1
|
Jemal M, Getinet M, Amare GA, Tegegne BA, Baylie T, Mengistu EF, Osman EE, Chura Waritu N, Adugna A. Non-metabolic enzyme function of pyruvate kinase M2 in breast cancer. Front Oncol 2024; 14:1450325. [PMID: 39411137 PMCID: PMC11473492 DOI: 10.3389/fonc.2024.1450325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a prevalent malignant tumor in women, and its incidence has been steadily increasing in recent years. Compared with other types of cancer, it has the highest mortality and morbidity rates in women. So, it is crucial to investigate the underlying mechanisms of BC development and identify specific therapeutic targets. Pyruvate kinase M2 (PKM2), an important metabolic enzyme in glycolysis, has been found to be highly expressed in BC. It can also move to the nucleus and interact with various transcription factors and proteins, including hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription 3 (STAT3), β-catenin, cellular-myelocytomatosis oncogene (c-Myc), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mammalian sterile 20-like kinase 1 (MST1). This interaction leads to non-metabolic functions that control the cell cycle, proliferation, apoptosis, migration, invasion, angiogenesis, and tumor microenvironment in BC. This review provides an overview of the latest advancements in understanding the interactions between PKM2 and different transcription factors and proteins that influence the initiation and progression of BC. It also examined how natural drugs and noncoding RNAs affect various biological processes in BC cells through the regulation of the non-metabolic enzyme functions of PKM2. The findings provide valuable insights for improving the prognosis and developing targeted therapies for BC in the coming years.
Collapse
Affiliation(s)
- Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enyew Fenta Mengistu
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enatnesh Essa Osman
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Nuredin Chura Waritu
- Department of Biomedical Sciences, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Su XA, Stopsack KH, Schmidt DR, Ma D, Li Z, Scheet PA, Penney KL, Lotan TL, Abida W, DeArment EG, Lu K, Janas T, Hu S, Vander Heiden MG, Loda M, Boselli M, Amon A, Mucci LA. RAD21 promotes oncogenesis and lethal progression of prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2405543121. [PMID: 39190349 PMCID: PMC11388324 DOI: 10.1073/pnas.2405543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Higher levels of aneuploidy, characterized by imbalanced chromosome numbers, are associated with lethal progression in prostate cancer. However, how aneuploidy contributes to prostate cancer aggressiveness remains poorly understood. In this study, we assessed in patients which genes on chromosome 8q, one of the most frequently gained chromosome arms in prostate tumors, were most strongly associated with long-term risk of cancer progression to metastases and death from prostate cancer (lethal disease) in 403 patients and found the strongest candidate was cohesin subunit gene, RAD21, with an odds ratio of 3.7 (95% CI 1.8, 7.6) comparing the highest vs. lowest tertiles of mRNA expression and adjusting for overall aneuploidy burden and Gleason score, both strong prognostic factors in primary prostate cancer. Studying prostate cancer driven by the TMPRSS2-ERG oncogenic fusion, found in about half of all prostate tumors, we found that increased RAD21 alleviated toxic oncogenic stress and DNA damage caused by oncogene expression. Data from both organoids and patients indicate that increased RAD21 thereby enables aggressive tumors to sustain tumor proliferation, and more broadly suggests one path through which tumors benefit from aneuploidy.
Collapse
Affiliation(s)
- Xiaofeng A Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20817
| | - Konrad H Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Daniel R Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zhe Li
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, TX 77030
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY 10065
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
| | - Kate Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
| | - Sofia Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Dana-Farber Cancer Institute, Boston, MA 02115
| | - Massimo Loda
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY 10065
| | - Monica Boselli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Cambridge, MA 02139
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Discovery Science, American Cancer Society, Atlanta, GA 30144
| |
Collapse
|
3
|
Jakopec S, Hamzic LF, Bočkor L, Car I, Perić B, Kirin SI, Sedić M, Raić-Malić S. Coumarin-modified ruthenium complexes: Synthesis, characterization, and antiproliferative activity against human cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400271. [PMID: 38864840 DOI: 10.1002/ardp.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
Among ruthenium complexes studied as anticancer metallodrugs, NKP-1339, NAMI-A, RM175, and RAPTA-C have already entered clinical trials due to their potent antitumor activity demonstrated in preclinical studies and reduced toxicity in comparison with platinum drugs. Considering the advantages of ruthenium-based anticancer drugs and the cytostatic activity of organometallic complexes with triazole- and coumarin-derived ligands, we set out to synthesize Ru(II) complexes of coumarin-1,2,3,-triazole hybrids (L) with the general formula [Ru(L)(p-cymene)(Cl)]ClO4. The molecular structure of the complex [Ru(2a)(p-cymene)(Cl)]ClO4 (2aRu) was determined by single-crystal X-ray diffraction, which confirmed the coordination of the ligand to the central ruthenium(II) cation by bidentate mode of coordination. Coordination with Ru(II) resulted in the enhancement of cytostatic activity in HepG2 hepatocellular carcinoma cells and PANC-1 pancreatic cancer cells. Coumarin derivative 2a positively regulated the expression and activity of c-Myc and NPM1 in RKO colon carcinoma cells, while the Ru(II) half-sandwich complex 2cRu induced downregulation of AKT and ERK signaling in PANC-1 cells concomitant with reduced intracellular levels of reactive oxygen species. Altogether, our findings indicated that coumarin-modified half-sandwich Ru(II) complexes held potential as anticancer agents against gastrointestinal malignancies.
Collapse
Affiliation(s)
- Silvio Jakopec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Lejla F Hamzic
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Iris Car
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Berislav Perić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Srećko I Kirin
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Sen T, Takahashi N, Chakraborty S, Takebe N, Nassar AH, Karim NA, Puri S, Naqash AR. Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer. Nat Rev Clin Oncol 2024; 21:610-627. [PMID: 38965396 DOI: 10.1038/s41571-024-00914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Small-cell lung cancer (SCLC) has traditionally been considered a recalcitrant cancer with a dismal prognosis, with only modest advances in therapeutic strategies over the past several decades. Comprehensive genomic assessments of SCLC have revealed that most of these tumours harbour deletions of the tumour-suppressor genes TP53 and RB1 but, in contrast to non-small-cell lung cancer, have failed to identify targetable alterations. The expression status of four transcription factors with key roles in SCLC pathogenesis defines distinct molecular subtypes of the disease, potentially enabling specific therapeutic approaches. Overexpression and amplification of MYC paralogues also affect the biology and therapeutic vulnerabilities of SCLC. Several other attractive targets have emerged in the past few years, including inhibitors of DNA-damage-response pathways, epigenetic modifiers, antibody-drug conjugates and chimeric antigen receptor T cells. However, the rapid development of therapeutic resistance and lack of biomarkers for effective selection of patients with SCLC are ongoing challenges. Emerging single-cell RNA sequencing data are providing insights into the plasticity and intratumoural and intertumoural heterogeneity of SCLC that might be associated with therapeutic resistance. In this Review, we provide a comprehensive overview of the latest advances in genomic and transcriptomic characterization of SCLC with a particular focus on opportunities for translation into new therapeutic approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naoko Takebe
- Developmental Therapeutics Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Amin H Nassar
- Division of Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Nagla A Karim
- Inova Schar Cancer Institute Virginia, Fairfax, VA, USA
| | - Sonam Puri
- Division of Medical Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Abdul Rafeh Naqash
- Medical Oncology/ TSET Phase 1 program, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
5
|
Ülgen E, Gerlevik U, Gerlevik S, Oktay Y, Sezerman OU, Turcan Ş, Ozduman K. A microdeletion event at 19q13.43 in IDH-mutant astrocytomas is strongly correlated with MYC overexpression. Acta Neuropathol Commun 2024; 12:95. [PMID: 38877600 PMCID: PMC11177509 DOI: 10.1186/s40478-024-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024] Open
Abstract
MYC dysregulation is pivotal in the onset and progression of IDH-mutant gliomas, mostly driven by copy-number alterations, regulatory element alterations, or epigenetic changes. Our pilot analysis uncovered instances of relative MYC overexpression without alterations in the proximal MYC network (PMN), prompting a deeper investigation into potential novel oncogenic mechanisms. Analysing comprehensive genomics profiles of 236 "IDH-mutant 1p/19q non-co-deleted" lower-grade gliomas from The Cancer Genome Atlas, we identified somatic genomic alterations within the PMN. In tumours without PMN-alterations but with MYC-overexpression, genes correlated with MYC-overexpression were identified. Our analyses yielded that 86/236 of astrocytomas exhibited no PMN-alterations, a subset of 21/86 displaying relative MYC overexpression. Within this subset, we discovered 42 genes inversely correlated with relative MYC expression, all on 19q. Further analysis pinpointed a minimal common region at 19q13.43, encompassing 15 genes. The inverse correlations of these 15 genes with relative MYC overexpression were re-confirmed using independent scRNAseq data. Further, the micro-deleted astrocytoma subset displayed significantly higher genomic instability compared to WT cases, but lower instability compared to PMN-hit cases. This newly identified 19q micro-deletion represents a potential novel mechanism underlying MYC dysregulation in astrocytomas. Given the prominence of 19q loss in IDH-mutant gliomas, our findings bear significant implications for understanding gliomagenesis.
Collapse
Affiliation(s)
- Ege Ülgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul, Turkey
- Department of Neurosurgery, School of Medicine, Acibadem University, 34752, Istanbul, Turkey
| | - Umut Gerlevik
- Department of Biochemistry, University of Oxford, Oxford, UK
- Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sıla Gerlevik
- Faculty of Life Sciences and Medicine, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Koray Ozduman
- Department of Neurosurgery, School of Medicine, Acibadem University, 34752, Istanbul, Turkey.
| |
Collapse
|
6
|
Fűr GM, Nemes K, Magó É, Benő AÁ, Topolcsányi P, Moldvay J, Pongor LS. Applied models and molecular characteristics of small cell lung cancer. Pathol Oncol Res 2024; 30:1611743. [PMID: 38711976 PMCID: PMC11070512 DOI: 10.3389/pore.2024.1611743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive type of cancer frequently diagnosed with metastatic spread, rendering it surgically unresectable for the majority of patients. Although initial responses to platinum-based therapies are often observed, SCLC invariably relapses within months, frequently developing drug-resistance ultimately contributing to short overall survival rates. Recently, SCLC research aimed to elucidate the dynamic changes in the genetic and epigenetic landscape. These have revealed distinct subtypes of SCLC, each characterized by unique molecular signatures. The recent understanding of the molecular heterogeneity of SCLC has opened up potential avenues for precision medicine, enabling the development of targeted therapeutic strategies. In this review, we delve into the applied models and computational approaches that have been instrumental in the identification of promising drug candidates. We also explore the emerging molecular diagnostic tools that hold the potential to transform clinical practice and patient care.
Collapse
Affiliation(s)
- Gabriella Mihalekné Fűr
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Kolos Nemes
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Éva Magó
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Alexandra Á. Benő
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Petronella Topolcsányi
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Judit Moldvay
- Department of Pulmonology, Szeged University Szent-Gyorgyi Albert Medical School, Szeged, Hungary
- 1st Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Lőrinc S. Pongor
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| |
Collapse
|
7
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Deutzmann A, Sullivan DK, Dhanasekaran R, Li W, Chen X, Tong L, Mahauad-Fernandez WD, Bell J, Mosley A, Koehler AN, Li Y, Felsher DW. Nuclear to cytoplasmic transport is a druggable dependency in MYC-driven hepatocellular carcinoma. Nat Commun 2024; 15:963. [PMID: 38302473 PMCID: PMC10834515 DOI: 10.1038/s41467-024-45128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The MYC oncogene is often dysregulated in human cancer, including hepatocellular carcinoma (HCC). MYC is considered undruggable to date. Here, we comprehensively identify genes essential for survival of MYChigh but not MYClow cells by a CRISPR/Cas9 genome-wide screen in a MYC-conditional HCC model. Our screen uncovers novel MYC synthetic lethal (MYC-SL) interactions and identifies most MYC-SL genes described previously. In particular, the screen reveals nucleocytoplasmic transport to be a MYC-SL interaction. We show that the majority of MYC-SL nucleocytoplasmic transport genes are upregulated in MYChigh murine HCC and are associated with poor survival in HCC patients. Inhibiting Exportin-1 (XPO1) in vivo induces marked tumor regression in an autochthonous MYC-transgenic HCC model and inhibits tumor growth in HCC patient-derived xenografts. XPO1 expression is associated with poor prognosis only in HCC patients with high MYC activity. We infer that MYC may generally regulate and require altered expression of nucleocytoplasmic transport genes for tumorigenesis.
Collapse
Affiliation(s)
- Anja Deutzmann
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Delaney K Sullivan
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Renumathy Dhanasekaran
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Division of Gastroenterology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20012, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, 20012, USA
| | - Xinyu Chen
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ling Tong
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - John Bell
- Stanford Genome Technology Center, Stanford University, Stanford, CA, 94305, USA
| | - Adriane Mosley
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yulin Li
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Institute for Academic Medicine, Houston Methodist and Weill Cornell Medical College, Houston, TX, 77030, USA.
| | - Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Milano L, Gautam A, Caldecott KW. DNA damage and transcription stress. Mol Cell 2024; 84:70-79. [PMID: 38103560 DOI: 10.1016/j.molcel.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.
Collapse
Affiliation(s)
- Larissa Milano
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Amit Gautam
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
10
|
Jacobson DH, Pan S, Fisher J, Secrier M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med 2023; 15:90. [PMID: 37919776 PMCID: PMC10621207 DOI: 10.1186/s13073-023-01239-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Collapse
Affiliation(s)
- Daniel H Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Shi Pan
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Zhang L, Wirth M, Patra U, Stroh J, Isaakidis K, Rieger L, Kossatz S, Milanovic M, Zang C, Demel U, Keiten‐Schmitz J, Wagner K, Steiger K, Rad R, Bassermann F, Müller S, Keller U, Schick M. Actionable loss of SLF2 drives B-cell lymphomagenesis and impairs the DNA damage response. EMBO Mol Med 2023; 15:e16431. [PMID: 37485814 PMCID: PMC10493575 DOI: 10.15252/emmm.202216431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
The DNA damage response (DDR) acts as a barrier to malignant transformation and is often impaired during tumorigenesis. Exploiting the impaired DDR can be a promising therapeutic strategy; however, the mechanisms of inactivation and corresponding biomarkers are incompletely understood. Starting from an unbiased screening approach, we identified the SMC5-SMC6 Complex Localization Factor 2 (SLF2) as a regulator of the DDR and biomarker for a B-cell lymphoma (BCL) patient subgroup with an adverse prognosis. SLF2-deficiency leads to loss of DDR factors including Claspin (CLSPN) and consequently impairs CHK1 activation. In line with this mechanism, genetic deletion of Slf2 drives lymphomagenesis in vivo. Tumor cells lacking SLF2 are characterized by a high level of DNA damage, which leads to alterations of the post-translational SUMOylation pathway as a safeguard. The resulting co-dependency confers synthetic lethality to a clinically applicable SUMOylation inhibitor (SUMOi), and inhibitors of the DDR pathway act highly synergistic with SUMOi. Together, our results identify SLF2 as a DDR regulator and reveal co-targeting of the DDR and SUMOylation as a promising strategy for treating aggressive lymphoma.
Collapse
Affiliation(s)
- Le Zhang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Upayan Patra
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Jacob Stroh
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Konstandina Isaakidis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Leonie Rieger
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
| | - Susanne Kossatz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
- Nuclear Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Maja Milanovic
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Chuanbing Zang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Uta Demel
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
- Clinician Scientist ProgramBerlin Institute of Health (BIH)BerlinGermany
| | - Jan Keiten‐Schmitz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Kristina Wagner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Katja Steiger
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Comparative Experimental Pathology, Institute of PathologyTechnical University of MunichMunichGermany
| | - Roland Rad
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
- Institute of Molecular Oncology and Functional Genomics, TUM School of MedicineTechnische Universität MünchenMunichGermany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
| | - Stefan Müller
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| |
Collapse
|
12
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
13
|
Li J, Kong Y, Sun L, Tang Y, Sun X, Qin S, Li M. Overexpression of Ultrabithorax Changes the Development of Silk Gland and the Expression of Fibroin Genes in Bombyx mori. Int J Mol Sci 2023; 24:ijms24076670. [PMID: 37047645 PMCID: PMC10095271 DOI: 10.3390/ijms24076670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Ultrabithorax (Ubx) is a member of the Hox gene group involved in cell fate decisions, cell proliferation and organ identity. Its function has been extensively researched in Drosophila melanogaster but little is known about it in Lepidoptera. To uncover the function of Ubx in the development of lepidopterans, we constructed the Ubx overexpression (UbxOE) strain based on the Nistari strain of Bombyx mori. The UbxOE strain showed a small body size, transparent intersegmental membrane and abnormal posterior silk gland (PSG). In the current study, we focused on the effect of Ubx overexpression on the posterior silk gland. As the major protein product of PSG, the mRNA expression of fibroin heavy chain (Fib-H) and fibroin light chain (Fib-L) was upregulated three times in UbxOE, but the protein expression of Fib-H and Fib-L was not significantly different. We speculated that the overexpression of Ubx downregulated the expression of Myc and further caused abnormal synthesis of the spliceosome and ribosome. Abnormalities of the spliceosome and ribosome affected the synthesis of protein in the PSG and changed its morphology.
Collapse
Affiliation(s)
- Jiashuang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Yunhui Kong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Lingling Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Yaling Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| |
Collapse
|
14
|
Xu C, Li B, Yu N, Yao B, Wang F, Mei Y. The c-Myc targeting hnRNPAB promotes lung adenocarcinoma cell proliferation via stabilization of CDK4 mRNA. Int J Biochem Cell Biol 2023; 156:106372. [PMID: 36657708 DOI: 10.1016/j.biocel.2023.106372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The c-Myc oncoprotein plays a pivotal role in tumorigenesis. The deregulated expression of c-Myc has been linked to a variety of human cancers including lung adenocarcinoma. The oncogenic function of c-Myc has been largely attributed to its intrinsic nature as a transcription factor. Here we reported the RNA binding protein hnRNPAB as a direct transcriptional target of c-Myc by performing quantitative real-time polymerase chain reaction (qRT-PCR), western blot, chromatin immunoprecipitation (ChIP), and luciferase reporter analyses. Flow cytometry, colony formation, and RNA immunoprecipitation (RIP) assays were used to investigate the role of hnRNPAB in lung adenocarcinoma cell proliferation, as well as the underlying mechanism. HnRNPAB was functionally shown to promote lung adenocarcinoma cell proliferation by accelerating G1/S cell cycle progression. Mechanistically, hnRNPAB interacted with and stabilized CDK4 mRNA, thereby increasing CDK4 expression. Moreover, hnRNPAB was able to promote G1/S cell cycle progression and cell proliferation via the regulation of CDK4. HnRNPAB was also revealed as a mediator of the promoting effect of c-Myc on cell proliferation. Together, these findings demonstrate that hnRNPAB is an important regulator of lung adenocarcinoma cell proliferation. They also add new insights into the mechanisms of how c-Myc promotes tumorigenesis.
Collapse
Affiliation(s)
- Chen Xu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bingyan Li
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ning Yu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Yao
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Wang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Yide Mei
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
15
|
Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol 2023; 33:235-246. [PMID: 35963793 PMCID: PMC9911561 DOI: 10.1016/j.tcb.2022.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
The MYC protooncogene functions as a universal amplifier of transcription through interaction with numerous factors and complexes that regulate almost every cellular process. However, a comprehensive model that explains MYC's actions and the interplay governing the complicated dynamics of components of the transcription and replication machinery is still lacking. Here, we review the potency of MYC as an oncogenic driver and how it regulates the broad spectrum of complexes (effectors and regulators). We propose a 'hand-over model' for differential partitioning and trafficking of unstructured MYC via a loose interaction network between various gene-regulatory complexes and factors. Additionally, the article discusses how unstructured-MYC energetically favors efficient modulation of the energy landscape of the transcription cycle.
Collapse
Affiliation(s)
- Subhendu K Das
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - Brian A Lewis
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA.
| |
Collapse
|
16
|
Luo Z, Xin D, Liao Y, Berry K, Ogurek S, Zhang F, Zhang L, Zhao C, Rao R, Dong X, Li H, Yu J, Lin Y, Huang G, Xu L, Xin M, Nishinakamura R, Yu J, Kool M, Pfister SM, Roussel MF, Zhou W, Weiss WA, Andreassen P, Lu QR. Loss of phosphatase CTDNEP1 potentiates aggressive medulloblastoma by triggering MYC amplification and genomic instability. Nat Commun 2023; 14:762. [PMID: 36765089 PMCID: PMC9918503 DOI: 10.1038/s41467-023-36400-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
MYC-driven medulloblastomas are highly aggressive childhood brain tumors, however, the molecular and genetic events triggering MYC amplification and malignant transformation remain elusive. Here we report that mutations in CTDNEP1, a CTD nuclear-envelope-phosphatase, are the most significantly enriched recurrent alterations in MYC-driven medulloblastomas, and define high-risk subsets with poorer prognosis. Ctdnep1 ablation promotes the transformation of murine cerebellar progenitors into Myc-amplified medulloblastomas, resembling their human counterparts. CTDNEP1 deficiency stabilizes and activates MYC activity by elevating MYC serine-62 phosphorylation, and triggers chromosomal instability to induce p53 loss and Myc amplifications. Further, phosphoproteomics reveals that CTDNEP1 post-translationally modulates the activities of key regulators for chromosome segregation and mitotic checkpoint regulators including topoisomerase TOP2A and checkpoint kinase CHEK1. Co-targeting MYC and CHEK1 activities synergistically inhibits CTDNEP1-deficient MYC-amplified tumor growth and prolongs animal survival. Together, our studies demonstrate that CTDNEP1 is a tumor suppressor in highly aggressive MYC-driven medulloblastomas by controlling MYC activity and mitotic fidelity, pointing to a CTDNEP1-dependent targetable therapeutic vulnerability.
Collapse
Affiliation(s)
- Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Dazhuan Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yunfei Liao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Feng Zhang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Liguo Zhang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chuntao Zhao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xinran Dong
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Hao Li
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Jianzhong Yu
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Guoying Huang
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Lingli Xu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ryuichi Nishinakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ); Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ); Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China.
| | - William A Weiss
- Department of Neurology, Pediatrics, and Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Paul Andreassen
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
17
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
18
|
Ma K, Zhang P, Xia Y, Dong L, Li Y, Liu L, Liu Y, Wang Y. A signature based on five immune-related genes to predict the survival and immune characteristics of neuroblastoma. BMC Med Genomics 2022; 15:242. [PMID: 36419120 PMCID: PMC9685875 DOI: 10.1186/s12920-022-01400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND MYCN amplification (MNA) has been proved to be related to poor prognosis in neuroblastoma (NBL), but the MYCN-related immune signatures and genes remain unclear. METHODS Enrichment analysis was used to identify the significant enrichment pathways of differentially expressed immune-related genes (DEIRGs). Weight gene coexpression network analysis (WGCNA) was applied to reveal the correlation between these DEIRGs and MYCN status. Univariate and multivariate Cox analyses were used to construct risk model. The relevant fractions of immune cells were evaluated by CIBERSORT and single-sample gene set enrichment analysis (ssGSEA). RESULTS Five genes, including CHGA, PTGER1, SHC3, PLXNC1, and TRIM55 were enrolled into the risk model. Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curve showed that our model performed well in predicting the outcomes of NBL (3-years AUC = 0.720, 5-year AUC = 0.775, 10-years AUC = 0.782), which has been validated in the GSE49711 dataset and the E-MTAB-8248 dataset. By comparing with the tumor immune dysfunction and exclusion (TIDE) and tumor inflammation signature (TIS), we further proved that our model is reliable. Univariate and multivariate Cox regression analyses indicated that the risk score, age, and MYCN can serve as independent prognostic factors in the E-MATB-8248. Functional enrichment analysis showed the DEIRGs were enriched in leukocyte adhesion-related signaling pathways. Gene set enrichment analysis (GSEA) revealed the significantly enriched pathways of the five MYCN-related DEIRGs. The risk score was negatively correlated with the immune checkpoint CD274 (PD-L1) but no significant difference with the TMB. We also confirmed the prognostic value of our model in predicting immunotherapeutics. CONCLUSION We constructed and verified a signature based on DEIRG that related to MNA and predicted the survival of NBL based on relevant immune signatures. These findings could provide help for predicting prognosis and developing immunotherapy in NBL.
Collapse
Affiliation(s)
- KeXin Ma
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - PeiPei Zhang
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yu Xia
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - Lin Dong
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - Ying Li
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - Liu Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - YaJuan Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - YouJun Wang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| |
Collapse
|
19
|
Hunter JE, Campbell AE, Butterworth JA, Sellier H, Hannaway NL, Luli S, Floudas A, Kenneth NS, Moore AJ, Brownridge PJ, Thomas HD, Coxhead J, Taylor L, Leary P, Hasoon MS, Knight AM, Garrett MD, Collins I, Eyers CE, Perkins ND. Mutation of the RelA(p65) Thr505 phosphosite disrupts the DNA replication stress response leading to CHK1 inhibitor resistance. Biochem J 2022; 479:2087-2113. [PMID: 36240065 PMCID: PMC9704643 DOI: 10.1042/bcj20220089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jacqueline A. Butterworth
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Helene Sellier
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Achilleas Floudas
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Niall S. Kenneth
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Adam J. Moore
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Huw D. Thomas
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Leary
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Megan S.R. Hasoon
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Andrew M. Knight
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Michelle D. Garrett
- School of Biosciences, University of Kent, Stacey Building, Canterbury, Kent CT2 7NJ, U.K
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton SM2 5NG, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
20
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Kuczynski EA, Morlino G, Peter A, Coenen‐Stass AML, Moss JI, Wali N, Delpuech O, Reddy A, Solanki A, Sinclair C, Calado DP, Carnevalli LS. A preclinical model of peripheral T-cell lymphoma GATA3 reveals DNA damage response pathway vulnerability. EMBO Mol Med 2022; 14:e15816. [PMID: 35510955 PMCID: PMC9174882 DOI: 10.15252/emmm.202215816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Peripheral T-cell lymphoma (PTCL) represents a rare group of heterogeneous diseases in urgent need of effective treatments. A scarcity of disease-relevant preclinical models hinders research advances. Here, we isolated a novel mouse (m)PTCL by serially transplanting a lymphoma from a germinal center B-cell hyperplasia model (Cγ1-Cre Blimp1fl/fl ) through immune-competent mice. Lymphoma cells were identified as clonal TCRβ+ T-helper cells expressing T-follicular helper markers. We also observed coincident B-cell activation and development of a de novo B-cell lymphoma in the model, reminiscent of B-cell activation/lymphomagenesis found in human PTCL. Molecular profiling linked the mPTCL to the high-risk "GATA3" subtype of PTCL, showing GATA3 and Th2 gene expression, PI3K/mTOR pathway enrichment, hyperactivated MYC, and genome instability. Exome sequencing identified a human-relevant oncogenic β-catenin mutation possibly involved in T-cell lymphomagenesis. Prolonged treatment responses were achieved in vivo by targeting ATR in the DNA damage response (DDR), a result corroborated in PTCL cell lines. This work provides mechanistic insight into the molecular and immunological drivers of T-cell lymphomagenesis and proposes DDR inhibition as an effective and readily translatable therapy in PTCL.
Collapse
Affiliation(s)
| | - Giulia Morlino
- Immunity & Cancer LaboratoryFrancis Crick InstituteLondonUK
- Present address:
Benevolent AILondonUK
| | | | - Anna M L Coenen‐Stass
- Oncology R&DAstraZenecaCambridgeUK
- Present address:
Translational MedicineMerck Healthcare KGaADarmstadtGermany
| | | | - Neha Wali
- Oncology R&DAstraZenecaCambridgeUK
- Present address:
LGC Genomics DivisionCambridgeUK
| | | | | | | | - Charles Sinclair
- Oncology R&DAstraZenecaCambridgeUK
- Present address:
Flagship PioneeringCambridgeMAUSA
| | - Dinis P Calado
- Immunity & Cancer LaboratoryFrancis Crick InstituteLondonUK
- Peter Gorer Department of ImmunobiologySchool of Immunology & Microbial SciencesLondonUK
| | | |
Collapse
|
22
|
ML323, a USP1 inhibitor triggers cell cycle arrest, apoptosis and autophagy in esophageal squamous cell carcinoma cells. Apoptosis 2022; 27:545-560. [DOI: 10.1007/s10495-022-01736-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 01/18/2023]
|
23
|
Takahashi N, Kim S, Schultz CW, Rajapakse VN, Zhang Y, Redon CE, Fu H, Pongor L, Kumar S, Pommier Y, Aladjem MI, Thomas A. Replication stress defines distinct molecular subtypes across cancers. CANCER RESEARCH COMMUNICATIONS 2022; 2:503-517. [PMID: 36381660 PMCID: PMC9648410 DOI: 10.1158/2767-9764.crc-22-0168] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Endogenous replication stress is a major driver of genomic instability. Current assessments of replication stress are low throughput precluding its comprehensive assessment across tumors. Here we develop and validate a transcriptional profile of replication stress by leveraging established cellular characteristics that portend replication stress. The repstress gene signature defines a subset of tumors across lineages characterized by activated oncogenes, aneuploidy, extrachromosomal DNA amplification, immune evasion, high genomic instability, and poor survival, and importantly predicts response to agents targeting replication stress more robustly than previously reported transcriptomic measures of replication stress. Repstress score profiles the dual roles of replication stress during tumorigenesis and in established cancers and defines distinct molecular subtypes within cancers that may be more vulnerable to drugs targeting this dependency. Altogether, our study provides a molecular profile of replication stress, providing novel biological insights of the replication stress phenotype, with clinical implications.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Medical Oncology Branch, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center East Hospital, Chiba, Japan
| | - Sehyun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Vinodh N. Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Corresponding Author: Anish Thomas, Developmental Therapeutics Branch, NCI, Building 10 Center Drive, Bethesda, MD 20814. Phone: 240-760-7343; Fax: 954-827-0184; E-mail:
| |
Collapse
|
24
|
Han W, Liu M, Han D, Toure AA, Li M, Besschetnova A, Wang Z, Patalano S, Macoska JA, Lam HM, Corey E, He HH, Gao S, Balk SP, Cai C. Exploiting the tumor-suppressive activity of the androgen receptor by CDK4/6 inhibition in castration-resistant prostate cancer. Mol Ther 2022; 30:1628-1644. [PMID: 35121110 PMCID: PMC9077383 DOI: 10.1016/j.ymthe.2022.01.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022] Open
Abstract
The androgen receptor (AR) plays a pivotal role in driving prostate cancer (PCa) development. However, when stimulated by high levels of androgens, AR can also function as a tumor suppressor in PCa cells. While the high-dose testosterone (high-T) treatment is currently being tested in clinical trials of castration-resistant prostate cancer (CRPC), there is still a pressing need to fully understand the underlying mechanism and thus develop treatment strategies to exploit this tumor-suppressive activity of AR. In this study, we demonstrate that retinoblastoma (Rb) family proteins play a central role in maintaining the global chromatin binding and transcriptional repression program of AR and that Rb inactivation desensitizes CRPC to the high-dose testosterone treatment in vitro and in vivo. Using a series of patient-derived xenograft (PDX) CRPC models, we further show that the efficacy of high-T treatment can be fully exploited by a CDK4/6 inhibitor, which strengthens the chromatin binding of the Rb-E2F repressor complex by blocking the hyperphosphorylation of Rb proteins. Overall, our study provides strong mechanistic and preclinical evidence on further developing clinical trials to combine high-T with CDK4/6 inhibitors in treating CRPC.
Collapse
|
25
|
Genetic alterations of the SUMO isopeptidase SENP6 drive lymphomagenesis and genetic instability in diffuse large B-cell lymphoma. Nat Commun 2022; 13:281. [PMID: 35022408 PMCID: PMC8755833 DOI: 10.1038/s41467-021-27704-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
SUMOylation is a post-translational modification of proteins that regulates these proteins’ localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation. Mechanistically, SENP6 loss triggers release of DNA repair- and genome maintenance-associated protein complexes from chromatin thereby impairing DNA repair in response to DNA damages and ultimately promoting genomic instability. In line with this hypothesis, SENP6 deficiency drives synthetic lethality to Poly-ADP-Ribose-Polymerase (PARP) inhibition. Together, our results link SENP6 loss to defective genome maintenance and reveal the potential therapeutic application of PARP inhibitors in B-cell lymphoma. SUMOylation is a post-translational modification that has been shown to be altered in cancer. Here, the authors show that loss of the SUMO isopeptidase SENP6 leads to unrestricted SUMOylation and genomic instability promoting lymphomagenesis and generating vulnerability to PARP inhibition.
Collapse
|
26
|
Ando K, Ohira M, Takada I, Cázares-Ordoñez V, Suenaga Y, Nagase H, Kobayashi S, Koshinaga T, Kamijo T, Makishima M, Wada S. FGFR2 loss sensitizes MYCN-amplified neuroblastoma CHP134 cells to CHK1 inhibitor-induced apoptosis. Cancer Sci 2021; 113:587-596. [PMID: 34807483 PMCID: PMC8819351 DOI: 10.1111/cas.15205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) plays a key role in genome surveillance and integrity throughout the cell cycle. Selective inhibitors of CHK1 (CHK1i) are undergoing clinical evaluation for various human malignancies, including neuroblastoma. In this study, one CHK1i‐sensitive neuroblastoma cell line, CHP134, was investigated, which characteristically carries MYCN amplification and a chromosome deletion within the 10q region. Among several cancer‐related genes in the chromosome 10q region, mRNA expression of fibroblast growth factor receptor 2 (FGFR2) was altered in CHP134 cells and associated with an unfavorable prognosis of patients with neuroblastoma. Induced expression of FGFR2 in CHP134 cells reactivated downstream MEK/ERK signaling and resulted in cells resistant to CHK1i‐mediated cell growth inhibition. Consistently, the MEK1/2 inhibitor, trametinib, potentiated CHK1 inhibitor–mediated cell death in these cells. These results suggested that FGFR2 loss might be prone to highly effective CHK1i treatment. In conclusion, extreme cellular dependency of ERK activation may imply a possible application for the MEK1/2 inhibitor, either as a single inhibitor or in combination with CHK1i in MYCN‐amplified neuroblastomas.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.,Department of Clinical Diagnostic Oncology, Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan.,Chiba Cancer Center Research Institute, Chiba, Japan.,Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Verna Cázares-Ordoñez
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | | | - Hiroki Nagase
- Chiba Cancer Center Research Institute, Chiba, Japan
| | - Shinichi Kobayashi
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan.,Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| |
Collapse
|
27
|
Islam S, Dutta P, Sahay O, Gopalakrishnan K, Roy Muhury S, Parameshwar P, Shetty P, Santra MK. Feedback-regulated transcriptional repression of FBXO31 by c-Myc triggers ovarian cancer tumorigenesis. Int J Cancer 2021; 150:1512-1524. [PMID: 34706096 DOI: 10.1002/ijc.33854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
FBXO31, a member of F-box protein family, has been shown to play an important role in preventing tumorigenesis by preserving genomic stability during cell proliferations as well as upon genotoxic stresses. Inactivation of FBXO31 due to loss of heterozygosity is associated with various cancers, including ovarian cancer, one of the deadliest forms of gynecological cancers. However, the role and regulation of FBXO31 in ovarian cancer remained elusive. Here, using biochemical and molecular biology techniques, we show that c-Myc suppresses the mRNA levels of FBXO31 in ovarian cancer cell lines and mouse model. Chromatin immunoprecipitation experiment showed that c-Myc is recruited to the promoter region of FBXO31 and prevents FBXO31 mRNA synthesis. In contrast, FBXO31 maintains the c-Myc expression at an optimum through proteasome pathway. FBXO31 interacts with and facilitates the polyubiquitination of c-Myc through the SCF complex and thereby inhibits ovarian cancer growth both in vitro and in vivo. Moreover, FBXO31-mediated proteasomal degradation of c-Myc is unique. Unlike other negative regulators, FBXO31 recognizes c-Myc in phosphorylation independent manner to direct its degradation. Further, expression levels analysis revealed that c-Myc and FBXO31 share a converse correlation of expression in ovarian cancer cell lines and patient samples. We observed an increase in the expression levels of c-Myc with a concomitant decrease in the levels of FBXO31 in higher grades of ovarian cancer patient samples. In conclusion, our study demonstrated that oncogene c-Myc impairs the tumor-suppressive functions of FBXO31 to promote ovarian cancer progression, and therefore c-Myc-FBXO31 axis can be explored to develop better cancer therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sehbanul Islam
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra, India.,Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Parul Dutta
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra, India.,Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Osheen Sahay
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra, India.,Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - K Gopalakrishnan
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra, India
| | - Sushrita Roy Muhury
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra, India
| | - Parinitha Parameshwar
- Department of Pathology, SDM College of Medical Sciences & Hospital, Sattur, Dharwad, India
| | - Praveenkumar Shetty
- K. S. Hegde Medical Academy, NITTE (Deemed to be University), University Enclave, Medical Sciences Complex, Dheralakatte, Mangalore, India
| | - Manas Kumar Santra
- National Centre for Cell Science, NCCS Complex, Ganeshkhind Road, Pune, Maharashtra, India
| |
Collapse
|
28
|
Martínez-Martín S, Soucek L. MYC inhibitors in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:842-865. [PMID: 35582389 PMCID: PMC8992455 DOI: 10.20517/cdr.2021.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, some of the earliest connections among the higher expression of proto-oncogenes (such as MYC), genetic rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the current status of the different compounds, including the results of their clinical testing, and propose to continue with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care therapies to overcome resistance and enable better management of myeloma treatment.
Collapse
Affiliation(s)
- Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
29
|
Distinct roles for PARP-1 and PARP-2 in c-Myc-driven B-cell lymphoma in mice. Blood 2021; 139:228-239. [PMID: 34359075 DOI: 10.1182/blood.2021012805] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Dysregulation of the c-Myc oncogene occurs in a wide variety of haematologic malignancies and its overexpression has been linked with aggressive tumour progression. Here, we show that Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 exert opposing influences on progression of c-Myc-driven B-cell lymphomas. PARP-1 and PARP-2 catalyse the synthesis and transfer of ADP-ribose units onto amino acid residues of acceptor proteins in response to DNA-strand breaks, playing a central role in the response to DNA damage. Accordingly, PARP inhibitors have emerged as promising new cancer therapeutics. However, the inhibitors currently available for clinical use are not able to discriminate between individual PARP proteins. We found that genetic deletion of PARP-2 prevents c-Myc-driven B-cell lymphomas, while PARP-1-deficiency accelerates lymphomagenesis in the Em-Myc mouse model of aggressive B-cell lymphoma. Loss of PARP-2 aggravates replication stress in pre-leukemic Em-Myc B cells resulting in accumulation of DNA damage and concomitant cell death that restricts the c-Myc-driven expansion of B cells, thereby providing protection against B-cell lymphoma. In contrast, PARP-1-deficiency induces a proinflammatory response, and an increase in regulatory T cells likely contributing to immune escape of B-cell lymphomas, resulting in an acceleration of lymphomagenesis. These findings pinpoint specific functions for PARP-1 and PARP-2 in c-Myc-driven lymphomagenesis with antagonistic consequences that may help inform the design of new PARP-centred therapeutic strategies with selective PARP-2 inhibition potentially representing a new therapeutic approach for the treatment of c-Myc-driven tumours.
Collapse
|
30
|
Curti L, Campaner S. MYC-Induced Replicative Stress: A Double-Edged Sword for Cancer Development and Treatment. Int J Mol Sci 2021; 22:6168. [PMID: 34201047 PMCID: PMC8227504 DOI: 10.3390/ijms22126168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
MYC is a transcription factor that controls the expression of a large fraction of cellular genes linked to cell cycle progression, metabolism and differentiation. MYC deregulation in tumors leads to its pervasive genome-wide binding of both promoters and distal regulatory regions, associated with selective transcriptional control of a large fraction of cellular genes. This pairs with alterations of cell cycle control which drive anticipated S-phase entry and reshape the DNA-replication landscape. Under these circumstances, the fine tuning of DNA replication and transcription becomes critical and may pose an intrinsic liability in MYC-overexpressing cancer cells. Here, we will review the current understanding of how MYC controls DNA and RNA synthesis, discuss evidence of replicative and transcriptional stress induced by MYC and summarize preclinical data supporting the therapeutic potential of triggering replicative stress in MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
31
|
Ando K, Nakagawara A. Acceleration or Brakes: Which Is Rational for Cell Cycle-Targeting Neuroblastoma Therapy? Biomolecules 2021; 11:biom11050750. [PMID: 34069817 PMCID: PMC8157238 DOI: 10.3390/biom11050750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022] Open
Abstract
Unrestrained proliferation is a common feature of malignant neoplasms. Targeting the cell cycle is a therapeutic strategy to prevent unlimited cell division. Recently developed rationales for these selective inhibitors can be subdivided into two categories with antithetical functionality. One applies a “brake” to the cell cycle to halt cell proliferation, such as with inhibitors of cell cycle kinases. The other “accelerates” the cell cycle to initiate replication/mitotic catastrophe, such as with inhibitors of cell cycle checkpoint kinases. The fate of cell cycle progression or arrest is tightly regulated by the presence of tolerable or excessive DNA damage, respectively. This suggests that there is compatibility between inhibitors of DNA repair kinases, such as PARP inhibitors, and inhibitors of cell cycle checkpoint kinases. In the present review, we explore alterations to the cell cycle that are concomitant with altered DNA damage repair machinery in unfavorable neuroblastomas, with respect to their unique genomic and molecular features. We highlight the vulnerabilities of these alterations that are attributable to the features of each. Based on the assessment, we offer possible therapeutic approaches for personalized medicine, which are seemingly antithetical, but both are promising strategies for targeting the altered cell cycle in unfavorable neuroblastomas.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan
- Correspondence: (K.A.); (A.N.); Tel.: +81-48-722-1111 (K.A.); +81-942-50-8829 (A.N.)
| | - Akira Nakagawara
- Saga International Carbon Particle Beam Radiation Cancer Therapy Center, Saga HIMAT Foundation, 3049 Harakoga-Machi, Saga 841-0071, Japan
- Correspondence: (K.A.); (A.N.); Tel.: +81-48-722-1111 (K.A.); +81-942-50-8829 (A.N.)
| |
Collapse
|
32
|
Enhanced Myc Expression in Silkworm Silk Gland Promotes DNA Replication and Silk Production. INSECTS 2021; 12:insects12040361. [PMID: 33919579 PMCID: PMC8073660 DOI: 10.3390/insects12040361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Based on a transgenic approach, enhancing Myc expression in the silkworm posterior silk gland (PSG), which was driven by the promoter of the fibroin heavy chain (FibH) gene, was performed for investigating the biological functions of Myc in silk gland. Enhanced Myc expression elevated the cocoon size. This elevation might be resulted from the increasing of FibH expression and DNA content in the PSG cells by promoting the transcription of the genes that are involved in DNA replication. Abstract Silkworm is an economically important insect that synthetizes silk proteins for silk production in silk gland, and silk gland cells undergo endoreplication during larval period. Transcription factor Myc is essential for cell growth and proliferation. Although silkworm Myc gene has been identified previously, its biological functions in silkworm silk gland are still largely unknown. In this study, we examined whether enhanced Myc expression in silk gland could facilitate cell growth and silk production. Based on a transgenic approach, Myc was driven by the promoter of the fibroin heavy chain (FibH) gene to be successfully overexpressed in posterior silk gland. Enhanced Myc expression in the PSG elevated FibH expression by about 20% compared to the control, and also increased the weight and shell rate of the cocoon shell. Further investigation confirmed that Myc overexpression increased nucleus size and DNA content of the PSG cells by promoting the transcription of the genes involved in DNA replication. Therefore, we conclude that enhanced Myc expression promotes DNA replication and silk protein expression in endoreplicating silk gland cells, which subsequently raises silk yield.
Collapse
|
33
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
34
|
Evolutionary-driven C-MYC gene expression in mammalian fibroblasts. Sci Rep 2020; 10:11056. [PMID: 32632086 PMCID: PMC7338511 DOI: 10.1038/s41598-020-67391-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
The extent to which mammalian cells share similar transcriptomes remains unclear. Notwithstanding, such cross-species gene expression inquiries have been scarce for defined cell types and most lack the dissection of gene regulatory landscapes. Therefore, the work was aimed to determine C-MYC relative expression across mammalian fibroblasts (Ovis aries and Bos taurus) via cross-species RT-qPCR and comprehensively explore its regulatory landscape by in silico tools. The prediction of transcription factor binding sites in C-MYC and its 2.5 kb upstream sequence revealed substantial variation, thus indicating evolutionary-driven re-wiring of cis-regulatory elements. C-MYC and its downstream target TBX3 were up-regulated in Bos taurus fibroblasts. The relative expression of C-MYC regulators [RONIN (also known as THAP11), RXRβ, and TCF3] and the C-MYC-associated transcript elongation factor CDK9 did not differ between species. Additional in silico analyses suggested Bos taurus-specific C-MYC exonization, alternative splicing, and binding sites for non-coding RNAs. C-MYC protein orthologs were highly conserved, while variation was in the transactivation domain and the leucine zipper motif. Altogether, mammalian fibroblasts display evolutionary-driven C-MYC relative expression that should be instructive for understanding cellular physiology, cellular reprogramming, and C-MYC-related diseases.
Collapse
|
35
|
Yamashita K, Kiyonari S, Tsubota S, Kishida S, Sakai R, Kadomatsu K. Thymidylate synthase inhibitor raltitrexed can induce high levels of DNA damage in MYCN-amplified neuroblastoma cells. Cancer Sci 2020; 111:2431-2439. [PMID: 32415892 PMCID: PMC7385364 DOI: 10.1111/cas.14485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
MYCN gene amplification is consistently associated with poor prognosis in patients with neuroblastoma, a pediatric tumor arising from the sympathetic nervous system. Conventional anticancer drugs, such as alkylating agents and platinum compounds, have been used for the treatment of high-risk patients with MYCN-amplified neuroblastoma, whereas molecule-targeting drugs have not yet been approved. Therefore, the development of a safe and effective therapeutic approach is highly desired. Although thymidylate synthase inhibitors are widely used for colorectal and gastric cancers, their usefulness in neuroblastoma has not been well studied. Here, we investigated the efficacies of approved antifolates, methotrexate, pemetrexed, and raltitrexed (RTX), on MYCN-amplified and nonamplified neuroblastoma cell lines. Cell growth-inhibitory assay revealed that RTX showed a superior inhibitory activity against MYCN-amplified cell lines. We found no significant differences in the protein expression levels of the antifolate transporter or thymidylate synthase, a primary target of RTX, among the cell lines. Because thymidine supplementation could rescue the RTX-induced cell growth suppression, the effect of RTX was mainly due to the reduction in dTTP synthesis. Interestingly, RTX treatments induced single-stranded DNA damage response in MYCN-amplified cells to a greater extent than in the nonamplified cells. We propose that the high DNA replication stress and elevated levels of DNA damage, which are a result of deregulated expression of MYCN target genes, could be the cause of increased sensitivity to RTX.
Collapse
Affiliation(s)
- Ken Yamashita
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kiyonari
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Sakai
- Division of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
36
|
Reed DR, Alexandrow MG. Myc and the Replicative CMG Helicase: The Creation and Destruction of Cancer: Myc Over-Activation of CMG Helicases Drives Tumorigenesis and Creates a Vulnerability in CMGs for Therapeutic Intervention. Bioessays 2020; 42:e1900218. [PMID: 32080866 PMCID: PMC8223603 DOI: 10.1002/bies.201900218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replicative Cdc45-MCM-GINS (CMG) helicases. Excessive stimulation of CMG helicases by Myc mismanages CMG function by diminishing the number of reserve CMGs necessary for fidelity of DNA replication and recovery from replicative stresses. One potential outcome of these events is the creation of DNA damage that alters genomic structure/function, thereby acting as a driver for tumorigenesis and tumor heterogeneity. Intriguingly, another potential outcome of this Myc-induced CMG helicase over-activation is the creation of a vulnerability in cancer whereby tumor cells specifically lack enough unused reserve CMG helicases to recover from fork-stalling drugs commonly used in chemotherapy. This review provides molecular and clinical support for this provocative hypothesis that excessive activation of CMG helicases by Myc may not only drive tumorigenesis, but also confer an exploitable "reserve CMG helicase vulnerability" that supports developing innovative CMG-focused therapeutic approaches for cancer management.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
37
|
Primo LMF, Teixeira LK. DNA replication stress: oncogenes in the spotlight. Genet Mol Biol 2019; 43:e20190138. [PMID: 31930281 PMCID: PMC7197996 DOI: 10.1590/1678-4685gmb-2019-0138] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023] Open
Abstract
Precise replication of genetic material is essential to maintain genome stability. DNA replication is a tightly regulated process that ensues faithful copies of DNA molecules to daughter cells during each cell cycle. Perturbation of DNA replication may compromise the transmission of genetic information, leading to DNA damage, mutations, and chromosomal rearrangements. DNA replication stress, also referred to as DNA replicative stress, is defined as the slowing or stalling of replication fork progression during DNA synthesis as a result of different insults. Oncogene activation, one hallmark of cancer, is able to disturb numerous cellular processes, including DNA replication. In fact, extensive work has indicated that oncogene-induced replication stress is an important source of genomic instability in human carcinogenesis. In this review, we focus on main oncogenes that induce DNA replication stress, such as RAS, MYC, Cyclin E, MDM2, and BCL-2 among others, and the molecular mechanisms by which these oncogenes interfere with normal DNA replication and promote genomic instability.
Collapse
Affiliation(s)
- Luiza M. F. Primo
- Group of Cell Cycle Control, Program of Immunology and Tumor
Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ,
Brazil
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor
Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ,
Brazil
| |
Collapse
|
38
|
Abstract
Precise replication of genetic material is essential to maintain genome stability. DNA replication is a tightly regulated process that ensues faithful copies of DNA molecules to daughter cells during each cell cycle. Perturbation of DNA replication may compromise the transmission of genetic information, leading to DNA damage, mutations, and chromosomal rearrangements. DNA replication stress, also referred to as DNA replicative stress, is defined as the slowing or stalling of replication fork progression during DNA synthesis as a result of different insults. Oncogene activation, one hallmark of cancer, is able to disturb numerous cellular processes, including DNA replication. In fact, extensive work has indicated that oncogene-induced replication stress is an important source of genomic instability in human carcinogenesis. In this review, we focus on main oncogenes that induce DNA replication stress, such as RAS, MYC, Cyclin E, MDM2, and BCL-2 among others, and the molecular mechanisms by which these oncogenes interfere with normal DNA replication and promote genomic instability.
Collapse
Affiliation(s)
- Luiza M F Primo
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Leonardo K Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Rand TA, Sutou K, Tanabe K, Jeong D, Nomura M, Kitaoka F, Tomoda E, Narita M, Nakamura M, Nakamura M, Watanabe A, Rulifson E, Yamanaka S, Takahashi K. MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. Cell Rep 2019; 23:361-375. [PMID: 29641997 DOI: 10.1016/j.celrep.2018.03.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/14/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
Here, we report that MYC rescues early human cells undergoing reprogramming from a proliferation pause induced by OCT3/4, SOX2, and KLF4 (OSK). We identified ESRG as a marker of early reprogramming cells that is expressed as early as day 3 after OSK induction. On day 4, ESRG positive (+) cells converted to a TRA-1-60 (+) intermediate state. These early ESRG (+) or TRA-1-60 (+) cells showed a proliferation pause due to increased p16INK4A and p21 and decreased endogenous MYC caused by OSK. Exogenous MYC did not enhance the appearance of initial reprogramming cells but instead reactivated their proliferation and improved reprogramming efficiency. MYC increased expression of LIN41, which potently suppressed p21 post-transcriptionally. MYC suppressed p16 INK4A. These changes inactivated retinoblastoma protein (RB) and reactivated proliferation. The RB-regulated proliferation pause does not occur in immortalized fibroblasts, leading to high reprogramming efficiency even without exogenous MYC.
Collapse
Affiliation(s)
- Tim A Rand
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Kenta Sutou
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Tanabe
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daeun Jeong
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Masaki Nomura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Fumiyo Kitaoka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Emi Tomoda
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Megumi Narita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiro Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Eric Rulifson
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Kazutoshi Takahashi
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
40
|
Littler S, Sloss O, Geary B, Pierce A, Whetton AD, Taylor SS. Oncogenic MYC amplifies mitotic perturbations. Open Biol 2019; 9:190136. [PMID: 31455158 PMCID: PMC6731591 DOI: 10.1098/rsob.190136] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
The oncogenic transcription factor MYC modulates vast arrays of genes, thereby influencing numerous biological pathways including biogenesis, metabolism, proliferation, apoptosis and pluripotency. When deregulated, MYC drives genomic instability via several mechanisms including aberrant proliferation, replication stress and ROS production. Deregulated MYC also promotes chromosome instability, but less is known about how MYC influences mitosis. Here, we show that deregulating MYC modulates multiple aspects of mitotic chromosome segregation. Cells overexpressing MYC have altered spindle morphology, take longer to align their chromosomes at metaphase and enter anaphase sooner. When challenged with a variety of anti-mitotic drugs, cells overexpressing MYC display more anomalies, the net effect of which is increased micronuclei, a hallmark of chromosome instability. Proteomic analysis showed that MYC modulates multiple networks predicted to influence mitosis, with the mitotic kinase PLK1 identified as a central hub. In turn, we show that MYC modulates several PLK1-dependent processes, namely mitotic entry, spindle assembly and SAC satisfaction. These observations thus underpin the pervasive nature of oncogenic MYC and provide a mechanistic rationale for MYC's ability to drive chromosome instability.
Collapse
Affiliation(s)
- Samantha Littler
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Olivia Sloss
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany Geary
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Andrew Pierce
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony D. Whetton
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Stephen S. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
41
|
Zhang Y, Li Z, Hao Q, Tan W, Sun J, Li J, Chen CW, Li Z, Meng Y, Zhou Y, Han Z, Pei H, DePamphilis ML, Zhu W. The Cdk2-c-Myc-miR-571 Axis Regulates DNA Replication and Genomic Stability by Targeting Geminin. Cancer Res 2019; 79:4896-4910. [PMID: 31431461 DOI: 10.1158/0008-5472.can-19-0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
DNA rereplication leads to genomic instability and has been implicated in the pathology of a variety of human cancers. Eukaryotic DNA replication is tightly controlled to ensure it occurs only once during each cell cycle. Geminin is a critical component of this control, it prevents DNA rereplication from occurring during S, G2, and early M phases by preventing MCM helicases from forming prereplication complexes. Geminin is targeted for degradation by the anaphase-promoting complex (APC/C) from anaphase through G1-phase, however, accumulating evidence indicates that Geminin is downregulated in late S-phase due to an unknown mechanism. Here, we used a high-throughput screen to identify miRNAs that can induce excess DNA replication and found that miR-571 could reduce the protein level of Geminin in late S-phase independent of the APC/C. Furthermore, miR-571 regulated efficient DNA replication and S-phase cell-cycle progression. Strikingly, c-Myc suppressed miR-571 expression by binding directly to the miR-571 promoter. At the beginning of S-phase, Cdk2 phosphorylated c-Myc at Serine 62, promoting its association with the miR-571 promoter region. Collectively, we identify miR-571 as the first miRNA that prevents aberrant DNA replication and the Cdk2-c-Myc-miR-571 axis as a new pathway for regulating DNA replication, cell cycle, and genomic stability in cancer cells. SIGNIFICANCE: These findings identify a novel regulatory mechanism that is critical for maintaining genome integrity by regulating DNA replication and cell-cycle progression.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Qiang Hao
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Wei Tan
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Yuan Zhou
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zhiyong Han
- Department of Medical Sciences, Seton Hall-Hackensack Meridian School of Medicine, South Orange, New Jersey
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C.
| |
Collapse
|
42
|
Savva C, De Souza K, Ali R, Rakha EA, Green AR, Madhusudan S. Clinicopathological significance of ataxia telangiectasia-mutated (ATM) kinase and ataxia telangiectasia-mutated and Rad3-related (ATR) kinase in MYC overexpressed breast cancers. Breast Cancer Res Treat 2019; 175:105-115. [PMID: 30746633 PMCID: PMC6491658 DOI: 10.1007/s10549-018-05113-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE MYC transcription factor has critical roles in cell growth, proliferation, metabolism, differentiation, transformation and angiogenesis. MYC overexpression is seen in about 15% of breast cancers and linked to aggressive phenotypes. MYC overexpression also induces oxidative stress and replication stress in cells. ATM signalling and ATR-mediated signalling are critical for MYC-induced DNA damage response. Whether ATM and ATR expressions influence clinical outcomes in MYC overexpressed breast cancers is unknown. METHODS We investigated ATM, ATR and MYC at the transcriptional level [Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1950)] and at the protein level in the Nottingham series comprising 1650 breast tumours. We correlated ATM, ATR and MYC expressions to clinicopathological features and survival outcomes. RESULTS In MYC over expressed tumours, high ATR or low ATM levels were associated with aggressive breast cancer features such as higher tumour grade, de-differentiation, pleomorphism, high mitotic index, high-risk Nottingham Prognostic Index, triple negative and basal-like breast cancers (all adjusted p values < 0.05). Tumours with low ATM or high ATR levels in conjunction with MYC overexpression also have worse overall breast cancer-specific survival (BCSS) (p value < 0.05). CONCLUSIONS We conclude that ATR/ATM-directed stratification and personalisation of therapy may be feasible in MYC overexpressed breast cancer.
Collapse
Affiliation(s)
- Constantinos Savva
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Karen De Souza
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Reem Ali
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, Academic Unit of Oncology, School of Medicine, University of Nottingham, Nottingham, NG51 PB, UK
| | - Emad A Rakha
- Department of Pathology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Department of Pathology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK.
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK.
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, Academic Unit of Oncology, School of Medicine, University of Nottingham, Nottingham, NG51 PB, UK.
| |
Collapse
|
43
|
Charkoftaki G, Thompson DC, Golla JP, Garcia-Milian R, Lam TT, Engel J, Vasiliou V. Integrated multi-omics approach reveals a role of ALDH1A1 in lipid metabolism in human colon cancer cells. Chem Biol Interact 2019; 304:88-96. [PMID: 30851239 DOI: 10.1016/j.cbi.2019.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06250, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA; Yale MS & Proteomics Resource, WM Keck Biotechnology Resource Laboratory, New Haven, CT, 06510, USA
| | - Jasper Engel
- Biometris, Wageningen University & Research, Wagenigen, the Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
44
|
Enane FO, Saunthararajah Y, Korc M. Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis 2018; 9:912. [PMID: 30190481 PMCID: PMC6127320 DOI: 10.1038/s41419-018-0919-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Chemotherapeutic drugs have a common intent to activate apoptosis in tumor cells. However, master regulators of apoptosis (e.g., p53, p16/CDKN2A) are frequently genetically inactivated in cancers, resulting in multidrug resistance. An alternative, p53-independent method for terminating malignant proliferation is to engage terminal-differentiation. Normally, the exponential proliferation of lineage-committed progenitors, coordinated by the master transcription factor (TF) MYC, is self-limited by forward-differentiation to terminal lineage-fates. In cancers, however, this exponential proliferation is disengaged from terminal-differentiation. The mechanisms underlying this decoupling are mostly unknown. We performed a systematic review of published literature (January 2007-June 2018) to identify gene pathways linked to differentiation-failure in three treatment-recalcitrant cancers: hepatocellular carcinoma (HCC), ovarian cancer (OVC), and pancreatic ductal adenocarcinoma (PDAC). We analyzed key gene alterations in various apoptosis, proliferation and differentiation pathways to determine whether it is possible to predict treatment outcomes and suggest novel therapies. Poorly differentiated tumors were linked to poorer survival across histologies. Our analyses suggested loss-of-function events to master TF drivers of lineage-fates and their cofactors as being linked to differentiation-failure: genomic data in TCGA and ICGC databases demonstrated frequent haploinsufficiency of lineage master TFs (e.g., GATA4/6) in poorly differentiated tumors; the coactivators that these TFs use to activate genes (e.g. ARID1A, PBRM1) were also frequently inactivated by genetic mutation and/or deletion. By contrast, corepressor components (e.g., DNMT1, EED, UHRF1, and BAZ1A/B), that oppose coactivators to repress or turn off genes, were frequently amplified instead, and the level of amplification was highest in poorly differentiated lesions. This selection by neoplastic evolution towards unbalanced activity of transcriptional corepressors suggests these enzymes as candidate targets for inhibition aiming to re-engage forward-differentiation. This notion is supported by both pre-clinical and clinical trial literature.
Collapse
Affiliation(s)
- Francis O Enane
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA.
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Murray Korc
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- The Pancreatic Cancer Signature Center at Indiana University Purdue University Indianapolis and Indiana University Simon Cancer, Indianapolis, IN, 46202, USA.
| |
Collapse
|
45
|
Pérez-Olivares M, Trento A, Rodriguez-Acebes S, González-Acosta D, Fernández-Antorán D, Román-García S, Martinez D, López-Briones T, Torroja C, Carrasco YR, Méndez J, Moreno de Alborán I. Functional interplay between c-Myc and Max in B lymphocyte differentiation. EMBO Rep 2018; 19:embr.201845770. [PMID: 30126925 DOI: 10.15252/embr.201845770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix-loop-helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c-Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c-Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c-Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c-Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c-Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B-cell receptor. These data suggest that c-Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine-tuning the initial response after activation.
Collapse
Affiliation(s)
- Mercedes Pérez-Olivares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Alfonsina Trento
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | | | | | - David Fernández-Antorán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sara Román-García
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Dolores Martinez
- Centro Nacional de Investigaciones Oncológicas-CNIO, Madrid, Spain
| | | | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Juan Méndez
- Centro Nacional de Investigaciones Oncológicas-CNIO, Madrid, Spain
| | | |
Collapse
|
46
|
Kobayashi H, Kawahara N, Ogawa K, Yamada Y, Iwai K, Niiro E, Morioka S. Conceptual frameworks of synthetic lethality in clear cell carcinoma of the ovary. Biomed Rep 2018; 9:112-118. [PMID: 30013776 DOI: 10.3892/br.2018.1114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Targeting non-oncogenes may result in the selective death of cancer cells. Clear cell carcinoma of the ovary (CCC) may exhibit resistance against conventional chemotherapy and is associated with poor prognosis. The aim of the present report was to review synthetic lethality-based therapies for CCC. Previous English-language studies were reviewed to accumulate preclinical and clinical data on targeting synthetic lethal partners. Synthetic lethal interactions have a variety of types, involving components of a backup or parallel pathway with overlapping functions, components encoded by paralogous pairs, subunit components that form heteromeric complexes and components that are arranged in a single linear pathway. A set of candidate gene targets potentially resulting in synthetic lethality have been previously identified. HNF class homeobox, AT-rich interaction domain 1A, ATR serine/threonine kinase, ATM serine/threonine kinase, checkpoint kinase 1 and phosphatase and tensin homolog may be the key partner genes. A variety of loss of function genes in CCC are driver or passenger events and may function as synthetic lethal pairs under replication stress conditions. Further clinical studies will be required to investigate the safety and therapeutic effect of synthetic lethality pairs in CCC tumor types with replication stress.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Kenji Ogawa
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Kana Iwai
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Emiko Niiro
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Sachiko Morioka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| |
Collapse
|
47
|
Krüger K, Geist K, Stuhldreier F, Schumacher L, Blümel L, Remke M, Wesselborg S, Stork B, Klöcker N, Bormann S, Roos WP, Honnen S, Fritz G. Multiple DNA damage-dependent and DNA damage-independent stress responses define the outcome of ATR/Chk1 targeting in medulloblastoma cells. Cancer Lett 2018; 430:34-46. [PMID: 29753759 DOI: 10.1016/j.canlet.2018.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
Abstract
Targeting of oncogene-driven replicative stress as therapeutic option for high-risk medullobastoma was assessed using a panel of medulloblastoma cells differing in their c-Myc expression [i.e. group SHH (c-Myc low) vs. group 3 (c-Myc high)]. High c-Myc levels were associated with hypersensitivity to pharmacological Chk1 and ATR inhibition but not to CDK inhibition nor to conventional (genotoxic) anticancer therapeutics. The enhanced sensitivity of group 3 medulloblastoma cells to Chk1 inhibitors likely results from enhanced damage to intracellular organelles, elevated replicative stress and DNA damage and activation of apoptosis/necrosis. Furthermore, Chk1 inhibition differentially affected c-Myc expression and functions. In c-Myc high cells, Chk1 blockage decreased c-Myc and p-GSK3α protein and increased p21 and GADD45A mRNA expression. By contrast, c-Myc low cells revealed increased p-GSK3β protein and CHOP and DUSP1 mRNA levels. Inhibition of Chk1 sensitized medulloblastoma cells to additional replication stress evoked by cisplatin independent of c-Myc. Importantly, Chk1 inhibition only caused minor toxicity in primary rat neurons in vitro. Collectively, targeting of ATR/Chk1 effectively triggers death in high-risk medulloblastoma, potentiates the anticancer efficacy of cisplatin and is well tolerated in non-cancerous neuronal cells.
Collapse
Affiliation(s)
- Katharina Krüger
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Katharina Geist
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lena Schumacher
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lena Blümel
- Clinic of Pediatric Oncology/Neuro-Oncology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Marc Remke
- Clinic of Pediatric Oncology/Neuro-Oncology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Nicolaj Klöcker
- Institute of Neurophysiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Stefanie Bormann
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - Sebastian Honnen
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
48
|
Lindström MS, Jurada D, Bursac S, Orsolic I, Bartek J, Volarevic S. Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene 2018; 37:2351-2366. [PMID: 29429989 PMCID: PMC5931986 DOI: 10.1038/s41388-017-0121-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
The nucleolus is the major site for synthesis of ribosomes, complex molecular machines that are responsible for protein synthesis. A wealth of research over the past 20 years has clearly indicated that both quantitative and qualitative alterations in ribosome biogenesis can drive the malignant phenotype via dysregulation of protein synthesis. However, numerous recent proteomic, genomic, and functional studies have implicated the nucleolus in the regulation of processes that are unrelated to ribosome biogenesis, including DNA-damage response, maintenance of genome stability and its spatial organization, epigenetic regulation, cell-cycle control, stress responses, senescence, global gene expression, as well as assembly or maturation of various ribonucleoprotein particles. In this review, the focus will be on features of rDNA genes, which make them highly vulnerable to DNA damage and intra- and interchromosomal recombination as well as built-in mechanisms that prevent and repair rDNA damage, and how dysregulation of this interplay affects genome-wide DNA stability, gene expression and the balance between euchromatin and heterochromatin. We will also present the most recent insights into how malfunction of these cellular processes may be a central driving force of human malignancies, and propose a promising new therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Mikael S Lindström
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Deana Jurada
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Rijeka, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Rijeka, Croatia
| | - Sladana Bursac
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Rijeka, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Rijeka, Croatia
| | - Ines Orsolic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Rijeka, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Rijeka, Croatia
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- The Danish Cancer Society Research Centre, Copenhagen, Denmark.
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Rijeka, Croatia.
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
49
|
Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, Zhao W, Zhang X, Ventura A, Liu Y, Ayer DE, Hurlin PJ, Cherniack AD, Eisenman RN, Bernard B, Grandori C. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Syst 2018; 6:282-300.e2. [PMID: 29596783 PMCID: PMC5892207 DOI: 10.1016/j.cels.2018.03.003] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN.
Collapse
Affiliation(s)
- Franz X Schaub
- Cure First, Seattle, WA, USA; SEngine Precision Medicine, Seattle, WA, USA
| | | | - Ashton C Berger
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | | | - Reid Shaw
- SEngine Precision Medicine, Seattle, WA, USA
| | - Wei Zhao
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyang Zhang
- Dana-Farber Cancer Institute, the Broad Institute of Harvard and MIT, and Harvard Medical School, Boston, MA, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuexin Liu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Peter J Hurlin
- Shriners Hospitals for Children Research Center, Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andrew D Cherniack
- Dana-Farber Cancer Institute, the Broad Institute of Harvard and MIT, and Harvard Medical School, Boston, MA, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brady Bernard
- Institute for Systems Biology, Seattle, WA, USA; Providence Health and Services, Portland, OR, USA.
| | - Carla Grandori
- Cure First, Seattle, WA, USA; SEngine Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
50
|
Sen T, Gay CM, Byers LA. Targeting DNA damage repair in small cell lung cancer and the biomarker landscape. Transl Lung Cancer Res 2018. [PMID: 29535912 DOI: 10.21037/tlcr.2018.02.03] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy that accounts for 14% of all lung cancer diagnoses. Despite decades of active research, treatment options for SCLC are limited and resistance to the few Food and Drug Administration (FDA) approved therapies develops rapidly. With no approved targeted agents to date, new therapeutic strategies are desperately needed. SCLC is characterized by high mutation burden, ubiquitous loss of TP53 and RB1, mutually exclusive amplification of MYC family members, thereby, high genomic instability. Studies in the past few years have demonstrated the potential of targeting the DNA damage response (DDR) pathway as a promising therapeutic strategy for SCLC. Inhibitors targeting DDR proteins have shown promise in preclinical models, and are under clinical investigation as single agents and in combination with cytotoxic therapies. Recent efforts to expand the therapeutic arsenal toward SCLC have focused in part on immune checkpoint inhibitors, such as agents targeting the receptor-ligand pair programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). Clinical trials have confirmed activity of these agents in extensive stage (ES)-SCLC. However, while several patients had dramatic responses, overall response rates to immune checkpoint blockade (ICB) remain poor. As a result, there is an urgent need to develop rational combination therapies to enhance response rates to immunotherapy in SCLC. Identification of predictive biomarkers for patient stratification, identifying effective combinations to overcome adaptive resistance to DDR-targeted therapies and identifying strategies to enhance response to immunotherapy are areas of active investigation in SCLC.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic and Head & Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|