1
|
Lee SS, Martinez Peña EG, Willis AA, Wang CC, Haddad NR, Garza LA. Cell Therapy and the Skin: Great Potential but in Need of Optimization. J Invest Dermatol 2024:S0022-202X(24)02159-6. [PMID: 39530953 DOI: 10.1016/j.jid.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Cell therapy is rapidly growing owing to its therapeutic potential for diseases with currently poor outcomes. Cell therapy encompasses both nonengineered and engineered cells and possesses unique abilities such as sense-and-respond functions and long-term engraftment for persistent curative potential. Cell therapy capabilities have expanded to address a wide spectrum of diseases, and our review is focused on dermatological applications. The use of fibroblasts and keratinocytes as cell therapy has shown promise in skin disorders such as epidermolysis bullosa. Future efforts include testing the ability of fibroblasts to reprogram nonvolar to volar skin to reduce stump dermatoses in patients with limb loss using prosthetics.
Collapse
Affiliation(s)
- Sam S Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | - Aiden A Willis
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Chia Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nina Rossa Haddad
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Karimzadeh F, Soltani Fard E, Nadi A, Malekzadeh R, Elahian F, Mirzaei SA. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review. J Mater Chem B 2024; 12:6033-6062. [PMID: 38887828 DOI: 10.1039/d4tb00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The skin, serving as the body's outermost layer, boasts a vast area and intricate structure, functioning as the primary barrier against external threats. Disruptions in the composition and functionality of the skin can lead to a diverse array of skin conditions, such as wounds, burns, and diabetic ulcers, along with inflammatory disorders, infections, and various types of skin cancer. These disorders not only exacerbate concerns regarding skin health and beauty but also have a significant impact on mental well-being. Due to the complexity of these disorders, conventional treatments often prove insufficient, necessitating the exploration of new therapeutic approaches. Researchers develop new therapies by deciphering these intricacies and gaining a thorough understanding of the protein networks and molecular processes in skin. A new window of opportunity has opened up for improving wound healing processes because of recent advancements in skin gene therapy. To enhance skin regeneration and healing, this extensive review investigates the use of novel dressing scaffolds in conjunction with gene therapy approaches. Scaffolds that do double duty as wound protectors and vectors for therapeutic gene delivery are being developed using innovative biomaterials. To improve cellular responses and speed healing, these state-of-the-art scaffolds allow for the targeted delivery and sustained release of genetic material. The most recent developments in gene therapy techniques include RNA interference, CRISPR-based gene editing, and the utilization of viral and non-viral vectors in conjunction with scaffolds, which were reviewed here to overcome skin disorders and wound complications. In the future, there will be rare chances to develop custom methods for skin health care thanks to the combination of modern technology and collaboration among disciplines.
Collapse
Affiliation(s)
- Fatemeh Karimzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rahim Malekzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Thomas J, Sun J, Montclare JK. Constructing Nucleic Acid Delivering Lipoproteoplexes from Coiled-Coil Supercharged Protein and Cationic Liposomes. Methods Mol Biol 2024; 2720:191-207. [PMID: 37775667 DOI: 10.1007/978-1-0716-3469-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The safe and efficient delivery of nucleic acids is crucial for both clinical applications of gene therapy and pre-clinical laboratory research. Such delivery strategies rely on vectors to condense nucleic acid payloads and escort them into the cell without being degraded in the extracellular environment; however, the construction and utilization of these vectors can be difficult and time-consuming. Here, we detail the steps involved in the rapid, laboratory-scale production and assessment of a versatile, nucleic acid delivery vehicle, known as the lipoproteoplex. In this chapter, we outline: (1) the recombinant synthesis and subsequent purification of the supercharged coiled-coil protein component known as N8; (2) the synthesis of cationic liposomes from dioleoyl-3-trimethylammonium propane (DOTAP) and sodium cholate; (3) and finally a protocol for the delivery of a model siRNA cargo into a cultured cell line.
Collapse
Affiliation(s)
- Joseph Thomas
- Department of Biomedical Engineering, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Jonathan Sun
- Department of Chemistry, New York University, New York, NY, USA
- Department of Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
- Department of Chemistry, New York University, New York, NY, USA.
- Department of Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA.
| |
Collapse
|
4
|
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023; 8:e10343. [PMID: 36684081 PMCID: PMC9842058 DOI: 10.1002/btm2.10343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.
Collapse
Affiliation(s)
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100RomeItaly
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterCardiovascular Research Institute, Isfahan University of Medical SciencesIsfahanIran
| | | | - Sumit Jamwal
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjanIran
- Cancer Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | | | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
- LAQV, REQUIMTE, Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
| | - Ali Tamayol
- Department of Biomedical EngineeringUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaItaly
- School of Chemistry, Damghan UniversityDamghanIran
| |
Collapse
|
5
|
Sharma P, Kumar A, Agarwal T, Dey AD, Moghaddam FD, Rahimmanesh I, Ghovvati M, Yousefiasl S, Borzacchiello A, Mohammadi A, Yella VR, Moradi O, Sharifi E. Nucleic acid-based therapeutics for dermal wound healing. Int J Biol Macromol 2022; 220:920-933. [PMID: 35987365 DOI: 10.1016/j.ijbiomac.2022.08.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 02/06/2023]
Abstract
Non-healing wounds have long been the subject of scientific and clinical investigations. Despite breakthroughs in understanding the biology of delayed wound healing, only limited advances have been made in properly treating wounds. Recently, research into nucleic acids (NAs) such as small-interfering RNA (siRNA), microRNA (miRNA), plasmid DNA (pDNA), aptamers, and antisense oligonucleotides (ASOs) has resulted in the development of a latest therapeutic strategy for wound healing. In this regard, dendrimers, scaffolds, lipid nanoparticles, polymeric nanoparticles, hydrogels, and metal nanoparticles have all been explored as NA delivery techniques. However, the translational possibility of NA remains a substantial barrier. As a result, different NAs must be identified, and their distribution method must be optimized. This review explores the role of NA-based therapeutics in various stages of wound healing and provides an update on the most recent findings in the development of NA-based nanomedicine and biomaterials, which may offer the potential for the invention of novel therapies for this long-term condition. Further, the challenges and potential for miRNA-based techniques to be translated into clinical applications are also highlighted.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College Kangra, Nagrota Bhagwan, Himachal Pradesh, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tarun Agarwal
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, 374-37515 Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran.
| |
Collapse
|
6
|
Hasbani DJ, Hamie L, Eid E, Tamer C, Abbas O, Kurban M. Treatments for Non-Syndromic Inherited Ichthyosis, Including Emergent Pathogenesis-Related Therapy. Am J Clin Dermatol 2022; 23:853-867. [PMID: 35960486 DOI: 10.1007/s40257-022-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
The term 'inherited ichthyosis' refers to a heterogeneous group of mendelian disorders of cornification that involve the integument with varying degrees of scaling. The management of ichthyosis poses a challenge for most physicians. Treatment options proposed in the literature include moisturizers, topical keratolytics, topical and systemic vitamin D analogues, and topical and systemic retinoids; however, some of these modalities are less reliable than others. Despite the therapeutic impasse imposed by the options above, the emergence of pathogenesis-based treatments along with novel gene therapies appear promising and hold the potential to halt or even revert disorders that arise from single genetic mutations, although research is still quite lacking in this domain. Hence, this review aims to highlight the various treatment modalities available for the management of the cutaneous manifestations of non-syndromic inherited ichthyosis, with an added emphasis on pathogenesis-targeted therapies.
Collapse
Affiliation(s)
- Divina Justina Hasbani
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Lamiaa Hamie
- Department of Dermatology, Division of Pediatric Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edward Eid
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Christel Tamer
- Department of Radiology, American University of Beirut, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon.
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
7
|
Stem Cell Technology and Skin Disorders: from Stem Cell Biology to Clinical Applications. Stem Cell Rev Rep 2022; 18:1881-1882. [PMID: 35881324 DOI: 10.1007/s12015-022-10381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/16/2022]
|
8
|
Joosten MDW, Clabbers JMK, Jonca N, Mazereeuw-Hautier J, Gostyński AH. New developments in the molecular treatment of ichthyosis: review of the literature. Orphanet J Rare Dis 2022; 17:269. [PMID: 35840979 PMCID: PMC9287901 DOI: 10.1186/s13023-022-02430-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Ichthyosis covers a wide spectrum of diseases affecting the cornification of the skin. In recent years, new advances in understanding the pathophysiology of ichthyosis have been made. This knowledge, combined with constant development of pathogenesis-based therapies, such as protein replacement therapy and gene therapy, are rather promising for patients with inherited skin diseases. Several ongoing trials are investigating the potency of these new approaches and various studies have already been published. Furthermore, a lot of case series report that biological therapeutics are effective treatment options, mainly for Netherton syndrome and autosomal recessive congenital ichthyosis. It is expected that some of these new therapies will prove their efficacy and will be incorporated in the treatment of ichthyosis.
Collapse
Affiliation(s)
- M D W Joosten
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands
| | - J M K Clabbers
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands.,Department of Dermatology, Haga Hospital, The Hague, The Netherlands
| | - N Jonca
- Cell Biology and Cytology Laboratory, CNRS, Inserm, UPS, European Reference Network - Skin, University Hospital Center of Toulouse and Infinity, Federal Biology Institute, Toulouse University, Toulouse, France
| | - J Mazereeuw-Hautier
- Department of Dermatology, European Reference Network - Skin, University Hospital Center of Toulouse, Toulouse, France
| | - A H Gostyński
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands. .,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Bhattacharya N, Indra AK, Ganguli-Indra G. Selective Ablation of BCL11A in Epidermal Keratinocytes Alters Skin Homeostasis and Accelerates Excisional Wound Healing In Vivo. Cells 2022; 11:cells11132106. [PMID: 35805190 PMCID: PMC9265695 DOI: 10.3390/cells11132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transcriptional regulator BCL11A plays a crucial role in coordinating a suite of developmental processes including skin morphogenesis, barrier functions and lipid metabolism. There is little or no reports so far documenting the role of BCL11A in postnatal adult skin homeostasis and in the physiological process of tissue repair and regeneration. The current study establishes for the first time the In Vivo role of epidermal BCL11A in maintaining adult epidermal homeostasis and as a negative regulator of cutaneous wound healing. Conditional ablation of Bcl11a in skin epidermal keratinocytes (Bcl11aep−/−mice) enhances the keratinocyte proliferation and differentiation program, suggesting its critical role in epidermal homeostasis of adult murine skin. Further, loss of keratinocytic BCL11A promotes rapid closure of excisional wounds both in a cell autonomous manner likely via accelerating wound re-epithelialization and in a non-cell autonomous manner by enhancing angiogenesis. The epidermis specific Bcl11a knockout mouse serves as a prototype to gain mechanistic understanding of various downstream pathways converging towards the manifestation of an accelerated healing phenotype upon its deletion.
Collapse
Affiliation(s)
- Nilika Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA
- OHSU Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Department of Dermatology, OHSU, Portland, OR 97239, USA
- Correspondence: (A.K.I.); (G.G.-I.)
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
- OHSU Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Correspondence: (A.K.I.); (G.G.-I.)
| |
Collapse
|
10
|
Amjadian S, Moradi S, Mohammadi P. The emerging therapeutic targets for scar management: genetic and epigenetic landscapes. Skin Pharmacol Physiol 2022; 35:247-265. [PMID: 35696989 PMCID: PMC9533440 DOI: 10.1159/000524990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Background Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. Summary Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. Key Message Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Parvaneh Mohammadi,
| |
Collapse
|
11
|
Sustainable drug release using nanoparticle encapsulated microneedles. Chem Asian J 2022; 17:e202200333. [DOI: 10.1002/asia.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Indexed: 11/07/2022]
|
12
|
Chulpanova DS, Shaimardanova AA, Ponomarev AS, Elsheikh S, Rizvanov AA, Solovyeva VV. Current Strategies for the Gene Therapy of Autosomal Recessive Congenital Ichthyosis and Other Types of Inherited Ichthyosis. Int J Mol Sci 2022; 23:2506. [PMID: 35269649 PMCID: PMC8910354 DOI: 10.3390/ijms23052506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes such as transglutaminase-1 (TGM1), which are responsible for the formation and normal functioning of a lipid barrier, lead to the development of autosomal recessive congenital ichthyosis (ARCI). ARCIs are characterized by varying degrees of hyperkeratosis and the presence of scales on the body surface since birth. The quality of life of patients is often significantly affected, and in order to alleviate the manifestations of the disease, symptomatic therapy with moisturizers, keratolytics, retinoids and other cosmetic substances is often used to improve the condition of the patients' skin. Graft transplantation is commonly used to correct defects of the eye. However, these approaches offer symptomatic treatment that does not restore the lost protein function or provide a long-term skin barrier. Gene and cell therapies are evolving as promising therapy for ARCIs that can correct the functional activity of altered proteins. However, these approaches are still at an early stage of development. This review discusses current studies of gene and cell therapy approaches for various types of ichthyosis and their further prospects for patient treatment.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Aleksei S. Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Somaia Elsheikh
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| |
Collapse
|
13
|
Barbier MA, Piaceski AD, Larouche D, Villeneuve SH, Ghani K, Pope E, Caruso M, Germain L. Efficient Gamma-Retroviral Transduction of Primary Human Skin Cells Using the EF-c Peptide as a Transduction Enhancer. Curr Protoc 2022; 2:e353. [PMID: 35085429 DOI: 10.1002/cpz1.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient gene transfer into cultured fibroblasts and keratinocytes during retroviral transduction is a critical step toward the treatment of genodermatoses such as epidermolysis bullosa. However, achieving high transduction rates is still a difficult task, particularly for the insertion of large coding sequences for which high viral titers cannot always be obtained. Multiple polycationic molecules, such as polybrene, which has been used in several clinical trials, have the ability to boost ex vivo retroviral gene transfer. However, the use of polybrene has been associated with a reduction of the proliferation and growth potential of human keratinocytes in culture. We developed a method for the efficient retroviral transduction of primary fibroblasts and keratinocytes using EF-c, a polycationic nanofibril-forming peptide. In comparison with polybrene, we found that the retroviral transduction efficiency with EF-c was increased 2.5- to 3.2-fold for fibroblasts, but not for keratinocytes. Moreover, the use of EF-c did not affect fibroblast proliferation and keratinocyte stem cell content, whereas polybrene induced a decrease in both. This method could have a positive impact on the development of ex vivo gene correction of genodermatoses, allowing for more efficient gene transfer into primary skin cells with little to no effect on proliferation and stem cell content. © 2022 Wiley Periodicals LLC. Basic Protocol: Fibroblast and keratinocyte transduction Support Protocol: Assessment of transduction efficiency through flow cytometry analysis.
Collapse
Affiliation(s)
- Martin A Barbier
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX et Département de chirurgie, Faculté de médecine, Université Laval, Québec City, Quebec, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Angela Dakiw Piaceski
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX et Département de chirurgie, Faculté de médecine, Université Laval, Québec City, Quebec, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Danielle Larouche
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX et Département de chirurgie, Faculté de médecine, Université Laval, Québec City, Quebec, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Sarah H Villeneuve
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX et Département de chirurgie, Faculté de médecine, Université Laval, Québec City, Quebec, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Karim Ghani
- Centre de recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada.,Centre de recherche sur le cancer de l'Université Laval, Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval, Québec City, Quebec, Canada
| | - Elena Pope
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Manuel Caruso
- Centre de recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada.,Centre de recherche sur le cancer de l'Université Laval, Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval, Québec City, Quebec, Canada
| | - Lucie Germain
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX et Département de chirurgie, Faculté de médecine, Université Laval, Québec City, Quebec, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
14
|
Tortajada L, Felip C, Vicent MJ. Polymer-based Non-viral Vectors for Gene Therapy in the Skin. Polym Chem 2022. [DOI: 10.1039/d1py01485d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene therapy has emerged as a versatile technique with the potential to treat a range of human diseases; however, examples of the topical application of gene therapy as a treatment...
Collapse
|
15
|
Edelblute C, Mangiamele C, Heller R. Moderate Heat-Assisted Gene Electrotransfer as a Potential Delivery Approach for Protein Replacement Therapy through the Skin. Pharmaceutics 2021; 13:pharmaceutics13111908. [PMID: 34834323 PMCID: PMC8624362 DOI: 10.3390/pharmaceutics13111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022] Open
Abstract
Gene-based approaches for protein replacement therapies have the potential to reduce the number of administrations. Our previous work demonstrated that expression could be enhanced and/or the applied voltage reduced by preheating the tissue prior to pulse administration. In the current study, we utilized our 16-pin multi-electrode array (MEA) and incorporated nine optical fibers, connected to an infrared laser, between each set of four electrodes to heat the tissue to 43 °C. For proof of principle, a guinea pig model was used to test delivery of reporter genes. We observed that when the skin was preheated, it was possible to achieve the same expression levels as gene electrotransfer without preheating, but with a 23% reduction of applied voltage or a 50% reduction of pulse number. With respect to expression distribution, preheating allowed for delivery to the deep dermis and muscle. This suggested that this cutaneous delivery approach has the potential to achieve expression in the systemic circulation, thus this protocol was repeated using a plasmid encoding Human Factor IX. Elevated Factor IX serum protein levels were detected by ELISA up to 100 days post gene delivery. Further work will involve optimizing protein levels and scalability in an effort to reduce application frequency.
Collapse
Affiliation(s)
- Chelsea Edelblute
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, USA; (C.E.); (C.M.)
- Department of Biomedical Sciences, Graduate School, Old Dominion University, Norfolk, VA 23508, USA
| | - Cathryn Mangiamele
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, USA; (C.E.); (C.M.)
| | - Richard Heller
- Department of Medical Engineering, Colleges of Medicine and Engineering, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
16
|
Rout-Pitt N, Donnelley M, Parsons D. In vitro optimization of miniature bronchoscope lentiviral vector delivery for the small animal lung. Exp Lung Res 2021; 47:417-425. [PMID: 34632894 DOI: 10.1080/01902148.2021.1989523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Current gene therapy delivery protocols for small animal lungs typically utilize indirect dose delivery via the nasal airways, or bolus delivery directly into the trachea. Both methods can result in variable transduction throughout the lung, as well as between animals, and cannot be applied in a targeted manner. To minimize variability and improve lung coverage we previously developed and validated a method to visualize and dose gene vectors into pre-selected lobes of rat lungs using a mini-bronchoscope. Lentiviral (LV) vectors are known to be fragile and can be inactivated easily by temperature or the application of shear stresses. There are several ways that the bronchoscope could be configured to deliver the LV vector, and these could result in different amounts of functional LV vector being delivered to the lung. This study evaluated several methods of LV vector delivery through the bronchoscope, and how flow rates and LV vector stabilizing diluents impact LV vector delivery. NIH-3T3 cells were exposed to LV vector containing the green fluorescent protein (GFP) reporter gene using various bronchoscopic delivery techniques and the number of GFP-positive cells produced by each was quantified by flow cytometry. The results showed that directly drawing the LV vector into the bronchoscope tip resulted in 80-90% recovery of viable vector, and was also the simplest method of delivery. The fluid delivery rate and the use of stabilizing serum in the vector diluent had no effect on the viability of the LV vector delivered. These findings can be used to optimize LV vector dose delivery into individual lung lobes of small animal models.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| |
Collapse
|
17
|
Zeng M, Xu Q, Zhou D, A S, Alshehri F, Lara-Sáez I, Zheng Y, Li M, Wang W. Highly branched poly(β-amino ester)s for gene delivery in hereditary skin diseases. Adv Drug Deliv Rev 2021; 176:113842. [PMID: 34293384 DOI: 10.1016/j.addr.2021.113842] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Non-viral gene therapy for hereditary skin diseases is an attractive prospect. However, research efforts dedicated to this area are rare. Taking advantage of the branched structural possibilities of polymeric vectors, we have developed a gene delivery platform for the treatment of an incurable monogenic skin disease - recessive dystrophic epidermolysis bullosa (RDEB) - based on highly branched poly(β-amino ester)s (HPAEs). The screening of HPAEs and optimization of therapeutic gene constructs, together with evaluation of the combined system for gene transfection, were comprehensively reviewed. The successful restoration of type VII collagen (C7) expression both in vitro and in vivo highlights HPAEs as a promising generation of polymeric vectors for RDEB gene therapy into the clinic. Considering that the treatment of patients with genetic cutaneous disorders, such as other subtypes of epidermolysis bullosa, pachyonychia congenita, ichthyosis and Netherton syndrome, remains challenging, the success of HPAEs in RDEB treatment indicates that the development of viable polymeric gene delivery vectors could potentially expedite the translation of gene therapy for these diseases from bench to bedside.
Collapse
|
18
|
Bártolo IP, Reis RL, Marques AP, Cerqueira M. Keratinocyte Growth Factor-based Strategies for Wound Re-epithelialization. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:665-676. [PMID: 34238035 DOI: 10.1089/ten.teb.2021.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wound re-epithelialization is a dynamic process that comprises the formation of new epithelium through an active signaling network between several growth factors and various cell types. The main players are keratinocytes that migrate from the wound edges onto the wound bed, to restore the epidermal barrier. One of the most important molecules involved in the re-epithelialization process is Keratinocyte Growth Factor (KGF), since it is central on promoting both migration and proliferation of keratinocytes. Stromal cells, like dermal fibroblasts, are the main producers of this factor, acting on keratinocytes through paracrine signaling. Multiple therapeutic strategies to delivery KGF have been proposed in order to boost wound healing by targeting re-epithelialization. This has been achieved through a range of different approaches, such as topical application, using controlled release-based methods with different biomaterials (hydrogels, nanoparticles and membranes) and also through gene therapy techniques. Among these strategies, KGF delivery via biomaterials and genetic-based strategies show great effectiveness in sustained KGF levels at the wound site, leading to efficient wound closure. Under this scope, this review aims at highlighting the importance of KGF as one of the key molecules on wound re-epithelialization, as well as to provide a critical overview of the different potential therapeutic strategies exploited so far.
Collapse
Affiliation(s)
- Inês P Bártolo
- 3B's Research Group, 226382, Barco, Portugal.,Laboratorio Associado ICVS 3B's, 511313, Guimaraes, Portugal;
| | - Rui L Reis
- 3B's Research Group, 226382, Guimaraes, Portugal.,Laboratorio Associado ICVS 3B's, 511313, Braga/Guimaraes, Portugal;
| | - Alexandra P Marques
- 3B's Research Group, 226382, Guimaraes, Portugal.,Laboratorio Associado ICVS 3B's, 511313, Braga/Guimaraes, Portugal;
| | - Mariana Cerqueira
- 3B's Research Group, 226382, Guimaraes, Portugal.,Laboratorio Associado ICVS 3B's, 511313, Braga/Guimaraes, Portugal;
| |
Collapse
|
19
|
Shams F, Rahimpour A, Vahidnezhad H, Hosseinzadeh S, Moravvej H, Kazemi B, Rajabibazl M, Abdollahimajd F, Uitto J. The utility of dermal fibroblasts in treatment of skin disorders: A paradigm of recessive dystrophic epidermolysis bullosa. Dermatol Ther 2021; 34:e15028. [PMID: 34145697 DOI: 10.1111/dth.15028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/05/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023]
Abstract
Dermal fibroblasts are the most accessible cells in the skin that have gained significant attention in cell therapy. Applying dermal fibroblasts' regenerative capacity can introduce new patterns to develop cell-based therapies to treat skin disorders. Dermal fibroblasts originate from mesenchymal cells and are located within the dermis. These cells are mainly responsible for synthesizing glycosaminoglycans, collagens, and components of extracellular matrix supporting skin's structural integrity. Preclinical studies suggested that allogeneic and autologous dermal fibroblasts provide widespread and beneficial applications for wound healing, burn ulcers, and inherited skin disorders. In this regard, generating induced pluripotent stem cells (iPSCs) from fibroblasts and gene-edited fibroblasts are promising approaches for treating skin disorders. Here, we aimed to review literature about ongoing and completed clinical trials that applied fibroblasts and bioengineered fibroblasts as therapeutic agents for various skin disorders. This review explores cell therapy protocols from the earliest phase of allogeneic and autologous fibroblasts development in different benches to translating them into bedside-level treatment for skin disorders, particularly recessive dystrophic epidermolysis bullosa.
Collapse
Affiliation(s)
- Forough Shams
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simzar Hosseinzadeh
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Abdollahimajd
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Research Development Unit, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Baldo F, Brena M, Carbogno S, Minoia F, Lanni S, Guez S, Petaccia A, Agostoni C, Cimaz R, Filocamo G. Juvenile idiopathic arthritis in Harlequin ichthyosis, a rare combination or the clinical spectrum of the disease? Report of a child treated with etanercept and review of the literature. Pediatr Rheumatol Online J 2021; 19:80. [PMID: 34082764 PMCID: PMC8173856 DOI: 10.1186/s12969-021-00571-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Harlequin ichthyosis (HI) is the most severe phenotype of autosomal recessive congenital ichthyosis. Juvenile Idiopathic Arthritis (JIA) represents a heterogenous group of disorders all sharing the clinical manifestation of chronic arthritis. Association of HI and chronic arthritis has been reported in few cases. CASE PRESENTATION We report the case of a child with HI who developed a severe form of chronic polyarthritis during the first years of life, treated with repeated multiple joint injections, methotrexate and etanercept with good response and without any adverse events. CONCLUSION The reported case and the literature review highlighted the presence of a peculiar severe seronegative polyarthritis with early onset in a series of patients with HI, suggesting that polyarthritis may be a specific manifestation of HI, rather than a rare combination of two separate conditions.
Collapse
Affiliation(s)
- Francesco Baldo
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822University of Milan, Milan, Italy
| | - Michela Brena
- grid.414818.00000 0004 1757 8749Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Carbogno
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822University of Milan, Milan, Italy
| | - Francesca Minoia
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy
| | - Stefani Lanni
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy
| | - Sophie Guez
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy
| | - Antonella Petaccia
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy
| | - Carlo Agostoni
- grid.414818.00000 0004 1757 8749Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822University of Milan, Milan, Italy
| | - Rolando Cimaz
- ASST G.Pini-CTO, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, and RECAP-RD, University of Milan, Milan, Italy
| | - Giovanni Filocamo
- Pediatric Rheumatology, Pediatric Medium Intensity Care Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, 20122, Milan, Italy.
| |
Collapse
|
21
|
Ryumina II, Goryunov KV, Silachev DN, Shevtsova YA, Babenko VA, Marycheva NM, Kotalevskaya YY, Zubkov VV, Zubkov GT. Pathogenetic Therapy of Epidermolysis Bullosa: Current State and Prospects. Bull Exp Biol Med 2021; 171:109-121. [PMID: 34050833 DOI: 10.1007/s10517-021-05182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/27/2022]
Abstract
Epidermolysis bullosa is a severe hereditary disease caused by mutations in genes encoding cutaneous basement membrane proteins. These mutations lead to dermal-epidermal junction failure and, as a result, to disturbances in the morphological integrity of the skin. Clinically, it manifests in the formation of blisters on the skin or mucosa that in some cases can turn into non-healing chronic wounds, which not only impairs patient's quality of life, but also is a live-threatening condition. Now, the main approaches in the treatment of epidermolysis bullosa are symptomatic therapy and palliative care, though they are little effective and are aimed at reducing the pain, but not to complete recovery. In light of this, the development of new treatment approaches aimed at correction of genetic defects is in progress. Various methods based on genetic engineering technologies, transplantation of autologous skin cells, progenitor skin cells, as well as hematopoietic and mesenchymal stem cells are studied. This review analyzes the pathogenetic methods developed for epidermolysis bullosa treatment based on the latest achievements of molecular genetics and cellular technologies, and discusses the prospects for the use of these technologies for the therapy of epidermolysis bullosa.
Collapse
Affiliation(s)
- I I Ryumina
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - K V Goryunov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - D N Silachev
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia.
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.
| | - Yu A Shevtsova
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - V A Babenko
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - N M Marycheva
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Yu Yu Kotalevskaya
- M. F. Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - V V Zubkov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - G T Zubkov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
22
|
Policarpi C, Dabin J, Hackett JA. Epigenetic editing: Dissecting chromatin function in context. Bioessays 2021; 43:e2000316. [PMID: 33724509 DOI: 10.1002/bies.202000316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
How epigenetic mechanisms regulate genome output and response to stimuli is a fundamental question in development and disease. Past decades have made tremendous progress in deciphering the regulatory relationships involved by correlating aggregated (epi)genomics profiles with global perturbations. However, the recent development of epigenetic editing technologies now enables researchers to move beyond inferred conclusions, towards explicit causal reasoning, through 'programing' precise chromatin perturbations in single cells. Here, we first discuss the major unresolved questions in the epigenetics field that can be addressed by programable epigenome editing, including the context-dependent function and memory of chromatin states. We then describe the epigenetic editing toolkit focusing on CRISPR-based technologies, and highlight its achievements, drawbacks and promise. Finally, we consider the potential future application of epigenetic editing to the study and treatment of specific disease conditions.
Collapse
Affiliation(s)
- Cristina Policarpi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Juliette Dabin
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| |
Collapse
|
23
|
Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, Peng K, Raj Singh Thakur R, Donnelly RF. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm 2021; 159:44-76. [DOI: 10.1016/j.ejpb.2020.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
|
24
|
Advanced Medical Therapies in the Management of Non-Scarring Alopecia: Areata and Androgenic Alopecia. Int J Mol Sci 2020; 21:ijms21218390. [PMID: 33182308 PMCID: PMC7664905 DOI: 10.3390/ijms21218390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Alopecia is a challenging condition for both physicians and patients. Several topical, intralesional, oral, and surgical treatments have been developed in recent decades, but some of those therapies only provide partial improvement. Advanced medical therapies are medical products based on genes, cells, and/or tissue engineering products that have properties in regenerating, repairing, or replacing human tissue. In recent years, numerous applications have been described for advanced medical therapies. With this background, those therapies may have a role in the treatment of various types of alopecia such as alopecia areata and androgenic alopecia. The aim of this review is to provide dermatologists an overview of the different advanced medical therapies that have been applied in the treatment of alopecia, by reviewing clinical and basic research studies as well as ongoing clinical trials.
Collapse
|
25
|
Abstract
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research. We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.
Collapse
Affiliation(s)
- Catherine Baker
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew S Hayden
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Section of Dermatology, Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, 03766, USA
| |
Collapse
|
26
|
Valentin F, Wiegmann H, Tarinski T, Nikolenko H, Traupe H, Liebau E, Dathe M, Oji V. Development of a pathogenesis-based therapy for peeling skin syndrome type 1. Br J Dermatol 2020; 184:1123-1131. [PMID: 32926582 DOI: 10.1111/bjd.19546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Peeling skin syndrome type 1 (PSS1) is a rare and severe autosomal recessive form of congenital ichthyosis. Patients are affected by pronounced erythroderma accompanied by pruritus and superficial generalized peeling of the skin. The disease is caused by nonsense mutations or complete deletion of the CDSN gene encoding for corneodesmosin (CDSN). PSS1 severely impairs quality of life and therapeutic approaches are totally unsatisfactory. OBJECTIVES The objective of this study was to develop the first steps towards a specific protein replacement therapy for CDSN deficiency. Using this approach, we aimed to restore the lack of CDSN and improve cell-cell cohesion in the transition area of the stratum granulosum (SG) to the stratum corneum. METHODS Human CDSN was recombinantly expressed in Escherichia coli. A liposome-based carrier system, prepared with a cationic lipopeptide to mediate the transport to the outer membrane of keratinocytes, was developed. This formulation was chosen for CDSN delivery into the skin. The liposomal carrier system was characterized with respect to size, stability and toxicity. Furthermore, the interaction with primary keratinocytes and human epidermal equivalents was investigated. RESULTS The liposomes showed an accumulation at the membranes of keratinocytes. CDSN-deficient epidermal equivalents that were treated with liposomal encapsulated CDSN demonstrated presence of CDSN in the SG. Finally, the penetration assay and histological examinations revealed an improved epidermal integrity for CDSN-deficient epidermal equivalents, if they were treated with liposomal encapsulated CDSN. CONCLUSIONS This study presents the first preclinical in vitro experiments for a future specific protein replacement therapy for patients affected by PSS1.
Collapse
Affiliation(s)
- F Valentin
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany.,Institute for Transfusion Medicine and Cell Therapy, University Hospital Münster, Münster, 48149, Germany
| | - H Wiegmann
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany
| | - T Tarinski
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany
| | - H Nikolenko
- Leibniz Research Institute of Molecular Pharmacology (FMP), Berlin, 13125, Germany
| | - H Traupe
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany
| | - E Liebau
- Institute of Animal Physiology, Department of Molecular Physiology, University of Münster, Münster, 48143, Germany
| | - M Dathe
- Leibniz Research Institute of Molecular Pharmacology (FMP), Berlin, 13125, Germany
| | - V Oji
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany
| |
Collapse
|
27
|
Baker C, Hayden MS. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease. F1000Res 2020; 9:281. [PMID: 32528662 DOI: 10.12688/f1000research.23185.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research. We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.
Collapse
Affiliation(s)
- Catherine Baker
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew S Hayden
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Section of Dermatology, Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, 03766, USA
| |
Collapse
|
28
|
Koller U. [Ex vivo stem cell gene therapy of the skin : Ready for clinical use?]. Hautarzt 2020; 71:85-90. [PMID: 31965203 DOI: 10.1007/s00105-019-04529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Use of ex vivo stem cell gene therapy enables the correction of the genetic cause of a monogenetic skin disease. OBJECTIVES The procedure and choice of gene therapy method in the course of ex vivo gene therapy of the skin are presented. MATERIALS AND METHODS Current gene therapeutic applications focus on the addition or targeted correction of the respective gene within the genome. RESULTS So far, gene replacement therapy has been successfully used in patients suffering from the blistering skin disease epidermolysis bullosa. Designer nuclease-based gene therapy approaches are at the preclinical stage. CONCLUSIONS The selection of the gene therapy method depends on its safety profile, the target genodermatoses and the genetic mutation to correct.
Collapse
Affiliation(s)
- Ulrich Koller
- Universitätsklinik für Dermatologie und Allergologie, EB-Haus Austria, Universitätsklinikum der Paracelsus Medizinischen Privatuniversität Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Österreich.
| |
Collapse
|
29
|
Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:344-365. [PMID: 29981800 DOI: 10.1016/j.addr.2018.06.019] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Cutaneous wound healing in adult mammals is a complex multi-step process involving overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodelling. Re-epithelialization describes the resurfacing of a wound with new epithelium. The cellular and molecular processes involved in the initiation, maintenance, and completion of epithelialization are essential for successful wound closure. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here, we focus on cellular mechanisms underlying keratinocyte migration and proliferation during epidermal closure. Inability to re-epithelialize is a clear indicator of chronic non-healing wounds, which fail to proceed through the normal phases of wound healing in an orderly and timely manner. This review summarizes the current knowledge regarding the management and treatment of acute and chronic wounds, with a focus on re-epithelialization, offering some insights into novel future therapies.
Collapse
|
30
|
Grant R, Hay D, Callanan A. From scaffold to structure: the synthetic production of cell derived extracellular matrix for liver tissue engineering. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aacbe1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Czarnowicki T, He H, Leonard A, Malik K, Magidi S, Rangel S, Patel K, Ramsey K, Murphrey M, Song T, Estrada Y, Wen HC, Krueger JG, Guttman-Yassky E, Paller AS. The Major Orphan Forms of Ichthyosis Are Characterized by Systemic T-Cell Activation and Th-17/Tc-17/Th-22/Tc-22 Polarization in Blood. J Invest Dermatol 2018; 138:2157-2167. [DOI: 10.1016/j.jid.2018.03.1523] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
|
32
|
Nyström A, Bruckner-Tuderman L. Gene Therapy for Epidermolysis Bullosa: Sticky Business. Mol Ther 2018; 24:2035-2036. [PMID: 27966558 DOI: 10.1038/mt.2016.199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
33
|
Lee S, Won M, Hwang RH, Hur GM, Ro H. An Ecdysone Receptor-based Singular Gene Switch for Deliberate Expression of Transgene with Robustness, Reversibility, and Negligible Leakiness. J Vis Exp 2018. [PMID: 29781995 DOI: 10.3791/57494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Precise control of transgene expression is desirable in biological and clinical studies. However, because the binary feature of currently employed gene switches requires the transfer of two therapeutic expression units concurrently into a single cell, the practical application of the system for gene therapy is limited. To simplify the transgene expression system, we generated a gene switch designated as pEUI(+) encompassing a complete set of transgene expression modules in a single vector. Comprising of the GAL4 DNA-binding domain and modified EcR (GvEcR), a minimal VP16 activation domain fused with a GAL4 DNA-binding domain, as well as a modified Drosophila ecdysone receptor (EcR), the newly developed singular gene switch is highly responsive to the administration of a chemical inducer in a time- and dosage-dependent manner. The pEUI(+) vector is a potentially powerful tool for improving the control of transgene expression in both biological research and pre-clinical studies. Here, we present a detailed protocol for modulation of a transient and stable transgene expression using pEUI(+) vector by the treatment of tebufenozide (Teb). Additionally, we share important guidelines for the use of Teb as a chemical inducer.
Collapse
Affiliation(s)
- Seoghyun Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University
| | - Minho Won
- Department of Pharmacology, College of Medicine, Chungnam National University
| | | | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University;
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University;
| |
Collapse
|
34
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
35
|
Peking P, Koller U, Murauer EM. Functional therapies for cutaneous wound repair in epidermolysis bullosa. Adv Drug Deliv Rev 2018; 129:330-343. [PMID: 29248480 DOI: 10.1016/j.addr.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/07/2017] [Accepted: 12/09/2017] [Indexed: 12/20/2022]
Abstract
Chronic wounding as a result of recurrent skin blistering in the painful genetic skin disease epidermolysis bullosa, may lead to life-threatening infections, increased risk of tumor formation, and other serious medical complications. Therefore, epidermolysis bullosa patients have an urgent need for optimal wound care and tissue regeneration. Therapeutic strategies using gene-, protein-, and cell-therapies are being developed to improve clinical symptoms, and some of them have already been investigated in early clinical trials. The most favorable options of functional therapies include gene replacement, gene editing, RNA targeting, and harnessing natural gene therapy. This review describes the current progress of the different approaches targeting autologous skin cells, and will discuss the benefits and challenges of their application.
Collapse
|
36
|
Chen X. Current and future technological advances in transdermal gene delivery. Adv Drug Deliv Rev 2018; 127:85-105. [PMID: 29273516 DOI: 10.1016/j.addr.2017.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/04/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022]
Abstract
Transdermal gene delivery holds significant advantages as it is able to minimize the problems of systemic administration such as enzymatic degradation, systemic toxicity, and poor delivery to target tissues. This technology has the potential to transform the treatment and prevention of a range of diseases. However, the skin poses a great barrier for gene delivery because of the "bricks-and-mortar" structure of the stratum corneum and the tight junctions between keratinocytes in the epidermis. This review systematically summarizes the typical physical and chemical approaches to overcome these barriers and facilitate gene delivery via skin for applications in vaccination, wound healing, skin cancers and skin diseases. Next, the advantages and disadvantages of different approaches are discussed and the insights for future development are provided.
Collapse
|
37
|
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [PMID: 28782570 PMCID: PMC5742034 DOI: 10.1016/j.addr.2017.08.001] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Keyvan Sahandi Zangabad
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Ghamarypour
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
38
|
Dixit S, Baganizi DR, Sahu R, Dosunmu E, Chaudhari A, Vig K, Pillai SR, Singh SR, Dennis VA. Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 2017; 11:49. [PMID: 29255480 PMCID: PMC5729423 DOI: 10.1186/s13036-017-0089-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/17/2017] [Indexed: 12/29/2022] Open
Abstract
The repair or replacement of damaged skins is still an important, challenging public health problem. Immune acceptance and long-term survival of skin grafts represent the major problem to overcome in grafting given that in most situations autografts cannot be used. The emergence of artificial skin substitutes provides alternative treatment with the capacity to reduce the dependency on the increasing demand of cadaver skin grafts. Over the years, considerable research efforts have focused on strategies for skin repair or permanent skin graft transplantations. Available skin substitutes include pre- or post-transplantation treatments of donor cells, stem cell-based therapies, and skin equivalents composed of bio-engineered acellular or cellular skin substitutes. However, skin substitutes are still prone to immunological rejection, and as such, there is currently no skin substitute available to overcome this phenomenon. This review focuses on the mechanisms of skin rejection and tolerance induction and outlines in detail current available strategies and alternatives that may allow achieving full-thickness skin replacement and repair.
Collapse
Affiliation(s)
- Saurabh Dixit
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA.,Immunity, Inflammation, and Disease Laboratory, NIH/NIEHS, Durham, 27709 NC USA
| | - Dieudonné R Baganizi
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Rajnish Sahu
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Ejowke Dosunmu
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Atul Chaudhari
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Komal Vig
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Shreekumar R Pillai
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Shree R Singh
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Vida A Dennis
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| |
Collapse
|
39
|
Lee S, Sohn KC, Choi DK, Won M, Park KA, Ju SK, Kang K, Bae YK, Hur GM, Ro H. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e367. [PMID: 27673563 PMCID: PMC5056996 DOI: 10.1038/mtna.2016.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022]
Abstract
Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion.
Collapse
Affiliation(s)
- Seoghyun Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dae-Kyoung Choi
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Minho Won
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung-Kyu Ju
- Affiliated Research (and Development) Institute, Daejeon, Republic of Korea
| | - Kidong Kang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Ki Bae
- Comparative Biomedical Research Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
40
|
Soares HR, Castro R, Tomás HA, Rodrigues AF, Gomes-Alves P, Bellier B, Klatzmann D, Carrondo MJT, Alves PM, Coroadinha AS. Tetraspanins displayed in retrovirus-derived virus-like particles and their immunogenicity. Vaccine 2016; 34:1634-1641. [PMID: 26795367 DOI: 10.1016/j.vaccine.2015.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Virus-like particles (VLPs) are a particular subset of subunit vaccines which are currently explored as safer alternatives to live attenuated or inactivated vaccines. VLPs derived from retrovirus (retroVLPs) are commonly used as scaffolds for vaccine candidates due to their ability to incorporate heterologous envelope proteins. Pseudotyping retroVLPs is however not a selective process therefore, host cellular proteins such as tetraspanins are also included in the membrane. The contribution of these host-proteins to retrovirus immunogenicity remains unclear. In this work, human cells silenced and not silenced for tetraspanin CD81 were used to produce CD81(-) or CD81(+) retroVLPs. We first analyzed mice immune response against human CD81. Despite effective silencing of CD81 in retroVLP producing cells, both humoral and cellular immune responses showed persistent anti-CD81 immunogenicity, suggesting cross reactivity to related antigens. We thus compared the incorporation of related tetraspanins in retroVLPs and showed that decreased CD81 incorporation in CD81(-) retro-VLPs is compensated by an increased incorporation of CD9 and CD63 tetraspanins. These results highlight the dynamic nature of host-derived proteins incorporation in retroVLPs membrane, which should be considered when retrovirus-based biopharmaceuticals are produced in xenogeneic cells.
Collapse
Affiliation(s)
- H R Soares
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - R Castro
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - H A Tomás
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - A F Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - P Gomes-Alves
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - B Bellier
- Sorbonne Universités, UPMC Univ Paris 06, UMRS_959, I3, F-75013 Paris, France; INSERM, UMR_S 959, I3, F-75013 Paris, France
| | - D Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, UMRS_959, I3, F-75013 Paris, France; INSERM, UMR_S 959, I3, F-75013 Paris, France
| | - M J T Carrondo
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Faculdade de Ciências e Tecnologia/Universidade Nova de Lisboa, P-2825 Monte da Caparica, Portugal
| | - P M Alves
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - A S Coroadinha
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
41
|
Has C, Kiritsi D. Therapies for inherited skin fragility disorders. Exp Dermatol 2015; 24:325-31. [DOI: 10.1111/exd.12666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Has
- Department of Dermatology; Medical Center - University of Freiburg; Freiburg Germany
| | - Dimitra Kiritsi
- Department of Dermatology; Medical Center - University of Freiburg; Freiburg Germany
| |
Collapse
|
42
|
Wenzel D, Bayerl J, Nystrom A, Bruckner-Tuderman L, Meixner A, Penninger JM. Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci Transl Med 2014; 6:264ra165. [DOI: 10.1126/scitranslmed.3010083] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|