1
|
Ye JW, Abbas T, Zhou JT, Chen J, Yang ML, Huang XH, Zhang H, Ma H, Ma A, Xu B, Murtaza G, Shi QH, Shi BL. Homozygous CCDC146 mutation causes oligoasthenoteratozoospermia in humans and mice. Zool Res 2024; 45:1073-1087. [PMID: 39245651 PMCID: PMC11491774 DOI: 10.24272/j.issn.2095-8137.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 09/10/2024] Open
Abstract
Infertility represents a significant health concern, with sperm quantity and quality being crucial determinants of male fertility. Oligoasthenoteratozoospermia (OAT) is characterized by reduced sperm motility, lower sperm concentration, and morphological abnormalities in sperm heads and flagella. Although variants in several genes have been implicated in OAT, its genetic etiologies and pathogenetic mechanisms remain inadequately understood. In this study, we identified a homozygous nonsense mutation (c.916C>T, p.Arg306*) in the coiled-coil domain containing 146 ( CCDC146) gene in an infertile male patient with OAT. This mutation resulted in the production of a truncated CCDC146 protein (amino acids 1-305), retaining only two out of five coiled-coil domains. To validate the pathogenicity of the CCDC146 mutation, we generated a mouse model ( Ccdc146 mut/mut ) with a similar mutation to that of the patient. Consistently, the Ccdc146 mut/mut mice exhibited infertility, characterized by significantly reduced sperm counts, diminished motility, and multiple defects in sperm heads and flagella. Furthermore, the levels of axonemal proteins, including DNAH17, DNAH1, and SPAG6, were significantly reduced in the sperm of Ccdc146 mut/mut mice. Additionally, both human and mouse CCDC146 interacted with intraflagellar transport protein 20 (IFT20), but this interaction was lost in the mutated versions, leading to the degradation of IFT20. This study identified a novel deleterious homozygous nonsense mutation in CCDC146 that causes male infertility, potentially by disrupting axonemal protein transportation. These findings offer valuable insights for genetic counseling and understanding the mechanisms underlying CCDC146 mutant-associated infertility in human males.
Collapse
Affiliation(s)
- Jing-Wei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tanveer Abbas
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Teng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Chen
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng-Lei Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiong-Heng Huang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ao Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ghulam Murtaza
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qing-Hua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail:
| | - Bao-Lu Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail:
| |
Collapse
|
2
|
Houston BJ, Merriner DJ, Stathatos GG, Nguyen JH, O'Connor AE, Lopes AM, Conrad DF, Baker M, Dunleavy JE, O'Bryan MK. Genetic mutation of Cep76 results in male infertility due to abnormal sperm tail composition. Life Sci Alliance 2024; 7:e202302452. [PMID: 38570187 PMCID: PMC10992998 DOI: 10.26508/lsa.202302452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The transition zone is a specialised gate at the base of cilia/flagella, which separates the ciliary compartment from the cytoplasm and strictly regulates protein entry. We identified a potential new regulator of the male germ cell transition zone, CEP76. We demonstrated that CEP76 was involved in the selective entry and incorporation of key proteins required for sperm function and fertility into the ciliary compartment and ultimately the sperm tail. In the mutant, sperm tails were shorter and immotile as a consequence of deficits in essential sperm motility proteins including DNAH2 and AKAP4, which accumulated at the sperm neck in the mutant. Severe annulus, fibrous sheath, and outer dense fibre abnormalities were also detected in sperm lacking CEP76. Finally, we identified that CEP76 dictates annulus positioning and structure. This study suggests CEP76 as a male germ cell transition zone protein and adds further evidence to the hypothesis that the spermatid transition zone and annulus are part of the same functional structure.
Collapse
Affiliation(s)
- Brendan J Houston
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - D Jo Merriner
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - G Gemma Stathatos
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Joseph H Nguyen
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Anne E O'Connor
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal
| | - Donald F Conrad
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Mark Baker
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Jessica Em Dunleavy
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Chen J, Liu M. Centriolar appendages evolve into the inner sheath of mammalian flagella. J Cell Biol 2024; 223:e202401149. [PMID: 38381149 PMCID: PMC10880463 DOI: 10.1083/jcb.202401149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
The annulus, a septin-based structure in vertebrate sperm connecting the MP and PP, has unclear migration mechanics. In this issue, Hoque et al. (https://doi.org/10.1083/jcb.202307147) report that the CBY3/CIBAR1 complex ensures its precise positioning by regulating membrane properties.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Hoque M, Li FQ, Weber WD, Chen JJ, Kim EN, Kuo PL, Visconti PE, Takemaru KI. The Cby3/ciBAR1 complex positions the annulus along the sperm flagellum during spermiogenesis. J Cell Biol 2024; 223:e202307147. [PMID: 38197861 PMCID: PMC10783431 DOI: 10.1083/jcb.202307147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Proper compartmentalization of the sperm flagellum is essential for fertility. The annulus is a septin-based ring that demarcates the midpiece (MP) and the principal piece (PP). It is assembled at the flagellar base, migrates caudally, and halts upon arriving at the PP. However, the mechanisms governing annulus positioning remain unknown. We report that a Chibby3 (Cby3)/Cby1-interacting BAR domain-containing 1 (ciBAR1) complex is required for this process. Ablation of either gene in mice results in male fertility defects, caused by kinked sperm flagella with the annulus mispositioned in the PP. Cby3 and ciBAR1 interact and colocalize to the annulus near the curved membrane invagination at the flagellar pocket. In the absence of Cby3, periannular membranes appear to be deformed, allowing the annulus to migrate over the fibrous sheath into the PP. Collectively, our results suggest that the Cby3/ciBAR1 complex regulates local membrane properties to position the annulus at the MP/PP junction.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - William David Weber
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Jie Chen
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Khanal S, Jaiswal A, Chowdanayaka R, Puente N, Turner K, Assefa KY, Nawras M, Back ED, Royfman A, Burkett JP, Cheong SH, Fisher HS, Sindhwani P, Gray J, Ramachandra NB, Avidor-Reiss T. The evolution of centriole degradation in mouse sperm. Nat Commun 2024; 15:117. [PMID: 38168044 PMCID: PMC10761967 DOI: 10.1038/s41467-023-44411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Centrioles are subcellular organelles found at the cilia base with an evolutionarily conserved structure and a shock absorber-like function. In sperm, centrioles are found at the flagellum base and are essential for embryo development in basal animals. Yet, sperm centrioles have evolved diverse forms, sometimes acting like a transmission system, as in cattle, and sometimes becoming dispensable, as in house mice. How the essential sperm centriole evolved to become dispensable in some organisms is unclear. Here, we test the hypothesis that this transition occurred through a cascade of evolutionary changes to the proteins, structure, and function of sperm centrioles and was possibly driven by sperm competition. We found that the final steps in this cascade are associated with a change in the primary structure of the centriolar inner scaffold protein FAM161A in rodents. This information provides the first insight into the molecular mechanisms and adaptive evolution underlying a major evolutionary transition within the internal structure of the mammalian sperm neck.
Collapse
Affiliation(s)
- Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rajanikanth Chowdanayaka
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru, India
| | - Nahshon Puente
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Katerina Turner
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Mohamad Nawras
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ezekiel David Back
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Abigail Royfman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - James P Burkett
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi S Fisher
- Department of Biology, University of Maryland College Park, College Park, MD, USA
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
6
|
Holland ND, Mansfield JH. In Amphioxus Embryos, Some Neural Tube Cells Resemble Differentiating Coronet Cells of Fishes and Tunicates. THE BIOLOGICAL BULLETIN 2023; 244:1-8. [PMID: 37167617 DOI: 10.1086/724581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
AbstractFor neurula embryos of amphioxus (chordate subphylum Cephalochordata), the anterior region of the neural tube was studied with transmission electron microscopy. This survey demonstrated previously unreported cells, each characterized by a cilium bearing on its shaft a protruding lateral bubble packed with vesicles. Such cilia resemble those known from immature coronet cells in other chordates-namely, fishes in the Vertebrata and ascidians and appendicularians in the Tunicata. This wide occurrence of coronet-like cells raises questions about their possible homologies within the phylum Chordata. When considered at the level of the whole cell, such homology is not well supported. For example, the fish cells are generally thought to be glia, while the tunicate cells are considered to be neurons; moreover, cytoplasmic smooth endoplasmic reticulum, which is predominant in the former, is undetectable in the latter. In contrast, a more convincing case for homology can be made by limiting comparisons to the cell apices with their modified cilia. In addition to the fine-structural similarities between fishes and tunicates already mentioned, nonvisual opsins have been found associated with the vesicles in the modified cilia of both groups. Such opsins are thought to link photoreception to endocrine output controlling behavior. Further work would be needed to test the idea that the amphioxus diencephalic cells with lateral bubble cilia might similarly be opsin rich and could provide insights into the evolutionary history of the coronet cells within the phylum Chordata.
Collapse
|
7
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
8
|
Keppner A, Correia M, Santambrogio S, Koay TW, Maric D, Osterhof C, Winter DV, Clerc A, Stumpe M, Chalmel F, Dewilde S, Odermatt A, Kressler D, Hankeln T, Wenger RH, Hoogewijs D. Androglobin, a chimeric mammalian globin, is required for male fertility. eLife 2022; 11:72374. [PMID: 35700329 PMCID: PMC9249397 DOI: 10.7554/elife.72374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is a highly specialized differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape, and ultrastructural defects in microtubule and mitochondrial organization. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, the absence of Adgb leads to mislocalization of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.
Collapse
Affiliation(s)
- Anna Keppner
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Miguel Correia
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | | | - Teng Wei Koay
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Darko Maric
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Carina Osterhof
- Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Denise V Winter
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Angèle Clerc
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - David Hoogewijs
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Atypical Centriolar Composition Correlates with Internal Fertilization in Fish. Cells 2022; 11:cells11050758. [PMID: 35269380 PMCID: PMC8909020 DOI: 10.3390/cells11050758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
The sperm competition theory, as proposed by Geoff Parker, predicts that sperm evolve through a cascade of changes. As an example, internal fertilization is followed by sperm morphology diversification. However, little is known about the evolution of internal sperm structures. The centriole has an ancient and evolutionarily conserved canonical structure with signature 9-fold, radially symmetric microtubules that form the cell’s centrosomes, cilia, and flagella. Most animal spermatozoa have two centrioles, one of which forms the spermatozoan flagellum. Both are delivered to the egg and constitute the embryo’s first two centrosomes. The spermatozoa of mammals and insects only have one recognizable centriole with a canonical structure. A second sperm centriole with an atypical structure was recently reported in both animal groups and which, prior to this, eluded discovery by standard techniques and criteria. Because the ancestors of both mammals and insects reproduced by internal fertilization, we hypothesized that the transition from two centrioles with canonical composition in ancestral sperm to an atypical centriolar composition characterized by only one canonical centriole evolved preferentially after internal fertilization. We examined fish because of the diversity of species available to test this hypothesis−as some species reproduce via internal and others via external fertilization−and because their spermatozoan ultrastructure has been extensively studied. Our literature search reports on 277 fish species. Species reported with atypical centriolar composition are specifically enriched among internal fertilizers compared to external fertilizers (7/34, 20.6% versus 2/243, 0.80%; p < 0.00001, odds ratio = 32.4) and represent phylogenetically unrelated fish. Atypical centrioles are present in the internal fertilizers of the subfamily Poeciliinae. Therefore, internally fertilizing fish preferentially and independently evolved spermatozoa with atypical centriolar composition multiple times, agreeing with Parker’s cascade theory.
Collapse
|
10
|
Hodge SH, Watts A, Marley R, Baines RA, Hafen E, MacDougall LK. Twitchy, the Drosophila orthologue of the ciliary gating protein FBF1/dyf-19, is required for coordinated locomotion and male fertility. Biol Open 2021; 10:bio058531. [PMID: 34357392 PMCID: PMC8353261 DOI: 10.1242/bio.058531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are compartmentalised from the rest of the cell by a ciliary gate comprising transition fibres and a transition zone. The ciliary gate allows the selective import and export of molecules such as transmembrane receptors and transport proteins. These are required for the assembly of the cilium, its function as a sensory and signalling centre and to maintain its distinctive composition. Certain motile cilia can also form within the cytosol as exemplified by human and Drosophila sperm. The role of transition fibre proteins has not been well described in the cytoplasmic cilia. Drosophila have both compartmentalised primary cilia, in sensory neurons, and sperm flagella that form within the cytosol. Here, we describe phenotypes for twitchy the Drosophila orthologue of a transition fibre protein, mammalian FBF1/C. elegans dyf-19. Loss-of-function mutants in twitchy are adult lethal and display a severely uncoordinated phenotype. Twitchy flies are too uncoordinated to mate but RNAi-mediated loss of twitchy specifically within the male germline results in coordinated but infertile adults. Examination of sperm from twitchy RNAi-knockdown flies shows that the flagellar axoneme forms, elongates and is post-translationally modified by polyglycylation but the production of motile sperm is impaired. These results indicate that twitchy is required for the function of both sensory cilia that are compartmentalised from the rest of the cell and sperm flagella that are formed within the cytosol of the cell. Twitchy is therefore likely to function as part of a molecular gate in sensory neurons but may have a distinct function in sperm cells.
Collapse
Affiliation(s)
- Suzanne H. Hodge
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Amy Watts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Marley
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Richard A. Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Ernst Hafen
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland
| | - Lindsay K. MacDougall
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Hwang JY, Nawaz S, Choi J, Wang H, Hussain S, Nawaz M, Lopez-Giraldez F, Jeong K, Dong W, Oh JN, Bilguvar K, Mane S, Lee CK, Bystroff C, Lifton RP, Ahmad W, Chung JJ. Genetic Defects in DNAH2 Underlie Male Infertility With Multiple Morphological Abnormalities of the Sperm Flagella in Humans and Mice. Front Cell Dev Biol 2021; 9:662903. [PMID: 33968937 PMCID: PMC8103034 DOI: 10.3389/fcell.2021.662903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Asthenozoospermia accounts for over 80% of primary male infertility cases. Reduced sperm motility in asthenozoospermic patients are often accompanied by teratozoospermia, or defective sperm morphology, with varying severity. Multiple morphological abnormalities of the flagella (MMAF) is one of the most severe forms of asthenoteratozoospermia, characterized by heterogeneous flagellar abnormalities. Among various genetic factors known to cause MMAF, multiple variants in the DNAH2 gene are reported to underlie MMAF in humans. However, the pathogenicity by DNAH2 mutations remains largely unknown. In this study, we identified a novel recessive variant (NM_020877:c.12720G > T;p.W4240C) in DNAH2 by whole-exome sequencing, which fully co-segregated with the infertile male members in a consanguineous Pakistani family diagnosed with asthenozoospermia. 80-90% of the sperm from the patients are morphologically abnormal, and in silico analysis models reveal that the non-synonymous variant substitutes a residue in dynein heavy chain domain and destabilizes DNAH2. To better understand the pathogenicity of various DNAH2 variants underlying MMAF in general, we functionally characterized Dnah2-mutant mice generated by CRISPR/Cas9 genome editing. Dnah2-null males, but not females, are infertile. Dnah2-null sperm cells display absent, short, bent, coiled, and/or irregular flagella consistent with the MMAF phenotype. We found misexpression of centriolar proteins and delocalization of annulus proteins in Dnah2-null spermatids and sperm, suggesting dysregulated flagella development in spermiogenesis. Scanning and transmission electron microscopy analyses revealed that flagella ultrastructure is severely disorganized in Dnah2-null sperm. Absence of DNAH2 compromises the expression of other axonemal components such as DNAH1 and RSPH3. Our results demonstrate that DNAH2 is essential for multiple steps in sperm flagella formation and provide insights into molecular and cellular mechanisms of MMAF pathogenesis.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Shoaib Nawaz
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mehboob Nawaz
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Kyungjo Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jong-Nam Oh
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
- Yale Center for Genome Analysis, Yale University, New Haven, CT, United States
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, United States
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Designed Animal and Transplantation Research Institute, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, South Korea
| | - Christopher Bystroff
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Richard P. Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Mikhailik A, Michurina TV, Dikranian K, Hearn S, Maxakov VI, Siller SS, Takemaru KI, Enikolopov G, Peunova N. nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea. Life Sci Alliance 2021; 4:4/5/e202000981. [PMID: 33653689 PMCID: PMC8008965 DOI: 10.26508/lsa.202000981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies.
Collapse
Affiliation(s)
- Anatoly Mikhailik
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tatyana V Michurina
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Krikor Dikranian
- Department of Neuroscience, Washington University, St. Louis, MO, USA
| | - Stephen Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vladimir I Maxakov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Saul S Siller
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Grigori Enikolopov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Natalia Peunova
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA .,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
13
|
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol 2020; 518:110987. [PMID: 32810575 PMCID: PMC7606549 DOI: 10.1016/j.mce.2020.110987] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are eukaryotic subcellular structures that produce and regulate massive cytoskeleton superstructures. They form centrosomes and cilia, regulate new centriole formation, anchor cilia to the cell, and regulate cilia function. These basic centriolar functions are executed in sperm cells during their amplification from spermatogonial stem cells during their differentiation to spermatozoa, and finally, after fertilization, when the sperm fuses with the egg. However, sperm centrioles exhibit many unique characteristics not commonly observed in other cell types, including structural remodeling, centriole-flagellum transition zone migration, and cell membrane association during meiosis. Here, we discuss five roles of sperm centrioles: orchestrating early spermatogenic cell divisions, forming the spermatozoon flagella, linking the spermatozoon head and tail, controlling sperm tail beating, and organizing the cytoskeleton of the zygote post-fertilization. We present the historic discovery of the centriole as a sperm factor that initiates embryogenesis, and recent genetic studies in humans and other mammals evaluating the current evidence for the five functions of sperm centrioles. We also examine information connecting the various sperm centriole functions to distinct clinical phenotypes. The emerging picture is that centrioles are essential sperm components with remarkable functional diversity and specialization that will require extensive and in-depth future studies.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA; Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Alexa Carr
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
14
|
Fingerhut JM, Yamashita YM. mRNA localization mediates maturation of cytoplasmic cilia in Drosophila spermatogenesis. J Cell Biol 2020; 219:e202003084. [PMID: 32706373 PMCID: PMC7480094 DOI: 10.1083/jcb.202003084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cytoplasmic cilia, a specialized type of cilia in which the axoneme resides within the cytoplasm rather than within the ciliary compartment, are proposed to allow for the efficient assembly of very long cilia. Despite being found diversely in male gametes (e.g., Plasmodium falciparum microgametocytes and human and Drosophila melanogaster sperm), very little is known about cytoplasmic cilia assembly. Here, we show that a novel RNP granule containing the mRNAs for axonemal dynein motor proteins becomes highly polarized to the distal end of the cilia during cytoplasmic ciliogenesis in Drosophila sperm. This allows for the incorporation of these axonemal dyneins into the axoneme directly from the cytoplasm, possibly by localizing translation. We found that this RNP granule contains the proteins Reptin and Pontin, loss of which perturbs granule formation and prevents incorporation of the axonemal dyneins, leading to sterility. We propose that cytoplasmic cilia assembly requires the precise localization of mRNAs encoding key axonemal constituents, allowing these proteins to incorporate efficiently into the axoneme.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M. Yamashita
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Yu T, Matsuda M. Epb41l5 interacts with Iqcb1 and regulates ciliary function in zebrafish embryos. J Cell Sci 2020; 133:jcs240648. [PMID: 32501287 PMCID: PMC7338265 DOI: 10.1242/jcs.240648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Erythrocyte protein band 4.1 like 5 (EPB41L5) is an adaptor protein beneath the plasma membrane that functions to control epithelial morphogenesis. Here we report a previously uncharacterized role of EPB41L5 in controlling ciliary function. We found that EPB41L5 forms a complex with IQCB1 (previously known as NPHP5), a ciliopathy protein. Overexpression of EPB41L5 reduced IQCB1 localization at the ciliary base in cultured mammalian epithelial cells. Conversely, epb41l5 knockdown increased IQCB1 localization at the ciliary base. epb41l5-deficient zebrafish embryos or embryos expressing C-terminally modified forms of Epb41l5 developed cilia with reduced motility and exhibited left-right patterning defects, an outcome of abnormal ciliary function. We observed genetic synergy between epb41l5 and iqcb1. Moreover, EPB41L5 decreased IQCB1 interaction with CEP290, another ciliopathy protein and a component of the ciliary base and centrosome. Together, these observations suggest that EPB41L5 regulates the composition of the ciliary base and centrosome through IQCB1 and CEP290.
Collapse
Affiliation(s)
- Tiffany Yu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07302, USA
| | - Miho Matsuda
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07302, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Avidor-Reiss T, Zhang Z, Li XZ. Editorial: Sperm Differentiation and Spermatozoa Function: Mechanisms, Diagnostics, and Treatment. Front Cell Dev Biol 2020; 8:219. [PMID: 32318570 PMCID: PMC7154170 DOI: 10.3389/fcell.2020.00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI, United States.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, United States
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States.,Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
17
|
McInally SG, Kondev J, Dawson SC. Length-dependent disassembly maintains four different flagellar lengths in Giardia. eLife 2019; 8:e48694. [PMID: 31855176 PMCID: PMC6992383 DOI: 10.7554/elife.48694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/18/2019] [Indexed: 01/03/2023] Open
Abstract
With eight flagella of four different lengths, the parasitic protist Giardia is an ideal model to evaluate flagellar assembly and length regulation. To determine how four different flagellar lengths are maintained, we used live-cell quantitative imaging and mathematical modeling of conserved components of intraflagellar transport (IFT)-mediated assembly and kinesin-13-mediated disassembly in different flagellar pairs. Each axoneme has a long cytoplasmic region extending from the basal body, and transitions to a canonical membrane-bound flagellum at the 'flagellar pore'. We determined that each flagellar pore is the site of IFT accumulation and injection, defining a diffusion barrier functionally analogous to the transition zone. IFT-mediated assembly is length-independent, as train size, speed, and injection frequencies are similar for all flagella. We demonstrate that kinesin-13 localization to the flagellar tips is inversely correlated to flagellar length. Therefore, we propose a model where a length-dependent disassembly mechanism controls multiple flagellar lengths within the same cell.
Collapse
Affiliation(s)
- Shane G McInally
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisUnited States
| | - Jane Kondev
- Department of PhysicsBrandeis UniversityWalthamUnited States
| | - Scott C Dawson
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisUnited States
| |
Collapse
|
18
|
BAG6 is a novel microtubule-binding protein that regulates ciliogenesis by modulating the cell cycle and interacting with γ-tubulin. Exp Cell Res 2019; 387:111776. [PMID: 31838060 DOI: 10.1016/j.yexcr.2019.111776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
Microtubule-binding proteins provide an alternative and vital pathway to the functional diversity of microtubules. Considerable work is still required to understand the complexities of microtubule-associated cellular processes and to identify novel microtubule-binding proteins. In this study, we identify Bcl2-associated athanogene cochaperone 6 (BAG6) as a novel microtubule-binding protein and reveal that it is crucial for primary ciliogenesis. By immunofluorescence we show that BAG6 largely colocalizes with intracellular microtubules and by co-immunoprecipitation we demonstated that it can interact with α-tubulin. Additionally, both the UBL and BAG domains of BAG6 are indispensable for its interaction with α-tubulin. Moreover, the assembly of primary cilia in RPE-1 cells is significantly inhibited upon the depletion of BAG6. Notably, BAG6 inhibition leads to an abnormal G0/G1 transition during the cell cycle. In addition, BAG6 colocalizes and interactes with the centrosomal protein γ-tubulin, suggesting that BAG6 might regulate primary ciliogenesis through its action in centrosomal function. Collectively, our findings suggest that BAG6 is a novel microtubule-bindng protein crucial for primary ciliogenesis.
Collapse
|
19
|
Lapart JA, Gottardo M, Cortier E, Duteyrat JL, Augière C, Mangé A, Jerber J, Solassol J, Gopalakrishnan J, Thomas J, Durand B. Dzip1 and Fam92 form a ciliary transition zone complex with cell type specific roles in Drosophila. eLife 2019; 8:49307. [PMID: 31821146 PMCID: PMC6904220 DOI: 10.7554/elife.49307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are conserved eukaryotic organelles essential for cellular signaling and motility. Cilia dysfunctions cause life-threatening ciliopathies, many of which are due to defects in the transition zone (TZ), a complex structure of the ciliary base. Therefore, understanding TZ assembly, which relies on ordered interactions of multiprotein modules, is of critical importance. Here, we show that Drosophila Dzip1 and Fam92 form a functional module which constrains the conserved core TZ protein, Cep290, to the ciliary base. We identify cell type specific roles of this functional module in two different tissues. While it is required for TZ assembly in all Drosophila ciliated cells, it also regulates basal-body growth and docking to the plasma membrane during spermatogenesis. We therefore demonstrate a novel regulatory role for Dzip1 and Fam92 in mediating membrane/basal-body interactions and show that these interactions exhibit cell type specific functions in basal-body maturation and TZ organization. Many animal cells have hair-like structures called cilia on their surface, which help them to sense and interact with their surroundings. The cilia are supported by protein filaments and must assemble correctly because faulty cilia can lead to several life-threatening diseases. Problems in an area at the base of the cilia, known as the ‘transition zone’, account for the most severe forms of these diseases in humans. The transition zone is responsible for selecting which proteins are allowed in and out of the cilia. The transition zone itself is made up of many proteins that work together to determine the cilia composition. But not all of these proteins are known, and it is unclear how those that are known affect cilia structure. One protein found in transition zones of several animals, including fruit flies and mice, is called Cby. Lapart et al. set out to understand which other proteins interact with Cby in fruit flies to better understand what this protein does in the transition zone. A series of experiments showed that Cby interacts with two proteins called Dzip1 and Fam92 to regulate the assembly of transition zones. Together these three proteins constrain a core component of the transition zone, a fourth protein called Cep290, to the base of the cilia. Fruit flies only have cilia on cells in their sensory organs and testes and, in both types of tissue, cilia could only form properly when Dzip1 and Fam92 were present. Lapart et al. also showed that, in the fruit fly testes, Dzip1 and Fam92 helped to anchor the newly forming cilia to the cell surface. This anchoring role was particularly important for the fruit flies’ sperm to grow their characteristic whip-like tails, which are a specialized type of cilia that allow sperm cells to move. Overall, the findings show how some transition zone proteins work together and that they can have different effects in different tissues. Understanding the mechanisms behind healthy cilia assembly will likely be key to tackling cilia-related diseases.
Collapse
Affiliation(s)
- Jean-André Lapart
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Marco Gottardo
- Institute of Human Genetics, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Elisabeth Cortier
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Luc Duteyrat
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Céline Augière
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Mangé
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Julie Jerber
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Solassol
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joëlle Thomas
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Bénédicte Durand
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
20
|
Akella JS, Silva M, Morsci NS, Nguyen KC, Rice WJ, Hall DH, Barr MM. Cell type-specific structural plasticity of the ciliary transition zone in C. elegans. Biol Cell 2019; 111:95-107. [PMID: 30681171 DOI: 10.1111/boc.201800042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION The current consensus on cilia development posits that the ciliary transition zone (TZ) is formed via extension of nine centrosomal microtubules. In this model, TZ structure remains unchanged in microtubule number throughout the cilium life cycle. This model does not however explain structural variations of TZ structure seen in nature and could also lend itself to the misinterpretation that deviations from nine-doublet microtubule ultrastructure represent an abnormal phenotype. Thus, a better understanding of events that occur at the TZ in vivo during metazoan development is required. RESULTS To address this issue, we characterized ultrastructure of two types of sensory cilia in developing Caenorhabditis elegans. We discovered that, in cephalic male (CEM) and inner labial quadrant (IL2Q) sensory neurons, ciliary TZs are structurally plastic and remodel from one structure to another during animal development. The number of microtubule doublets forming the TZ can be increased or decreased over time, depending on cilia type. Both cases result in structural TZ intermediates different from TZ in cilia of adult animals. In CEM cilia, axonemal extension and maturation occurs concurrently with TZ structural maturation. CONCLUSIONS AND SIGNIFICANCE Our work extends the current model to include the structural plasticity of metazoan transition zone, which can be structurally delayed, maintained or remodelled in cell type-specific manner.
Collapse
Affiliation(s)
- Jyothi S Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA
| | - Malan Silva
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, NY, 10027, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
21
|
Avidor-Reiss T, Fishman EL. It takes two (centrioles) to tango. Reproduction 2019; 157:R33-R51. [PMID: 30496124 PMCID: PMC6494718 DOI: 10.1530/rep-18-0350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Cells that divide during embryo development require precisely two centrioles during interphase and four centrioles during mitosis. This precise number is maintained by allowing each centriole to nucleate only one centriole per cell cycle (i.e. centriole duplication). Yet, how the first cell of the embryo, the zygote, obtains two centrioles has remained a mystery in most mammals and insects. The mystery arose because the female gamete (oocyte) is thought to have no functional centrioles and the male gamete (spermatozoon) is thought to have only one functional centriole, resulting in a zygote with a single centriole. However, recent studies in fruit flies, beetles and mammals, including humans, suggest an alternative explanation: spermatozoa have a typical centriole and an atypical centriole. The sperm typical centriole has a normal structure but distinct protein composition, whereas the sperm atypical centriole is distinct in both. During fertilization, the atypical centriole is released into the zygote, nucleates a new centriole and participates in spindle pole formation. Thus, the spermatozoa's atypical centriole acts as a second centriole in the zygote. Here, we review centriole biology in general and especially in reproduction, we describe the discovery of the spermatozoon atypical centriole, and we provide an updated model for centriole inherence during sexual reproduction. While we focus on humans and other non-rodent mammals, we also provide a broader evolutionary perspective.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Rd., Wolfe Hall 4259, Toledo, OH 43606
| | - Emily L. Fishman
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Rd., Wolfe Hall 4259, Toledo, OH 43606
| |
Collapse
|
22
|
Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem J 2018; 475:2329-2353. [PMID: 30064990 PMCID: PMC6068341 DOI: 10.1042/bcj20170453] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
The cilium, once considered a vestigial structure, is a conserved, microtubule-based organelle critical for transducing extracellular chemical and mechanical signals that control cell polarity, differentiation, and proliferation. The cilium undergoes cycles of assembly and disassembly that are controlled by complex inter-relationships with the cytoskeleton. Microtubules form the core of the cilium, the axoneme, and are regulated by post-translational modifications, associated proteins, and microtubule dynamics. Although actin and septin cytoskeletons are not major components of the axoneme, they also regulate cilium organization and assembly state. Here, we discuss recent advances on how these different cytoskeletal systems affect cilium function, structure, and organization.
Collapse
|
23
|
Rapid Evolution of Sperm Produces Diverse Centriole Structures that Reveal the Most Rudimentary Structure Needed for Function. Cells 2018; 7:cells7070067. [PMID: 29949922 PMCID: PMC6071034 DOI: 10.3390/cells7070067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Centrioles are ancient subcellular protein-based organelles that maintain a conserved number and structure across many groups of eukaryotes. Centriole number (two per cells) is tightly regulated; each pre-existing centriole nucleates only one centriole as the cell prepares for division. The structure of centrioles is barrel-shaped, with a nine-fold symmetry of microtubules. This organization of microtubules is essential for the ancestral function of centriole–cilium nucleation. In animal cells, centrioles have gained an additional role: recruiting pericentriolar material (PCM) to form a centrosome. Therefore, it is striking that in animal spermatozoa, the centrioles have a remarkable diversity of structures, where some are so anomalous that they are referred to as atypical centrioles and are barely recognizable. The atypical centriole maintains the ability to form a centrosome and nucleate a new centriole, and therefore reveals the most rudimentary structure that is needed for centriole function. However, the atypical centriole appears to be incapable of forming a cilium. Here, we propose that the diversity in sperm centriole structure is due to rapid evolution in the shape of the spermatozoa head and neck. The enhanced diversity may be driven by a combination of direct selection for novel centriole functions and pleiotropy, which eliminates centriole properties that are dispensable in the spermatozoa function.
Collapse
|