an extramembranous sponge that rapidly extracts ergosterol from fungal membranes, but it has remained unclear whether this mechanism is applicable to other GPMs. Using a highly conserved polyene-hemiketal region of GPMs that we hypothesized to represent a conserved ergosterol-binding domain, we bioinformatically mapped the entirety of the GPM sequence-function space and expanded the number of GPM biosynthetic gene clusters (BGCs) by 10-fold. We further leveraged bioinformatic predictions and tetrazine-based reactivity screening targeting the electron-rich polyene region of GPMs to discover a first-in-class methyltetraene- and diepoxide-containing GPM, kineosporicin, and to assign BGCs to many new producers of previously reported members. Leveraging a range of structurally diverse known and newly discovered GPMs, we found that the sterol sponge mechanism of fungicidal action is conserved.
Collapse
Affiliation(s)
- Xiaorui Guo
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jiabao Zhang
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
| | - Xinyi Li
- Department
of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Emily Xiao
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin D. Lange
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department
of Biochemistry and National Magnetic Resonance Facility at Madison, DeLuca Biochemistry Laboratories, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Martin D. Burke
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
- Department
of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
- Department
of Microbiology, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
44
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|
45
|
Salzer L, Witting M. Quo Vadis Caenorhabditis elegans Metabolomics-A Review of Current Methods and Applications to Explore Metabolism in the Nematode. Metabolites 2021; 11:metabo11050284. [PMID: 33947148 PMCID: PMC8146106 DOI: 10.3390/metabo11050284] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and lipidomics recently gained interest in the model organism Caenorhabditis elegans (C. elegans). The fast development, easy cultivation and existing forward and reverse genetic tools make the small nematode an ideal organism for metabolic investigations in development, aging, different disease models, infection, or toxicology research. The conducted type of analysis is strongly depending on the biological question and requires different analytical approaches. Metabolomic analyses in C. elegans have been performed using nuclear magnetic resonance (NMR) spectroscopy, direct infusion mass spectrometry (DI-MS), gas-chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) or combinations of them. In this review we provide general information on the employed techniques and their advantages and disadvantages in regard to C. elegans metabolomics. Additionally, we reviewed different fields of application, e.g., longevity, starvation, aging, development or metabolism of secondary metabolites such as ascarosides or maradolipids. We also summarised applied bioinformatic tools that recently have been used for the evaluation of metabolomics or lipidomics data from C. elegans. Lastly, we curated metabolites and lipids from the reviewed literature, enabling a prototypic collection which serves as basis for a future C. elegans specific metabolome database.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
46
|
Fernández-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaría E. Alteration in the Cerebrospinal Fluid Lipidome in Parkinson's Disease: A Post-Mortem Pilot Study. Biomedicines 2021; 9:491. [PMID: 33946950 PMCID: PMC8146703 DOI: 10.3390/biomedicines9050491] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism is clearly associated to Parkinson's disease (PD). Although lipid homeostasis has been widely studied in multiple animal and cellular models, as well as in blood derived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely unexplored. In this study, we characterized the post-mortem CSF lipidomic imbalance between neurologically intact controls (n = 10) and PD subjects (n = 20). The combination of dual extraction with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed for the monitoring of 257 lipid species across all samples. Complementary multivariate and univariate data analysis identified that glycerolipids (mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids (ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) were significantly increased in the CSF of PD compared to the control group. Interestingly, CSF lipid dyshomeostasis differed depending on neuropathological staging and disease duration. These results, despite the limitation of being obtained in a small population, suggest extensive CSF lipid remodeling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify potential lipid markers as well as discriminatory lipid species between PD and other atypical parkinsonisms.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| |
Collapse
|
47
|
Gruenberg J. Life in the lumen: The multivesicular endosome. Traffic 2021; 21:76-93. [PMID: 31854087 PMCID: PMC7004041 DOI: 10.1111/tra.12715] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The late endosomes/endo‐lysosomes of vertebrates contain an atypical phospholipid, lysobisphosphatidic acid (LBPA) (also termed bis[monoacylglycero]phosphate [BMP]), which is not detected elsewhere in the cell. LBPA is abundant in the membrane system present in the lumen of this compartment, including intralumenal vesicles (ILVs). In this review, the current knowledge on LBPA and LBPA‐containing membranes will be summarized, and their role in the control of endosomal cholesterol will be outlined. Some speculations will also be made on how this system may be overwhelmed in the cholesterol storage disorder Niemann‐Pick C. Then, the roles of intralumenal membranes in endo‐lysosomal dynamics and functions will be discussed in broader terms. Likewise, the mechanisms that drive the biogenesis of intralumenal membranes, including ESCRTs, will also be discussed, as well as their diverse composition and fate, including degradation in lysosomes and secretion as exosomes. This review will also discuss how intralumenal membranes are hijacked by pathogenic agents during intoxication and infection, and what is the biochemical composition and function of the intra‐endosomal lumenal milieu. Finally, this review will allude to the size limitations imposed on intralumenal vesicle functions and speculate on the possible role of LBPA as calcium chelator in the acidic calcium stores of endo‐lysosomes.
Collapse
Affiliation(s)
- Jean Gruenberg
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Liu X, Wang J, Hu B, Yan P, Jia S, Du Z, Jiang H. Qualitative distribution of endogenous sphingolipids in plasma of human and rodent species by UPLC-Q-Exactive-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122684. [PMID: 33857888 DOI: 10.1016/j.jchromb.2021.122684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022]
Abstract
Sphingolipids (SLs) are endogenously bioactive molecules with diverse structures, and its metabolic disorders are involved in the progression of many diseases. In this study, an ultra-performance liquid chromatography quadrupole exactive mass spectrometry (UPLC-Q-Exactive-MS) method was established to comprehensively profile SLs in plasma. First, the fragment patterns of SL standards of each subclass were investigated. Then, the SL species in plasma were characterized based on the fragmentation rules. Finally, a total of 144 endogenous SL species consisting of 216 regioisomers were identified in plasma of human, golden hamster and C57BL/6 mice, which was the most comprehensive identification for SLs in plasma. In addition to the known species, 19 SL species that have never been reported were also identified. The profile of SLs in plasma of human and two rodent species was compared subsequently. It was worth noting that a total of 9 SL molecular species consisting of 11 regioisomers with low abundance were successfully identified in human plasma through comparison among species. Those findings contribute to a deeper understanding of SLs in human plasma and provide scientific basis for the selection of animal model. The established profile of SLs in plasma could be used for screening of lipid biomarkers of various diseases.
Collapse
Affiliation(s)
- Xuechen Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingchen Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingying Hu
- Zhejiang Academy of Medical Sciences (Hangzhou Medical College), 182 Tianmushan Road, Hangzhou, Zhejiang, China
| | - Pan Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuailong Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
49
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
50
|
Jain BK, Roland BP, Graham TR. Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity. J Biol Chem 2020; 295:17997-18009. [PMID: 33060204 PMCID: PMC7939387 DOI: 10.1074/jbc.ra120.014794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/22/2020] [Indexed: 01/21/2023] Open
Abstract
The plasma membrane of a cell is characterized by an asymmetric distribution of lipid species across the exofacial and cytofacial aspects of the bilayer. Regulation of membrane asymmetry is a fundamental characteristic of membrane biology and is crucial for signal transduction, vesicle transport, and cell division. The type IV family of P-ATPases, or P4-ATPases, establishes membrane asymmetry by selection and transfer of a subset of membrane lipids from the lumenal or exofacial leaflet to the cytofacial aspect of the bilayer. It is unclear how P4-ATPases sort through the spectrum of membrane lipids to identify their desired substrate(s) and how the membrane environment modulates this activity. Therefore, we tested how the yeast plasma membrane P4-ATPase, Dnf2, responds to changes in membrane composition induced by perturbation of endogenous lipid biosynthetic pathways or exogenous application of lipid. The primary substrates of Dnf2 are glucosylceramide (GlcCer) and phosphatidylcholine (PC, or their lyso-lipid derivatives), and we find that these substrates compete with each other for transport. Acutely inhibiting sphingolipid synthesis using myriocin attenuates transport of exogenously applied GlcCer without perturbing PC transport. Deletion of genes controlling later steps of glycosphingolipid production also perturb GlcCer transport to a greater extent than PC transport. In contrast, perturbation of ergosterol biosynthesis reduces PC and GlcCer transport equivalently. Surprisingly, application of lipids that are poor transport substrates differentially affects PC and GlcCer transport by Dnf2, thus altering substrate preference. Our data indicate that Dnf2 exhibits exquisite sensitivity to the membrane composition, thus providing feedback onto the function of the P4-ATPases.
Collapse
Affiliation(s)
- Bhawik Kumar Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Bartholomew P Roland
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|