1
|
Sahel JA, Banin E, Bennett J, Duncan JL, Roska B. Retinal Disorders. Cold Spring Harb Perspect Med 2024; 14:a041728. [PMID: 38565268 PMCID: PMC11610753 DOI: 10.1101/cshperspect.a041728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Retinal disorders caused by genetic or environmental factors cause severe visual impairment and often result in blindness. The past ten years have seen rapid progress in our understanding of the biological basis of these conditions, as well as significant advances towards gene and cell-based therapies. Regulatory challenges remain, but there is reason to hope that creative approaches will lead to safe and effective breakthrough treatments for these conditions in the near future.
Collapse
Affiliation(s)
- José-Alain Sahel
- The UPMC Vision Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Eyal Banin
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, 309C Stellar-Chance Labs, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel 4031, Switzerland
| |
Collapse
|
2
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
3
|
Som M, Gikanga B, Kanapuram V, Yadav S. Drug product Formulation and Fill/Finish Manufacturing Process Considerations for AAV-Based Genomic Medicines. J Pharm Sci 2024; 113:1711-1725. [PMID: 38570073 DOI: 10.1016/j.xphs.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.
Collapse
Affiliation(s)
- Madhura Som
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| | - Benson Gikanga
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Varna Kanapuram
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Sandeep Yadav
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| |
Collapse
|
4
|
Mével M, Pichard V, Bouzelha M, Alvarez-Dorta D, Lalys PA, Provost N, Allais M, Mendes A, Landagaray E, Ducloyer JB, Toublanc E, Galy A, Brument N, Lefevre GM, Gouin SG, Isiegas C, Le Meur G, Cronin T, Le Guiner C, Weber M, Moullier P, Ayuso E, Deniaud D, Adjali O. Mannose-coupled AAV2: A second-generation AAV vector for increased retinal gene therapy efficiency. Mol Ther Methods Clin Dev 2024; 32:101187. [PMID: 38327809 PMCID: PMC10847035 DOI: 10.1016/j.omtm.2024.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Inherited retinal diseases are a leading and untreatable cause of blindness and are therefore candidate diseases for gene therapy. Recombinant vectors derived from adeno-associated virus (rAAV) are currently the most promising vehicles for in vivo therapeutic gene delivery to the retina. However, there is a need for novel AAV-based vectors with greater efficacy for ophthalmic applications, as underscored by recent reports of dose-related inflammatory responses in clinical trials of rAAV-based ocular gene therapies. Improved therapeutic efficacy of vectors would allow for decreases in the dose delivered, with consequent reductions in inflammatory reactions. Here, we describe the development of new rAAV vectors using bioconjugation chemistry to modify the rAAV capsid, thereby improving the therapeutic index. Covalent coupling of a mannose ligand, via the formation of a thiourea bond, to the amino groups of the rAAV capsid significantly increases vector transduction efficiency of both rat and nonhuman primate retinas. These optimized rAAV vectors have important implications for the treatment of a wide range of retinal diseases.
Collapse
Affiliation(s)
- Mathieu Mével
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Virginie Pichard
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Mohammed Bouzelha
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | | | | | - Nathalie Provost
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Marine Allais
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Alexandra Mendes
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | | | - Jean-Baptiste Ducloyer
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Estelle Toublanc
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Anne Galy
- Coave Therapeutics (formerly, Horama), 75012 Paris, France
| | - Nicole Brument
- Coave Therapeutics (formerly, Horama), 75012 Paris, France
| | | | | | - Carolina Isiegas
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Guylène Le Meur
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Thérèse Cronin
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Caroline Le Guiner
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Michel Weber
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Philippe Moullier
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - Eduard Ayuso
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| | - David Deniaud
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU de Nantes, INSERM UMR 1089, TaRGeT-Translational Research in Gene Therapy Laboratory, 44200 Nantes, France
| |
Collapse
|
5
|
Blasiak J, Pawlowska E, Ciupińska J, Derwich M, Szczepanska J, Kaarniranta K. A New Generation of Gene Therapies as the Future of Wet AMD Treatment. Int J Mol Sci 2024; 25:2386. [PMID: 38397064 PMCID: PMC10888617 DOI: 10.3390/ijms25042386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease and the most common cause of vision loss in the Western World. In its advanced stage, AMD occurs in two clinically distinguished forms, dry and wet, but only wet AMD is treatable. However, the treatment based on repeated injections with vascular endothelial growth factor A (VEGFA) antagonists may at best stop the disease progression and prevent or delay vision loss but without an improvement of visual dysfunction. Moreover, it is a serious mental and financial burden for patients and may be linked with some complications. The recent first success of intravitreal gene therapy with ADVM-022, which transformed retinal cells to continuous production of aflibercept, a VEGF antagonist, after a single injection, has opened a revolutionary perspective in wet AMD treatment. Promising results obtained so far in other ongoing clinical trials support this perspective. In this narrative/hypothesis review, we present basic information on wet AMD pathogenesis and treatment, the concept of gene therapy in retinal diseases, update evidence on completed and ongoing clinical trials with gene therapy for wet AMD, and perspectives on the progress to the clinic of "one and done" therapy for wet AMD to replace a lifetime of injections. Gene editing targeting the VEGFA gene is also presented as another gene therapy strategy to improve wet AMD management.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Justyna Ciupińska
- Clinical Department of Infectious Diseases and Hepatology, H. Bieganski Hospital, 91-347 Lodz, Poland;
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
6
|
Aweidah H, Xi Z, Sahel JA, Byrne LC. PRPF31-retinitis pigmentosa: Challenges and opportunities for clinical translation. Vision Res 2023; 213:108315. [PMID: 37714045 PMCID: PMC10872823 DOI: 10.1016/j.visres.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
Mutations in pre-mRNA processing factor 31 cause autosomal dominant retinitis pigmentosa (PRPF31-RP), for which there is currently no efficient treatment, making this disease a prime target for the development of novel therapeutic strategies. PRPF31-RP exhibits incomplete penetrance due to haploinsufficiency, in which reduced levels of gene expression from the mutated allele result in disease. A variety of model systems have been used in the investigation of disease etiology and therapy development. In this review, we discuss recent advances in both in vivo and in vitro model systems, evaluating their advantages and limitations in the context of therapy development for PRPF31-RP. Additionally, we describe the latest approaches for treatment, including AAV-mediated gene augmentation, genome editing, and late-stage therapies such as optogenetics, cell transplantation, and retinal prostheses.
Collapse
Affiliation(s)
- Hamzah Aweidah
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Awadh Hashem S, Georgiou M, Ali RR, Michaelides M. RPGR-Related Retinopathy: Clinical Features, Molecular Genetics, and Gene Replacement Therapy. Cold Spring Harb Perspect Med 2023; 13:a041280. [PMID: 37188525 PMCID: PMC10626266 DOI: 10.1101/cshperspect.a041280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Retinitis pigmentosa GTPase regulator (RPGR) gene variants are the predominant cause of X-linked retinitis pigmentosa (XLRP) and a common cause of cone-rod dystrophy (CORD). XLRP presents as early as the first decade of life, with impaired night vision and constriction of peripheral visual field and rapid progression, eventually leading to blindness. In this review, we present RPGR gene structure and function, molecular genetics, animal models, RPGR-associated phenotypes and highlight emerging potential treatments such as gene-replacement therapy.
Collapse
Affiliation(s)
- Shaima Awadh Hashem
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
- Centre for Cell and Gene Therapy, King's College London, London WC2R 2LS, United Kingdom
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
| |
Collapse
|