1
|
Zhang A, Meecham-Garcia G, Nguyen Hong C, Xie P, Kern CC, Zhang B, Chapman H, Gems D. Characterization of Effects of mTOR Inhibitors on Aging in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2024; 79:glae196. [PMID: 39150882 PMCID: PMC11374883 DOI: 10.1093/gerona/glae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 08/18/2024] Open
Abstract
Pharmacological inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway with rapamycin can extend lifespan in several organisms. Although this includes the nematode Caenorhabditis elegans, effects in this species are relatively weak and sometimes difficult to reproduce. Here we test effects of drug dosage and timing of delivery to establish the upper limits of its capacity to extend life, and investigate drug effects on age-related pathology and causes of mortality. Liposome-mediated rapamycin treatment throughout adulthood showed a dose-dependent effect, causing a maximal 21.9% increase in mean lifespan, but shortening of lifespan at the highest dose, suggesting drug toxicity. Rapamycin treatment of larvae delayed development, weakly reduced fertility and modestly extended lifespan. By contrast, treatment initiated later in life robustly increased lifespan, even from Day 16 (or ~70 years in human terms). The rapalog temsirolimus extended lifespan similarly to rapamycin, but effects of everolimus were weaker. As in mouse, rapamycin had mixed effects on age-related pathologies, inhibiting one (uterine tumor growth) but not several others, suggesting a segmental antigeroid effect. These findings should usefully inform future experimental studies with rapamycin and rapalogs in C. elegans.
Collapse
Affiliation(s)
- Aihan Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Gadea Meecham-Garcia
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Chiminh Nguyen Hong
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Peiyun Xie
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Hannah Chapman
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
2
|
Coppedè F. Mutations Involved in Premature-Ageing Syndromes. APPLICATION OF CLINICAL GENETICS 2021; 14:279-295. [PMID: 34103969 PMCID: PMC8180271 DOI: 10.2147/tacg.s273525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Premature-ageing syndromes are a heterogeneous group of rare genetic disorders resembling features of accelerated ageing and resulting from mutations in genes coding for proteins required for nuclear lamina architecture, DNA repair and maintenance of genome stability, mitochondrial function and other cellular processes. Hutchinson–Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the best-characterized progeroid syndromes referred to as childhood- and adulthood-progeria, respectively. This article provides an updated overview of the mutations leading to HGPS, WS, and to the spectrum of premature-ageing laminopathies ranging in severity from congenital restrictive dermopathy (RD) to adult-onset atypical WS, including RD-like laminopathies, typical and atypical HGPS, more and less severe forms of mandibuloacral dysplasia (MAD), Néstor-Guillermo progeria syndrome (NGPS), atypical WS, and atypical progeroid syndromes resembling features of HGPS and/or MAD but resulting from impaired DNA repair or mitochondrial functions, including mandibular hypoplasia, deafness, progeroid features, and lipodystrophy (MDPL) syndrome and mandibuloacral dysplasia associated to MTX2 (MADaM). The overlapping signs and symptoms among different premature-ageing syndromes, resulting from both a large genetic heterogeneity and shared pathological pathways underlying these conditions, require an expert clinical evaluation in specialized centers paralleled by next-generation sequencing of panels of genes involved in these disorders in order to establish as early as possible an accurate clinical and molecular diagnosis for a proper patient management.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Lin AE, Brunetti-Pierri N, Callewaert B, Cormier-Daire V, Douzgou S, Kinane TB, Lindsay ME, Starr LJ. Lack of resemblance between Myhre syndrome and other "segmental progeroid" syndromes warrants restraint in applying this classification. GeroScience 2021; 43:459-461. [PMID: 33630210 PMCID: PMC8110621 DOI: 10.1007/s11357-021-00337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Angela E Lin
- Medical Genetics, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA.
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Valérie Cormier-Daire
- Clinical Genetics, Paris Centre University, INSERM UMR 1163, Imagine Institute, Hôpital Necker enfants, Malades, Paris, France
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, England.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - T Bernard Kinane
- Pediatric Pulmonary, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Mark E Lindsay
- Cardiovascular Genetics Program, Division of Cardiology and Pediatric Cardiology, Departments of Medicine and Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Lois J Starr
- Medical Genetics, Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
4
|
Kato H, Maezawa Y, Takayama N, Ouchi Y, Kaneko H, Kinoshita D, Takada-Watanabe A, Oshima M, Koshizaka M, Ogata H, Kubota Y, Mitsukawa N, Eto K, Iwama A, Yokote K. Fibroblasts from different body parts exhibit distinct phenotypes in adult progeria Werner syndrome. Aging (Albany NY) 2021; 13:4946-4961. [PMID: 33627520 PMCID: PMC7950285 DOI: 10.18632/aging.202696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
Werner syndrome (WS), also known as adult progeria, is characterized by accelerated aging symptoms from a young age. Patients with WS experience painful intractable skin ulcers with calcifications in their extremities, subcutaneous lipoatrophy, and sarcopenia. However, there is no significant abnormality in the trunk skin, where the subcutaneous fat relatively accumulates. The cause of such differences between the limbs and trunk is unknown. To investigate the underlying mechanism behind these phenomena, we established and analyzed dermal fibroblasts from the foot and trunk of two WS patients. As a result, WS foot-derived fibroblasts showed decreased proliferative potential compared to that from the trunk, which correlated with the telomere shortening. Transcriptome analysis showed increased expression of genes involved in osteogenesis in the foot fibroblasts, while adipogenic and chondrogenic genes were downregulated in comparison with the trunk. Consistent with these findings, the adipogenic and chondrogenic differentiation capacity was significantly decreased in the foot fibroblasts in vitro. On the other hand, the osteogenic potential was mutually maintained and comparable in the foot and trunk fibroblasts. These distinct phenotypes in the foot and trunk fibroblasts are consistent with the clinical symptoms of WS and may partially explain the underlying mechanism of this disease phenotype.
Collapse
Affiliation(s)
- Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chuo-Ku, Chiba 260-8670, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chuo-Ku, Chiba 260-8670, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chuo-Ku, Chiba 260-8670, Japan
| | - Daisuke Kinoshita
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan.,Department of Diabetes and Metabolism, Asahi General Hospital, Asahi-Shi, Chiba 289-2511, Japan
| | - Aki Takada-Watanabe
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chuo-Ku, Chiba 260-8670, Japan
| | - Hideyuki Ogata
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan
| | - Yoshitaka Kubota
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan.,Department of Clinical Application, Center for IPS Cell Research and Application (CiRA), Kyoto University, Shogoin, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chuo-Ku, Chiba 260-8670, Japan
| |
Collapse
|
5
|
Martin GM, Hisama FM, Oshima J. Review of How Genetic Research on Segmental Progeroid Syndromes Has Documented Genomic Instability as a Hallmark of Aging But Let Us Now Pursue Antigeroid Syndromes! J Gerontol A Biol Sci Med Sci 2021; 76:253-259. [PMID: 33295962 PMCID: PMC7812512 DOI: 10.1093/gerona/glaa273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/25/2022] Open
Abstract
The purpose of this early contribution to the new Fellows Forum of this pioneering journal for what is now called Geroscience is to provide an example of how the author's interest in using the emerging tools of human genetics has led to strong support for one of the hallmarks of aging-Genomic Instability. We shall also briefly review our emerging interests in the genetic analysis of what we have called Antigeroid Syndromes. While there has been significant progress in that direction via genetic studies of centenarians, the search for genetic pathways that make individuals unusually resistant or resilient to the ravages of specific geriatric disorders has been comparatively neglected. We refer to these disorders as Unimodal Antigeroid Syndromes. It is our hope that our young colleagues will consider research efforts in that direction.
Collapse
Affiliation(s)
- George M Martin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| |
Collapse
|
6
|
Kandhaya-Pillai R, Hou D, Zhang J, Yang X, Compoginis G, Mori T, Tchkonia T, Martin GM, Hisama FM, Kirkland JL, Oshima J. SMAD4 mutations and cross-talk between TGF-β/IFNγ signaling accelerate rates of DNA damage and cellular senescence, resulting in a segmental progeroid syndrome-the Myhre syndrome. GeroScience 2021; 43:1481-1496. [PMID: 33428109 DOI: 10.1007/s11357-020-00318-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
SMAD4 encodes a member of the SMAD family of proteins involved in the TGF-β signaling pathway. Potentially heritable, autosomal dominant, gain-of-function heterozygous variants of SMAD4 cause a rare developmental disorder, the Myhre syndrome, which is associated with a wide range of developmental and post-developmental phenotypes that we now characterize as a novel segmental progeroid syndrome. Whole-exome sequencing of a patient referred to our International Registry of Werner Syndrome revealed a heterozygous p.Arg496Cys variant of the SMAD4 gene. To investigate the role of SMAD4 mutations in accelerated senescence, we generated cellular models overexpressing either wild-type SMAD4 or mutant SMAD4-R496C in normal skin fibroblasts. We found that cells expressing the SMAD4-R496C mutant exhibited decreased proliferation and elevated expression of cellular senescence and inflammatory markers, including IL-6, IFNγ, and a TGF-β target gene, PAI-1. Here we show that transient exposure to TGF-β, an inflammatory cytokine, followed by chronic IFNγ stimulation, accelerated rates of senescence that were associated with increased DNA damage foci and SMAD4 expression. TGF-β, IFNγ, or combinations of both were not sufficient to reduce proliferation rates of fibroblasts. In contrast, TGF-β alone was able to induce preadipocyte senescence via induction of the mTOR protein. The mTOR inhibitor rapamycin mitigated TGF-β-induced expression of p21, p16, and DNA damage foci and improved replicative potential of preadipocytes, supporting the cell-specific response to this cytokine. These findings collectively suggest that persistent DNA damage and cross-talk between TGF-β/IFNγ pathways contribute to a series of molecular events leading to cellular senescence and a segmental progeroid syndrome.
Collapse
Affiliation(s)
- Renuka Kandhaya-Pillai
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Deyin Hou
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Jiaming Zhang
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Xiaomeng Yang
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Goli Compoginis
- Department of Dermatology, University of Southern California, Los Angeles, CA, USA
| | - Takayasu Mori
- Department of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - George M Martin
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Box 357470, HSB, Seattle, WA, K-543, USA.
| |
Collapse
|
7
|
Abstract
DNA damage response (DDR) and DNA repair pathways determine neoplastic cell transformation and therapeutic responses, as well as the aging process. Altered DDR functioning results in accumulation of unrepaired DNA damage, increased frequency of tumorigenic mutations, and premature aging. Recent evidence suggests that polypeptide hormones play a role in modulating DDR and DNA damage repair, while DNA damage accumulation may also affect hormonal status. We review the available reports elucidating involvement of insulin-like growth factor 1 (IGF1), growth hormone (GH), α-melanocyte stimulating hormone (αMSH), and gonadotropin-releasing hormone (GnRH)/gonadotropins in DDR and DNA repair as well as the current understanding of pathways enabling these actions. We discuss effects of DNA damage pathway mutations, including Fanconi anemia, on endocrine function and consider mechanisms underlying these phenotypes. (Endocrine Reviews 41: 1 - 19, 2020).
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
8
|
Yousefzadeh MJ, Zhao J, Bukata C, Wade EA, McGowan SJ, Angelini LA, Bank MP, Gurkar AU, McGuckian CA, Calubag MF, Kato JI, Burd CE, Robbins PD, Niedernhofer LJ. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 2020; 19:e13094. [PMID: 31981461 PMCID: PMC7059165 DOI: 10.1111/acel.13094] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/11/2019] [Accepted: 12/07/2019] [Indexed: 12/27/2022] Open
Abstract
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence‐associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1‐XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15‐fold in peripheral lymphocytes from 4‐ to 5‐month‐old Ercc1−/∆ and 2.5‐year‐old wild‐type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4‐ to 5‐month‐old Ercc1−/∆ mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence‐associated β–galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1−/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1−/∆ and aged WT mice support the conclusion that the DNA repair‐deficient mice accurately model the age‐related accumulation of senescent cells, albeit six‐times faster.
Collapse
Affiliation(s)
- Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Jing Zhao
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Christina Bukata
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic University Jupiter FL USA
| | - Erin A. Wade
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic University Jupiter FL USA
| | - Sara J. McGowan
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Luise A. Angelini
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Michael P. Bank
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Charles E. Schmidt College of Medicine Florida Atlantic University Boca Raton FL USA
| | - Aditi U. Gurkar
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Department of Medicine University of Pittsburgh Pittsburgh PA USA
| | - Collin A. McGuckian
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Mariah F. Calubag
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic University Jupiter FL USA
| | - Jonathan I. Kato
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic University Jupiter FL USA
| | - Christin E. Burd
- Departments of Molecular Genetics and Cancer Biology and Genetics The Ohio State University Columbus OH USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism University of Minnesota Minneapolis MN USA
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota Minneapolis MN USA
- Department of Molecular Medicine Scripps Research Institute Jupiter FL USA
| |
Collapse
|
9
|
Maezawa Y, Kato H, Takemoto M, Watanabe A, Koshizaka M, Ishikawa T, Sargolzaeiaval F, Kuzuya M, Wakabayashi H, Kusaka T, Yokote K, Oshima J. Biallelic WRN Mutations in Newly Identified Japanese Werner Syndrome Patients. Mol Syndromol 2018; 9:214-218. [PMID: 30140198 DOI: 10.1159/000489055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 12/26/2022] Open
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by systemic accelerated aging. It is caused by pathogenic variants of the WRN gene that encodes a nuclear helicase. In this report, we describe 4 newly identified WS cases among those referred to the Japanese Werner Consortium, Chiba University, Japan. All 4 cases were compound heterozygotes of the Japanese founder mutation, c.3139-1G>C, and a novel null pathogenic variant, c.1587G>A, c.2448+1G>A, or c.3233+1G>T, or an amino acid substitution variant, c.1720G>A, p.Gly574Arg. These 3 null pathogenic variants were not previously described. The p. Gly574Arg was previously reported in a European patient, and the identification of the second p. Gly574Arg case, with classical WS features, further confirmed the pathogenic nature of this variant. For the case with c.3233+1G>T, we determined the phase of 2 disease-causing mutations and demonstrated that they are on different chromosomes. This assay would be particularly important for those cases with ambiguous clinical diagnosis.
Collapse
Affiliation(s)
- Yoshiro Maezawa
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba
| | - Hisaya Kato
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba.,Department of Medicine, International University of Health and Welfare, Narita
| | - Aki Watanabe
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba
| | - Masaya Koshizaka
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba
| | - Takahiro Ishikawa
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba
| | | | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya
| | | | - Takashi Kusaka
- Department of Pediatrics, Kagawa University, Kagawa, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba
| | - Junko Oshima
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba.,Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Affiliation(s)
- Fuki Marie Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle
| |
Collapse
|
11
|
Maierhofer A, Flunkert J, Oshima J, Martin GM, Haaf T, Horvath S. Accelerated epigenetic aging in Werner syndrome. Aging (Albany NY) 2018; 9:1143-1152. [PMID: 28377537 PMCID: PMC5425119 DOI: 10.18632/aging.101217] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/23/2017] [Indexed: 11/25/2022]
Abstract
Individuals suffering from Werner syndrome (WS) exhibit many clinical signs of accelerated aging. While the underlying constitutional mutation leads to accelerated rates of DNA damage, it is not yet known whether WS is also associated with an increased epigenetic age according to a DNA methylation based biomarker of aging (the "Epigenetic Clock"). Using whole blood methylation data from 18 WS cases and 18 age matched controls, we find that WS is associated with increased extrinsic epigenetic age acceleration (p=0.0072) and intrinsic epigenetic age acceleration (p=0.04), the latter of which is independent of age-related changes in the composition of peripheral blood cells. A multivariate model analysis reveals that WS is associated with an increase in DNA methylation age (on average 6.4 years, p=0.011) even after adjusting for chronological age, gender, and blood cell counts. Further, WS might be associated with a reduction in naïve CD8+ T cells (p=0.025) according to imputed measures of blood cell counts. Overall, this study shows that WS is associated with an increased epigenetic age of blood cells which is independent of changes in blood cell composition. The extent to which this alteration is a cause or effect of WS disease phenotypes remains unknown.
Collapse
Affiliation(s)
- Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Julia Flunkert
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, WA 98105, USA.,Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.,Joint last authors
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA.,Joint last authors
| |
Collapse
|
12
|
Martin GM. Geroscience: Addressing the mismatch between its exciting research opportunities, its economic imperative and its current funding crisis. Exp Gerontol 2016; 94:46-51. [PMID: 27871822 DOI: 10.1016/j.exger.2016.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
There is at present a huge disconnect between levels of funding for basic research on fundamental mechanisms of biological aging and, given demographic projections, the anticipated enormous social and economic impacts of a litany of chronic diseases for which aging is by far the major risk factor: One valuable approach, recently instigated by Felipe Sierra & colleagues at the US National Institute on Aging, is the development of a Geroscience Interest Group among virtually all of the NIH institutes. A complementary approach would be to seek major escalations of private funding. The American Federation for Aging Research, the Paul Glenn Foundation and the Ellison Medical Foundation pioneered efforts by the private sector to provide substantial supplements to public sources of funding. It is time for our community to organize efforts towards the enhancements of such crucial contributions, especially in support of the emerging generation of young investigators, many of whom are leaving our ranks to seek alternative employment. To do so, we must provide potential donors with strong economic, humanitarian and scientific rationales. An initial approach to such efforts is briefly outlined in this manuscript as a basis for wider discussions within our community.
Collapse
Affiliation(s)
- George M Martin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Yokote K, Chanprasert S, Lee L, Eirich K, Takemoto M, Watanabe A, Koizumi N, Lessel D, Mori T, Hisama FM, Ladd PD, Angle B, Baris H, Cefle K, Palanduz S, Ozturk S, Chateau A, Deguchi K, Easwar TKM, Federico A, Fox A, Grebe TA, Hay B, Nampoothiri S, Seiter K, Streeten E, Piña-Aguilar RE, Poke G, Poot M, Posmyk R, Martin GM, Kubisch C, Schindler D, Oshima J. WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects. Hum Mutat 2016; 38:7-15. [PMID: 27667302 DOI: 10.1002/humu.23128] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by a constellation of adult onset phenotypes consistent with an acceleration of intrinsic biological aging. It is caused by pathogenic variants in the WRN gene, which encodes a multifunctional nuclear protein with exonuclease and helicase activities. WRN protein is thought to be involved in optimization of various aspects of DNA metabolism, including DNA repair, recombination, replication, and transcription. In this update, we summarize a total of 83 different WRN mutations, including eight previously unpublished mutations identified by the International Registry of Werner Syndrome (Seattle, WA) and the Japanese Werner Consortium (Chiba, Japan), as well as 75 mutations already reported in the literature. The Seattle International Registry recruits patients from all over the world to investigate genetic causes of a wide variety of progeroid syndromes in order to contribute to the knowledge of basic mechanisms of human aging. Given the unusually high prevalence of WS patients and heterozygous carriers in Japan, the major goal of the Japanese Consortium is to develop effective therapies and to establish management guidelines for WS patients in Japan and elsewhere. This review will also discuss potential translational approaches to this disorder, including those currently under investigation.
Collapse
Affiliation(s)
- Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sirisak Chanprasert
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Lin Lee
- Department of Pathology, University of Washington, Seattle, Washington
| | - Katharina Eirich
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Watanabe
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Koizumi
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Takayasu Mori
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington
| | - Fuki M Hisama
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Paula D Ladd
- Department of Pathology, University of Washington, Seattle, Washington
| | - Brad Angle
- Advocate Lutheran General Hospital and Advocate Children's Hospital, Park Ridge, Illinois
| | - Hagit Baris
- The Genetics Institute, Rambam Health Care Campus and Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kivanc Cefle
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Sukru Palanduz
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Sukru Ozturk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Antoinette Chateau
- Department of Dermatology, Greys Hospital, Pietermaritzburg, South Africa
| | - Kentaro Deguchi
- Department of Neurology, Okayama City Hospital, Okayama, Japan
| | | | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Unit Clinical Neurology and Neurometabolic Diseases, Medical School, University of Siena, Siena, Italy
| | - Amy Fox
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona
| | - Beverly Hay
- Division of Genetics, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, Kochi, Kerala, India
| | - Karen Seiter
- Department of Medicine, New York Medical College, Hawthorne, New York
| | - Elizabeth Streeten
- Division of Genetics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Gemma Poke
- Genetic Health Service NZ, Wellington, New Zealand
| | - Martin Poot
- University Medical Center, Utrecht, Netherlands
| | - Renata Posmyk
- Department of Clinical Genetics, Podlaskie Medical Center, Bialystok, Poland
- Department of Perinatology, Medical University of Bialystok, Bialystok, Poland
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Detlev Schindler
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - Junko Oshima
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Affiliation(s)
- Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|