1
|
Yang TH, Hsu YC, Yeh P, Hung CJ, Tsai YF, Fang MC, Yen ACC, Chen LF, Pan JY, Wu CC, Liu TC, Chung FL, Yu WM, Lin SW. Critical role of hepsin/TMPRSS1 in hearing and tectorial membrane morphogenesis: Insights from transgenic mouse models. Hear Res 2024; 453:109134. [PMID: 39437584 PMCID: PMC11531994 DOI: 10.1016/j.heares.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Mutations in various type II transmembrane serine protease (TMPRSS) family members are associated with non-syndromic hearing loss, with some mechanisms still unclear. For instance, the mechanism underlying profound hearing loss and tectorial membrane (TM) malformations in hepsin/TMPRSS1 knockout (KO) mice remains elusive. In this study, we confirmed significantly elevated hearing thresholds and abnormal TM morphology in hepsin KO mice, characterized by enlarged TM with gaps and detachment from the spiral limbus. Transgenic mouse lines were created to express either wild-type or a serine protease-dead mutant of human hepsin in the KO background. The Tg68;KO line, expressing moderate levels of wild-type human hepsin in the cochlea, showed partial restoration of hearing function. Conversely, the Tg5;KO or TgRS;KO lines, with undetectable hepsin or protease-dead hepsin, did not show such improvement. Histological analyses revealed that Tg68;KO mice, but not Tg5;KO or TgRS;KO mice, had a more compact TM structure, partially attached to the spiral limbus. These results indicate that hepsin expression levels correlate with improvements in hearing and TM morphology, and its protease activity is critical for these effects. Hepsin's role was further examined by studying its relationship with α-tectorin (TECTA) and β-tectorin (TECTB), non-collagenous proteins crucial for TM formation. Hepsin was co-expressed with TECTA and TECTB in the developing cochlear epithelium. Immunostaining showed decreased levels of TECTA and TECTB in hepsin KO TM, partially restored in Tg68;KO mice. These findings suggest that hepsin is essential for proper TM morphogenesis and auditory function, potentially by proteolytic processing/maturation of TECTA and TECTB and their incorporation into the TM.
Collapse
Affiliation(s)
- Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Liver Disease Prevention and Treatment Research Foundation, Taiwan
| | - Peng Yeh
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Jui Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Fei Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mo-Chu Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Li-Fu Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhih-Yu Pan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Fong-Ling Chung
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Ming Yu
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Strelkova OS, Osgood RT, Tian C, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. Commun Biol 2024; 7:1423. [PMID: 39482437 PMCID: PMC11527881 DOI: 10.1038/s42003-024-07121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a human deafness gene, responsible for autosomal recessive deafness-124 (DFNB124). Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. PKHD1L1 is a stereocilia protein required for the formation of the developmentally transient stereocilia surface coat. In this study, we carry out an in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-deficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-deficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knockout mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
- Olga S Strelkova
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Richard T Osgood
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Chunjie Tian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Daniel M Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
4
|
Manley GA. Conditions Underlying the Appearance of Spontaneous Otoacoustic Emissions in Mammals. J Assoc Res Otolaryngol 2024; 25:303-311. [PMID: 38760548 PMCID: PMC11349964 DOI: 10.1007/s10162-024-00950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/28/2024] [Indexed: 05/19/2024] Open
Abstract
Across the wide range of land vertebrate species, spontaneous otoacoustic emissions (SOAE) are common, but not always found. The reasons for the differences between species of the various groups in their emission patterns are often not well understood, particularly within mammals. This review examines the question as to what determines in mammals whether SOAE are emitted or not, and suggests that the coupling between hair-cell regions diminishes when the space constant of frequency distribution becomes larger. The reduced coupling is assumed to result in a greater likelihood of SOAE being emitted.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
5
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
6
|
Markova TG, Alekseeva NN, Ryzhkova OP, Shatokhina OL, Orlova AA, Zabnenkova VV, Groznova OS, Sagaydak OV, Chibisova SS, Polyakov AV, Tavartkiladze GA. Auditory Phenotype of a Novel Missense Variant in the CEACAM16 Gene in a Large Russian Family With Autosomal Dominant Nonsyndromic Hearing Loss. J Int Adv Otol 2024; 20:119-126. [PMID: 39157884 PMCID: PMC11114206 DOI: 10.5152/iao.2024.231252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/03/2023] [Indexed: 08/20/2024] Open
Abstract
Autosomal dominant hearing loss is represented by a large number of genetically determined forms. Over 50 genes associated with dominant nonsyndromic hearing impairments were described. Pathogenic variants in the CEACAM16 gene lead to the development of DFNA4B hearing loss. Currently, 8 pathogenic variants in this gene have been described. The objective of this study was to study the audiological and molecular genetic characteristics of a large family with CEACAM16-associated autosomal dominant nonsyndromic hearing loss. A detailed anamnesis was collected, and a comprehensive audiological examination was performed for 21 family members. Genetic testing was performed, including whole-genome sequencing for the proband's son and Sanger sequence analysis for the proband and for all available family members. In a large Russian family, including 5 generations, an autosomal dominant type of slowly progressing nonsyndromic late-onset hearing loss was observed. Eleven family members suffer from hearing impairment, which starts with tinnitus and threshold increase at high frequencies, since the age of 5-20 years. Hearing loss slowly progresses with age in each person and is similar to age-related hearing loss. We have detected the novel likely pathogenic variant с.419С>T (p.(Thr140Ile)) in exon 3 of the CEACAM16 gene, which segregates with late-onset nonsyndromic hearing loss in this family. The clinical data obtained in the examined family correspond with the phenotype in previously described cases. In general, the study widened the mutation spectrum of the gene, allowing to carry out medical genetic counseling and to answer the questions about the hearing impairment prognosis for future generations.
Collapse
Affiliation(s)
- Tatiana G. Markova
- Department of Audiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - Natalia N. Alekseeva
- Department of Audiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - Oxana P. Ryzhkova
- The Shared Resource Centre (SRC) “Genome”, Research Centre for Medical Genetics, Moscow, Russia
| | - Olga L. Shatokhina
- The Shared Resource Centre (SRC) “Genome”, Research Centre for Medical Genetics, Moscow, Russia
| | - Anna A. Orlova
- The Shared Resource Centre (SRC) “Genome”, Research Centre for Medical Genetics, Moscow, Russia
| | - Viktoriia V. Zabnenkova
- The Shared Resource Centre (SRC) “Genome”, Research Centre for Medical Genetics, Moscow, Russia
| | - Olga S. Groznova
- Charitable Foundation for Medical and Social Genetic Assistance Projects “Genome of Life”, Moscow, Russia
| | | | - Svetlana S. Chibisova
- Department of Audiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | | | - George A. Tavartkiladze
- Department of Audiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| |
Collapse
|
7
|
Strelkova OS, Osgood RT, Tian CJ, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582786. [PMID: 38496629 PMCID: PMC10942330 DOI: 10.1101/2024.02.29.582786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a stereocilia protein required for normal hearing in mice, and for the formation of the transient stereocilia surface coat, expressed during early postnatal development. While the function of the stereocilia coat remains unclear, growing evidence supports PKHD1L1 as a human deafness gene. In this study we carry out in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-defficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-defficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knock-out mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel M. Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Artur A. Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Zhang Y, Lin G, Xue N, Wang Y, Du T, Liu H, Xiong W, Shang W, Wu H, Song L. Differential outcomes of high-fat diet on age-related rescaling of cochlear frequency place coding. FASEB J 2023; 37:e23167. [PMID: 37651093 DOI: 10.1096/fj.202300457rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Auditory frequency coding is place-specific, which depends on the mechanical coupling of the basilar membrane-outer hair cell (OHC)-tectorial membrane network. Prestin-based OHC electromotility improves cochlear frequency selectivity and sensitivity. Cochlear amplification determines the frequency coding wherein discrete sound frequencies find a 'best' place along the cochlear length. Loss of OHC is the leading cause of age-related hearing loss (ARHL) and is the most common cause of sensorineural hearing loss and compromised speech perception. Lipid interaction with Prestin impacts OHC function. It has been established that high-fat diet (HFD) is associated with ARHL. To determine whether genetic background and metabolism preserve cochlear frequency place coding, we examined the effect of HFD in C57BL/6J (B6) and CBA/CaJ (CBA) on ARHL.We found a significant rescuing effect on ARHL in aged B6 HFD cohort. Prestin levels and cell sizes were better maintained in the experimental B6-HFD group. We also found that distortion product otoacoustic emission (DPOAE) group delay measurement was preserved, which suggested stable frequency place coding. In contrast, the response to HFD in the CBA cohort was modest with no appreciable benefit to hearing threshold. Notably, group delay was shortened with age along with the control. In addition, the frequency dependent OHC nonlinear capacitance gradient was most pronounced at young age but decreased with age. Cochlear RNA-seq analysis revealed differential TRPV1 expression and lipid homeostasis. Activation of TRPV1 and downregulation of arachidonic acid led to downregulation of inflammatory response in B6 HFD, which protects the cochlea from ARHL. The genetic background and metabolic state-derived changes in OHC morphology and function collectively contribute to a redefined cochlear frequency place coding and improved age-related pitch perception.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guotong Lin
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Na Xue
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yi Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tingting Du
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Shang
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
- In Vitro Fertility (IVF) Center Department of Obstetrics and Gynecology, the Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
9
|
Ma Q, Zhang J, Qi W, Li Z, Jiang Y, Zhang M, He H, Su K, Shi H. Store-Operated Ca 2+ Channels Contribute to the Generation of Ca 2+ Waves in Interdental Cells in the Cochleae. ACS Chem Neurosci 2023; 14:1896-1904. [PMID: 37146126 DOI: 10.1021/acschemneuro.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Cochlear calcium (Ca2+) waves are vital regulators of the cochlear development and establishment of hearing function. Inner supporting cells are believed to be the main region generating Ca2+ waves that work as internal stimuli to coordinate the development of hair cells and the mapping of neurons in the cochlea. However, Ca2+ waves in interdental cells (IDCs) that connect to inner supporting cells and spiral ganglion neurons are rarely observed and poorly understood. Herein, we reported the mechanism of IDC Ca2+ wave formation and propagation by developing a single-cell Ca2+ excitation technology, which can easily be accomplished using a two-photon microscope for simultaneous microscopy and femtosecond laser Ca2+ excitation in any target individual cell in fresh cochlear tissues. We demonstrated that the store-operated Ca2+ channels in IDCs are responsible for Ca2+ wave formation in these cells. The specific architecture of the IDCs determines the propagation of Ca2+ waves. Our results provide the mechanism of Ca2+ formation in IDCs and a controllable, precise, and noninvasive technology to excite local Ca2+ waves in the cochlea, with good potential for research on cochlear Ca2+ and hearing functions.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jianning Zhang
- Yueyang Hospital of Integrative Chinese & Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weidong Qi
- Department of Otolaryngology Head and Neck Surgery, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Zhuangzhuang Li
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Yumeng Jiang
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Miao Zhang
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Hao He
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Kaiming Su
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| |
Collapse
|
10
|
Katz SS, Barker TJ, Maul-Newby HM, Sparacio AP, Nguyen KCQ, Maybrun CL, Belfi A, Cohen JD, Hall DH, Sundaram MV, Frand AR. A transient apical extracellular matrix relays cytoskeletal patterns to shape permanent acellular ridges on the surface of adult C. elegans. PLoS Genet 2022; 18:e1010348. [PMID: 35960773 PMCID: PMC9401183 DOI: 10.1371/journal.pgen.1010348] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Epithelial cells secrete apical extracellular matrices to form protruding structures such as denticles, ridges, scales, or teeth. The mechanisms that shape these structures remain poorly understood. Here, we show how the actin cytoskeleton and a provisional matrix work together to sculpt acellular longitudinal alae ridges in the cuticle of adult C. elegans. Transient assembly of longitudinal actomyosin filaments in the underlying lateral epidermis accompanies deposition of the provisional matrix at the earliest stages of alae formation. Actin is required to pattern the provisional matrix into longitudinal bands that are initially offset from the pattern of longitudinal actin filaments. These bands appear ultrastructurally as alternating regions of adhesion and separation within laminated provisional matrix layers. The provisional matrix is required to establish these demarcated zones of adhesion and separation, which ultimately give rise to alae ridges and their intervening valleys, respectively. Provisional matrix proteins shape the alae ridges and valleys but are not present within the final structure. We propose a morphogenetic mechanism wherein cortical actin patterns are relayed to the laminated provisional matrix to set up distinct zones of matrix layer separation and accretion that shape a permanent and acellular matrix structure.
Collapse
Affiliation(s)
- Sophie S. Katz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Trevor J. Barker
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hannah M. Maul-Newby
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Alessandro P. Sparacio
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Chloe L. Maybrun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alison R. Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Berger J, Rubinstein J. A flexible anatomical set of mechanical models for the organ of Corti. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210016. [PMID: 34540242 PMCID: PMC8441134 DOI: 10.1098/rsos.210016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We build a flexible platform to study the mechanical operation of the organ of Corti (OoC) in the transduction of basilar membrane (BM) vibrations to oscillations of an inner hair cell bundle (IHB). The anatomical components that we consider are the outer hair cells (OHCs), the outer hair cell bundles, Deiters cells, Hensen cells, the IHB and various sections of the reticular lamina. In each of the components we apply Newton's equations of motion. The components are coupled to each other and are further coupled to the endolymph fluid motion in the subtectorial gap. This allows us to obtain the forces acting on the IHB, and thus study its motion as a function of the parameters of the different components. Some of the components include a nonlinear mechanical response. We find that slight bending of the apical ends of the OHCs can have a significant impact on the passage of motion from the BM to the IHB, including critical oscillator behaviour. In particular, our model implies that the components of the OoC could cooperate to enhance frequency selectivity, amplitude compression and signal to noise ratio in the passage from the BM to the IHB. Since the model is modular, it is easy to modify the assumptions and parameters for each component.
Collapse
Affiliation(s)
- Jorge Berger
- Department of Physics and Optical Engineering, Ort Braude College, Karmiel, Israel
| | | |
Collapse
|
12
|
Li Zheng S, Adams JG, Chisholm AD. Form and function of the apical extracellular matrix: new insights from Caenorhabditis elegans, Drosophila melanogaster, and the vertebrate inner ear. Fac Rev 2020; 9:27. [PMID: 33659959 PMCID: PMC7886070 DOI: 10.12703/r/9-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apical extracellular matrices (aECMs) are the extracellular layers on the apical sides of epithelia. aECMs form the outer layer of the skin in most animals and line the luminal surface of internal tubular epithelia. Compared to the more conserved basal ECMs (basement membranes), aECMs are highly diverse between tissues and between organisms and have been more challenging to understand at mechanistic levels. Studies in several genetic model organisms are revealing new insights into aECM composition, biogenesis, and function and have begun to illuminate common principles and themes of aECM organization. There is emerging evidence that, in addition to mechanical or structural roles, aECMs can participate in reciprocal signaling with associated epithelia and other cell types. Studies are also revealing mechanisms underlying the intricate nanopatterns exhibited by many aECMs. In this review, we highlight recent findings from well-studied model systems, including the external cuticle and ductal aECMs of Caenorhabditis elegans, Drosophila melanogaster, and other insects and the internal aECMs of the vertebrate inner ear.
Collapse
Affiliation(s)
- Sherry Li Zheng
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Gotenstein Adams
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|