1
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
2
|
Benamar M, Eki R, Du KP, Abbas T. Break-induced replication drives large-scale genomic amplifications in cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609980. [PMID: 39253455 PMCID: PMC11383296 DOI: 10.1101/2024.08.27.609980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that underly the efficacy of ionizing radiation (IR) and a large number of cytotoxic chemotherapies 1-3 . Yet, abnormal repair of DSBs is associated with genomic instability and may contribute to cancer heterogeneity and tumour evolution. Here, we show that DSBs induced by IR, by DSB-inducing chemotherapeutics, or by the expression of a rare-cutting restriction endonuclease induce large-scale genomic amplification in human cancer cells. Importantly, the extent of DSB-induced genomic amplification (DIGA) in a panel of melanoma cell lines correlated with the degree of cytotoxicity elicited by IR, suggesting that DIGA contributes significantly to DSB-induced cancer cell lethality. DIGA, which is mediated through conservative DNA synthesis, does not require origin re-licensing, and is enhanced by the depletion or deletion of the methyltransferases SET8 and SUV4-20H1, which function sequentially to mono- and di-methylate histone H4 lysine 20 (H4K20) at DSBs to facilitate the recruitment of 53BP1-RIF1 and its downstream effector shieldin complex to DSBs to prevent hyper-resection 4-11 . Consistently, DIGA was enhanced in cells lacking 53BP1 or RIF1, or in cells that lacked components of the shieldin complex or of other factors that help recruit 53BP1 to DSBs. Mechanistically, DIGA requires MRE11/CtIP and EXO1, factors that promote resection and hyper-resection at DSBs, and is dependent on the catalytic activity of the RAD51 recombinase. Furthermore, deletion or depletion of POLD3, POLD4, or RAD52, proteins involved in break-induced replication (BIR), significantly inhibited DIGA, suggesting that DIGA is mediated through a RAD51-dependent BIR-like process. DIGA induction was maximal if the cells encountered DSBs in early and mid S-phase, whereas cells competent for homologous recombination (in late S and G2) exhibited less DIGA induction. We propose that unshielded, hyper-resected ends of DSBs may nucleate a replication-like intermediate that enables cytotoxic long-range genomic DNA amplification mediated through BIR.
Collapse
|
3
|
Chukwu W, Lee S, Crane A, Zhang S, Webster S, Mittra I, Imielinski M, Beroukhim R, Dubois F, Dalin S. Comparison of germline and somatic structural variants in cancers reveal systematic differences in variant generating and selection processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561462. [PMID: 38106141 PMCID: PMC10723258 DOI: 10.1101/2023.10.09.561462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Although several recent studies have characterized structural variants (SVs) in germline and cancer genomes, the features of SVs in these different contexts have not been directly compared. We examined similarities and differences between 2 million germline and 115 thousand tumor SVs from a cohort of 963 patients from The Cancer Genome Atlas (TCGA). We found significant differences in features related to their genomic sequences and localization that suggest differences between SV-generating processes and selective pressures. For example, we found that transposon-mediated processes shape germline much more than somatic SVs, while somatic SVs more frequently show features characteristic of chromoanagenesis. These differences were extensive enough to enable us to develop a classifier - "the great GaTSV" - that accurately distinguishes between germline and cancer SVs in tumor samples that lack a matched normal sample.
Collapse
Affiliation(s)
- Wolu Chukwu
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Siyun Lee
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexander Crane
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shu Zhang
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sophie Webster
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ipsa Mittra
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Department of Pathology and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Frank Dubois
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, Institute of Pathology
| | - Simona Dalin
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
4
|
Cui J, Liu X, Shang Q, Sun S, Chen S, Dong J, Zhu Y, Liu L, Xia Y, Wang Y, Xiang L, Fan B, Zhan J, Zhou Y, Chen P, Zhao R, Liu X, Xing N, Wu D, Shi B, Zou Y. Deubiquitination of CDC6 by OTUD6A promotes tumour progression and chemoresistance. Mol Cancer 2024; 23:86. [PMID: 38685067 PMCID: PMC11057083 DOI: 10.1186/s12943-024-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Cui
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Clinical laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jianping Dong
- Department of Urology, Shouguang People's Hospital, Weifang, Shandong, 262750, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Liu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lu Xiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Bowen Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jiafeng Zhan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yadi Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Renchang Zhao
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaofei Liu
- Departement of Breast and Thyroid Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Vitarelli MDO, Franco TA, Pires DDS, Lima ARJ, Viala VL, Kraus AJ, de Azevedo IDLMJ, da Cunha JPC, Elias MC. Integrating high-throughput analysis to create an atlas of replication origins in Trypanosoma cruzi in the context of genome structure and variability. mBio 2024; 15:e0031924. [PMID: 38441981 PMCID: PMC11005370 DOI: 10.1128/mbio.00319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Trypanosoma cruzi is the etiologic agent of the most prevalent human parasitic disease in Latin America, Chagas disease. Its genome is rich in multigenic families that code for virulent antigens and are present in the rapidly evolving genomic compartment named Disruptive. DNA replication is a meticulous biological process in which flaws can generate mutations and changes in chromosomal and gene copy numbers. Here, integrating high-throughput and single-molecule analyses, we were able to identify Predominant, Flexible, and Dormant Orc1Cdc6-dependent origins as well as Orc1Cdc6-independent origins. Orc1Cdc6-dependent origins were found in multigenic family loci, while independent origins were found in the Core compartment that contains conserved and hypothetical protein-coding genes, in addition to multigenic families. In addition, we found that Orc1Cdc6 density is related to the firing of origins and that Orc1Cdc6-binding sites within fired origins are depleted of a specific class of nucleosomes that we previously categorized as dynamic. Together, these data suggest that Orc1Cdc6-dependent origins may contribute to the rapid evolution of the Disruptive compartment and, therefore, to the success of T. cruzi infection and that the local epigenome landscape is also involved in this process.IMPORTANCETrypanosoma cruzi, responsible for Chagas disease, affects millions globally, particularly in Latin America. Lack of vaccine or treatment underscores the need for research. Parasite's genome, with virulent antigen-coding multigenic families, resides in the rapidly evolving Disruptive compartment. Study sheds light on the parasite's dynamic DNA replication, discussing the evolution of the Disruptive compartment. Therefore, the findings represent a significant stride in comprehending T. cruzi's biology and the molecular bases that contribute to the success of infection caused by this parasite.
Collapse
Affiliation(s)
- Marcela de Oliveira Vitarelli
- Cell Cycle Laboratory, Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
| | | | | | | | - Vincent Louis Viala
- Biochemistry Laboratory, Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
| | - Amelie Johanna Kraus
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | | | - Julia Pinheiro Chagas da Cunha
- Cell Cycle Laboratory, Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
| | - Maria Carolina Elias
- Cell Cycle Laboratory, Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
| |
Collapse
|
6
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
7
|
Zhu HX, Zheng WC, Chen H, Chen JY, Lin F, Chen SH, Xue XY, Zheng QS, Liang M, Xu N, Chen DN, Sun XL. Exploring Novel Genome Instability-associated lncRNAs and their Potential Function in Pan-Renal Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:1788-1807. [PMID: 37957851 DOI: 10.2174/0113862073258779231020052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC). MATERIALS AND METHODS A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation. RESULTS A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance. CONCLUSIONS In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.
Collapse
Affiliation(s)
- Hui-Xin Zhu
- Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| |
Collapse
|
8
|
Soliman TN, Keifenheim D, Parker PJ, Clarke DJ. Cell cycle responses to Topoisomerase II inhibition: Molecular mechanisms and clinical implications. J Cell Biol 2023; 222:e202209125. [PMID: 37955972 PMCID: PMC10641588 DOI: 10.1083/jcb.202209125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
DNA Topoisomerase IIA (Topo IIA) is an enzyme that alters the topological state of DNA and is essential for the separation of replicated sister chromatids and the integrity of cell division. Topo IIA dysfunction activates cell cycle checkpoints, resulting in arrest in either the G2-phase or metaphase of mitosis, ultimately triggering the abscission checkpoint if non-disjunction persists. These events, which directly or indirectly monitor the activity of Topo IIA, have become of major interest as many cancers have deficiencies in Topoisomerase checkpoints, leading to genome instability. Recent studies into how cells sense Topo IIA dysfunction and respond by regulating cell cycle progression demonstrate that the Topo IIA G2 checkpoint is distinct from the G2-DNA damage checkpoint. Likewise, in mitosis, the metaphase Topo IIA checkpoint is separate from the spindle assembly checkpoint. Here, we integrate mechanistic knowledge of Topo IIA checkpoints with the current understanding of how cells regulate progression through the cell cycle to accomplish faithful genome transmission and discuss the opportunities this offers for therapy.
Collapse
Affiliation(s)
- Tanya N. Soliman
- Barts Cancer Institute, Queen Mary University London, London, UK
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Ansari JA, Malik JA, Ahmed S, Bhat FA, Khanam A, Mir SA, Abouzied AS, Ahemad N, Anwar S. Targeting Breast Cancer Signaling via Phytomedicine and Nanomedicine. Pharmacology 2023; 108:504-520. [PMID: 37748454 DOI: 10.1159/000531802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sakeel Ahmed
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | | | - Afreen Khanam
- Department of Pharmacology, Jamia Hamdard, New Delhi, India
| | - Suhail Ahmad Mir
- Department of Pharmacy, University of Kashmir, Jammu and Kashmir, India
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nafees Ahemad
- School of Pharmacy, MONASH University Malaysia, Bandar Sunway, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
10
|
Hadjicharalambous A, Whale AJ, Can G, Skehel JM, Houseley JM, Zegerman P. Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress. Wellcome Open Res 2023; 8:327. [PMID: 37766847 PMCID: PMC10521137 DOI: 10.12688/wellcomeopenres.19617.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/29/2023] Open
Abstract
Background: In eukaryotes, replication stress activates a checkpoint response, which facilitates genome duplication by stabilising the replisome. How the checkpoint kinases regulate the replisome remains poorly understood. The aim of this study is to identify new targets of checkpoint kinases within the replisome during replication stress. Methods: Here we use an unbiased biotin proximity-ligation approach in Saccharomyces cerevisiae to identify new interactors and substrates of the checkpoint kinase Rad53 in vivo. Results: From this screen, we identified the replication initiation factor Sld7 as a Rad53 substrate, and Pol1, the catalytic subunit of polymerase a, as a Rad53-interactor. We showed that CDK phosphorylation of Pol1 mediates its interaction with Rad53. Combined with other interactions between Rad53 and the replisome, this Rad53-Pol1 interaction is important for viability and replisome progression during replication stress. Conclusions: Together, we explain how the interactions of Rad53 with the replisome are controlled by both replication stress and the cell cycle, and why these interactions might be important for coordinating the stabilisation of both the leading and lagging strand machineries.
Collapse
Affiliation(s)
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Geylani Can
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| | - J. Mark Skehel
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, London, England, CB2 0QH, UK
| | - Jonathan M. Houseley
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Philip Zegerman
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| |
Collapse
|
11
|
Zou Y, Pei J, Long H, Lan L, Dong K, Wang T, Li M, Zhao Z, Zhu L, Zhang G, Jin X, Wang Y, Wen Z, Wei M, Feng Y. H4S47 O-GlcNAcylation regulates the activation of mammalian replication origins. Nat Struct Mol Biol 2023:10.1038/s41594-023-00998-6. [PMID: 37202474 DOI: 10.1038/s41594-023-00998-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
The transmission and maintenance of genetic information in eukaryotic cells relies on the faithful duplication of the entire genome. In each round of division, excessive replication origins are licensed, with only a fraction activated to give rise to bi-directional replication forks in the context of chromatin. However, it remains elusive how eukaryotic replication origins are selectively activated. Here we demonstrate that O-GlcNAc transferase (OGT) enhances replication initiation by catalyzing H4S47 O-GlcNAcylation. Mutation of H4S47 impairs DBF4-dependent protein kinase (DDK) recruitment on chromatin, causing reduced phosphorylation of the replicative helicase mini-chromosome maintenance (MCM) complex and compromised DNA unwinding. Our short nascent-strand sequencing results further confirm the importance of H4S47 O-GlcNAcylation in origin activation. We propose that H4S47 O-GlcNAcylation directs origin activation through facilitating MCM phosphorylation, and this may shed light on the control of replication efficiency by chromatin environment.
Collapse
Affiliation(s)
- Yingying Zou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Jiayao Pei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Haizhen Long
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Liting Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kejian Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Tingting Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Ming Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Zhexuan Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Lirun Zhu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Gangxuan Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Zengqi Wen
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
12
|
Bodnar-Wachtel M, Huber AL, Gorry J, Hacot S, Burlet D, Gérossier L, Guey B, Goutagny N, Bartosch B, Ballot E, Lecuelle J, Truntzer C, Ghiringhelli F, Py BF, Couté Y, Ballesta A, Lantuejoul S, Hall J, Tissier A, Petrilli V. Inflammasome-independent NLRP3 function enforces ATM activity in response to genotoxic stress. Life Sci Alliance 2023; 6:e202201494. [PMID: 36746533 PMCID: PMC9904227 DOI: 10.26508/lsa.202201494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
NLRP3 is a pattern recognition receptor with a well-documented role in inducing inflammasome assembly in response to cellular stress. Deregulation of its activity leads to many inflammatory disorders including gouty arthritis, Alzheimer disease, and cancer. Whereas its role in the context of cancer has been mostly explored in the immune compartment, whether NLRP3 exerts functions unrelated to immunity in cancer development remains unexplored. Here, we demonstrate that NLRP3 interacts with the ATM kinase to control the activation of the DNA damage response, independently of its inflammasome activity. NLRP3 down-regulation in both broncho- and mammary human epithelial cells significantly impairs ATM pathway activation, leading to lower p53 activation, and provides cells with the ability to resist apoptosis induced by acute genotoxic stress. Interestingly, NLRP3 expression is down-regulated in non-small cell lung cancers and breast cancers, and its expression positively correlates with patient overall survival. Our findings identify a novel non-immune function for NLRP3 in maintaining genome integrity and strengthen the concept of a functional link between innate immunity and DNA damage sensing pathways to maintain cell integrity.
Collapse
Affiliation(s)
- Mélanie Bodnar-Wachtel
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Anne-Laure Huber
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Julie Gorry
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Sabine Hacot
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Delphine Burlet
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Laetitia Gérossier
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Baptiste Guey
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Nadège Goutagny
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Birke Bartosch
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Elise Ballot
- Département d'oncologie Médicale, INSERM 1231, Université de Bourgogne, Dijon, France
| | - Julie Lecuelle
- Département d'oncologie Médicale, INSERM 1231, Université de Bourgogne, Dijon, France
| | - Caroline Truntzer
- Département d'oncologie Médicale, INSERM 1231, Université de Bourgogne, Dijon, France
| | - François Ghiringhelli
- Département d'oncologie Médicale, INSERM 1231, Université de Bourgogne, Dijon, France
| | - Bénédicte F Py
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Annabelle Ballesta
- INSERM and Université Paris Sud, UMRS 935, Campus CNRS, Villejuif, France & Honorary Position, University of Warwick, Coventry, UK
| | - Sylvie Lantuejoul
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
- Département de Pathologie, Pôle de Biologie et de Pathologie, Centre Hospitalier Universitaire, Inserm U823, Institut A Bonniot-Université J Fourier, Grenoble, France
| | - Janet Hall
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Agnès Tissier
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| | - Virginie Petrilli
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département de Biopathologie, Centre Léon Bérard, Lyon, France
| |
Collapse
|
13
|
Ahmed SMQ, Laha S, Das R, Ifthikar MA, Das SP. MCM10 expression is linked to cervical cancer aggressiveness. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1009903. [PMID: 39086679 PMCID: PMC11285692 DOI: 10.3389/fmmed.2023.1009903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 08/02/2024]
Abstract
Cervical cancer screening is a challenge mainly in developing countries. In developed countries, both incidence and mortality rates have been decreasing due to well organized screening programs. One of the potential biomarkers being exploited are the minichromosome maintenance proteins (MCMs), which show both specificity and sensitivity. MCM2-7 are involved in DNA replication initiation and elongation, and the MCM subunits are highly expressed in malignant tissues. Unlike other MCMs, MCM10, which is not part of the core helicase complex, is a critical determinant of origin activation and its levels are limiting in cancer cells. In this study, we performed bioinformatic analysis on the expression profile of all DNA replication associated MCM proteins in cervical cancer. MCM10 showed a relatively higher expression profile compared to the other MCMs. The mRNA expression levels of the MCMs were significantly increased in tumour tissues compared to normal, and MCM10 showed a fold change of 3.4. In order to understand if MCM10 is associated with the aggressiveness of cervical cancer, we looked into the mRNA expression pattern of MCM10 in three cervical cancer cell lines and one normal cervical cell line. MCM10 expression was significantly higher in the case of the more aggressive cancer cell line HeLa compared to controls. MCM10, therefore, can serve as a prominent biomarker for cancer progression and thus aid in early detection to control the spread of cancer cells. Our results show that MCM10 expression levels in cervical cancer cell lines are associated with cancer aggressiveness, demonstrating its clinical significance.
Collapse
Affiliation(s)
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mariam Anjum Ifthikar
- Department of Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
14
|
Parl FF. Different Tumor Types Share a Common Nuclear Map of Chromosome Territories. Cancer Inform 2023; 22:11769351221148592. [PMID: 36762285 PMCID: PMC9903037 DOI: 10.1177/11769351221148592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
Different tumor types are characterized by unique histopathological patterns including distinctive nuclear architectures. I hypothesized that the difference in nuclear appearance is reflected in different nuclear maps of chromosome territories, the discrete regions occupied by individual chromosomes in the interphase nucleus. To test this hypothesis, I used interchromosomal translocations (ITLs) as an analytical tool to map chromosome territories in 11 different tumor types from the TCGA PanCancer database encompassing 6003 tumors with 5295 ITLs. For each chromosome I determined the number and percentage of all ITLs for any given tumor type. Chromosomes were ranked according to the frequency and percentage of ITLs per chromosome. The ranking showed similar patterns for all tumor types. Chromosomes 1, 8, 11, 17, and 19 were ranked in the top quarter, accounting for 35.2% of 5295 ITLs, whereas chromosomes 13, 15, 18, 21, and X were in the bottom quarter, accounting for only 10.5% ITLs. The correlation between the chromosome ranking in the total group of 6003 tumors and the ranking in individual tumor types was significant, ranging from P < .0001 to .0033. Thus, contrary to my hypothesis, different tumor types share a common nuclear map of chromosome territories. Based on the large number of ITLs in 11 different types of malignancy one can discern a shared pattern of chromosome territories in cancer and propose a probabilistic model of chromosomes 1, 8, 11, 17, 19 in the center of the nucleus and chromosomes 13, 15, 18, 21, X at the periphery.
Collapse
Affiliation(s)
- Fritz F Parl
- Fritz F Parl, Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, C-3322 MCN, 1161 21st Ave. South, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
In Vitro effects of alternative smoking devices on oral cells: Electronic cigarette and heated tobacco product versus tobacco smoke. Arch Oral Biol 2022; 144:105550. [DOI: 10.1016/j.archoralbio.2022.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
|
16
|
Abstract
BACKGROUND It is unclear which psychological factors (stressors, emotional correlates, and psychophysiological markers) induce cancer risk. This currently limits the potential for prevention strategies. PURPOSE The aim of this review is to bring forth evidence of stress as a determinant of cancer risk from a public health perspective, written for a broad public of practitioners and scientists. METHODS Based on a semisystematic literature search, the impact of different aspects/types of stress and the potential physiological and behavioral pathways are summarized, while highlighting further research, public health and clinical implications. RESULTS Between 2007 and 2020, 65 case-control or cohort studies have been identified. Apart from overall cancer ( N = 24), 12 cancer types have been associated with psychological stress with most for breast ( N = 21), colorectal ( N = 11) and lung/prostate/pancreas cancer ( N = 8 each). Although the evidence regarding the mechanisms is still scarce, cancer development in relation to stress might be due to interacting and combined effects of different stress(or) types, but such interaction has not really been tested yet. The path from stress towards cancer incidence consists of a biological pathway with endocrinology and immunology as well as stress-induced behavioral pathways, including smoking, alcoholism, sleep disruption, an unhealthy diet, and low physical activity together with the related phenomenon of obesity. CONCLUSION Not only the stress but also the stress-induced lifestyle should be targeted for cancer prevention and treatment. Future research should include a more diverse spectrum of cancer types (not only hormonal related like breast cancer) and of stress measures while also considering behavioral covariates.
Collapse
Affiliation(s)
- Ananyaa Mohan
- Friedman School of Nutrition Science and Policy, Boston, Massachusetts, USA
| | - Inge Huybrechts
- International Agency for Research on Cancer, Nutrition and Metabolism Section, Lyon, France and Departments of
| | - Nathalie Michels
- Public Health and Primary Care
- Developmental, Personality and Social Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Dao FY, Lv H, Fullwood MJ, Lin H. Accurate Identification of DNA Replication Origin by Fusing Epigenomics and Chromatin Interaction Information. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9780293. [PMID: 36405252 PMCID: PMC9667886 DOI: 10.34133/2022/9780293] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 07/29/2023]
Abstract
DNA replication initiation is a complex process involving various genetic and epigenomic signatures. The correct identification of replication origins (ORIs) could provide important clues for the study of a variety of diseases caused by replication. Here, we design a computational approach named iORI-Epi to recognize ORIs by incorporating epigenome-based features, sequence-based features, and 3D genome-based features. The iORI-Epi displays excellent robustness and generalization ability on both training datasets and independent datasets of K562 cell line. Further experiments confirm that iORI-Epi is highly scalable in other cell lines (MCF7 and HCT116). We also analyze and clarify the regulatory role of epigenomic marks, DNA motifs, and chromatin interaction in DNA replication initiation of eukaryotic genomes. Finally, we discuss gene enrichment pathways from the perspective of ORIs in different replication timing states and heuristically dissect the effect of promoters on replication initiation. Our computational methodology is worth extending to ORI identification in other eukaryotic species.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Hao Lv
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melissa J. Fullwood
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
18
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
19
|
Chowdhury MAN, Wang SW, Suen CS, Hwang MJ, Hsueh YA, Shieh SY. JAK2-CHK2 signaling safeguards the integrity of the mitotic spindle assembly checkpoint and genome stability. Cell Death Dis 2022; 13:619. [PMID: 35851582 PMCID: PMC9293949 DOI: 10.1038/s41419-022-05077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
Checkpoint kinase 2 (CHK2) plays an important role in safeguarding the mitotic progression, specifically the spindle assembly, though the mechanism of regulation remains poorly understood. Here, we identified a novel mitotic phosphorylation site on CHK2 Tyr156, and its responsible kinase JAK2. Expression of a phospho-deficient mutant CHK2 Y156F or treatment with JAK2 inhibitor IV compromised mitotic spindle assembly, leading to genome instability. In contrast, a phospho-mimicking mutant CHK2 Y156E restored mitotic normalcy in JAK2-inhibited cells. Mechanistically, we show that this phosphorylation is required for CHK2 interaction with and phosphorylation of the spindle assembly checkpoint (SAC) kinase Mps1, and failure of which results in impaired Mps1 kinetochore localization and defective SAC. Concordantly, analysis of clinical cancer datasets revealed that deletion of JAK2 is associated with increased genome alteration; and alteration in CHEK2 and JAK2 is linked to preferential deletion or amplification of cancer-related genes. Thus, our findings not only reveal a novel JAK2-CHK2 signaling axis that maintains genome integrity through SAC but also highlight the potential impact on genomic stability with clinical JAK2 inhibition.
Collapse
Affiliation(s)
- Md Al Nayem Chowdhury
- grid.260539.b0000 0001 2059 7017Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Wei Wang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-An Hsueh
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheau-Yann Shieh
- grid.260539.b0000 0001 2059 7017Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Zhu J, Huang Q, Peng X, Luo C, Liu S, Liu Z, Wu X, Luo H. Identification of LncRNA Prognostic Signature Associated With Genomic Instability in Pancreatic Adenocarcinoma. Front Oncol 2022; 12:799475. [PMID: 35433487 PMCID: PMC9012103 DOI: 10.3389/fonc.2022.799475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Genomic instability (GI) is a critical feature of cancer which plays a key role in the occurrence and development of pancreatic adenocarcinoma (PAAD). Long non-coding RNA (LncRNA) is an emerging prognostic biomarker because it is involved in regulating GI. Recently, researchers used such GI-related LncRNAs (GILncRNAs) to establish a prognostic signature for patients with cancer and helped in predicting the overall prognosis of the patients. However, it is evident that patients with PAAD still lack such prognostic signature constructed with GILncRNA. Methods The present study screened GILncRNAs from 83 patients with PAAD. Prognosis-related GILncRNAs were identified by univariate Cox regression analysis. The correlation coefficients of these GILncRNAs were obtained by multivariate Cox regression analysis and used to construct a signature. The signature in the present study was then assessed through survival analysis, mutation correlation analysis, independent prognostic analysis, and clinical stratification analysis in the training set and validated in the testing as well as all TCGA set. The current study performed external clinical relevance validation of the signature and validated the effect of AC108134.2 in GILncSig on PAAD using in vitro experiments. Finally, the function of GILncRNA signature (GILncSig) dependent on Gene Ontology enrichment analysis was explored and chemotherapeutic drug sensitivity analysis was also performed. Results Results of the present study found that a total of 409 GILncRNAs were identified, 5 of which constituted the prognostic risk signature in this study, namely, AC095057.3, AC108134.2, AC124798.1, AL606834.1, and AC104695.4. It was found that the signature of the present study was better than others in predicting the overall survival and applied to patients with PAAD of all ages, genders, and tumor grades. Further, it was noted that the signature of the current study in the GSE102238, was correlated with tumor length, and tumor stage of patients with PAAD. In vitro, functional experiments were used in the present study to validate that AC108134.2 is associated with PAAD genomic instability and progression. Notably, results of the pRRophetic analysis in the current study showed that the high-risk group possessed reverse characteristics and was sensitive to chemotherapy. Conclusions In conclusion, it was evident that the GILncSig used in the present study has good prognostic performance. Therefore, the signature may become a potential sensitive biological indicator of PAAD chemotherapy, which may help in clinical decision-making and management of patients with cancer.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Qian Huang
- Department of General Practice, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xun Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongliang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Jha NK, Arfin S, Jha SK, Kar R, Dey A, Gundamaraju R, Ashraf GM, Gupta PK, Dhanasekaran S, Abomughaid MM, Das SS, Singh SK, Dua K, Roychoudhury S, Kumar D, Ruokolainen J, Ojha S, Kesari KK. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Semin Cancer Biol 2022; 86:1086-1104. [PMID: 35218902 DOI: 10.1016/j.semcancer.2022.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/20/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-β/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded nanoparticles have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| | - Saniya Arfin
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida 201303, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, College Street, Kolkata 700073, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot 32-34, Knowledge Park III, Greater Noida 201310, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Mosleh Mohammad Abomughaid
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215 Ranchi, Jharkhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | | | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida 201303, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland.
| |
Collapse
|
22
|
Yan Y, Ren L, Liu Y, Liu L. Development and Validation of Genome Instability-Associated lncRNAs to Predict Prognosis and Immunotherapy of Patients With Hepatocellular Carcinoma. Front Genet 2022; 12:763281. [PMID: 35154241 PMCID: PMC8832282 DOI: 10.3389/fgene.2021.763281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
The pathophysiology of hepatocellular carcinoma (HCC) is prevalently related to genomic instability. However, research on the association of extensive genome instability lncRNA (GILnc) with the prognosis and immunotherapy of HCC remains scarce. We placed the top 25% of somatic mutations into the genetically unstable group and placed the bottom 25% of somatic mutations into the genetically stable group, and then to identify different expression of GILnc between the two groups. Then, LASSO was used to identify the most powerful prognostic GILnc, and a risk score for each patient was calculated according to the formula. Based on a computational frame, 245 different GILncs in HCC were identified. An eight GILnc model was successfully established to predict overall survival in HCC patients based on LASSO, then we divided HCC patients into high-risk and low-risk groups, and a significantly shorter overall survival in the high-risk group was observed compared to those in the low-risk group, and this was validated in GSE76427 and Tongji cohorts. GSEA revealed that the high-risk group was more likely to be enriched in cancer-specific pathways. Besides, the GILnc signature has greater prognostic significance than TP53 mutation status alone, and it is capable of identifying intermediate subtype groups existing with partial TP53 functionality in TP53 wild-type patients. Importantly, the high-risk group was associated with the therapeutic efficacy of PD-L1 blockade, suggesting that the development of potential drugs targeting these GILnc could aid the clinical benefits of immunotherapy. Finally, the GILnc signature model is better than the prediction performance of two recently published lncRNA signatures. In summary, we applied bioinformatics approaches to suggest that an eight GILnc model could serve as prognostic biomarkers to provide a novel direction to explore the pathogenesis of HCC.
Collapse
Affiliation(s)
- Yifeng Yan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Liu, ,
| |
Collapse
|
23
|
Song S, Wang Y, Liu P. DNA Replication Licensing Factors: Novel Targets for Cancer Therapy via Inhibiting the Stemness of Cancer Cells. Int J Biol Sci 2022; 18:1211-1219. [PMID: 35173548 PMCID: PMC8771848 DOI: 10.7150/ijbs.67529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
The replication licensing factors strictly regulate the DNA replication origin licensing process to guarantee the stability of the genome. Numerous experimental studies have recently demonstrated that the replication licensing factors as oncogenes are essential for the occurrence and development of cancers. Drug resistance, being one of the main characteristics of cancer stem cells, can cause a high recurrence rate and a low survival rate in patients with different cancers. However, the function of the replication licensing factors in cancer stemness remains unclear. The following article highlights the most recent research on DNA replication origin licensing factors in cancer and their function in anti-cancer drug resistance. Moreover, this article proposes a new perspective that replication licensing factors as chemotherapy shield affect anti-cancer drug resistance by promoting the stemness of cancer cells.
Collapse
Affiliation(s)
- Shaoran Song
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yaochun Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
24
|
Yi C, Zhang X, Chen X, Huang B, Song J, Ma M, Yuan X, Zhang C. A novel 8-genome instability-associated lncRNAs signature predicting prognosis and drug sensitivity in gastric cancer. Int J Immunopathol Pharmacol 2022; 36:1-15. [PMID: 35696730 PMCID: PMC9203952 DOI: 10.1177/03946320221103195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genome instability lncRNA (GILnc) is prevalently related with gastric cancer (GC) pathophysiology. However, the study on the relationship GILnc and prognosis and drug sensitivity of GC remains scarce. METHOD We extracted expression data of 375 GC patients from TCGA cohort and 205 GC patients from GSE26942 cohort. Then, lncRNA was separated from expression data, and systematically characterized the 8 marker lncRNAs using the LASSO method. Next, we constructed a GILnc model (GILnc score) to quantify the GILnc index of each GC patient. Finally, we analyzed the relationship between GILnc score and clinical traits including survival outcomes, TP53, and drug sensitivity of GC. RESULTS Based on a computational frame, 205 GILncs in GC has been identified. Then, a 8 GILncs was successfully established to predict overall survival in GC patients based on LASSO analysis, divided GC samples into high GILnc score and low GILnc score groups with significantly different outcome and was validated in multiple independent patient cohorts. Furthermore, GILnc model is better than the prediction performance of two recently published lncRNA signatures, and the high GILnc score group was more sensitive to mitomycin. Besides, the GILnc score has greater prognostic significance than TP53 mutation status alone and is capable of identifying intermediate subtype group existing with partial TP53 functionality in TP53 wild-type patients. Finally, GILnc signature as verified in GSE26942. CONCLUSION We applied bioinformatics approaches to suggest that a 8 GILnc signature could serve as prognostic biomarkers, and provide a novel direction to explore the pathogenesis of GC.
Collapse
Affiliation(s)
- Changhong Yi
- Department of Interventional, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiulan Zhang
- Department of Nuclear Medicine, The First People’s Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xia Chen
- Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, China
| | - Birun Huang
- Department of Vascular Surgery, The First People’s Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jing Song
- Department of Nursing, Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
| | - Minghui Ma
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Xiaolu Yuan
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Chaohao Zhang
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| |
Collapse
|
25
|
Mitigation of Iron Irradiation-Induced Genotoxicity and Genomic Instability by Postexposure Dietary Restriction in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2888393. [PMID: 34926683 PMCID: PMC8677402 DOI: 10.1155/2021/2888393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Postexposure onset of dietary restriction (DR) is expected to provide therapeutic nutritional approaches to reduce health risk from exposure to ionizing radiation (IR) due to such as manned space exploration, radiotherapy, or nuclear accidents as IR could alleviate radiocarcinogenesis in animal models. However, the underlying mechanisms remain largely unknown. This study is aimed at investigating the effect from postexposure onset of DR on genotoxicity and genomic instability (GI) induced by total body irradiation (TBI) in mice. Materials and Methods. Mice were exposed to 2.0 Gy of accelerated iron particles with an initial energy of 500 MeV/nucleon and a linear energy transfer (LET) value of about 200 keV/μm. After TBI, mice were either allowed to free access to a standard laboratory chow or treated under DR (25% cut in diet). Using micronucleus frequency (MNF) in bone marrow erythrocytes, induction of acute genotoxicity and GI in the hematopoietic system was, respectively, determined 1 and 2 months after TBI. Results and Conclusions. TBI alone caused a significant increase in MNF while DR alone did not markedly influence the MNF. DR induced a significant decrease in MNF compared to the treatment by TBI alone. Results demonstrated that postexposure onset of DR could relieve the elevated MNF induced by TBI with high-LET iron particles. These findings indicated that reduction in acute genotoxicity and late GI may be at least a part of the mechanisms underlying decreased radiocarcinogenesis by DR.
Collapse
|
26
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Chen Z, Chen C, Li L, Zhang T, Wang X. Pan-Cancer Analysis Reveals That E1A Binding Protein p300 Mutations Increase Genome Instability and Antitumor Immunity. Front Cell Dev Biol 2021; 9:729927. [PMID: 34616736 PMCID: PMC8488206 DOI: 10.3389/fcell.2021.729927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
E1A binding protein p300 (EP300) is mutated in diverse cancers. Nevertheless, a systematic investigation into the associations of EP300 mutations with genome instability and antitumor immunity in pan-cancer remains lacking. Using the datasets from The Cancer Genome Atlas, we analyzed the correlations between EP300 mutations and genome instability and antitumor immune response in 11 cancer types. Compared to EP300-wild-type cancers, EP300-mutated cancers had significantly higher tumor mutation burden (TMB) in 10 cancer types. EP300-mutated cancers harbored a much higher fraction of microsatellite instable cancers in the colon and gastric cancers. EP300 was co-mutated with genes involved in DNA damage repair pathways in multiple cancers. Furthermore, compared to EP300-wild-type cancers, EP300-mutated cancers had significantly higher immune cytolytic activity scores and ratios of immune-stimulatory over immune-inhibitory signatures in diverse cancers. Also, EP300-mutated cancers showed significantly higher programmed death-ligand 1 (PD-L1) expression levels than EP300-wild-type cancers. The increased TMB, antitumor immune activity, and PD-L1 expression indicated a favorable response to immune checkpoint inhibitors (ICIs) in EP300-mutated cancers, as evident in three cancer cohorts treated with ICIs. Thus, the EP300 mutation could be a predictive biomarker for the response to immunotherapy.
Collapse
Affiliation(s)
- Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Canping Chen
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Lin Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Wang Y, Yan K, Wang L, Bi J. Genome instability-related long non-coding RNA in clear renal cell carcinoma determined using computational biology. BMC Cancer 2021; 21:727. [PMID: 34167490 PMCID: PMC8229419 DOI: 10.1186/s12885-021-08356-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/29/2021] [Indexed: 12/04/2022] Open
Abstract
Background There is evidence that long non-coding RNA (lncRNA) is related to genetic stability. However, the complex biological functions of these lncRNAs are unclear. Method TCGA - KIRC lncRNAs expression matrix and somatic mutation information data were obtained from TCGA database. “GSVA” package was applied to evaluate the genomic related pathway in each samples. GO and KEGG analysis were performed to show the biological function of lncRNAs-mRNAs. “Survival” package was applied to determine the prognostic significance of lncRNAs. Multivariate Cox proportional hazard regression analysis was applied to conduct lncRNA prognosis model. Results In the present study, we applied computational biology to identify genome-related long noncoding RNA and identified 26 novel genomic instability-associated lncRNAs in clear cell renal cell carcinoma. We identified a genome instability-derived six lncRNA-based gene signature that significantly divided clear renal cell samples into high- and low-risk groups. We validated it in test cohorts. To further elucidate the role of the six lncRNAs in the model’s genome stability, we performed a gene set variation analysis (GSVA) on the matrix. We performed Pearson correlation analysis between the GSVA scores of genomic stability-related pathways and lncRNA. It was determined that LINC00460 and LINC01234 could be used as critical factors in this study. They may influence the genome stability of clear cell carcinoma by participating in mediating critical targets in the base excision repair pathway, the DNA replication pathway, homologous recombination, mismatch repair pathway, and the P53 signaling pathway. Conclusion subsections These data suggest that LINC00460 and LINC01234 are crucial for the stability of the clear cell renal cell carcinoma genome. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08356-9.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kexin Yan
- Department of Dermatology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Linhui Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
29
|
Farkas G, Kocsis ZS, Székely G, Dobozi M, Kenessey I, Polgár C, Jurányi Z. Smoking, chromosomal aberrations, and cancer incidence in healthy subjects. Mutat Res 2021; 867:503373. [PMID: 34266629 DOI: 10.1016/j.mrgentox.2021.503373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Chromosomal aberrations (CAs) in peripheral blood lymphocytes can be used as biomarkers of cancer risk. Cytogenetic tests were conducted on 2396 healthy Hungarian individuals and cancer incidence was followed up from 1989 to 2018. Venous blood samples were obtained from the subjects and metaphases from lymphocyte cultures were prepared. We compared the CA frequencies of the various smoking (1-5; 6-10; 11-19; or 20-40 cigarettes/day) and exposure (irradiation; chemical industry; chemical research laboratory) groups. Chromatid break (p = 0.0002), total aberration (p = 0.002), and aberrant cell (p = 0.001) frequencies were higher in smokers than in non-smokers. For very heavy smokers, total CAs were significantly higher than for non-smokers (<0.001) or less intensive smokers (p = 0.003-0.0006). Intensity of smoking was a predictor of chromosomal aberrations, while duration was not. During follow-up, 177 (7.3 %) cancer cases were found. A Cox-regression model showed that subjects with cell values ≥2 CAs developed cancer more frequently (hazard ratio = 1.39; 95 % CI, 1.02-1.90). The relative risks of cancer were 1.06 (95 % CI 0.53-2.06) for light smokers and 1.74 (95 % CI 1.08-2.77) for very heavy smokers. The distributions of cancer sites showed differences between smoker and non-smoker groups: in male smokers, lung cancer, in non-smokers, prostate, and in females (both groups) breast cancer were most common. Cancer incidence correlated with chromosome aberrations; smoking was not a confounder in this relationship.
Collapse
Affiliation(s)
- Gyöngyi Farkas
- National Institute of Oncology, Centre of Radiotherapy, Department of Radiobiology and Diagnostic Onco-Cytogenetics, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Zsuzsa S Kocsis
- National Institute of Oncology, Centre of Radiotherapy, Department of Radiobiology and Diagnostic Onco-Cytogenetics, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Gábor Székely
- National Institute of Oncology, Centre of Radiotherapy, Department of Radiobiology and Diagnostic Onco-Cytogenetics, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Mária Dobozi
- National Institute of Oncology, National Cancer Registry, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - István Kenessey
- National Institute of Oncology, National Cancer Registry, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Csaba Polgár
- National Institute of Oncology, Centre of Radiotherapy, Ráth György u. 7-9, 1122, Budapest, Hungary; Semmelweis University, Department of Oncology, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Zsolt Jurányi
- National Institute of Oncology, Centre of Radiotherapy, Department of Radiobiology and Diagnostic Onco-Cytogenetics, Ráth György u. 7-9, 1122, Budapest, Hungary.
| |
Collapse
|
30
|
Abstract
Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early-replicating origins. Unlike in cells exposed to replication stress, which activated a novel group of hitherto unutilized (dormant) replication origins, the preferred re-replicating origins arose from the same pool of potential origins as those activated during normal growth. Mechanistically, the skewed initiation pattern reflected a disproportionate distribution of pre-replication complexes on distinct regions of licensed chromatin prior to replication. This distinct pattern suggests that circumventing the strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.
Collapse
|
31
|
Eigenfeld M, Kerpes R, Becker T. Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:665490. [PMID: 37744109 PMCID: PMC10512339 DOI: 10.3389/ffunb.2021.665490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 09/26/2023]
Abstract
In yeast, aging is widely understood as the decline of physiological function and the decreasing ability to adapt to environmental changes. Saccharomyces cerevisiae has become an important model organism for the investigation of these processes. Yeast is used in industrial processes (beer and wine production), and several stress conditions can influence its intracellular aging processes. The aim of this review is to summarize the current knowledge on applied stress conditions, such as osmotic pressure, primary metabolites (e.g., ethanol), low pH, oxidative stress, heat on aging indicators, age-related physiological changes, and yeast longevity. There is clear evidence that yeast cells are exposed to many stressors influencing viability and vitality, leading to an age-related shift in age distribution. Currently, there is a lack of rapid, non-invasive methods allowing the investigation of aspects of yeast aging in real time on a single-cell basis using the high-throughput approach. Methods such as micromanipulation, centrifugal elutriator, or biotinylation do not provide real-time information on age distributions in industrial processes. In contrast, innovative approaches, such as non-invasive fluorescence coupled flow cytometry intended for high-throughput measurements, could be promising for determining the replicative age of yeast cells in fermentation and its impact on industrial stress conditions.
Collapse
Affiliation(s)
| | - Roland Kerpes
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
32
|
Lyu X, Sang PB, Chai W. CST in maintaining genome stability: Beyond telomeres. DNA Repair (Amst) 2021; 102:103104. [PMID: 33780718 PMCID: PMC8081025 DOI: 10.1016/j.dnarep.2021.103104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The human CST (CTC1-STN1-TEN1) complex is an RPA-like single-stranded DNA binding protein complex. While its telomeric functions have been well investigated, numerous studies have revealed that hCST also plays important roles in maintaining genome stability beyond telomeres. Here, we review and discuss recent discoveries on CST in various global genome maintenance pathways, including findings on the CST supercomplex structure, its functions in unperturbed DNA replication, stalled replication, double-strand break repair, and the ATR-CHK1 activation pathway. By summarizing these recent discoveries, we hope to offer new insights into genome maintenance mechanisms and the pathogenesis of CST mutation-associated diseases.
Collapse
Affiliation(s)
- Xinxing Lyu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China; Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States
| | - Pau Biak Sang
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States.
| |
Collapse
|
33
|
Wang Y, Chen Y, Wang C, Yang M, Wang Y, Bao L, Wang JE, Kim B, Chan KY, Xu W, Capota E, Ortega J, Nijhawan D, Li GM, Luo W, Wang Y. MIF is a 3' flap nuclease that facilitates DNA replication and promotes tumor growth. Nat Commun 2021; 12:2954. [PMID: 34012010 PMCID: PMC8134555 DOI: 10.1038/s41467-021-23264-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
How cancer cells cope with high levels of replication stress during rapid proliferation is currently unclear. Here, we show that macrophage migration inhibitory factor (MIF) is a 3’ flap nuclease that translocates to the nucleus in S phase. Poly(ADP-ribose) polymerase 1 co-localizes with MIF to the DNA replication fork, where MIF nuclease activity is required to resolve replication stress and facilitates tumor growth. MIF loss in cancer cells leads to mutation frequency increases, cell cycle delays and DNA synthesis and cell growth inhibition, which can be rescued by restoring MIF, but not nuclease-deficient MIF mutant. MIF is significantly upregulated in breast tumors and correlates with poor overall survival in patients. We propose that MIF is a unique 3’ nuclease, excises flaps at the immediate 3’ end during DNA synthesis and favors cancer cells evading replication stress-induced threat for their growth. Replication stress is associated with cancer formation and progression. Here the authors reveal that the macrophage migration inhibitory factor (MIF) functions as 3’ flap nuclease involved in resolving replication stress affecting overall tumor progression.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yan Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenliang Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mingming Yang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanan Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer E Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - BongWoo Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kara Y Chan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weizhi Xu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emanuela Capota
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Janice Ortega
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Deepak Nijhawan
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Min Li
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Zhang H. Regulation of DNA Replication Licensing and Re-Replication by Cdt1. Int J Mol Sci 2021; 22:ijms22105195. [PMID: 34068957 PMCID: PMC8155957 DOI: 10.3390/ijms22105195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Chemistry and Biochemistry, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA
| |
Collapse
|
35
|
Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q, Wang P. Ubiquitination of Nonhistone Proteins in Cancer Development and Treatment. Front Oncol 2021; 10:621294. [PMID: 33643919 PMCID: PMC7905169 DOI: 10.3389/fonc.2020.621294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination, a crucial post-translation modification, regulates the localization and stability of the substrate proteins including nonhistone proteins. The ubiquitin-proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular processes such as DNA repair, transcription, signal transduction, and apoptosis. Its dysregulation induces various diseases including cancer, and the identification of this process may provide potential therapeutic targets for cancer treatment. In this review, we summarize the regulatory roles of key UPS members on major nonhistone substrates in cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in modulating protein target levels with the aid of UPS.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ling Feng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ping Wang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
36
|
Bioinformatic analysis of CCA-1.1, a novel curcumin analog, uncovers furthermost noticeable target genes in colon cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
38
|
Li G, Wu F, Zeng F, Zhai Y, Feng Y, Chang Y, Wang D, Jiang T, Zhang W. A novel DNA repair-related nomogram predicts survival in low-grade gliomas. CNS Neurosci Ther 2020; 27:186-195. [PMID: 33063446 PMCID: PMC7816205 DOI: 10.1111/cns.13464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aims We aimed to create a tumor recurrent‐based prediction model to predict recurrence and survival in patients with low‐grade glioma. Methods This study enrolled 291 patients (188 in the training group and 103 in the validation group) with clinicopathological information and transcriptome sequencing data. LASSO‐COX algorithm was applied to shrink predictive factor size and build a predictive recurrent signature. GO, KEGG, and GSVA analyses were performed for function annotations of the recurrent signature. The calibration curves and C‐Index were assessed to evaluate the nomogram's performance. Results This study found that DNA repair functions of tumor cells were significantly enriched in recurrent low‐grade gliomas. A predictive recurrent signature, built by the LASSO‐COX algorithm, was significantly associated with overall survival and progression‐free survival in low‐grade gliomas. Moreover, function annotations analysis of the predictive recurrent signature exhibited that the signature was associated with DNA repair functions. The nomogram, combining the predictive recurrent signature and clinical prognostic predictors, showed powerful prognostic ability in the training and validation groups. Conclusion An individualized prediction model was created to predict 1‐, 2‐, 3‐, 5‐, and 10‐year survival and recurrent rate of patients with low‐grade glioma, which may serve as a potential tool to guide postoperative individualized care.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuemei Feng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Asian Glioma Genome Atlas Network (AGGA)
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Asian Glioma Genome Atlas Network (AGGA)
| |
Collapse
|
39
|
Overexpression of Cyclin E1 or Cdc25A leads to replication stress, mitotic aberrancies, and increased sensitivity to replication checkpoint inhibitors. Oncogenesis 2020; 9:88. [PMID: 33028815 PMCID: PMC7542455 DOI: 10.1038/s41389-020-00270-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Oncogene-induced replication stress, for instance as a result of Cyclin E1 overexpression, causes genomic instability and has been linked to tumorigenesis. To survive high levels of replication stress, tumors depend on pathways to deal with these DNA lesions, which represent a therapeutically actionable vulnerability. We aimed to uncover the consequences of Cyclin E1 or Cdc25A overexpression on replication kinetics, mitotic progression, and the sensitivity to inhibitors of the WEE1 and ATR replication checkpoint kinases. We modeled oncogene-induced replication stress using inducible expression of Cyclin E1 or Cdc25A in non-transformed RPE-1 cells, either in a TP53 wild-type or TP53-mutant background. DNA fiber analysis showed Cyclin E1 or Cdc25A overexpression to slow replication speed. The resulting replication-derived DNA lesions were transmitted into mitosis causing chromosome segregation defects. Single cell sequencing revealed that replication stress and mitotic defects upon Cyclin E1 or Cdc25A overexpression resulted in genomic instability. ATR or WEE1 inhibition exacerbated the mitotic aberrancies induced by Cyclin E1 or Cdc25A overexpression, and caused cytotoxicity. Both these phenotypes were exacerbated upon p53 inactivation. Conversely, downregulation of Cyclin E1 rescued both replication kinetics, as well as sensitivity to ATR and WEE1 inhibitors. Taken together, Cyclin E1 or Cdc25A-induced replication stress leads to mitotic segregation defects and genomic instability. These mitotic defects are exacerbated by inhibition of ATR or WEE1 and therefore point to mitotic catastrophe as an underlying mechanism. Importantly, our data suggest that Cyclin E1 overexpression can be used to select patients for treatment with replication checkpoint inhibitors.
Collapse
|
40
|
Ibragimova MK, Tsyganov MM, Slonimskaya EM, Litviakov NV. Aberrations of the number of copies (CNA) in the genome of luminal B breast tumor. BULLETIN OF SIBERIAN MEDICINE 2020. [DOI: 10.20538/1682-0363-2020-3-22-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M. K. Ibragimova
- Саnсеr Rеsеаrсh Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
| | - M. M. Tsyganov
- Саnсеr Rеsеаrсh Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
| | | | - N. V. Litviakov
- Саnсеr Rеsеаrсh Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
| |
Collapse
|
41
|
Lun XK, Bodenmiller B. Profiling Cell Signaling Networks at Single-cell Resolution. Mol Cell Proteomics 2020; 19:744-756. [PMID: 32132232 PMCID: PMC7196580 DOI: 10.1074/mcp.r119.001790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Signaling networks process intra- and extracellular information to modulate the functions of a cell. Deregulation of signaling networks results in abnormal cellular physiological states and often drives diseases. Network responses to a stimulus or a drug treatment can be highly heterogeneous across cells in a tissue because of many sources of cellular genetic and non-genetic variance. Signaling network heterogeneity is the key to many biological processes, such as cell differentiation and drug resistance. Only recently, the emergence of multiplexed single-cell measurement technologies has made it possible to evaluate this heterogeneity. In this review, we categorize currently established single-cell signaling network profiling approaches by their methodology, coverage, and application, and we discuss the advantages and limitations of each type of technology. We also describe the available computational tools for network characterization using single-cell data and discuss potential confounding factors that need to be considered in single-cell signaling network analyses.
Collapse
Affiliation(s)
- Xiao-Kang Lun
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Molecular Life Sciences PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
42
|
Genotoxic Effects of Aluminum Chloride and Their Relationship with N-Nitroso-N-Methylurea (NMU)-Induced Breast Cancer in Sprague Dawley Rats. TOXICS 2020; 8:toxics8020031. [PMID: 32325967 PMCID: PMC7355831 DOI: 10.3390/toxics8020031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Recently, soluble forms of aluminum for human use or consumption have been determined to be potentially toxic due to their association with hepatic, neurological, hematological, neoplastic, and bone conditions. This study aims to assess the genotoxic effect of aluminum chloride on genomic instability associated with the onset of N-nitroso-N-methylurea (NMU)-induced breast cancer in Sprague Dawley rats. The dietary behavior of the rats was assessed, and the concentration of aluminum in the mammary glands was determined using atomic absorption spectroscopy. Genomic instability was determined in the histological sections of mammary glands stained with hematoxylin and eosin. Moreover, micronucleus in peripheral blood and comet assays were performed. The results of dietary behavior evaluation indicated no significant differences between the experimental treatments. However, aluminum concentration in breast tissues was high in the +2000Al/−NMU treatment. This experimental treatment caused moderate intraductal cell proliferation, lymph node hyperplasia, and serous gland adenoma. Furthermore, micronucleus and comet test results revealed that +2000Al/−NMU led to a genotoxic effect after a 10-day exposure and the damage was more evident after a 15-day exposure. Therefore, in conclusion, genomic instability is present and the experimental conditions assessed are not associated with breast cancer.
Collapse
|
43
|
Vozdova M, Kubickova S, Pal K, Fröhlich J, Fictum P, Rubes J. Recurrent gene mutations detected in canine mast cell tumours by next generation sequencing. Vet Comp Oncol 2020; 18:509-518. [PMID: 31999054 DOI: 10.1111/vco.12572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Genetic causes of canine mast cell tumours (MCTs), except for mutations in the KIT gene detected in some MCTs, are generally unknown. We used whole exome sequencing to reveal mutation spectra in canine MCTs. We detected somatic mutations in 87 genes including 10 genes recognized as human cancer drivers. Besides KIT, 14 other genes were recurrently mutated. Subsequently, we performed next generation sequencing of a panel of 50 selected genes in additional MCT samples. In this group, the most frequently altered gene was GNB1 showing a recurrent dinucleotide substitution at position of Gly116 in 30% of the MCT samples (n = 6/20) and Ile80 substitution accompanied by a splice region mutation in one case. We extended the study by analysis of the above mentioned GNB1 regions in additional MCT samples by Sanger sequencing, and assessed the overall prevalence of GNB1 mutations to 17.3% (n = 14/81), which is similar to the prevalence of KIT alterations. Our results indicate that GNB1 mutations are probably involved in canine MCT pathogenesis in both cutaneous and subcutaneous MCT cases. As opposed to KIT alterations, the presence of GNB1 mutations did not negatively affect survival times, and our data even showed a trend towards positive prognosis. If our results are confirmed in a larger number of MCTs, an extension of molecular testing of canine MCTs by GNB1 analysis would help to refine the molecular stratification of MCTs, and become useful for targeted treatment strategies.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Svatava Kubickova
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Karol Pal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Fröhlich
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
44
|
Osadchuk MA, Svistunov AA, Mironova ED, Vasil'eva IN, Kireeva NV. [Diseases of biliary tract in the context of association with oncological diseases of the digestive system]. TERAPEVT ARKH 2019; 91:98-104. [PMID: 32598596 DOI: 10.26442/00403660.2019.12.000455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/16/2022]
Abstract
Cancers of the gastrointestinal tract are widespread among the population and cause significant damage to the health care system. In order to improve the strategy of preventive measures and the detection of oncological diseases at the early stages, it is necessary to provide timely impact on possible risk factors contributing to the onset and progression of malignant neoplasms. This review demonstrates the association between the pathology of the biliary tract and oncological diseases of the digestive system, discusses the possible mechanisms of the influence of cholelithiasis and cholecystectomy on the development of malignant neoplasms of various parts of the gastrointestinal tract.
Collapse
Affiliation(s)
- M A Osadchuk
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E D Mironova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I N Vasil'eva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N V Kireeva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
45
|
Sonugür FG, Akbulut H. The Role of Tumor Microenvironment in Genomic Instability of Malignant Tumors. Front Genet 2019; 10:1063. [PMID: 31737046 PMCID: PMC6828977 DOI: 10.3389/fgene.2019.01063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic instability is an essential feature of cancer cells. The somatic mutation theory suggests that along with inherited ones, the changes in DNA caused by environmental factors may cause cancer. Although approximately 50–60 mutations per tumor are observed in established cancer tissue, it is known that not all of these mutations occur at the beginning of carcinogenesis but also occur later in the disease progression. The high frequency of somatic mutations referring to genomic instability contributes to the intratumoral genetic heterogeneity and treatment resistance. The contribution of the tumor microenvironment to the mutations observed following the acquirement of essential malignant characteristics of a cancer cell is one of the topics that have been extensively investigated in recent years. The frequency of mutations in hematologic tumors is generally less than solid tumors. Although it is a hematologic tumor, multiple myeloma is more similar to solid tumors in terms of the high number of chromosomal abnormalities and genetic heterogeneity. In multiple myeloma, bone marrow microenvironment also plays a role in genomic instability that occurs in the very early stages of the disease. In this review, we will briefly summarize the role of the tumor microenvironment and bone marrow microenvironment in the genomic instability seen in solid tumors and multiple myeloma.
Collapse
Affiliation(s)
- F Gizem Sonugür
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey.,Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey
| | - Hakan Akbulut
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey.,Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey
| |
Collapse
|
46
|
Nanovectors Design for Theranostic Applications in Colorectal Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2740923. [PMID: 31662751 PMCID: PMC6791220 DOI: 10.1155/2019/2740923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a diffused disease with limited therapeutic options, none of which are often curative. Based on the molecular markers and targets expressed by the affected tissues, numerous novel approaches have been developed to study and treat this disease. In particular, the field of nanotechnology offers an astonishingly wide array of innovative nanovectors with high versatility and adaptability for both diagnosis and therapy (the so called “theranostic platforms”). However, such complexity can make the selection of a specific nanocarrier model to study a perplexing endeavour for the biomedical scientist or clinician not familiar with this field of inquiry. This review offers a comprehensive overview of this wide body of knowledge, in order to outline the essential requirements for the clinical viability evaluation of a nanovector model in CRC. In particular, the differences among the foremost designs, their specific advantages, and technological caveats will be treated, never forgetting the ultimate endpoint for these systems development: the clinical practice.
Collapse
|
47
|
Abstract
In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Franziska Bleichert
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Hoeng J, Maeder S, Vanscheeuwijck P, Peitsch MC. Assessing the lung cancer risk reduction potential of candidate modified risk tobacco products. Intern Emerg Med 2019; 14:821-834. [PMID: 30767158 PMCID: PMC6722152 DOI: 10.1007/s11739-019-02045-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Smoking is the major cause of lung cancer. While the risk of lung cancer increases with the number of cigarettes smoked and the duration of smoking, it also decreases upon smoking cessation. The development of candidate modified risk tobacco products (cMRTP) is aimed at providing smokers who will not quit with alternatives to cigarettes that present less risk of harm and smoking-related disease. It is necessary to assess the risk reduction potential of cMRTPs, including their potential to reduce the risk of lung cancer. Assessing the lung cancer risk reduction potential of cMRTPs is hampered by (i) the absence of clinical risk markers that are predictive of future lung cancer development, (ii) the latency of lung cancer manifestation (decades of smoking), and (iii) the slow reduction in excess risk upon cessation and a fortiori upon switching to a cMRTP. It is, therefore, likely that only long-term epidemiology will provide definitive answers to this question and allow to first verify that a cMRTP reduces the risk of lung cancer and if it does, to quantify the reduction in excess lung cancer risk associated with a cMRTP. For this to be possible, the cMRTP would need to be available in the market and used exclusively by a large portion of current smokers. Here, we propose that a mechanism-based approach represents a solid alternative to show in a pre-market setting that switching to a cMRTP is likely to significantly reduce the risk of lung cancer. This approach is based on the causal chain of events that leads from smoking to disease and leverages both non-clinical and clinical studies as well as the principles of systems toxicology. We also discuss several important challenges inherent to the assessment of cMRTPs as well as key aspects regarding product use behavior.
Collapse
Affiliation(s)
- Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Serge Maeder
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | - Manuel C. Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
49
|
Zhang Y, Li Z, Hao Q, Tan W, Sun J, Li J, Chen CW, Li Z, Meng Y, Zhou Y, Han Z, Pei H, DePamphilis ML, Zhu W. The Cdk2-c-Myc-miR-571 Axis Regulates DNA Replication and Genomic Stability by Targeting Geminin. Cancer Res 2019; 79:4896-4910. [PMID: 31431461 DOI: 10.1158/0008-5472.can-19-0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
DNA rereplication leads to genomic instability and has been implicated in the pathology of a variety of human cancers. Eukaryotic DNA replication is tightly controlled to ensure it occurs only once during each cell cycle. Geminin is a critical component of this control, it prevents DNA rereplication from occurring during S, G2, and early M phases by preventing MCM helicases from forming prereplication complexes. Geminin is targeted for degradation by the anaphase-promoting complex (APC/C) from anaphase through G1-phase, however, accumulating evidence indicates that Geminin is downregulated in late S-phase due to an unknown mechanism. Here, we used a high-throughput screen to identify miRNAs that can induce excess DNA replication and found that miR-571 could reduce the protein level of Geminin in late S-phase independent of the APC/C. Furthermore, miR-571 regulated efficient DNA replication and S-phase cell-cycle progression. Strikingly, c-Myc suppressed miR-571 expression by binding directly to the miR-571 promoter. At the beginning of S-phase, Cdk2 phosphorylated c-Myc at Serine 62, promoting its association with the miR-571 promoter region. Collectively, we identify miR-571 as the first miRNA that prevents aberrant DNA replication and the Cdk2-c-Myc-miR-571 axis as a new pathway for regulating DNA replication, cell cycle, and genomic stability in cancer cells. SIGNIFICANCE: These findings identify a novel regulatory mechanism that is critical for maintaining genome integrity by regulating DNA replication and cell-cycle progression.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Qiang Hao
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Wei Tan
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Yuan Zhou
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zhiyong Han
- Department of Medical Sciences, Seton Hall-Hackensack Meridian School of Medicine, South Orange, New Jersey
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C.
| |
Collapse
|
50
|
5-hydroxymethylcytosine Marks Mammalian Origins Acting as a Barrier to Replication. Sci Rep 2019; 9:11065. [PMID: 31363131 PMCID: PMC6667497 DOI: 10.1038/s41598-019-47528-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
In most mammalian cells, DNA replication occurs once, and only once between cell divisions. Replication initiation is a highly regulated process with redundant mechanisms that prevent errant initiation events. In lower eukaryotes, replication is initiated from a defined consensus sequence, whereas a consensus sequence delineating mammalian origin of replication has not been identified. Here we show that 5-hydroxymethylcytosine (5hmC) is present at mammalian replication origins. Our data support the hypothesis that 5hmC has a role in cell cycle regulation. We show that 5hmC level is inversely proportional to proliferation; indeed, 5hmC negatively influences cell division by increasing the time a cell resides in G1. Our data suggest that 5hmC recruits replication-licensing factors, then is removed prior to or during origin firing. Later we propose that TET2, the enzyme catalyzing 5mC to 5hmC conversion, acts as barrier to rereplication. In a broader context, our results significantly advance the understating of 5hmC involvement in cell proliferation and disease states.
Collapse
|