1
|
Abosharaf HA, Elsonbaty Y, Tousson E, M Mohamed T. Alzheimer's disease-related brain insulin resistance and the prospective therapeutic impact of metformin. J Neuroendocrinol 2024; 36:e13356. [PMID: 37985011 DOI: 10.1111/jne.13356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Besides COVID-19, two of the most critical outbreaks of our day are insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). Each disease's pathophysiology is well established. Furthermore, a substantial overlap between them has coexisted. Uncertainty remains on whether T2DM and AD are parallel illnesses with the same origin or separate illnesses linked through violent pathways. The current study was aimed at testing whether the insulin resistance in the brain results in AD symptoms or not. Insulin resistance was induced in the brains of rats using a single intracerebroventricular streptozotocin (STZ) dose. We then measured glucose, insulin receptor substrate 2 (IRS-2), amyloid β (Aβ) deposition, and tau phosphorylation in the brain to look for signs of insulin resistance and AD. The results of this study indicated that a single dose of STZ was able to induce insulin resistance in the brain and significantly decline IRS-2. This resistance was accompanied by obvious memory loss, Aβ deposition, and tau phosphorylation, further visible diminishing in neurotransmitters such as dopamine and acetylcholine. Furthermore, oxidative stress was increased due to the antioxidant system being compromised. Interestingly, the pancreas injury and peripheral insulin resistance coexisted with brain insulin resistance. Indeed, the antidiabetic metformin was able to enhance all these drastic effects. In conclusion, brain insulin resistance could lead to AD and vice versa. These are highly linked syndromes that could influence peripheral organs. Further studies are required to stabilize this putative pathobiology relationship between them.
Collapse
Affiliation(s)
- Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasmin Elsonbaty
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Hayashi S, Sakata S, Kawamura S, Tokutake Y, Yonekura S. XBP1u Is Involved in C2C12 Myoblast Differentiation via Accelerated Proteasomal Degradation of Id3. Front Physiol 2022; 13:796190. [PMID: 35153829 PMCID: PMC8829448 DOI: 10.3389/fphys.2022.796190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle, elongation, and fusion to form multinucleated myotubes. Id3, a member of the Id family, plays a crucial role in cell cycle exit and differentiation. However, in muscle cells after differentiation induction, the detailed mechanisms that diminish Id3 function and cause the cells to withdraw from the cell cycle are unknown. Induction of myoblast differentiation resulted in decreased expression of Id3 and increased expression of XBP1u, and XBP1u accelerated proteasomal degradation of Id3 in C2C12 cells. The expression levels of the cyclin-dependent kinase inhibitors p21, p27, and p57 were not increased after differentiation induction of XBP1-knockdown C2C12 cells. Moreover, knockdown of Id3 rescued myogenic differentiation of XBP1-knockdown C2C12 cells. Taken together, these findings provide evidence that XBP1u regulates cell cycle exit after myogenic differentiation induction through interactions with Id3. To the best of our knowledge, this is the first report of the involvement of XBP1u in myoblast differentiation. These results indicate that XBP1u may act as a “regulator” of myoblast differentiation under various physiological conditions.
Collapse
Affiliation(s)
- Satoko Hayashi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Shotaro Sakata
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Shotaro Kawamura
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yukako Tokutake
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- *Correspondence: Shinichi Yonekura,
| |
Collapse
|
3
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
4
|
Histological, immunohistochemical and transcriptomic characterization of human tracheoesophageal fistulas. PLoS One 2020; 15:e0242167. [PMID: 33201890 PMCID: PMC7671559 DOI: 10.1371/journal.pone.0242167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Esophageal atresia (EA) and tracheoesophageal fistula (TEF) are relatively frequently occurring foregut malformations. EA/TEF is thought to have a strong genetic component. Not much is known regarding the biological processes disturbed or which cell type is affected in patients. This hampers the detection of the responsible culprits (genetic or environmental) for the origin of these congenital anatomical malformations. Therefore, we examined gene expression patterns in the TEF and compared them to the patterns in esophageal, tracheal and lung control samples. We studied tissue organization and key proteins using immunohistochemistry. There were clear differences between TEF and control samples. Based on the number of differentially expressed genes as well as histological characteristics, TEFs were most similar to normal esophagus. The BMP-signaling pathway, actin cytoskeleton and extracellular matrix pathways are downregulated in TEF. Genes involved in smooth muscle contraction are overexpressed in TEF compared to esophagus as well as trachea. These enriched pathways indicate myofibroblast activated fibrosis. TEF represents a specific tissue type with large contributions of intestinal smooth muscle cells and neurons. All major cell types present in esophagus are present-albeit often structurally disorganized-in TEF, indicating that its etiology should not be sought in cell fate specification.
Collapse
|
5
|
Sharma S, Sicinski P. A kinase of many talents: non-neuronal functions of CDK5 in development and disease. Open Biol 2020; 10:190287. [PMID: 31910742 PMCID: PMC7014686 DOI: 10.1098/rsob.190287] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cyclin-dependent kinase 5 (CDK5) represents an unusual member of the family of cyclin-dependent kinases, which is activated upon binding to non-cyclin p35 and p39 proteins. The role of CDK5 in the nervous system has been very well established. In addition, there is growing evidence that CDK5 is also active in non-neuronal tissues, where it has been postulated to affect a variety of functions such as the immune response, angiogenesis, myogenesis, melanogenesis and regulation of insulin levels. Moreover, high levels of CDK5 have been observed in different tumour types, and CDK5 was proposed to play various roles in the tumorigenic process. In this review, we discuss these various CDK5 functions in normal physiology and disease, and highlight the therapeutic potential of targeting CDK5.
Collapse
Affiliation(s)
- Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Tokutake Y, Yamada K, Hayashi S, Arai W, Watanabe T, Yonekura S. IRE1-XBP1 Pathway of the Unfolded Protein Response Is Required during Early Differentiation of C2C12 Myoblasts. Int J Mol Sci 2019; 21:ijms21010182. [PMID: 31888027 PMCID: PMC6981822 DOI: 10.3390/ijms21010182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
In skeletal muscle, myoblast differentiation results in the formation of multinucleated myofibers. Although recent studies have shown that unfolded protein responses (UPRs) play an important role in intracellular remodeling and contribute to skeletal muscle differentiation, the involvement of IRE1-XBP1 signaling, a major UPR signaling pathway, remains unclear. This study aimed to investigate the effect of the IRE1-XBP1 pathway on skeletal muscle differentiation. In C2C12 cells, knockdown of IRE1 and XBP1 in cells remarkably suppressed differentiation. In addition, apoptosis and autophagy were dramatically enhanced in the XBP1-knockdown cells, highlighting the participation of IRE1-XBP1 in cell survival maintenance with differentiation stimuli during skeletal muscle differentiation. In myogenic cells, we demonstrated that the expression of CDK5 (cyclin-dependent kinase 5) is regulated by XBP1s, and we propose that XBP1 regulates the expression of MyoD family genes via the induction of CDK5. In conclusion, this study revealed that IRE1-XBP1 signaling plays critical roles in cell viability and the expression of differentiation-related genes in predifferentiated myoblasts and during the early differentiation phase.
Collapse
Affiliation(s)
- Yukako Tokutake
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan;
| | - Keita Yamada
- Department of Biomedical Engineering, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (K.Y.); (S.H.); (W.A.)
| | - Satoko Hayashi
- Department of Biomedical Engineering, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (K.Y.); (S.H.); (W.A.)
| | - Wataru Arai
- Department of Biomedical Engineering, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (K.Y.); (S.H.); (W.A.)
| | - Takafumi Watanabe
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan;
| | - Shinichi Yonekura
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan;
- Department of Biomedical Engineering, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (K.Y.); (S.H.); (W.A.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan
- Correspondence: ; Tel.: +81-265-77-1443
| |
Collapse
|
7
|
Lindqvist J, Torvaldson E, Gullmets J, Karvonen H, Nagy A, Taimen P, Eriksson JE. Nestin contributes to skeletal muscle homeostasis and regeneration. J Cell Sci 2017; 130:2833-2842. [PMID: 28733456 DOI: 10.1242/jcs.202226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/12/2017] [Indexed: 01/15/2023] Open
Abstract
Nestin, a member of the cytoskeletal family of intermediate filaments, regulates the onset of myogenic differentiation through bidirectional signaling with the kinase Cdk5. Here, we show that these effects are also reflected at the organism level, as there is a loss of skeletal muscle mass in nestin-/- (NesKO) mice, reflected as reduced lean (muscle) mass in the mice. Further examination of muscles in male mice revealed that these effects stemmed from nestin-deficient muscles being more prone to spontaneous regeneration. When the regeneration capacity of the compromised NesKO muscle was tested by muscle injury experiments, a significant healing delay was observed. NesKO satellite cells showed delayed proliferation kinetics in conjunction with an elevation in p35 (encoded by Cdk5r1) levels and Cdk5 activity. These results reveal that nestin deficiency generates a spontaneous regenerative phenotype in skeletal muscle that relates to a disturbed proliferation cycle that is associated with uncontrolled Cdk5 activity.
Collapse
Affiliation(s)
- Julia Lindqvist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Elin Torvaldson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Josef Gullmets
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland.,Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Henok Karvonen
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
8
|
Herpes simplex virus 1 upregulates p35, alters CDK-5 localization, and stimulates CDK-5 kinase activity during acute infection in neurons. J Virol 2015; 89:5171-5. [PMID: 25694605 DOI: 10.1128/jvi.00106-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 01/20/2023] Open
Abstract
The cyclin-dependent kinase 5 (CDK-5) activating protein, p35, is important for acute herpes simplex virus 1 (HSV-1) replication in mice. This report shows that HSV-1 increases p35 levels, changes the primary localization of CDK-5 from the nucleus to the cytoplasm, and enhances CDK-5 activity during lytic or acute infection. Infected neurons also stained positive for the DNA damage response (DDR) marker γH2AX. We propose that CDK-5 is activated by the DDR to protect infected neurons from apoptosis.
Collapse
|
9
|
Abstract
The function of muscle is to contract, which means to exert force on a substrate. The adaptations required for skeletal muscle differentiation, from a prototypic cell, involve specialization of housekeeping cytoskeletal contracting and supporting systems into crystalline arrays of proteins. Here I discuss the changes that all three cytoskeletal systems (microfilaments, intermediate filaments, and microtubules) undergo through myogenesis. I also discuss their interaction, through the membrane, to extracellular matrix and to other cells, where force will be exerted during contraction. The three cytoskeletal systems are necessary for the muscle cell and must exert complementary roles in the cell. Muscle is a responsive system, where structure and function are integrated: the structural adaptations it undergoes depend on force production. In this way, the muscle cytoskeleton is a portrait of its physiology. I review the cytoskeletal proteins and structures involved in muscle function and focus particularly on their role in myogenesis, the process by which this incredible muscle machine is made. Although the focus is on skeletal muscle, some of the discussion is applicable to cardiac and smooth muscle.
Collapse
|
10
|
Bankston AN, Li W, Zhang H, Ku L, Liu G, Papa F, Zhao L, Bibb JA, Cambi F, Tiwari-Woodruff SK, Feng Y. p39, the primary activator for cyclin-dependent kinase 5 (Cdk5) in oligodendroglia, is essential for oligodendroglia differentiation and myelin repair. J Biol Chem 2013; 288:18047-57. [PMID: 23645679 DOI: 10.1074/jbc.m113.453688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether neurons and OLs employ similar or distinct mechanisms to regulate Cdk5 activity remains elusive. We report here that in contrast to neurons that harbor high levels of two Cdk5 activators, p35 and p39, OLs express abundant p39 but negligible p35. In addition, p39 is selectively up-regulated in OLs during differentiation along with elevated Cdk5 activity, whereas p35 expression remains unaltered. Specific knockdown of p39 by siRNA significantly attenuates Cdk5 activity and OL differentiation without affecting p35. Finally, expression of p39, but not p35, is increased during myelin repair, and remyelination is impaired in p39(-/-) mice. Together, these results reveal that neurons and OLs harbor distinct preference of Cdk5 activators and demonstrate important functions of p39-dependent Cdk5 activation in OL differentiation during de novo myelin development and myelin repair.
Collapse
Affiliation(s)
- Andrew N Bankston
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bai B, Liang Y, Xu C, Lee MYK, Xu A, Wu D, Vanhoutte PM, Wang Y. Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis. Circulation 2012; 126:729-40. [PMID: 22753194 DOI: 10.1161/circulationaha.112.118778] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial senescence represents one of the major characteristics of vascular aging and promotes the development of atherosclerosis. Sirtuin-1 (SIRT1) is an NAD-dependent deacetylase possessing antiaging activities. During the occurrence of endothelial senescence, both the expression and activity of SIRT1 are downregulated. The present study was designed to investigate the molecular mechanisms contributing to the loss-of-SIRT1 function in senescent endothelial cells. METHODS AND RESULTS After repetitive passages, primary cultures of porcine aortic endothelial cells exhibited a severe senescence phenotype. Western blotting revealed that phosphorylation of SIRT1 at serine 47 (S47) was significantly enhanced in senescent endothelial cells. S47 phosphorylation was stimulated by agents promoting senescence and attenuated by drugs with antisenescence properties. Mutation of S47 to nonphosphorable alanine (S47A) enhanced whereas replacing S47 with phospho-mimicking aspartic acid (S47D) abolished the antisenescent, growth-promoting, and LKB1-downregulating actions of SIRT1. Phosphorylation at S47 was critically involved in the nuclear retention of SIRT1 but abolished its association with the telomeric repeat-binding factor 2-interacting protein 1. Cyclin-dependent kinase 5 (CDK5) was identified as an SIRT1 kinase modulating S47 phosphorylation. Knockdown or inhibition of CDK5 reduced the number of senescent endothelial cells, promoted nuclear exportation of SIRT1, and attenuated the expression of inflammatory genes in porcine aortic endothelial cells. The truncated regulatory subunit of CDK5, P25, accumulated in senescent porcine aortic endothelial cells and atherosclerotic aortas. Long-term treatment with roscovitine, a CDK5 inhibitor, blocked the development of cellular senescence and atherosclerosis in aortas of hypercholesterolemic apolipoprotein E-deficient mice. CONCLUSION CDK5-mediated hyperphosphorylation of SIRT1 facilitates the development of endothelial senescence and atherosclerosis.
Collapse
Affiliation(s)
- Bo Bai
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang J, Li H, Zhou T, Zhou J, Herrup K. Cdk5 levels oscillate during the neuronal cell cycle: Cdh1 ubiquitination triggers proteosome-dependent degradation during S-phase. J Biol Chem 2012; 287:25985-94. [PMID: 22654103 DOI: 10.1074/jbc.m112.343152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When cell cycle re-activation occurs in post-mitotic neurons it places them at increased risk for death. The cell cycle/cell death association has been reported in many neurodegenerative diseases including Alzheimer disease (AD), yet the mechanisms by which a normal neuron suppresses the cycle remain largely unknown. Recently, our laboratory has shown that Cdk5 (cyclin-dependent kinase 5) is a key player in this protective function. When a neuron is under stress, Cdk5 is transported to the cytoplasm; this eliminates its cell cycle suppression activity and the neuron re-enters S-phase. In the current study we show that a similar principle applies during a normal cell cycle. When a neuronal cell enters S phase, Cdk5 is transported to the cytoplasm where it is ubiquitinated by the E3 ligase APC-Cdh1. Ubiquitinated Cdk5 is then rapidly degraded by the proteasome. The ubiquitination site of Cdk5 appears to be in the p35 binding area; in the presence of high levels of p35, the ubiquitination of Cdk5 was blocked, and the degradation in S phase was attenuated. The data suggest an unsuspected role for Cdk5 during the progression of a normal cell cycle and offer new pharmaceutical targets for regulating neuronal cell cycling and cell death.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Neuroscience, Xiamen University, Xiamen, Fujian, China.
| | | | | | | | | |
Collapse
|
13
|
Hyder CL, Isoniemi KO, Torvaldson ES, Eriksson JE. Insights into intermediate filament regulation from development to ageing. J Cell Sci 2011; 124:1363-72. [PMID: 21502133 DOI: 10.1242/jcs.041244] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermediate filament (IF) proteins comprise a large family with more than 70 members. Initially, IFs were assumed to provide only structural reinforcement for the cell. However, IFs are now known to be dynamic structures that are involved in a wide range of cellular processes during all stages of life, from development to ageing, and during homeostasis and stress. This Commentary discusses some lesser-known functional and regulatory aspects of IFs. We specifically address the emerging roles of nestin in myogenesis and cancer cell migration, and examine exciting evidence on the regulation of nestin and lamin A by the notch signalling pathway, which could have repercussions for our understanding of the roles of IF proteins in development and ageing. In addition, we discuss the modulation of the post-translational modifications of neuronally expressed IFs and their protein-protein interactions, as well as IF glycosylation, which not only has a role in stress and ageing, but might also regulate IFs during development. Although many of these recent findings are still preliminary, they nevertheless open new doors to explore the functionality of the IF family of proteins.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
14
|
Contreras-Vallejos E, Utreras E, Gonzalez-Billault C. Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cell Signal 2011; 24:44-52. [PMID: 21924349 DOI: 10.1016/j.cellsig.2011.08.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/29/2011] [Indexed: 12/23/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that is mostly active in the nervous system, where it regulates several processes such as neuronal migration, actin and microtubule dynamics, axonal guidance, and synaptic plasticity, among other processes. In addition to these known functions, in the past few years, novel roles for Cdk5 outside of the nervous system have been proposed. These include roles in gene transcription, vesicular transport, apoptosis, cell adhesion, and migration in many cell types and tissues such as pancreatic cells, muscle cells, neutrophils, and others. In this review, we will summarize the recently studied non-neuronal functions of Cdk5, with a thorough analysis of the biological consequences of these novel roles.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Department of Biology and Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
15
|
Pallari HM, Lindqvist J, Torvaldson E, Ferraris SE, He T, Sahlgren C, Eriksson JE. Nestin as a regulator of Cdk5 in differentiating myoblasts. Mol Biol Cell 2011; 22:1539-49. [PMID: 21346193 PMCID: PMC3084676 DOI: 10.1091/mbc.e10-07-0568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 01/06/2011] [Accepted: 02/16/2011] [Indexed: 12/11/2022] Open
Abstract
Many types of progenitor cells are distinguished by the expression of the intermediate filament protein nestin, a frequently used stem cell marker, the physiological roles of which are still unknown. Whereas myogenesis is characterized by dynamically regulated nestin levels, we studied how altering nestin levels affects myoblast differentiation. Nestin determined both the onset and pace of differentiation. Whereas depletion of nestin by RNAi strikingly accelerated the process, overexpression of nestin completely inhibited differentiation. Nestin down-regulation augmented the early stages of differentiation, at the level of cell-cycle withdrawal and expression of myogenic markers, but did not affect proliferation of undifferentiated dividing myoblasts. Nestin regulated the cleavage of the Cdk5 activator protein p35 to its degradation-resistant form, p25. In this way, nestin has the capacity to halt myoblast differentiation by inhibiting sustained activation of Cdk5 by p25, which is critical for the progress of differentiation. Our results imply that nestin regulates the early stages of myogenesis rather than maintains the undifferentiated state of progenitor cells. In the bidirectional interrelationship between nestin and Cdk5, Cdk5 regulates the organization and stability of its own nestin scaffold, which in turn controls the effects of Cdk5. This nestin-Cdk5 cross-talk sets the pace of muscle differentiation.
Collapse
Affiliation(s)
- Hanna-Mari Pallari
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521, Turku, Finland
- Department of Biosciences, Åbo Akademi University, FI-20520, Turku, Finland
| | - Julia Lindqvist
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521, Turku, Finland
- Department of Biosciences, Åbo Akademi University, FI-20520, Turku, Finland
| | - Elin Torvaldson
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521, Turku, Finland
- Department of Biosciences, Åbo Akademi University, FI-20520, Turku, Finland
| | - Saima E. Ferraris
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521, Turku, Finland
- Department of Biosciences, Åbo Akademi University, FI-20520, Turku, Finland
| | - Tao He
- VTT Medical Biotechnology, FI-20520, Turku, Finland
| | - Cecilia Sahlgren
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521, Turku, Finland
- Department of Biosciences, Åbo Akademi University, FI-20520, Turku, Finland
| | - John E. Eriksson
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521, Turku, Finland
- Department of Biosciences, Åbo Akademi University, FI-20520, Turku, Finland
| |
Collapse
|
16
|
Naylor RW, Collins RJ, Philpott A, Jones EA. Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size. Organogenesis 2010; 5:201-10. [PMID: 20539739 DOI: 10.4161/org.5.4.9973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/31/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022] Open
Abstract
The Xenopus laevis cyclin dependent kinase inhibitor p27(Xic1) has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27(Xic1) is expressed in the developing kidney in the nephrostomal regions. Using overexpression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27(Xic1) regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27(Xic1) expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27(Xic1) are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27(Xic1), and reveal its differentiation function is not universally utilised in all developing tissues.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Biological Sciences; and Warwick University; Coventry, UK
| | | | | | | |
Collapse
|
17
|
de Thonel A, Ferraris SE, Pallari HM, Imanishi SY, Kochin V, Hosokawa T, Hisanaga SI, Sahlgren C, Eriksson JE. Protein kinase Czeta regulates Cdk5/p25 signaling during myogenesis. Mol Biol Cell 2010; 21:1423-34. [PMID: 20200223 PMCID: PMC2854099 DOI: 10.1091/mbc.e09-10-0847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Atypical protein kinase Cζ (PKCζ) is emerging as a mediator of differentiation. Here, we describe a critical role for PKCζ during myogenic differentiation. Our results identify PKCζ as a controller of myogenic differentiation by its regulation of Cdk5. Atypical protein kinase Cζ (PKCζ) is emerging as a mediator of differentiation. Here, we describe a novel role for PKCζ in myogenic differentiation, demonstrating that PKCζ activity is indispensable for differentiation of both C2C12 and mouse primary myoblasts. PKCζ was found to be associated with and to regulate the Cdk5/p35 signaling complex, an essential factor for both neuronal and myogenic differentiation. Inhibition of PKCζ activity prevented both myotube formation and simultaneous reorganization of the nestin intermediate filament cytoskeleton, which is known to be regulated by Cdk5 during myogenesis. p35, the Cdk5 activator, was shown to be a specific phosphorylation target of PKCζ. PKCζ-mediated phosphorylation of Ser-33 on p35 promoted calpain-mediated cleavage of p35 to its more active and stable fragment, p25. Strikingly, both calpain activation and the calpain-mediated cleavage of p35 were shown to be PKCζ-dependent in differentiating myoblasts. Overall, our results identify PKCζ as a controller of myogenic differentiation by its regulation of the phosphorylation-dependent and calpain-mediated p35 cleavage, which is crucial for the amplification of the Cdk5 activity that is required during differentiation.
Collapse
Affiliation(s)
- Aurélie de Thonel
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, 20521 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lozano JC, Schatt P, Vergé V, Gobinet J, Villey V, Peaucellier G. CDK5 is present in sea urchin and starfish eggs and embryos and can interact with p35, cyclin E and cyclin B3. Mol Reprod Dev 2010; 77:449-61. [DOI: 10.1002/mrd.21165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Abstract
Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase that is activated mostly by association with its activators, p35 and p39. Initially projected as a neuron-specific kinase, cdk5 is expressed ubiquitously and its kinase activity solely depends on the presence of its activators, which are also found in some non-neuronal tissues. As a multifunctional protein, cdk5 has been linked to axonogenesis, cell migration, exocytosis, neuronal differentiation and apoptosis. Cdk5 plays a critical role in functions other than normal physiology, especially in neurodegeneration. Its contribution to both normal physiological as well as pathological processes is mediated by its specific substrates. Cdk5-null mice are embryonically lethal, therefore making it difficult to study precisely what cdk5 does to the nervous system at early stages of development, be it neuron development or programmed cell death. Zebrafish model system bypasses the impediment, as it is amenable to reverse genetics studies. One of the functions that we have followed for the cdk5 ortholog in zebrafish in vivo is its effect on the Rohon-Beard (RB) neurons. RB neurons are the primary sensory spinal neurons that die during the first two days of zebrafish development eventually to be replaced by the dorsal root ganglia (DRG). Based on ours studies and others', here we discuss possible mechanisms that may be involved in cdk5's role in RB neuron development and survival.
Collapse
|
20
|
Zhang J, Herrup K. Cdk5 and the non-catalytic arrest of the neuronal cell cycle. Cell Cycle 2008; 7:3487-90. [PMID: 19001851 DOI: 10.4161/cc.7.22.7045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a nontraditional Cdk that is primarily active in postmitotic neurons. An important core function of Cdk5 involves regulating the migration and maturation of embryonic post-mitotic neurons. These developmental roles are dependent on its kinase activity. Initially, there was little evidence indicating a role for Cdk5 in normal cell cycle regulation. Recent data from our lab, however, suggest that Cdk5 plays a crucial role as a cell cycle suppressor in normal post-mitotic neurons and neuronal cell lines. It performs this foundation in a kinase independent manner. Cdk5 normally found in both nucleus and cytoplasm, but it exits the nucleus in neurons risk to death in an AD patient's brain. The shift in sub-cellular location is accompanied by cell cycle re-entry and neuronal death. This "new" function of Cdk5 raises cautions in the design of Cdk5-directed drugs for the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, USA
| | | |
Collapse
|
21
|
Asada A, Yamamoto N, Gohda M, Saito T, Hayashi N, Hisanaga SI. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. J Neurochem 2008; 106:1325-36. [PMID: 18507738 DOI: 10.1111/j.1471-4159.2008.05500.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cdk5 is a member of the cyclin-dependent kinases (Cdks), activated by the neuron-specific activator p39 or p35. The activators also determine the cytoplasmic distribution of active Cdk5, but the mechanism is not yet known. In particular, little is known for p39. p39 and p35 contain localization motifs, such as a second Gly for myristoylation and Lys clusters in the N-terminal p10 region. Using mutant constructs, we investigated the cellular distribution mechanism. We observed that p39 localizes the active Cdk5 complex in the perinuclear region and at the plasma membrane as does p35. We demonstrated the myristoylation of both p39 and p35, and found that it is a major determinant of their membrane association. Plasma membrane targeting depends on the amino acid sequence containing the Lys-cluster in the N-terminal p10 region. In contrast, a non-myristoylated Ala mutant (p39G2A or p35G2A) showed nuclear localization with stronger accumulation of p39G2A than p35G2A. These results indicate that myristoylation regulates the membrane association of p39 as well as p35 and that the Lys cluster controls their trafficking to the plasma membrane. The differential nuclear accumulation of p39 and p35 suggests their segregated functions, p35-Cdk5 in the cytoplasm and p39-Cdk5 in the nucleus.
Collapse
Affiliation(s)
- Akiko Asada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Hyder CL, Pallari HM, Kochin V, Eriksson JE. Providing cellular signposts - Post-translational modifications of intermediate filaments. FEBS Lett 2008; 582:2140-8. [DOI: 10.1016/j.febslet.2008.04.064] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
|
23
|
Dhariwala FA, Rajadhyaksha MS. An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 2008; 28:351-69. [PMID: 18183483 DOI: 10.1007/s10571-007-9242-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/14/2007] [Indexed: 12/23/2022]
Abstract
The proline-directed serine threonine kinase, Cdk5, is an unusual molecule that belongs to the well-known large family of proteins, cyclin-dependent kinases (Cdks). While it has significant homology with the mammalian Cdk2 and yeast cdc2, unlike the other Cdks, it has little role to play in cell cycle regulation and is activated by non-cyclin proteins, p35 and p39. It phosphorylates a spectrum of proteins, most of them associated with cell morphology and motility. A majority of known substrates of Cdk5 are cytoskeletal elements, signalling molecules or regulatory proteins. It also appears to be an important player in cell-cell communication. Highly conserved, Cdk5 is most abundant in the nervous system and is of special interest to neuroscientists as it appears to be indispensable for normal neural development and function. In normal cells, transcription and activity of Cdk5 is tightly regulated. Present essentially in post-mitotic neurons, its normal activity is obligatory for migration and differentiation of neurons in developing brain. Deregulation of Cdk5 has been implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. Regulators of Cdk5 activity are considered as potential therapeutic molecules for degenerative diseases. This review focuses on the role of Cdk5 in neural cells as regulator of cytoskeletal elements, axonal guidance, membrane transport, synaptogenesis and cell survival in normal and pathological conditions.
Collapse
Affiliation(s)
- Fatema A Dhariwala
- Department of Life Sciences, Sophia College, B. Desai Road, Mumbai 400026, India
| | | |
Collapse
|
24
|
Rosales JL, Sarker K, Ho N, Broniewska M, Wong P, Cheng M, van der Hoorn FA, Lee KY. ODF1 Phosphorylation by Cdk5/p35 Enhances ODF1-OIP1 Interaction. Cell Physiol Biochem 2008; 20:311-8. [PMID: 17762160 DOI: 10.1159/000107517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2007] [Indexed: 11/19/2022] Open
Abstract
Cdk5 and p35 are integral components of the sperm tail outer dense fibers (ODFs), which contribute to the distinct morphology and function of the sperm tail. In this study, we sought to characterize and investigate the significance of Cdk5/p35 association with ODFs. We show that ODF2 interacts with Cdk5 and p35 but not with the Cdk5/p35 heterodimer. By using deletion mutants, the ODF2 binding region in p35 was mapped to residues 122 to 198. This overlaps the Cdk5 binding region in p35, explaining the inability of ODF2 to bind to the Cdk5/p35 complex. In vitro phosphorylation assay showed that although Cdk5/p35 does not phosphorylate ODF2, it phosphorylates ODF1. Mass spectrometry revealed that Cdk5/p35 specifically phosphorylates Ser193 in the ODF1 C-terminal region containing the Cys-X-Pro motif, the interaction site for the novel RING finger protein, ODF1 interacting protein (OIP1), a candidate E3 ubiquitin ligase, that also localizes in the sperm tail. Cdk5 phosphorylation of ODF1 Ser193 results in enhanced ODF1-OIP1 interaction. These findings suggest that Cdk5 may be important in promoting ODF1 degradation, and potentially, the detachment and fragmentation of the sperm tail following fertilization.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, Southern Alberta Cancer Research and Hotchkiss Brain Institutes, The University of Calgary, Calgary, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Movassagh M, Philpott A. Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1. Cardiovasc Res 2008; 79:436-47. [PMID: 18442987 PMCID: PMC2492727 DOI: 10.1093/cvr/cvn105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aims Cyclin-dependent kinase inhibitors (CDKIs) play a critical role in negatively regulating the proliferation of cardiomyocytes, although their role in cardiac differentiation remains largely undetermined. We have shown that the most prominent CDKI in Xenopus, p27Xic1(Xic1), plays a role in neuronal and myotome differentiation beyond its ability to arrest the cell cycle. Thus, we investigated whether it plays a similar role in cardiomyocyte differentiation. Methods and results Xenopus laevis embryos were sectioned, and whole-mount antibody staining and immunofluorescence studies were carried out to determine the total number and percentage of differentiated cardiomyocytes in mitosis. Capped RNA and/or translation-blocking Xic1 morpholino antisense oligonucleotides (Xic1Mo) were microinjected into embryos, and their role on cardiac differentiation was assessed by in situ hybridization and/or PCR. We show that cell-cycling post-gastrulation is not essential for cardiac differentiation in Xenopus embryos, and conversely that some cells can express markers of cardiac differentiation even when still in cycle. A targeted knock-down of Xic1 protein by Xic1Mo microinjection decreases the expression of markers of cardiac differentiation, which can be partially rescued by co-injection of full-length Xic1 RNA, demonstrating that Xic1 is essential for heart formation. Furthermore, using deleted and mutant forms of Xic1, we show that neither its abilities to inhibit the cell cycle nor the great majority of CDK kinase activity are essential for Xic1’s function in cardiomyocyte differentiation, an activity that resides in the N-terminus of the molecule. Conclusion Altogether, our results demonstrate that the CDKI Xic1 is required in Xenopus cardiac differentiation, and that this function is localized at its N-terminus, but it is distinct from its ability to arrest the cell cycle and inhibit overall CDK kinase activity. Hence, these results suggest that CDKIs play an important direct role in driving cardiomyocyte differentiation in addition to cell-cycle regulation.
Collapse
Affiliation(s)
- Mehregan Movassagh
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XZ, UK
| | | |
Collapse
|
26
|
Presymptomatic biochemical changes in hindlimb muscle of G93A human Cu/Zn superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2008; 1782:462-8. [PMID: 18485920 DOI: 10.1016/j.bbadis.2008.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is primarily a motor neuron disorder. Intriguingly, early muscle denervation preceding motor neuron loss is observed in mouse models of ALS. Enhanced muscle vulnerability to denervation process has been suggested by accelerated muscle deterioration following peripheral nerve injury in an ALS mouse model. Here we provide evidence of biochemical changes in the hindlimb muscle of young, presymptomatic G93A hSOD1 transgenic mice. In this report, we demonstrate that cdk5 activity is reduced in hindlimb muscle of 27-day-old G93A hSOD1 transgenic mice. In vitro analysis revealed mutant hSOD1-mediated suppression of cdk5 activity. Furthermore, the decrease in muscle cdk5 activity was accompanied by a significant reduction in MyoD and cyclin D1 levels. These early muscle changes raise the possibility that the progressive deterioration of muscle function is potentiated by altered muscle biochemistry in these mice at a very young, presymptomatic age.
Collapse
|
27
|
Chen TC, Lai YK, Yu CK, Juang JL. Enterovirus 71 triggering of neuronal apoptosis through activation of Abl-Cdk5 signalling. Cell Microbiol 2007; 9:2676-88. [PMID: 17581253 DOI: 10.1111/j.1462-5822.2007.00988.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The molecular mechanism behind what causes an infection of Enterovirus 71 (EV71) in young children to result in severe neurological diseases is unclear. Herein, we show that Cdk5, a critical signalling effector of various neurotoxic insults in the brain, is activated by EV71 infection of neuronal cells. EV71-induced neuronal apoptosis could be effectively repressed by blocking either Cdk5 kinase activity or its protein expression. Moreover, EV71-induced Cdk5 activation was modulated by c-Abl. The suppression of c-Abl kinase activity by STI571 notably repressed both the Cdk5 activation and neuronal apoptosis in cells infected with EV71. Although EV71 also induces apoptosis in non-neuronal cells, it did not affect Abl and Cdk5 activities in several non-neuronal cell lines. Intriguingly, coxsackievirus A16 (CA16), a genetically closely related serotype to EV71 that usually does not induce severe neurological disorders, could only weakly stimulate Abl, but not Cdk5 kinase activity. Taken together, our data suggest a serotype- and cell type-specific mechanism, by which EV71 induces Abl kinase activity, which in turn triggers Cdk5-signalling for neuronal apoptosis.
Collapse
Affiliation(s)
- Tsan-Chi Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | |
Collapse
|
28
|
Kanungo J, Li BS, Goswami M, Zheng YL, Ramchandran R, Pant HC. Cloning and characterization of zebrafish (Danio rerio) cyclin-dependent kinase 5. Neurosci Lett 2006; 412:233-8. [PMID: 17178437 PMCID: PMC2696171 DOI: 10.1016/j.neulet.2006.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/31/2006] [Accepted: 11/03/2006] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) is a ubiquitous protein activated by neuron-specific activators, p35 and p39. Cdk5 regulates neuronal migration, differentiation, axonogenesis, synaptic transmission and apoptosis. However, its role in primary neurogenesis remains unexplored. Here, we have cloned and characterized the zebrafish cdk5 ortholog. Zebrafish cdk5 is 96% identical to its human counterpart. In situ hybridization analyses demonstrated that zebrafish cdk5 transcripts are ubiquitously expressed as early as the blastula stage. At 11.5h of development, cdk5 transcripts were present in the neural plate at the domains where primary neurons begin to be specified. RT-PCR analyses showed equal levels of cdk5 transcripts up to 72 h of development. SiRNA-mediated cdk5 knockdown resulted in a reduction in primary sensory neurons of the trigeminal ganglia of the peripheral nervous system, suggesting that cdk5 plays a crucial role in the development of the peripheral nervous system.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institutes of Neurological Disorders and Stroke, Bethesda, MD 20892-4130, USA
| | - Bing-Sheng Li
- Laboratory of Neurochemistry, National Institutes of Neurological Disorders and Stroke, Bethesda, MD 20892-4130, USA
| | - Moloy Goswami
- Unit on Vertebrate Neural Development, Laboratory of Molecular Genetics, National Institute of Child Health and Development, Bethesda, MD 20892-4130, USA
| | - Ya-Li Zheng
- Laboratory of Neurochemistry, National Institutes of Neurological Disorders and Stroke, Bethesda, MD 20892-4130, USA
| | - Ramani Ramchandran
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4130, USA
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institutes of Neurological Disorders and Stroke, Bethesda, MD 20892-4130, USA
- Correspondence should be addressed to: Dr. Harish C. Pant, Ph.D., Laboratory of Neurochemistry, NINDS, NIH, Bldg. 49, Rm 2A28, 9000 Rockville Pike, Bethesda, MD 20892, Tel: 301- 402-2124, Fax: 301-496-1339, E-mail:
| |
Collapse
|
29
|
Puente LG, Voisin S, Lee REC, Megeney LA. Reconstructing the regulatory kinase pathways of myogenesis from phosphopeptide data. Mol Cell Proteomics 2006; 5:2244-51. [PMID: 16971385 DOI: 10.1074/mcp.m600134-mcp200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Multiple kinase activities are required for skeletal muscle differentiation. However, the mechanisms by which these kinase pathways converge to coordinate the myogenic process are unknown. Using multiple phosphoprotein and phosphopeptide enrichment techniques we obtained phosphopeptides from growing and differentiating C2C12 muscle cells and determined specific peptide sequences using LC-MS/MS. To place these phosphopeptides into a rational context, a bioinformatics approach was used. Phosphorylation sites were matched to known site-specific and to site non-specific kinase-substrate interactions, and then other substrates and upstream regulators of the implicated kinases were incorporated into a model network of protein-protein interactions. The model network implicated several kinases of known relevance to myogenesis including AKT, GSK3, CDK5, p38, DYRK, and MAPKAPK2 kinases. This combination of proteomics and bioinformatics technologies should offer great utility as the volume of protein-protein and kinase-substrate information continues to increase.
Collapse
Affiliation(s)
- Lawrence G Puente
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, and Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ontario K1H 8L6, Canada
| | | | | | | |
Collapse
|
30
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is recognized as an essential molecule in the brain, where it regulates several neuronal activities, including cytoskeletal remodeling and synaptic transmission. While activity of Cdk5 has primarily been associated with neurons, there are now substantial data indicating that the kinase's activity and function are more general. An increasing body of evidence has established Cdk5 kinase activity, the presence of the Cdk5 activators, p35 and p39, and Cdk5 functions in non-neuronal cells, including myocytes, pancreatic beta-cells, monocytic and neutrophilic leucocytes, glial cells and germ cells. In this review, we present the diverse roles of Cdk5 in several extraneuronal paradigms. The unique properties of each of the different cell types appear to involve distinct means of Cdk5 regulation and function. The potential mechanisms through which Cdk5 regulates extraneuronal cell activities such as exocytosis, gene transcription, wound healing and senescence are discussed.
Collapse
Affiliation(s)
- Jesusa L Rosales
- Department of Cell Biology and Anatomy, The Southern Alberta Cancer Research and Hotchkiss Brain Institutes, The University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
31
|
Sahlgren CM, Pallari HM, He T, Chou YH, Goldman RD, Eriksson JE. A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J 2006; 25:4808-19. [PMID: 17036052 PMCID: PMC1618100 DOI: 10.1038/sj.emboj.7601366] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 09/01/2006] [Indexed: 02/06/2023] Open
Abstract
The intermediate filament protein, nestin, has been implicated as an organizer of survival-determining signaling molecules. When nestin expression was related to the sensitivity of neural progenitor cells to oxidant-induced apoptosis, nestin displayed a distinct cytoprotective effect. Oxidative stress in neuronal precursor cells led to downregulation of nestin with subsequent activation of cyclin-dependent kinase 5 (Cdk5), a crucial kinase in the nervous system. Nestin downregulation was a prerequisite for the Cdk5-dependent apoptosis, as overexpression of nestin efficiently inhibited induction of apoptosis, whereas depletion of nestin by RNA interference had a sensitizing effect. When the underlying link between nestin and Cdk5 was analyzed, we observed that nestin serves as a scaffold for Cdk5, with binding restricted to a specific region following the alpha-helical domain of nestin, and that the presence and organization of nestin regulated the sequestration and activity of Cdk5, as well as the ubiquitylation and turnover of its regulator, p35. Our data imply that nestin is a survival determinant whose action is based upon a novel mode of Cdk5 regulation, affecting the targeting, activity, and turnover of the Cdk5/p35 signaling complex.
Collapse
Affiliation(s)
- Cecilia M Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Hanna-Mari Pallari
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland
| | - Tao He
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Ying-Hao Chou
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biology, Åbo Akademi University, BioCity, Turku, Finland
| |
Collapse
|
32
|
Kanungo J, Li BS, Zheng Y, Pant HC. Cyclin-dependent kinase 5 influences Rohon-Beard neuron survival in zebrafish. J Neurochem 2006; 99:251-9. [PMID: 16911583 PMCID: PMC5998666 DOI: 10.1111/j.1471-4159.2006.04114.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5), a member of the cyclin-dependent kinase family, is expressed predominantly in post-mitotic cell populations. Unlike the other cdks, cdk5 is abundant and most active in differentiated neurons. Here, we describe the function of a cdk5 ortholog in zebrafish. Cdk5 catalytic activity is meager but present in early stages of development. However, at 24 h post-fertilization (hpf), the activity is remarkably higher and continues to be high through 48 and 72 hpf. Knocking down cdk5 by micro-injection of a specific siRNA resulted in decreased cdk5 protein level accompanied by reduced kinase activity. In the cdk5 siRNA-injected embryos, the number of primary sensory Rohon-Beard (RB) neurons was significantly reduced and there were more apoptotic cells in the brain. These phenotypes were rescued by co-injection of cdk5 mRNA. Within the first two days of development, RB neurons undergo apoptosis in zebrafish. To examine whether cdk5 has a role in RB neuron survival, cdk5 mRNA was injected into the one- to two-cell embryos. In these embryos, RB neuron apoptosis was inhibited compared with the uninjected control embryos. These results suggest that in zebrafish, cdk5 influences RB neuron survival and potentially regulates early neuronal development.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
33
|
Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 2006; 70:37-120. [PMID: 16524918 PMCID: PMC1393252 DOI: 10.1128/mmbr.70.1.37-120.2006] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.
Collapse
Affiliation(s)
- Gang Ren
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
34
|
Lin L, Ye Y, Zakeri Z. p53, Apaf-1, caspase-3, and -9 are dispensable for Cdk5 activation during cell death. Cell Death Differ 2005; 13:141-50. [PMID: 16021178 DOI: 10.1038/sj.cdd.4401717] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is mostly seen in neurons, does not vary with cell cycle, and is activated in many neurodegenerative disorders and other non-neuronal pathologies, but its relationship to non-neuronal apoptosis is not understood, nor is the control of the activation of Cdk5 by its activators. The most widely studied activator of Cdk5, p35, is cleaved to p25 by calpain, an event that has been linked with activation of Cdk5 and neuronal death. Here we report that calpain-mediated Cdk5/p25 activation accompanies non-neuronal as well as neuronal cell death, suggesting that the p35/calpain/p25/Cdk5 activation sequence is a general feature of cell death. We further demonstrate that Cdk5 can be activated in the absence of p53, Apaf-1, caspase-9, and -3 during cell death, indicating that its activation relates more to cell death than to a specific pathway of apoptosis.
Collapse
Affiliation(s)
- L Lin
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | | | | |
Collapse
|
35
|
Zelenka PS, Smith J. Therapeutic potential of CDK5 inhibitors to promote corneal epithelial wound healing. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.7.875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Daniels M, Dhokia V, Richard-Parpaillon L, Ohnuma SI. Identification of Xenopus cyclin-dependent kinase inhibitors, p16Xic2 and p17Xic3. Gene 2004; 342:41-7. [PMID: 15527964 DOI: 10.1016/j.gene.2004.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/12/2004] [Accepted: 07/29/2004] [Indexed: 11/23/2022]
Abstract
The Cip/Kip family of mammalian cyclin-dependent kinase (cdk) inhibitors plays important roles in development, particularly in cell fate determination and differentiation, in addition to their function of blocking cell cycle progression. We have identified two novel members of the Kip/Cip cdk inhibitor family, p16Xic2 and p17Xic3, from Xenopus laevis. Sequence analysis revealed that p16Xic2 and p17Xic3 are orthologues of mammalian p21Cip1 and p27Kip1, respectively. Overexpression of these inhibitors results in cell cycle arrest by inhibition of cdk2 activity. Interestingly, the expression of these inhibitors is highly developmentally regulated. p16Xic2 is highly expressed in differentiating somite, tail bud, lens, and cement gland, while p17Xic3 is expressed in the central nervous system. In a retinal cell fate determination assay, both p16Xic2 and p17Xic3 have an activity that influences cell fate determination. These observations suggest that p16Xic2 and p17Xic3 might be involved in cell fate determination in a tissue-specific manner by coordinating proliferation and differentiation as observed with p27Xic1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carrier Proteins/genetics
- Cell Cycle/drug effects
- Cell Division/drug effects
- Cloning, Molecular
- Cyclin-Dependent Kinase Inhibitor Proteins
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Cyclin-Dependent Kinases/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Female
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Male
- Microinjections
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Time Factors
- Xenopus Proteins/genetics
- Xenopus laevis/embryology
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- Maki Daniels
- Department of Oncology, The Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 2XZ, UK
| | | | | | | |
Collapse
|
37
|
Gao CY, Stepp MA, Fariss R, Zelenka P. Cdk5 regulates activation and localization of Src during corneal epithelial wound closure. J Cell Sci 2004; 117:4089-98. [PMID: 15280426 DOI: 10.1242/jcs.01271] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that Cdk5, a member of the cyclin-dependent-kinase family, regulates adhesion and migration in a mouse corneal epithelial cell line. Here, we extend these findings to corneal wound healing in vivo and examine the mechanism linking Cdk5 to cytoskeletal reorganization and migration. Cdk5 was overexpressed in the corneal epithelium of transgenic mice under control of the ALDH3 promoter. Elevated Cdk5 expression retarded corneal debridement wound closure in these animals and suppressed remodeling of the actin cytoskeleton. Conversely, the Cdk5 inhibitor, olomoucine, accelerated debridement wound healing in organ cultured eyes of normal mice, caused migrating cells to separate from the epithelial cell sheet, and increased the level of activated Src(pY416) along the wound edge. To explore the relationship between Cdk5 and Src in greater detail, we examined scratch-wounded cultures of corneal epithelial cells. Src was activated in cells along the wound edge and blocking this activation with the Src kinase inhibitor, PP1, inhibited wound closure by 85%. Inhibiting Cdk5 activity with olomoucine or a dominant negative construct, Cdk5T33, increased the concentration of Src(pY416), shifted its subcellular localization to the cell periphery and enhanced wound closure. Cdk5(pY15), an activated form of Cdk5, also appeared along the wound edge. Inhibiting Src activity with PP1 blocked the appearance of Cdk5(pY15), suggesting that Cdk5 phosphorylation is Src dependent. Cdk5 and Src co-immunoprecipitated from scratch-wounded cultures, demonstrating that both kinases are part of an intracellular protein complex. These findings indicate that Cdk5 exerts its effects on cell migration during corneal epithelial wound healing by regulating the activation and localization of Src.
Collapse
Affiliation(s)
- Chun Y Gao
- National Eye Institute, NIH, Building 7, 7 Memorial Drive MSC 0704, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
38
|
Sarker KP, Lee KY. L6 myoblast differentiation is modulated by Cdk5 via the PI3K–AKT–p70S6K signaling pathway. Oncogene 2004; 23:6064-70. [PMID: 15208659 DOI: 10.1038/sj.onc.1207819] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cdk5 regulates myogenesis but the signaling cascade through which Cdk5 modulates this process remains to be characterized. Here, we investigated whether PI3K, Akt, p70S6K, p38 MAPK, p44/42 MAPK, and Egr-1 serve as upstream regulators of Cdk5 during L6 myoblast differentiation. Upon serum reduction, we found that besides elevated expression of Cdk5 and its activator, p35, and increased Cdk5/p35 activity, Egr-1, Akt, p70S6K, and p38 MAPK activity were upregulated in differentiating L6 cells. However, p44/42 MAPK was downregulated and SAPK/JNK was unaffected. LY294002, a PI3K inhibitor, blocked the activation of Akt and p70S6K, indicating that Akt and p70S6K activation is linked to PI3K activation. The lack of LY294002 effect on p38 MAPK suggests that p38 MAPK activation is not associated with PI3K activation. Rapamycin, a specific inhibitor of FRAP/mTOR (the upstream kinase of p70S6K), also blocked p70S6K activation, indicating the involvement of FRAP/mTOR activation. LY294002 and rapamycin also blocked the enhancement of Egr-1 level, Cdk5 activity, and myogenin expression, suggesting that upregulation of these factors is coupled to PI3K-p70S6K activation. Overexpression of dominant-negative-Akt also reduced Cdk5/p35 activity and myogenin expression, indicating that the PI3K-p70S6K-Egr-1-Cdk5 signaling cascade is linked to Akt activation. SB2023580, a p38 MAPK inhibitor, had no effect on p70S6K, Egr-1, or Cdk5 activity, suggesting that p38 MAPK activation lies in a pathway distinct from the PI3K-Akt-p70S6K-Egr-1 pathway that we identify as the upstream modulator of Cdk5 activity during L6 myoblast differentiation.
Collapse
Affiliation(s)
- Krishna P Sarker
- Department of Cell Biology and Anatomy, Cancer Biology and Neuroscience Research Groups, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
39
|
Abstract
Cellular senescence is a tumor-suppressive process characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated beta-galactosidase (SA-beta-Gal). We report here a role for CDK5 in induction of senescent cytoskeletal changes. CDK5 activation is upregulated in senescing cells. The increased activity of CDK5 further reduces GTPase Rac1 activity and Pak activation. The repression of the activity of the GTPase Rac1 by CDK5 is required for expression of the senescent phenotype. CDK5 regulation of Rac1 activity is necessary for actin polymerization accompanying senescent morphology in response to expression of pRb, activated Ras, or continuous passage. Inhibition of CDK5 attenuates SA-beta-Gal expression and blocks actin polymerization. These results point to a unique, nonneuronal role for CDK5 in regulation of Rac1 activity in senescence, illuminating the mechanisms underlying induction of senescence and the senescent shape change.
Collapse
Affiliation(s)
- Kamilah Alexander
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
40
|
Richard-Parpaillon L, Cosgrove RA, Devine C, Vernon AE, Philpott A. G1/S phase cyclin-dependent kinase overexpression perturbs early development and delays tissue-specific differentiation in Xenopus. Development 2004; 131:2577-86. [PMID: 15115752 DOI: 10.1242/dev.01121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell division and differentiation are largely incompatible but the molecular links between the two processes are poorly understood. Here, we overexpress G1/S phase cyclins and cyclin-dependent kinases in Xenopus embryos to determine their effect on early development and differentiation. Overexpression of cyclin E prior to the midblastula transition (MBT), with or without cdk2, results in a loss of nuclear DNA and subsequent apoptosis at early gastrula stages. By contrast, overexpressed cyclin A2 protein does not affect early development and, when stabilised by binding to cdk2, persists to tailbud stages. Overexpression of cyclin A2/cdk2 in post-MBT embryos results in increased proliferation specifically in the epidermis with concomitant disruption of skin architecture and delay in differentiation. Moreover, ectopic cyclin A2/cdk2 also inhibits differentiation of primary neurons but does not affect muscle. Thus, overexpression of a single G1/S phase cyclin/cdk pair disrupts the balance between division and differentiation in the early vertebrate embryo in a tissue-specific manner.
Collapse
Affiliation(s)
- Laurent Richard-Parpaillon
- Department of Oncology, Cambridge University, Hutchison/MRC Research Centre, Addenbrookes Hospital, Hills Road, Cambridge CB2 2XZ, UK.
| | | | | | | | | |
Collapse
|
41
|
Fu AKY, Fu WY, Ng AKY, Chien WWY, Ng YP, Wang JH, Ip NY. Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci U S A 2004; 101:6728-33. [PMID: 15096606 PMCID: PMC404113 DOI: 10.1073/pnas.0307606100] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Indexed: 11/18/2022] Open
Abstract
The activity of cyclin-dependent kinase 5 (Cdk5) depends on the association with one of its activators, p35 and p39, which are prominently expressed in the nervous system. Studies on the repertoire of protein substrates for Cdk5 have implicated the involvement of Cdk5 in neuronal migration and synaptic plasticity. Our recent analysis of the sequence of signal transducer and activator of transcription (STAT)3, a key transcription factor, reveals the presence of potential Cdk5 phosphorylation site. We report here that the Cdk5/p35 complex associates with STAT3 and phosphorylates STAT3 on the Ser-727 residue in vitro and in vivo. Intriguingly, whereas the Ser phosphorylation of STAT3 can be detected in embryonic and postnatal brain and muscle of wild-type mice, it is essentially absent from those of Cdk5-deficient embryos. In addition, treatment of cultured myotubes with neuregulin enhances the Ser phosphorylation of STAT3 and transcription of STAT3 target genes, such as c-fos and junB, in a Cdk5-dependent manner. Both the DNA-binding activity of STAT3 and the transcription of specific target genes, such as fibronectin, are reduced in Cdk5-deficient muscle. Taken together, these results reveal a physiological role of Cdk5 in regulating STAT3 phosphorylation and modulating its transcriptional activity.
Collapse
Affiliation(s)
- Amy K Y Fu
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
|
44
|
Watanabe Y, Tsujimura A, Tabira T, Hashimoto-Gotoh T. Differential expression of presenilin-α and -β (PSα and PSβ) in Xenopus laevis: embryonic phosphorylation of PSα. Gene 2003; 314:165-72. [PMID: 14527729 DOI: 10.1016/s0378-1119(03)00726-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in genes encoding the highly homologous proteins, presenilin-1 and -2 (PS1 and PS2), are linked to the development of early-onset Alzheimer's disease. On the other hand, presenilins are known to play a critical role(s) in cell fate decisions during embryonic development in Caenorhabditis elegans. The messenger RNAs (mRNAs) of amphibian presenilin homologues PSalpha and PSbeta are most abundantly synthesized in the brain and the ovary, but are differentially degraded upon oocyte maturation and at the midblastula transition (MBT), respectively. In this study, we examined the spatiotemporal distribution of PSalpha and PSbeta proteins and their post-translational modification. The results were essentially consistent with the mRNA data and revealed moreover that PSalpha was present exclusively as processed molecules in the early embryos, while PSbeta was present mainly as unprocessed molecules (90%). Furthermore, the C-terminal fragment (CTF) of PSalpha was phosphorylated upon oocyte maturation and dephosphorylated at MBT, while no phosphorylation of the PSbeta CTF was detectable. Human PS1 CTF exogenously injected was also phosphorylated in Xenopus oocytes induced to mature in vitro by progesterone treatment. Two phosphorylation loci were mapped at Thr(320) and Ser(334) in the hydrophilic loop region of PSalpha. Our results suggest that PS1 and PS2 may play different roles under physiological conditions despite their high structural similarity.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Genomic Medical Sciences, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566, Kyoto, Japan
| | | | | | | |
Collapse
|
45
|
Sahlgren CM, Mikhailov A, Vaittinen S, Pallari HM, Kalimo H, Pant HC, Eriksson JE. Cdk5 regulates the organization of Nestin and its association with p35. Mol Cell Biol 2003; 23:5090-106. [PMID: 12832492 PMCID: PMC162223 DOI: 10.1128/mcb.23.14.5090-5106.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Revised: 12/04/2002] [Accepted: 04/18/2003] [Indexed: 02/06/2023] Open
Abstract
The intermediate filament protein nestin is characterized by its specific expression during the development of neuronal and myogenic tissues. We identify nestin as a novel in vivo target for cdk5 and p35 kinase, a critical signaling determinant in development. Two cdk5-specific phosphorylation sites on nestin, Thr-1495 and Thr-316, were established, the latter of which was used as a marker for cdk5-specific phosphorylation in vivo. Ectopic expression of cdk5 and p35 in central nervous system progenitor cells and in myogenic precursor cells induced elevated phosphorylation and reorganization of nestin. The kinetics of nestin expression corresponded to elevated expression and activation of cdk5 during differentiation of myoblast cell cultures and during regeneration of skeletal muscle. In the myoblasts, a disassembly-linked phosphorylation of Thr-316 indicated active phosphorylation of nestin by cdk5. Moreover, cdk5 occurred in physical association with nestin. Inhibition of cdk5 activity-either by transfection with dominant-negative cdk5 or by using a specific cdk5 inhibitor-blocked myoblast differentiation and phosphorylation of nestin at Thr-316, and this inhibition markedly disturbed the organization of nestin. Interestingly, the interaction between p35, the cdk5 activator, and nestin appeared to be regulated by cdk5. In differentiating myoblasts, p35 was not complexed with nestin phosphorylated at Thr-316, and inhibition of cdk5 activity during differentiation induced a marked association of p35 with nestin. These results demonstrate that there is a continuous turnover of cdk5 and p35 activity on a scaffold formed by nestin. This association is likely to affect the organization and operation of both cdk5 and nestin during development.
Collapse
|
46
|
Zheng YL, Li BS, Pant HC. Phosphorylation of the head domain of neurofilament protein (NF-M): a factor regulating topographic phosphorylation of NF-M tail domain KSP sites in neurons. J Biol Chem 2003; 278:24026-32. [PMID: 12695506 DOI: 10.1074/jbc.m303079200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In neurons the phosphorylation of neurofilament (NF) proteins NF-M and NF-H is topographically regulated. Although kinases and NF subunits are synthesized in cell bodies, extensive phosphorylation of the KSP repeats in tail domains of NF-M and NF-H occurs primarily in axons. The nature of this regulation, however, is not understood. As obligate heteropolymers, NF assembly requires interactions between the core NF-L with NF-M or NF-H subunits, a process inhibited by NF head domain phosphorylation. Phosphorylation of head domains at protein kinase A (PKA)-specific sites seems to occur transiently in cell bodies after NF subunit synthesis. We have proposed that transient phosphorylation of head domains prevents NF assembly in the soma and inhibits tail domain phosphorylation; i.e. assembly and KSP phosphorylation in axons depends on prior dephosphorylation of head domain sites. Deregulation of this process leads to pathological accumulations of phosphorylated NFs in the soma as seen in some neurodegenerative disorders. To test this hypothesis, we studied the effect of PKA phosphorylation of the NF-M head domain on phosphorylation of tail domain KSP sites. In rat cortical neurons we showed that head domain phosphorylation of endogenous NF-M by forskolin-activated PKA inhibits NF-M tail domain phosphorylation. To demonstrate the site specificity of PKA phosphorylation and its effect on tail domain phosphorylation, we transfected NIH3T3 cells with NF-M mutated at PKA-specific head domain serine residues. Epidermal growth factor stimulation of cells with mutant NF-M in the presence of forskolin exhibited no inhibition of NF-tail domain phosphorylation compared with the wild type NF-M-transfected cells. This is consistent with our hypothesis that transient phosphorylation of NF-M head domains inhibits tail domain phosphorylation and suggests this as one of several mechanisms underlying topographic regulation.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Laboratory of Neurochemistry, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
47
|
Studzinski GP, Harrison JS. The neuronal cyclin-dependent kinase 5 activator p35Nck5a and Cdk5 activity in monocytic cells. Leuk Lymphoma 2003; 44:235-40. [PMID: 12688339 DOI: 10.1080/1042819021000030009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) and its activator p35Nck5a are an odd but interesting couple. Recent work has established that in spite of their names, Cdk5 is clearly not cyclin-dependent, while p35Nck5a is not exclusively neuronal. Indeed, p35Nck5a and/or Cdk5 activity has been demonstrated to be present in human and rat promyelocytic cell lines, and in normal human monocytes. Further, monocytes from mice in which p35Nck5a gene was deleted do not express non-specific esterase, an enzyme present in normal monocytes, while transfection of Cdk5 together with p35Nck5a into myeloblastic cells leads to the expression of this marker of the monocytic phenotype. Thus, the Cdk5/p35Nck5a complex appears to play an important role in monocytic differentiation.
Collapse
Affiliation(s)
- George P Studzinski
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | | |
Collapse
|
48
|
Nguyen MD, Mushynski WE, Julien JP. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 2002; 9:1294-306. [PMID: 12478466 DOI: 10.1038/sj.cdd.4401108] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 07/23/2002] [Accepted: 07/23/2002] [Indexed: 11/09/2022] Open
Abstract
The discovery of cell cycle regulators has directed cell research into uncharted territory. In dividing cells, cell cycle-associated protein kinases, which are referred to as cyclin-dependent-kinases (Cdks), regulate proliferation, differentiation, senescence and apoptosis. In contrast, all Cdks in post-mitotic neurons, with the notable exception of Cdk5, are silenced. Surprisingly, misregulation of Cdks occurs in neurons in a wide diversity of neurological disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Ectopic expression of these proteins in neurons potently induces cell death with hallmarks of apoptosis. Deregulation of the unique, cell cycle-unrelated Cdk5 by its truncated co-activator, p25 and p29, contributes to neurodegeneration by altering the phosphorylation state of non-membrane-associated proteins and possibly through the induction of cell cycle proteins. On the other hand, cycling Cdks such as Cdk2, Cdk4 and Cdk6, initiate death pathways by derepressing E2F-1/Rb-dependent transcription at the neuronal G1/S checkpoint. Thus, Cdk5 and cycling Cdks may have little in common in the healthy CNS, but they likely conspire in leading neurons to their demise.
Collapse
Affiliation(s)
- M D Nguyen
- Centre for Research in Neurosciences, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, Québec, H3G 1A4, Canada
| | | | | |
Collapse
|
49
|
Abstract
Neurones are highly specialised cells that can extend over great distances, enabling the complex networking of the nervous system. We are beginning to understand in detail the molecular mechanisms that control the shape of neurones during development. One family of proteins that are clearly essential are the Rho GTPases which have a pivotal role in regulating the actin cytoskeleton in all cell types. The Rho GTPases are responsible for the activation and downregulation of many downstream kinases. This review discusses individual kinases that are regulated by three members of the Rho GTPases, Rac, Rho and Cdc42 and their function during neurite outgrowth and remodelling.
Collapse
Affiliation(s)
- Margareta Nikolic
- Molecular and Developmental Neurobiology MRC Centre, New Hunt's House, King's College London, London SE1 1UL, UK.
| |
Collapse
|
50
|
Negash S, Wang HS, Gao C, Ledee D, Zelenka P. Cdk5 regulates cell-matrix and cell-cell adhesion in lens epithelial cells. J Cell Sci 2002; 115:2109-17. [PMID: 11973352 DOI: 10.1242/jcs.115.10.2109] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdk5 is a member of the cyclin-dependent kinase family, which is expressed predominantly in terminally differentiated neurons. Lower levels of Cdk5 are also found in a wide variety of cell types, including the lens. Although Cdk5 has been shown to play an important role in neuronal migration and neurite outgrowth, its function in non-neuronal cells is not known. Therefore, this study was undertaken to explore the role of Cdk5 in the lens. Results showed that, within the adult mouse lens, Cdk5 was localized to the cytoplasm,especially along the lateral membranes of differentiating primary fiber cells,which suggests a role in cell-cell adhesion. Staining at the tips of elongating fiber cells was also particularly strong, suggesting a role in cell-matrix adhesion. To examine the possible role of Cdk5 in lens epithelial cell adhesion, we stably transfected N/N1003A rabbit lens epithelial cells with cDNAs for Cdk5 or a dominant-negative mutation, Cdk5-T33. Attachment to a fibronectin matrix, as measured with substrate-coated cell adhesion strips,was increased by Cdk5 overexpression, while an equivalent overexpression of Cdk5-T33 had no effect. Cdk5 also increased the rate of cell attachment and spreading as measured by electric cell-substrate impedance sensing (ECIS). In addition, Cdk5 overexpression decreased cell-cell adhesion as measured by a cell aggregation assay. These findings suggest that Cdk5 plays a role in regulating both cell-matrix and cell-cell interactions in the lens.
Collapse
Affiliation(s)
- Sewite Negash
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|