1
|
Wu Y, Wang Y, Xue Y, Wu N, Wu J, Zhang J. cbx2 is a functional target of the let-7 family in the gonad of Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110799. [PMID: 36155820 DOI: 10.1016/j.cbpb.2022.110799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
As a key member of the miRNA family, the role and target gene of the let-7 family in the gonad of Japanese flounder (Paralichthys olivaceus) is unclear. Chromobox homolog 2 (CBX2) is one of the core components of the polycomb group complex (PcG) and significantly influences gonadal development. The deletion of CBX2 can lead to sex reversal in mammals. Therefore, exploring the relationship between the let-7 family and cbx2 is crucial to clarify the role played by the let-7 family in the gonad of Japanese flounder. We predicted and verified the target interaction between the let-7 family and cbx2. The results showed that cbx2 was a direct target of let-7d, let-7e, let-7g, let-7j, and let-7b. Among them, let-7d, let-7e, let-7g, and let-7j exhibited an extremely significant targeting relationship with cbx2 (p < 0.001). Taking let-7g as an example, we further investigated the regulatory role between let-7g and cbx2 in the gonad by miRNA overexpression and inhibition experiments in primary testis cells. The results revealed that let-7g could negatively regulate cbx2 at the level of primary testis cells. And the expression of sf1 (steroidogenic factor 1) was also significantly decreased after the interference of cbx2 siRNA. This suggests that the let-7 family may be involved in the Japanese flounder gonadal development via targeting cbx2.
Collapse
Affiliation(s)
- Yahui Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyang Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yidong Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ningning Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jikui Wu
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Less BMI-1 is more for chronic infections. Nat Immunol 2021; 23:6-8. [PMID: 34931079 DOI: 10.1038/s41590-021-01092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
|
4
|
Solorzano-Vargas RS, Bjerknes M, Wu SV, Wang J, Stelzner M, Dunn JCY, Dhawan S, Cheng H, Georgia S, Martín MG. The cellular regulators PTEN and BMI1 help mediate NEUROGENIN-3-induced cell cycle arrest. J Biol Chem 2019; 294:15182-15192. [PMID: 31341016 DOI: 10.1074/jbc.ra119.008926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Indexed: 11/06/2022] Open
Abstract
Neurogenin-3 (NEUROG3) is a helix-loop-helix (HLH) transcription factor involved in the production of endocrine cells in the intestine and pancreas of humans and mice. However, the human NEUROG3 loss-of-function phenotype differs subtly from that in mice, but the reason for this difference remains poorly understood. Because NEUROG3 expression precedes exit of the cell cycle and the expression of endocrine cell markers during differentiation, we investigated the effect of lentivirus-mediated overexpression of the human NEUROG3 gene on the cell cycle of BON4 cells and various human nonendocrine cell lines. NEUROG3 overexpression induced a reversible cell cycle exit, whereas expression of a neuronal lineage homolog, NEUROG1, had no such effect. In endocrine lineage cells, the cellular quiescence induced by short-term NEUROG3 expression required cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21CIP1 expression. Expression of endocrine differentiation markers required sustained NEUROG3 expression in the quiescent, but not in the senescent, state. Inhibition of the phosphatase and tensin homolog (PTEN) pathway reversed quiescence by inducing cyclin-dependent kinase 2 (CDK2) and reducing p21CIP1 and NEUROG3 protein levels in BON4 cells and human enteroids. We discovered that NEUROG3 expression stimulates expression of CDKN2a/p16INK4a and BMI1 proto-oncogene polycomb ring finger (BMI1), with the latter limiting expression of the former, delaying the onset of CDKN2a/p16INK4a -driven cellular senescence. Furthermore, NEUROG3 bound to the promoters of both CDKN1a/p21CIP1 and BMI1 genes, and BMI1 attenuated NEUROG3 binding to the CDKN1a/p21CIP1 promoter. Our findings reveal how human NEUROG3 integrates inputs from multiple signaling pathways and thereby mediates cell cycle exit at the onset of differentiation.
Collapse
Affiliation(s)
- R Sergio Solorzano-Vargas
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Bjerknes
- Department of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - S Vincent Wu
- Veterans Affairs Greater Los Angeles Healthcare System, and Department of Medicine, University of California, Los Angeles, Los Angeles, California 90073
| | - Jiafang Wang
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthias Stelzner
- Division of General Surgery, Department of Surgery, University of California, Los Angeles, Los Angeles, California 90095
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, California 91010
| | - Hazel Cheng
- Department of Medicine, Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Senta Georgia
- Department of Pediatrics, Division of Endocrinology, Children's Hospital of Los Angeles, University of Southern California, Los Angeles, Los Angeles, California 90027
| | - Martín G Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
5
|
Tatavosian R, Kent S, Brown K, Yao T, Duc HN, Huynh TN, Zhen CY, Ma B, Wang H, Ren X. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J Biol Chem 2018; 294:1451-1463. [PMID: 30514760 DOI: 10.1074/jbc.ra118.006620] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins repress master regulators of development and differentiation through organization of chromatin structure. Mutation and dysregulation of PcG genes cause developmental defects and cancer. PcG proteins form condensates in the cell nucleus, and these condensates are the physical sites of PcG-targeted gene silencing via formation of facultative heterochromatin. However, the physiochemical principles underlying the formation of PcG condensates remain unknown, and their determination could shed light on how these condensates compact chromatin. Using fluorescence live-cell imaging, we observed that the Polycomb repressive complex 1 (PRC1) protein chromobox 2 (CBX2), a member of the CBX protein family, undergoes phase separation to form condensates and that the CBX2 condensates exhibit liquid-like properties. Using site-directed mutagenesis, we demonstrated that the conserved residues of CBX2 within the intrinsically disordered region (IDR), which is the region for compaction of chromatin in vitro, promote the condensate formation both in vitro and in vivo We showed that the CBX2 condensates concentrate DNA and nucleosomes. Using genetic engineering, we report that trimethylation of Lys-27 at histone H3 (H3K27me3), a marker of heterochromatin formation produced by PRC2, had minimal effects on the CBX2 condensate formation. We further demonstrated that the CBX2 condensate formation does not require CBX2-PRC1 subunits; however, the condensate formation of CBX2-PRC1 subunits depends on CBX2, suggesting a mechanism underlying the assembly of CBX2-PRC1 condensates. In summary, our results reveal that PcG condensates assemble through liquid-liquid phase separation (LLPS) and suggest that phase-separated condensates can organize PcG-bound chromatin.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Samantha Kent
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Kyle Brown
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Thao Ngoc Huynh
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Chao Yu Zhen
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Brian Ma
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Haobin Wang
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364.
| |
Collapse
|
6
|
Ohuchi M, Sakamoto Y, Tokunaga R, Kiyozumi Y, Nakamura K, Izumi D, Kosumi K, Harada K, Kurashige J, Iwatsuki M, Baba Y, Miyamoto Y, Yoshida N, Shono T, Naoe H, Sasaki Y, Baba H. Increased EZH2 expression during the adenoma-carcinoma sequence in colorectal cancer. Oncol Lett 2018; 16:5275-5281. [PMID: 30214616 DOI: 10.3892/ol.2018.9240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
The adenoma-carcinoma sequence, the sequential mutation and deletion of various genes by which colorectal cancer progresses, is a well-established and accepted concept of colorectal cancer carcinogenesis. Proteins of the polycomb repressive complex 2 (PRC2) function as transcriptional repressors by trimethylating histone H3 at lysine 27; the activity of this complex is essential for cell proliferation and differentiation. The histone methyltransferase enhancer of zeste homolog 2 (EZH2), an essential component of PRC2, is associated with the transcriptional repression of tumor suppressor genes. EZH2 expression has previously been reported to increase with the progression of pancreatic intraductal papillary mucinous neoplasm. Thus, we hypothesized that EZH2 expression also increases during the adenoma-carcinoma sequence of colorectal cancer. The present study investigated changes in EZH2 expression during the colorectal adenoma-carcinoma sequence. A total of 47 patients with colorectal adenoma, 20 patients with carcinoma in adenoma and 43 patients with colorectal carcinoma who underwent surgical or endoscopic resection were enrolled in this study. Non-cancerous tissue from the clinical specimens was also examined. The association between EZH2 expression, pathology and expression of tumor suppressor genes during colorectal carcinogenesis were analyzed. Each specimen was immunohistochemically stained for EZH2, proliferation marker protein Ki-67 (Ki-67), cyclin-dependent kinase inhibitor (CDKN) 1A (p21), CDKN1B (p27) and CDKN2A (p16). Total RNA was extracted from formalin-fixed paraffin-embedded blocks and reverse transcription-quantitative polymerase chain reaction analysis of these genes was performed. Ki-67 and EZH2 expression scores increased significantly during the progression of normal mucosa to adenoma and carcinoma (P=0.009), and EZH2 expression score was positively associated with Ki-67 expression score (P=0.02). Conversely, p21 mRNA and protein expression decreased significantly, whereas expression of p27 and p16 did not change significantly. During the carcinogenesis sequence from normal mucosa to adenoma and carcinoma, EZH2 expression increased and p21 expression decreased significantly. EZH2 may therefore contribute to the development of colorectal cancer from adenoma via suppression of p21.
Collapse
Affiliation(s)
- Mayuko Ohuchi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ryuma Tokunaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenichi Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takashi Shono
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideaki Naoe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
7
|
Yu F, Zhou C, Zeng H, Liu Y, Li S. BMI1 activates WNT signaling in colon cancer by negatively regulating the WNT antagonist IDAX. Biochem Biophys Res Commun 2018; 496:468-474. [DOI: 10.1016/j.bbrc.2018.01.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
|
8
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
9
|
Maini J, Ghasemi M, Yandhuri D, Thakur SS, Brahmachari V. Human PRE-PIK3C2B, an intronic cis-element with dual function of activation and repression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:196-204. [PMID: 27932267 DOI: 10.1016/j.bbagrm.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 12/02/2016] [Indexed: 02/01/2023]
Abstract
The Polycomb/Trithorax Responsive Elements (PRE/TREs) are the cis-regulatory sequences that interact with both repressive (PcG) as well as activating (TrxG) complexes. However, most of the mammalian PREs are demonstrated to interact with the repressive polycomb (PcG) complexes only. We have carried out an unbiased search for proteins interacting with human PRE-PIK3C2B (hPRE-PIK3C2B) based on DNA affinity purification followed by mass spectrometry and identified MLL, MLL4 and WDR87 among other proteins in three biological replicates in HEK, U87 and HeLa cell lines. The hPRE-PIK3C2B interacts with the members of multiple activating complexes (COMPASS-like). The increase in the interaction of MLL and MLL4 on depletion of YY1 and the increase in the enrichment of YY1 and EZH2 upon MLL knockdown at the hPRE-PIK3C2B indicate the dual occupancy and suggest a concentration dependent enrichment of the activator or the repressor complex at hPRE-PIK3C2B. Further, we show that the hPRE-PIK3C2B interacts with the Drosophila homologues of PcG and TrxG proteins in transgenic flies. Here, we found that there is an increased enrichment of Pc (Polycomb) in comparison to Trx (TrxG protein) at hPRE-PIK3C2B in the Drosophila transgenic flies and this seems to be the default state while the balance is tipped towards the trithorax complex in PcG mutants. To the best of our knowledge, this is one of the early demonstrations of human PRE acting as a TRE without any sequence alteration.
Collapse
Affiliation(s)
- Jayant Maini
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Mohsen Ghasemi
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Deepti Yandhuri
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Suman S Thakur
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
10
|
Gray F, Cho HJ, Shukla S, He S, Harris A, Boytsov B, Jaremko Ł, Jaremko M, Demeler B, Lawlor ER, Grembecka J, Cierpicki T. BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat Commun 2016; 7:13343. [PMID: 27827373 PMCID: PMC5105191 DOI: 10.1038/ncomms13343] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
BMI1 is a core component of the polycomb repressive complex 1 (PRC1) and emerging data support a role of BMI1 in cancer. The central domain of BMI1 is involved in protein-protein interactions and is essential for its oncogenic activity. Here, we present the structure of BMI1 bound to the polyhomeotic protein PHC2 illustrating that the central domain of BMI1 adopts an ubiquitin-like (UBL) fold and binds PHC2 in a β-hairpin conformation. Unexpectedly, we find that the UBL domain is involved in homo-oligomerization of BMI1. We demonstrate that both the interaction of BMI1 with polyhomeotic proteins and homo-oligomerization via UBL domain are necessary for H2A ubiquitination activity of PRC1 and for clonogenic potential of U2OS cells. Here, we also emphasize need for joint application of NMR spectroscopy and X-ray crystallography to determine the overall structure of the BMI1-PHC2 complex.
Collapse
Affiliation(s)
- Felicia Gray
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shihan He
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ashley Harris
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bohdan Boytsov
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Łukasz Jaremko
- Deutsches Zentrum fur Neurodegenerative Erkrankungen (DZNE), Am Fassberg 11, 37077 Goettingen, Germany
- Max-Planck Institute of Biophysical Chemistry, NMR-based Department for Structural Biology, Am Fassberg 11, 37077 Goettingen, Germany
| | - Mariusz Jaremko
- Max-Planck Institute of Biophysical Chemistry, NMR-based Department for Structural Biology, Am Fassberg 11, 37077 Goettingen, Germany
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Elizabeth R. Lawlor
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
Bansal N, Bartucci M, Yusuff S, Davis S, Flaherty K, Huselid E, Patrizii M, Jones D, Cao L, Sydorenko N, Moon YC, Zhong H, Medina DJ, Kerrigan J, Stein MN, Kim IY, Davis TW, DiPaola RS, Bertino JR, Sabaawy HE. BMI-1 Targeting Interferes with Patient-Derived Tumor-Initiating Cell Survival and Tumor Growth in Prostate Cancer. Clin Cancer Res 2016; 22:6176-6191. [PMID: 27307599 DOI: 10.1158/1078-0432.ccr-15-3107] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Current prostate cancer management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TIC-tailored therapies appears to be a promising approach. EXPERIMENTAL DESIGN We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient-derived prostate cancer cells and xenograft models to characterize the effects of pharmacologic inhibitors of BMI-1. RESULTS We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacologic inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor-directed therapies, without toxic effects on normal tissues. CONCLUSIONS Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective prostate cancer treatment. Clin Cancer Res; 22(24); 6176-91. ©2016 AACR.
Collapse
Affiliation(s)
- Nitu Bansal
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Monica Bartucci
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Shamila Yusuff
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Stephani Davis
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901
| | - Kathleen Flaherty
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Eric Huselid
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901
| | - Michele Patrizii
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901
| | - Daniel Jones
- Graduate Program in Cell and Developmental Biology, RBHS-Robert Wood Johnson Medical School, Graduate School of Biomedical Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Liangxian Cao
- PTC Therapeutics, Inc., 100 Corporate CT, South Plainfield, NJ 07080
| | - Nadiya Sydorenko
- PTC Therapeutics, Inc., 100 Corporate CT, South Plainfield, NJ 07080
| | - Young-Choon Moon
- PTC Therapeutics, Inc., 100 Corporate CT, South Plainfield, NJ 07080
| | - Hua Zhong
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ 08901
| | - Daniel J Medina
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| | - John Kerrigan
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Mark N Stein
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| | - Isaac Y Kim
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Department of Surgery, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901
| | - Thomas W Davis
- PTC Therapeutics, Inc., 100 Corporate CT, South Plainfield, NJ 07080
| | - Robert S DiPaola
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901.,Graduate Program in Cell and Developmental Biology, RBHS-Robert Wood Johnson Medical School, Graduate School of Biomedical Sciences, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
12
|
Becker M, Potapenko T, Niklaus A, Bieback K, Ho AD, Müller AM. Polycomb Protein BMI1 Regulates Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Downstream of GSK3. Stem Cells Dev 2016; 25:922-33. [PMID: 27100571 DOI: 10.1089/scd.2015.0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Polycomb proteins such as the B lymphoma Mo-MLV insertion region 1 homolog (BMI1) are essential chromatin factors for the self-renewal and differentiation of embryonic and adult stem cells. BMI1 also plays a critical role in osteogenesis as Bmi1-deficient mice display a skeletal phenotype caused by the exhaustion of the mesenchymal stem cell pool. In this study, we have studied the role of BMI1 in the osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs). BMI1 protein, but not RNA levels, increases during in vitro osteogenic differentiation of hASCs. Overexpression of BMI1 leads to an osteogenic priming of hASCs under nondifferentiating conditions and enhanced osteogenesis upon differentiation, along with increased BMP2 and WNT11 expressions. Conversely, knockdown of BMI1 expression reduces osteogenic differentiation. Furthermore, our studies indicate that during osteogenic differentiation of hASCs, BMI1 is a downstream target of GSK3 signaling. BMI1, therefore, acts as a pro-osteogenic differentiation factor in hASCs and hence it is a promising target for active modulation of hASC-derived osteogenesis.
Collapse
Affiliation(s)
- Matthias Becker
- 1 Institute for Medical Radiation and Cell Research (MSZ), Center of Experimental Molecular Medicine (ZEMM) , Würzburg, Germany
| | - Tamara Potapenko
- 1 Institute for Medical Radiation and Cell Research (MSZ), Center of Experimental Molecular Medicine (ZEMM) , Würzburg, Germany
| | - Andrea Niklaus
- 1 Institute for Medical Radiation and Cell Research (MSZ), Center of Experimental Molecular Medicine (ZEMM) , Würzburg, Germany
| | - Karen Bieback
- 2 Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg , German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Anthony D Ho
- 3 Department of Internal Medicine V, Heidelberg University Hospital , Heidelberg, Germany
| | - Albrecht M Müller
- 1 Institute for Medical Radiation and Cell Research (MSZ), Center of Experimental Molecular Medicine (ZEMM) , Würzburg, Germany
| |
Collapse
|
13
|
Chandler H, Patel H, Palermo R, Brookes S, Matthews N, Peters G. Role of polycomb group proteins in the DNA damage response--a reassessment. PLoS One 2014; 9:e102968. [PMID: 25057768 PMCID: PMC4109945 DOI: 10.1371/journal.pone.0102968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/25/2014] [Indexed: 12/02/2022] Open
Abstract
A growing body of evidence suggests that Polycomb group (PcG) proteins, key regulators of lineage specific gene expression, also participate in the repair of DNA double-strand breaks (DSBs) but evidence for direct recruitment of PcG proteins at specific breaks remains limited. Here we explore the association of Polycomb repressive complex 1 (PRC1) components with DSBs generated by inducible expression of the AsiSI restriction enzyme in normal human fibroblasts. Based on immunofluorescent staining, the co-localization of PRC1 proteins with components of the DNA damage response (DDR) in these primary cells is unconvincing. Moreover, using chromatin immunoprecipitation and deep sequencing (ChIP-seq), which detects PRC1 proteins at common sites throughout the genome, we did not find evidence for recruitment of PRC1 components to AsiSI-induced DSBs. In contrast, the S2056 phosphorylated form of DNA-PKcs and other DDR proteins were detected at a subset of AsiSI sites that are predominantly at the 5′ ends of transcriptionally active genes. Our data question the idea that PcG protein recruitment provides a link between DSB repairs and transcriptional repression.
Collapse
Affiliation(s)
- Hollie Chandler
- Molecular Oncology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, London, United Kingdom
| | - Richard Palermo
- Molecular Oncology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Sharon Brookes
- Molecular Oncology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Nik Matthews
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Gordon Peters
- Molecular Oncology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Vandenbunder B, Fourré N, Leray A, Mueller F, Völkel P, Angrand PO, Héliot L. PRC1 components exhibit different binding kinetics in Polycomb bodies. Biol Cell 2014; 106:111-25. [PMID: 24460908 DOI: 10.1111/boc.201300077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/21/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND INFORMATION Polycomb group (PcG) proteins keep the memory of cell identity by maintaining the repression of numerous target genes. They accumulate into nuclear foci called Polycomb bodies, which function in Drosophila cells as silencing compartments where PcG target genes convene. PcG proteins also exert their activities elsewhere in the nucleoplasm. In mammalian cells, the dynamic organisation and function of Polycomb bodies remain to be determined. RESULTS Fluorescently tagged PcG proteins CBXs and their partners BMI1 and RING1 form foci of different sizes and intensities in human U2OS cells. Fluorescence recovery after photobleaching (FRAP) analysis reveals that PcG dynamics outside foci is governed by diffusion as complexes and transient binding. In sharp contrast, recovery curves inside foci are substantially slower and exhibit large variability. The slow binding component amplitudes correlate with the intensities and sizes of these foci, suggesting that foci contained varying numbers of binding sites. CBX4-green fluorescent protein (GFP) foci were more stable than CBX8-GFP foci; yet the presence of CBX4 or CBX8-GFP in the same focus had a minor impact on BMI1 and RING1 recovery kinetics. CONCLUSION We propose that FRAP recovery curves provide information about PcG binding to their target genes outside foci and about PcG spreading onto chromatin inside foci.
Collapse
Affiliation(s)
- Bernard Vandenbunder
- Biophotonique Cellulaire Fonctionnelle, Interdisciplinary Research Institute, Université Lille 1 - CNRS USR 3078, Parc de la Haute Borne, Villeneuve d'Ascq, 59658, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biol 2014; 15:R23. [PMID: 24485159 PMCID: PMC4053772 DOI: 10.1186/gb-2014-15-2-r23] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/03/2014] [Indexed: 01/10/2023] Open
Abstract
Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind.
Collapse
|
16
|
Schoborg T, Rickels R, Barrios J, Labrador M. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death. ACTA ACUST UNITED AC 2013; 202:261-76. [PMID: 23878275 PMCID: PMC3718971 DOI: 10.1083/jcb.201304181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins. Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
17
|
Junco SE, Wang R, Gaipa JC, Taylor AB, Schirf V, Gearhart MD, Bardwell VJ, Demeler B, Hart PJ, Kim CA. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure 2013; 21:665-71. [PMID: 23523425 DOI: 10.1016/j.str.2013.02.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Polycomb-group RING finger homologs (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, and PCGF6) are critical components in the assembly of distinct Polycomb repression complex 1 (PRC1)-related complexes. Here, we identify a protein interaction domain in BCL6 corepressor, BCOR, which binds the RING finger- and WD40-associated ubiquitin-like (RAWUL) domain of PCGF1 (NSPC1) and PCGF3 but not of PCGF2 (MEL18) or PCGF4 (BMI1). Because of the selective binding, we have named this domain PCGF Ub-like fold discriminator (PUFD). The structure of BCOR PUFD bound to PCGF1 reveals that (1) PUFD binds to the same surfaces as observed for a different Polycomb group RAWUL domain and (2) the ability of PUFD to discriminate among RAWULs stems from the identity of specific residues within these interaction surfaces. These data show the molecular basis for determining the binding preference for a PCGF homolog, which ultimately helps determine the identity of the larger PRC1-like assembly.
Collapse
Affiliation(s)
- Sarah E Junco
- Department of Biochemistry and CTRC, University of Texas Health Science Center at San Antonio, MSC 7760, 7703 Floyd Curl Drive, San Antonio, TX 78229-3990, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Loss of the polycomb protein Mel-18 enhances the epithelial-mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer. Oncogene 2013; 33:1325-35. [PMID: 23474752 DOI: 10.1038/onc.2013.53] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/30/2012] [Accepted: 01/21/2013] [Indexed: 12/19/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is the pivotal mechanism underlying the initiation of cancer invasion and metastasis. Although Mel-18 has been implicated in several biological processes in cancer, its function in the EMT of human cancers has not yet been studied. Here, we demonstrate that Mel-18 negatively regulates the EMT by epigenetically modulating miR-205. We identified miR-205 as a novel target of Mel-18 using a microRNA microarray analysis and found that Mel-18 increased miR-205 transcription by the inhibition of DNA methyltransferase-mediated DNA methylation of the miR-205 promoter, thereby downregulating its target genes, ZEB1 and ZEB2. Furthermore, the loss of Mel-18 promoted ZEB1- and ZEB2-mediated downregulation of E-cadherin transcription and also enhanced the expression of mesenchymal markers, leading to increased migration and invasion in MCF-7 cells. In MDA-MB-231 cells, Mel-18 overexpression restored E-cadherin expression, resulting in reduced migration and invasion. These effects were reversed by miR-205 overexpression or inhibition. A tumor xenograft with Mel-18 knockdown MCF-7 cells consistently showed increased ZEB1 and ZEB2 expression and decreased E-cadherin expression. Taken together, these results suggest that Mel-18 functions as a tumor suppressor by its novel negative control of the EMT, achieved through regulating the expression of miR-205 and its target genes, ZEB1 and ZEB2.
Collapse
|
19
|
Awad S, Al-Dosari MS, Al-Yacoub N, Colak D, Salih MA, Alkuraya FS, Poizat C. Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis. Hum Mol Genet 2013; 22:2200-13. [PMID: 23418308 DOI: 10.1093/hmg/ddt072] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Primary microcephaly (PM) is a developmental disorder of early neuroprogenitors that results in reduction of the brain mass, particularly the cortex. To gain fresh insight into the pathogenesis of PM, we describe a consanguineous family with a novel genetic variant responsible for the disease. We performed autozygosity mapping followed by exome sequencing to detect the causal genetic variant. Several functional assays in cells expressing the wild-type or mutant gene were performed to understand the pathogenesis of the identified mutation. We identify a novel mutation in PHC1, a human orthologue of the Drosophila polyhomeotic member of polycomb group (PcG), which significantly decreases PHC1 protein expression, increases Geminin protein level and markedly abolishes the capacity to ubiquitinate histone H2A in patient cells. PHC1 depletion in control cells similarly enhances Geminin expression and decreases histone H2A ubiquitination. The ubiquitination defect and accumulation of Geminin with consequent defect in cell cycle are rescued by over-expression of PHC1 in patient cells. Although patients with the PHC1 mutation exhibit PM with no overt progression of the disease, patient cells also show aberrant DNA damage repair, which is rescued by PHC1 overexpression. These findings reveal several cellular defects in cells carrying the PHC1 mutation and highlight the role of chromatin remodeling in the pathogenesis of PM.
Collapse
Affiliation(s)
- Salma Awad
- Department of Genetics, Developmental Genetics Unit
| | | | | | | | | | | | | |
Collapse
|
20
|
Regulation of hematopoietic stem cells using protein transduction domain–fused Polycomb. Exp Hematol 2012; 40:751-760.e1. [DOI: 10.1016/j.exphem.2012.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 05/07/2012] [Accepted: 05/16/2012] [Indexed: 11/21/2022]
|
21
|
Fanis P, Gillemans N, Aghajanirefah A, Pourfarzad F, Demmers J, Esteghamat F, Vadlamudi RK, Grosveld F, Philipsen S, van Dijk TB. Five friends of methylated chromatin target of protein-arginine-methyltransferase[prmt]-1 (chtop), a complex linking arginine methylation to desumoylation. Mol Cell Proteomics 2012; 11:1263-73. [PMID: 22872859 DOI: 10.1074/mcp.m112.017194] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC). 5FMC is a nuclear complex that can only be recruited by Chtop when the latter is arginine-methylated by Prmt1. It consists of the co-activator Pelp1, the Sumo-specific protease Senp3, Wdr18, Tex10, and Las1L. Pelp1 functions as the core of 5FMC, as the other components become unstable in the absence of Pelp1. We show that recruitment of 5FMC to Zbp-89, a zinc-finger transcription factor, affects its sumoylation status and transactivation potential. Collectively, our data provide a mechanistic link between arginine methylation and (de)sumoylation in the control of transcriptional activity.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Cell Biology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Prickaerts P, Niessen HE, Mouchel-Vielh E, Dahlmans VE, van den Akker GG, Geijselaers C, Adriaens ME, Spaapen F, Takihara Y, Rapp UR, Peronnet F, Voncken JW. MK3 controls Polycomb target gene expression via negative feedback on ERK. Epigenetics Chromatin 2012; 5:12. [PMID: 22870894 PMCID: PMC3499388 DOI: 10.1186/1756-8935-5-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/11/2012] [Indexed: 01/04/2023] Open
Abstract
Background Gene-environment interactions are mediated by epigenetic mechanisms. Polycomb Group proteins constitute part of an epigenetic cellular transcriptional memory system that is subject to dynamic modulation during differentiation. Molecular insight in processes that control dynamic chromatin association and dissociation of Polycomb repressive complexes during and beyond development is limited. We recently showed that MK3 interacts with Polycomb repressive complex 1 (PRC1). The functional relevance of this interaction, however, remained poorly understood. MK3 is activated downstream of mitogen- and stress-activated protein kinases (M/SAPKs), all of which fulfill crucial roles during development. We here use activation of the immediate-early response gene ATF3, a bona fide PRC1 target gene, as a model to study how MK3 and its effector kinases MAPK/ERK and SAPK/P38 are involved in regulation of PRC1-dependent ATF3 transcription. Results Our current data show that mitogenic signaling through ERK, P38 and MK3 regulates ATF3 expression by PRC1/chromatin dissociation and epigenetic modulation. Mitogenic stimulation results in transient P38-dependent H3S28 phosphorylation and ERK-driven PRC1/chromatin dissociation at PRC1 targets. H3S28 phosphorylation by itself appears not sufficient to induce PRC1/chromatin dissociation, nor ATF3 transcription, as inhibition of MEK/ERK signaling blocks BMI1/chromatin dissociation and ATF3 expression, despite induced H3S28 phosphorylation. In addition, we establish that concomitant loss of local H3K27me3 promoter marking is not required for ATF3 activation. We identify pERK as a novel signaling-induced binding partner of PRC1, and provide evidence that MK3 controls ATF3 expression in cultured cells via negative regulatory feedback on M/SAPKs. Dramatically increased ectopic wing vein formation in the absence of Drosophila MK in a Drosophila ERK gain-of-function wing vein patterning model, supports the existence of MK-mediated negative feedback regulation on pERK. Conclusion We here identify and characterize important actors in a PRC1-dependent epigenetic signal/response mechanism, some of which appear to be nonspecific global responses, whereas others provide modular specificity. Our findings provide novel insight into a Polycomb-mediated epigenetic mechanism that dynamically controls gene transcription and support a direct link between PRC1 and cellular responses to changes in the microenvironment.
Collapse
Affiliation(s)
- Peggy Prickaerts
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands.,Laboratoire de Biologie du Développement UMR 7622, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris 6, 9 Quai Saint-Bernard, 75005, Paris, France
| | - Hanneke Ec Niessen
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Emmanuèle Mouchel-Vielh
- Laboratoire de Biologie du Développement UMR 7622, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris 6, 9 Quai Saint-Bernard, 75005, Paris, France
| | - Vivian Eh Dahlmans
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Guus Gh van den Akker
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Claudia Geijselaers
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Michiel E Adriaens
- BiGCaT Bioinformatics, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Frank Spaapen
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Ulf R Rapp
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Frédérique Peronnet
- Laboratoire de Biologie du Développement UMR 7622, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris 6, 9 Quai Saint-Bernard, 75005, Paris, France
| | - Jan Willem Voncken
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| |
Collapse
|
23
|
Smigová J, Juda P, Cmarko D, Raška I. Fine structure of the "PcG body" in human U-2 OS cells established by correlative light-electron microscopy. Nucleus 2012; 2:219-28. [PMID: 21818415 DOI: 10.4161/nucl.2.3.15737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 02/02/2023] Open
Abstract
Polycomb group (PcG) proteins of the Polycomb repressive complex 1 (PRC1) are found to be diffusely distributed in nuclei of cells from various species. However they can also be localized in intensely fluorescent foci, whether imaged using GFP fusions to proteins of PRC1 complex, or by conventional immunofluorescence microscopy. Such foci are termed PcG bodies, and are believed to be situated in the nuclear intechromatin compartment. However, an ultrastructural description of the PcG body has not been reported to date. To establish the ultrastructure of PcG bodies in human U-2 OS cells stably expressing recombinant polycomb BMI1-GFP protein, we used correlative light-electron microscopy (CLEM) implemented with high-pressure freezing, cryosubstitution and on-section labeling of BMI1 protein with immunogold. This approach allowed us to clearly identify fluorescent PcG bodies, not as distinct nuclear bodies, but as nuclear domains enriched in separated heterochromatin fascicles. Importantly, high-pressure freezing and cryosubstitution allowed for a high and clear-cut immunogold BMI1 labeling of heterochromatin structures throughout the nucleus. The density of immunogold labeled BMI1 in the heterochromatin fascicles corresponding to fluorescent "PcG bodies" did not differ from the density of labeling of heterochromatin fascicles outside of the "PcG bodies". Accordingly, an appearance of the fluorescent "PcG bodies" seems to reflect a local accumulation of the labeled heterochromatin structures in the investigated cells. The results of this study should allow expansion of the knowledge about the biological relevance of the "PcG bodies" in human cells.
Collapse
|
24
|
Cheutin T, Cavalli G. Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion. PLoS Genet 2012; 8:e1002465. [PMID: 22275876 PMCID: PMC3262012 DOI: 10.1371/journal.pgen.1002465] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 11/22/2011] [Indexed: 11/24/2022] Open
Abstract
Polycomb group (PcG) proteins are conserved chromatin factors that maintain silencing of key developmental genes outside of their expression domains. Recent genome-wide analyses showed a Polycomb (PC) distribution with binding to discrete PcG response elements (PREs). Within the cell nucleus, PcG proteins localize in structures called PC bodies that contain PcG-silenced genes, and it has been recently shown that PREs form local and long-range spatial networks. Here, we studied the nuclear distribution of two PcG proteins, PC and Polyhomeotic (PH). Thanks to a combination of immunostaining, immuno-FISH, and live imaging of GFP fusion proteins, we could analyze the formation and the mobility of PC bodies during fly embryogenesis as well as compare their behavior to that of the condensed fraction of euchromatin. Immuno-FISH experiments show that PC bodies mainly correspond to 3D structural counterparts of the linear genomic domains identified in genome-wide studies. During early embryogenesis, PC and PH progressively accumulate within PC bodies, which form nuclear structures localized on distinct euchromatin domains containing histone H3 tri-methylated on K27. Time-lapse analysis indicates that two types of motion influence the displacement of PC bodies and chromatin domains containing H2Av-GFP. First, chromatin domains and PC bodies coordinately undergo long-range motions that may correspond to the movement of whole chromosome territories. Second, each PC body and chromatin domain has its own fast and highly constrained motion. In this motion regime, PC bodies move within volumes slightly larger than those of condensed chromatin domains. Moreover, both types of domains move within volumes much smaller than chromosome territories, strongly restricting their possibility of interaction with other nuclear structures. The fast motion of PC bodies and chromatin domains observed during early embryogenesis strongly decreases in late developmental stages, indicating a possible contribution of chromatin dynamics in the maintenance of stable gene silencing. The three-dimensional organization of genes and associated proteins is critical for gene regulation. Polycomb group proteins are important developmental regulators controlling the expression of hundreds of genes. They are not homogeneously distributed in the cell nucleus, instead forming nuclear subcompartments called Polycomb bodies. We investigated the dynamics of Polycomb bodies during Drosophila embryonic development, demonstrating that two Polycomb proteins, Polycomb and Polyhomeotic, gradually assemble onto bodies enriched in histone H3 trimethylated on lysine 27, a hallmark of Polycomb silencing. Polycomb bodies are not the most condensed euchromatic part of the genome. Instead, a large amount of genomic chromatin is organized in a histone- and DNA–dense structure distinct from Polycomb bodies. Polycomb bodies move, meet, and split dynamically during development. Their motion has two regimes: a fast, highly constrained motion and a slower regime where multiple bodies undergo long-range coordinated movements potentially corresponding to chromosome territory movements. These regimes are not restricted to Polycomb but also extend to bulk “condensed euchromatin,” which is characterized by slower motion and a narrower radius of confinement. Both motion regimes progressively slow down during development, suggesting that regulation of chromatin dynamics may play an important role in the maintenance of gene silencing in differentiated cells.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Giacomo Cavalli
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
- * E-mail:
| |
Collapse
|
25
|
Grau DJ, Chapman BA, Garlick JD, Borowsky M, Francis NJ, Kingston RE. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev 2011; 25:2210-21. [PMID: 22012622 DOI: 10.1101/gad.17288211] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polycomb group (PcG) proteins are required for the epigenetic maintenance of developmental genes in a silent state. Proteins in the Polycomb-repressive complex 1 (PRC1) class of the PcG are conserved from flies to humans and inhibit transcription. One hypothesis for PRC1 mechanism is that it compacts chromatin, based in part on electron microscopy experiments demonstrating that Drosophila PRC1 compacts nucleosomal arrays. We show that this function is conserved between Drosophila and mouse PRC1 complexes and requires a region with an overrepresentation of basic amino acids. While the active region is found in the Posterior Sex Combs (PSC) subunit in Drosophila, it is unexpectedly found in a different PRC1 subunit, a Polycomb homolog called M33, in mice. We provide experimental support for the general importance of a charged region by predicting the compacting capability of PcG proteins from species other than Drosophila and mice and by testing several of these proteins using solution assays and microscopy. We infer that the ability of PcG proteins to compact chromatin in vitro can be predicted by the presence of domains of high positive charge and that PRC1 components from a variety of species conserve this highly charged region. This supports the hypothesis that compaction is a key aspect of PcG function.
Collapse
Affiliation(s)
- Daniel J Grau
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
26
|
The relationship between Bmi-1 and the epithelial-mesenchymal transition in lung squamous cell carcinoma. Med Oncol 2011; 29:1606-13. [PMID: 21656027 DOI: 10.1007/s12032-011-9998-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 12/16/2022]
Abstract
This study aimed to investigate the expression of Bmi-1 in lung squamous cell carcinoma tissues and the relationship between Bmi-1 and the epithelial-mesenchymal transition. RT-PCR and western blot analysis were performed to detect the expression of Bmi-1, E-cadherin, and Vimentin in 56 cases of lung squamous cell carcinoma tissues and adjacent normal tissues. The positive rates of Bmi-1, E-cadherin, and Vimentin mRNA expression in lung squamous cell carcinoma tissues were 73.2, 42.9, and 58.9%, respectively; compared to the expression of these genes in adjacent normal tissues (14.3, 75.0, and 28.6%), the differences were significant (P < 0.05). The expression of Bmi-1 in lung squamous cell carcinoma tissues showed a negative correlation with that of E-cadherin (r = -0.372, P = 0.005) and a positive correlation with that of Vimentin (r = 0.315, P = 0.02). The expression of Bmi-1 and Vimentin mRNA and protein in lung squamous cell carcinoma tissues was significantly higher than that in adjacent normal tissues (P < 0.05), and the expression of Bmi-1 and Vimentin in patients with lymph node and distal metastasis was significantly higher than that in patients without lymph node and distal metastasis (P < 0.05). The expression of E-cadherin mRNA and protein in lung squamous cell carcinoma tissues was significantly lower than that in adjacent normal tissues (P < 0.05), and the expression in patients with lymph node and distal metastasis was significantly lower than that in patients without lymph node and distal metastasis (P < 0.05). The expression of Bmi-1, E-cadherin, and Vimentin was not associated with the patient's sex, age, tumor size or degree of tumor differentiation (P > 0.05). The increase in Bmi-1 expression was accompanied by the down-regulation of E-cadherin expression and up-regulation of Vimentin expression. Bmi-1 may be associated with the epithelial-mesenchymal transition in lung squamous cell carcinoma and the occurrence, invasion, and metastasis of lung squamous cell carcinoma.
Collapse
|
27
|
Geyer PK, Vitalini MW, Wallrath LL. Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol 2011; 23:354-9. [PMID: 21450447 DOI: 10.1016/j.ceb.2011.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/17/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
Eukaryotic genomes are divided into chromosomes that occupy defined regions or territories within the nucleus. These chromosome territories (CTs) are arranged based on the transcriptional activity and chromatin landscape of domains. In general, transcriptionally silent domains reside at the nuclear periphery, whereas active domains locate within the interior. Changes in nuclear position are observed for stress-induced and developmentally regulated tissue-specific genes. Upon activation, these genes move away from a CT to inter-chromosomal space containing nuclear bodies enriched in gene expression machinery. Gene activation is not always accompanied by movement, as positioning is dictated by many determinants, including gene structure and the local genomic environment. Collectively, tissue-specific nuclear organization results from a culmination of inputs that result in proper transcriptional regulation.
Collapse
|
28
|
Fan T, Jiang S, Chung N, Alikhan A, Ni C, Lee CCR, Hornyak TJ. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res 2011; 9:418-29. [PMID: 21383005 DOI: 10.1158/1541-7786.mcr-10-0511] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Polycomb group (PcG) proteins such as Enhancer of zeste homolog 2 (EZH2) are epigenetic transcriptional repressors that function through recognition and modification of histone methylation and chromatin structure. Targets of PcG include cell cycle regulatory proteins which govern cell cycle progression and cellular senescence. Senescence is a characteristic of melanocytic nevi, benign melanocytic proliferations that can be precursors of malignant melanoma. In this study, we report that EZH2, which we find absent in melanocytic nevi but expressed in many or most metastatic melanoma cells, functionally suppresses the senescent state in human melanoma cells. EZH2 depletion in melanoma cells inhibits cell proliferation, restores features of a cellular senescence phenotype, and inhibits growth of melanoma xenografts in vivo. p21/CDKN1A is activated upon EZH2 knockdown in a p53-independent manner and contributes substantially to cell cycle arrest and induction of a senescence phenotype. EZH2 depletion removes histone deacetylase 1 (HDAC1) from the CDKN1A transcriptional start site and downstream region, enhancing histone 3 acetylation globally and at CDKN1A. This results in recruitment of RNA polymerase II, leading to p21/CDKN1A activation. Depletion of EZH2 synergistically activates p21/CDKN1A expression in combination with the HDAC inhibitor trichostatin A. Since melanomas often retain wild-type p53 function activating p21, our findings describe a novel mechanism whereby EZH2 activation during tumor progression represses p21, leading to suppression of cellular senescence and enhanced tumorigenicity.
Collapse
Affiliation(s)
- Tao Fan
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 2011; 31:1972-82. [PMID: 21383063 DOI: 10.1128/mcb.00981-10] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G(2)/M. These data support a crucial role for BMI1 in the cellular response to DNA damage.
Collapse
|
30
|
Garcia-Tuñon I, Guallar D, Alonso-Martin S, Benito AA, Benítez-Lázaro A, Pérez-Palacios R, Muniesa P, Climent M, Sánchez M, Vidal M, Schoorlemmer J. Association of Rex-1 to target genes supports its interaction with Polycomb function. Stem Cell Res 2011; 7:1-16. [PMID: 21530438 DOI: 10.1016/j.scr.2011.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/31/2022] Open
Abstract
Rex-1/Zfp42 displays a remarkably restricted pattern of expression in preimplantation embryos, primary spermatocytes, and undifferentiated mouse embryonic stem (ES) cells and is frequently used as a marker gene for pluripotent stem cells. To understand the role of Rex-1 in selfrenewal and pluripotency, we used Rex-1 association as a measure to identify potential target genes, and carried out chromatin-immunoprecipitation assays in combination with gene specific primers to identify genomic targets Rex-1 associates with. We find association of Rex-1 to several genes described previously as bivalently marked regulators of differentiation and development, whose repression in mouse embryonic stem (ES) cells is Polycomb Group-mediated, and controlled directly by Ring1A/B. To substantiate the hypothesis that Rex-1 contributes to gene regulation by PcG, we demonstrate interactions of Rex-1 and YY2 (a close relative of YY1) with Ring1 proteins and the PcG-associated proteins RYBP and YAF2, in line with interactions reported previously for YY1. We also demonstrate the presence of Rex-1 protein in both trophectoderm and Inner Cell Mass of the mouse blastocyst and in both ES and in trophectoderm stem (TS) cells. In TS cells, we were unable to demonstrate association of Rex-1 to the genes it associates with in ES cells, suggesting that association may be cell-type specific. Rex-1 might fine-tune pluripotency in ES cells by modulating Polycomb-mediated gene regulation.
Collapse
Affiliation(s)
- I Garcia-Tuñon
- Regenerative Medicine Programme, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Avda. Gómez Laguna, 25, Pl. 11, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Guo BH, Feng Y, Zhang R, Xu LH, Li MZ, Kung HF, Song LB, Zeng MS. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer 2011; 10:10. [PMID: 21276221 PMCID: PMC3038148 DOI: 10.1186/1476-4598-10-10] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 01/28/2011] [Indexed: 12/31/2022] Open
Abstract
Background B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi-1) acts as an oncogene in various tumors, and its overexpression correlates with a poor outcome in several human cancers. Ectopic expression of Bmi-1 can induce epithelial-mesenchymal transition (EMT) and enhance the motility and invasiveness of human nasopharyngeal epithelial cells (NPECs), whereas silencing endogenous Bmi-1 expression can reverse EMT and reduce the metastatic potential of nasopharyngeal cancer cells (NPCs). Mouse xenograft studies indicate that coexpression of Bmi-1 and H-Ras in breast cancer cells can induce an aggressive and metastatic phenotype with an unusual occurrence of brain metastasis; although, Bmi-1 overexpression did not result in oncogenic transformation of MCF-10A cells. However, the underlying molecular mechanism of Bmi-1-mediated progression and the metastasis of breast cancer are not fully elucidated at this time. Results Bmi-1 expression is more pronouncedly increased in primary cancer tissues compared to matched adjacent non-cancerous tissues. High Bmi-1 expression is correlated with advanced clinicopathologic classifications (T, N, and M) and clinical stages. Furthermore, a high level of Bmi-1 indicates an unfavorable overall survival and serves as a high risk marker for breast cancer. In addition, inverse transcriptional expression levels of Bmi-1 and E-cadherin are detected between the primary cancer tissues and the matched adjacent non-cancerous tissues. Higher Bmi-1 levels are found in the cancer tissue, whereas the paired adjacent non-cancer tissue shows higher E-cadherin levels. Overexpression of Bmi-1 increases the motility and invasive properties of immortalized human mammary epithelial cells, which is concurrent with the increased expression of mesenchymal markers, the decreased expression of epithelial markers, the stabilization of Snail and the dysregulation of the Akt/GSK3β pathway. Consistent with these observations, the repression of Bmi-1 in highly metastatic breast cancer cells remarkably reduces cellular motility, invasion and transformation, as well as tumorigenesis and lung metastases in nude mice. In addition, the repression of Bmi-1 reverses the expression of EMT markers and inhibits the Akt/GSK3β/Snail pathway. Conclusions This study demonstrates that Bmi-1 promotes the invasion and metastasis of human breast cancer and predicts poor survival.
Collapse
Affiliation(s)
- Bao-Hong Guo
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G. Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell 2011; 144:214-26. [DOI: 10.1016/j.cell.2010.12.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/22/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|
33
|
Lu YW, Li J, Guo WJ. Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:143. [PMID: 21059209 PMCID: PMC2993658 DOI: 10.1186/1756-9966-29-143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 11/08/2010] [Indexed: 01/03/2023]
Abstract
Background The Polycomb group (PcG) genes are a class of regulators responsible for maintaining homeotic gene expression throughout cell division. PcG expression is deregulated in some types of human cancer. Both Bmi-1 and Mel-18 are of the key PcG proteins. We investigate the expression and clinicopathological roles of Mel-18 and Bmi-1 mRNA in gastric cancer. Methods The expression of Mel-18 and Bmi-1 in a series of 71 gastric cancer tissues and paired normal mucosal tissues distant from the tumorous lesion was assayed by quantitative real time RT-PCR. The correlation between Mel-18 and Bmi-1 mRNA expression, and between Mel-18 or Bmi-1 mRNA level and clinicopathological characteristics were analyzed. Results Expression of Mel-18 and Bmi-1 genes was variably detected, but overexpression of Bmi-1 mRNA and decreased expression of Mel-18 mRNA were the most frequent alteration. In addition, the expression of Bmi-1 and Mel-18 mRNA inversely correlates in gastric tumors. Moreover, a significant positive correlation between Bmi-1 overexpression and tumor size, depth of invasion, or lymph node metastasis, and a significant negative correlation between Mel-18 low-expression with lymph node metastasis or the clinical stage were observed. Conclusion Our data suggest that Mel-18 and Bmi-1 may play crucial but opposite roles in gastric cancer. Decreased Mel-18 and increased Bmi-1 mRNA expression was associated with the carcinogenesis and progression of gastric cancer. It is possible to list Bmi-1 and Mel-18 as biomarkers for predicting the prognosis of gastric cancer.
Collapse
Affiliation(s)
- You-Wei Lu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; China.
| | | | | |
Collapse
|
34
|
Kim RH, Lieberman MB, Lee R, Shin KH, Mehrazarin S, Oh JE, Park NH, Kang MK. Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-beta signaling. Exp Cell Res 2010; 316:2600-8. [PMID: 20630502 PMCID: PMC2924923 DOI: 10.1016/j.yexcr.2010.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/09/2010] [Accepted: 04/10/2010] [Indexed: 01/07/2023]
Abstract
We previously demonstrated that Bmi-1 extended the in vitro life span of normal human oral keratinocytes (NHOK). We now report that the prolonged life span of NHOK by Bmi-1 is, in part, due to inhibition of the TGF-beta signaling pathway. Serial subculture of NHOK resulted in replicative senescence and terminal differentiation and activation of TGF-beta signaling pathway. This was accompanied with enhanced intracellular and secreted TGF-beta1 levels, phosphorylation of Smad2/3, and increased expression of p15(INK4B) and p57(KIP2). An ectopic expression of Bmi-1 in NHOK (HOK/Bmi-1) decreased the level of intracellular and secreted TGF-beta1 induced dephosphorylation of Smad2/3, and diminished the level of p15(INK4B) and p57(KIP2). Moreover, Bmi-1 expression led to the inhibition of TGF-beta-responsive promoter activity in a dose-specific manner. Knockdown of Bmi-1 in rapidly proliferating HOK/Bmi-1 and cancer cells increased the level of phosphorylated Smad2/3, p15(INK4B), and p57(KIP2). In addition, an exposure of senescent NHOK to TGF-beta receptor I kinase inhibitor or anti-TGF-beta antibody resulted in enhanced replicative potential of cells. Taken together, these data suggest that Bmi-1 suppresses senescence of cells by inhibiting the TGF-beta signaling pathway in NHOK.
Collapse
Affiliation(s)
- Reuben H. Kim
- UCLA School of Dentistry, Los Angeles, CA 90095
- UCLA Dental Research Institute, Los Angeles, CA 90095
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095
| | | | - Rachel Lee
- UCLA School of Dentistry, Los Angeles, CA 90095
| | - Ki-Hyuk Shin
- UCLA School of Dentistry, Los Angeles, CA 90095
- UCLA Dental Research Institute, Los Angeles, CA 90095
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095
| | | | - Ju-Eun Oh
- UCLA School of Dentistry, Los Angeles, CA 90095
| | - No-Hee Park
- UCLA School of Dentistry, Los Angeles, CA 90095
- UCLA Dental Research Institute, Los Angeles, CA 90095
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Mo K. Kang
- UCLA School of Dentistry, Los Angeles, CA 90095
- UCLA Dental Research Institute, Los Angeles, CA 90095
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095
| |
Collapse
|
35
|
Chen L, Shioda T, Coser KR, Lynch MC, Yang C, Schmidt EV. Genome-wide analysis of YY2 versus YY1 target genes. Nucleic Acids Res 2010; 38:4011-26. [PMID: 20215434 PMCID: PMC2896514 DOI: 10.1093/nar/gkq112] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Yin Yang 1 (YY1) is a critical transcription factor controlling cell proliferation, development and DNA damage responses. Retrotranspositions have independently generated additional YY family members in multiple species. Although Drosophila YY1 [pleiohomeotic (Pho)] and its homolog [pleiohomeotic-like (Phol)] redundantly control homeotic gene expression, the regulatory contributions of YY1-homologs have not yet been examined in other species. Indeed, targets for the mammalian YY1 homolog YY2 are completely unknown. Using gene set enrichment analysis, we found that lentiviral constructs containing short hairpin loop inhibitory RNAs for human YY1 (shYY1) and its homolog YY2 (shYY2) caused significant changes in both shared and distinguishable gene sets in human cells. Ribosomal protein genes were the most significant gene set upregulated by both shYY1 and shYY2, although combined shYY1/2 knock downs were not additive. In contrast, shYY2 reversed the anti-proliferative effects of shYY1, and shYY2 particularly altered UV damage response, platelet-specific and mitochondrial function genes. We found that decreases in YY1 or YY2 caused inverse changes in UV sensitivity, and that their combined loss reversed their respective individual effects. Our studies show that human YY2 is not redundant to YY1, and YY2 is a significant regulator of genes previously identified as uniquely responding to YY1.
Collapse
Affiliation(s)
- Li Chen
- Cancer Research Center at Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
36
|
Maertens GN, El Messaoudi-Aubert S, Racek T, Stock JK, Nicholls J, Rodriguez-Niedenführ M, Gil J, Peters G. Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS One 2009; 4:e6380. [PMID: 19636380 PMCID: PMC2713427 DOI: 10.1371/journal.pone.0006380] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/07/2009] [Indexed: 11/21/2022] Open
Abstract
Misexpression of Polycomb repressive complex 1 (PRC1) components in human cells profoundly influences the onset of cellular senescence by modulating transcription of the INK4a tumor suppressor gene. Using tandem affinity purification, we find that CBX7 and CBX8, two Polycomb (Pc) homologs that repress INK4a, both participate in PRC1-like complexes with at least two Posterior sex combs (Psc) proteins, MEL18 and BMI1. Each complex contains a single representative of the Pc and Psc families. In primary human fibroblasts, CBX7, CBX8, MEL18 and BMI1 are present at the INK4a locus and shRNA-mediated knockdown of any one of these components results in de-repression of INK4a and proliferative arrest. Sequential chromatin immunoprecipitation (ChIP) reveals that CBX7 and CBX8 bind simultaneously to the same region of chromatin and knockdown of one of the Pc or Psc proteins results in release of the other, suggesting that the binding of PRC1 complexes is interdependent. Our findings provide the first evidence that a single gene can be regulated by several distinct PRC1 complexes and raise important questions about their configuration and relative functions.
Collapse
Affiliation(s)
| | | | - Tomas Racek
- Cancer Research UK, London Research Institute, London, United Kingdom
| | - Julie K. Stock
- Cancer Research UK, London Research Institute, London, United Kingdom
| | - James Nicholls
- Cancer Research UK, London Research Institute, London, United Kingdom
| | | | - Jesus Gil
- Cell Proliferation Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, United Kingdom
| | - Gordon Peters
- Cancer Research UK, London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Abstract
Bmi-1, a polycomb gene family member, plays an important role in cell cycle regulation, cell immortalization, and cell senescence. Recently, numerous studies have demonstrated that Bmi-1 is involved in the regulation of self-renewal and differentiation of stem cells. However, the molecular mechanism underlying this biological process remains largely unclear. In the present review, we summarized the function of Bmi-1 as a transcriptional regulator of gene expression, with particular reference to stem cells.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | | | | |
Collapse
|
38
|
Molecular genetic analysis of Suppressor 2 of zeste identifies key functional domains. Genetics 2009; 182:999-1013. [PMID: 19528329 DOI: 10.1534/genetics.108.097360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Su(z)2 complex contains Posterior sex combs (Psc) and Suppressor 2 of zeste [Su(z)2], two paralogous genes that likely arose by gene duplication. Psc encodes a Polycomb group protein that functions as a central component of the PRC1 complex, which maintains transcriptional repression of a wide array of genes. Although much is known about Psc, very little is known about Su(z)2, the analysis of which has been hampered by a dearth of alleles. We have generated new alleles of Su(z)2 and analyzed them at the genetic and molecular levels. Some of these alleles display negative complementation in that they cause lethality when heterozygous with the gain-of-function Su(z)2(1) allele but are hemizygous and, in some cases, homozygous viable. Interestingly, alleles of this class identify protein domains within Su(z)2 that are highly conserved in Psc and the mammalian Bmi-1 and Mel-18 proteins. We also find several domains of intrinsic disorder in the C-terminal regions of both Psc and Su(z)2 and suggest that these domains may contribute to the essential functions of both proteins.
Collapse
|
39
|
Kajiume T, Ohno N, Sera Y, Kawahara Y, Yuge L, Kobayashi M. Reciprocal expression of Bmi1 and Mel-18 is associated with functioning of primitive hematopoietic cells. Exp Hematol 2009; 37:857-866.e2. [PMID: 19409954 DOI: 10.1016/j.exphem.2009.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/09/2009] [Accepted: 04/21/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The Polycomb-group (PcG) genes regulate global gene expression in many biological processes, including hematopoiesis, by manipulating specific target genes. It is known that various PcG genes regulate self-renewal of hematopoietic stem cells (HSCs). Here we have shown that the reciprocal expression of PcG proteins regulates self-renewal and differentiation of HSCs. METHODS We used murine and human bone marrow cells and evaluated the reciprocal expression of PcG proteins on the basis of their respective intranuclear distributions. PcG-gene expression in HSCs was knocked down by small interfering RNAs. The function of each gene in HSCs was analyzed in vitro and in vivo. RESULTS Cells were either Bmi1-positive or Mel-18-positive. The Bmi1-positive cells contained very little amounts of Mel-18 and vice versa. The bmi1-knockdown marrow cells did not show HSC function, while the mel-18-knockdown marrow cells showed increased stem cell function. Results of the analysis on human cells were similar to those observed in case of murine cells. In a clinical investigation, transplantation using sources with a low Bmi1 to Mel-18 ratio was associated with early hematopoietic recovery. CONCLUSION Reciprocal expression of Bmi1 and Mel-18 regulated HSC function. Here, we observed that expression of the PcG genes-bmi1 and mel-18-is correlated with self-renewal and differentiation of HSCs. Thus, it was suggested that the balance between Bmi1 and Mel-18 regulates self-renewal of HSCs.
Collapse
Affiliation(s)
- Teruyuki Kajiume
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Baskind HA, Na L, Ma Q, Patel MP, Geenen DL, Wang QT. Functional conservation of Asxl2, a murine homolog for the Drosophila enhancer of trithorax and polycomb group gene Asx. PLoS One 2009; 4:e4750. [PMID: 19270745 PMCID: PMC2650259 DOI: 10.1371/journal.pone.0004750] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/31/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Polycomb-group (PcG) and trithorax-group (trxG) proteins regulate histone methylation to establish repressive and active chromatin configurations at target loci, respectively. These chromatin configurations are passed on from mother to daughter cells, thereby causing heritable changes in gene expression. The activities of PcG and trxG proteins are regulated by a special class of proteins known as Enhancers of trithorax and Polycomb (ETP). The Drosophila gene Additional sex combs (Asx) encodes an ETP protein and mutations in Asx enhance both PcG and trxG mutant phenotypes. The mouse and human genomes each contain three Asx homologues, Asx-like 1, 2, and 3. In order to understand the functions of mammalian Asx-like (Asxl) proteins, we generated an Asxl2 mutant mouse from a gene-trap ES cell line. METHODOLOGY/PRINCIPAL FINDINGS We show that the Asxl2 gene trap is expressed at high levels in specific tissues including the heart, the axial skeleton, the neocortex, the retina, spermatogonia and developing oocytes. The gene trap mutation is partially embryonic lethal and approximately half of homozygous animals die before birth. Homozygotes that survive embryogenesis are significantly smaller than controls and have a shortened life span. Asxl2(-/-) mice display both posterior transformations and anterior transformation in the axial skeleton, suggesting that the loss of Asxl2 disrupts the activities of both PcG and trxG proteins. The PcG-associated histone modification, trimethylation of histone H3 lysine 27, is reduced in Asxl2(-/-) heart. Necropsy and histological analysis show that mutant mice have enlarged hearts and may have impaired heart function. CONCLUSIONS/SIGNIFICANCE Our results suggest that murine Asxl2 has conserved ETP function and plays dual roles in the promotion of PcG and trxG activity. We have also revealed an unexpected role for Asxl2 in the heart, suggesting that the PcG/trxG system may be involved in the regulation of cardiac function.
Collapse
Affiliation(s)
- Heather A. Baskind
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lucy Na
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Quanhong Ma
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mayur P. Patel
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - David L. Geenen
- Department of Medicine, Section of Cardiology and the Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Q. Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Karakuzu O, Wang DP, Cameron S. MIG-32 and SPAT-3A are PRC1 homologs that control neuronal migration in Caenorhabditis elegans. Development 2009; 136:943-53. [PMID: 19211678 PMCID: PMC2727560 DOI: 10.1242/dev.029363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2009] [Indexed: 11/20/2022]
Abstract
The Polycomb repression complex 2 (PRC2) methylates histone H3 lysine 27 at target genes to modify gene expression, and this mark is recognized by PRC1, which ubiquitylates histone H2A. In Caenorhabditis elegans, a complex of the MES-2, MES-3 and MES-6 proteins is functionally analogous to the PRC2 complex, but the functional analog of PRC1, and indeed whether C. elegans has such a complex, has been unclear. We describe here that MIG-32 and SPAT-3A are functional analogs of PRC1 in C. elegans, where they are required for neuronal migrations and during vulval development. mig-32 and spat-3 mutants are defective in H2A ubiquitylation, and have nervous system defects that partially overlap with those of mes mutants. However, unlike the mes mutants, mig-32 and spat-3 mutants are fertile, suggesting that PRC1 function is not absolutely required in the germline for essential functions of PRC2.
Collapse
Affiliation(s)
- Ozgur Karakuzu
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | |
Collapse
|
42
|
Wang Q, Li WL, You P, Su J, Zhu MH, Xie DF, Zhu HY, He ZY, Li JX, Ding XY, Wang X, Hu YP. Oncoprotein BMI-1 induces the malignant transformation of HaCaT cells. J Cell Biochem 2009; 106:16-24. [PMID: 19021148 DOI: 10.1002/jcb.21969] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BMI-1 (B-cell-specific Moloney murine leukemia virus integration site 1), a novel oncogene, has attracted much attention in recent years for its involvement in the initiation of a variety of tumors. Recent evidence showed that BMI-1 was highly expressed in neoplastic skin lesions. However, whether dysregulated BMI-1 expression is causal for the transformation of skin cells remains unknown. In this study, we stably expressed BMI-1 in a human keratinocyte cell line, HaCaT. The expression of wild-type BMI-1 induced the malignant transformation of HaCaT cells in vitro. More importantly, we found that expression of BMI-1 promoted formation of squamous cell carcinomas in vivo. Furthermore, we showed that BMI-1 expression led to the downregulation of tumor suppressors, such as p16INK4a and p14ARF, cell adhesion molecules, such as E-Cadherin, and differentiation related factor, such as KRT6. Therefore, our findings demonstrated that dysregulated BMI-1 could indeed lead to keratinocytes transformation and tumorigenesis, potentially through promoting cell cycle progression and increasing cell mobility.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schübeler D, Baylin SB. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 2009; 6:2911-27. [PMID: 19053175 PMCID: PMC2592355 DOI: 10.1371/journal.pbio.0060306] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022] Open
Abstract
Many DNA hypermethylated and epigenetically silenced genes in adult cancers are Polycomb group (PcG) marked in embryonic stem (ES) cells. We show that a large region upstream (∼30 kb) of and extending ∼60 kb around one such gene, GATA-4, is organized—in Tera-2 undifferentiated embryonic carcinoma (EC) cells—in a topologically complex multi-loop conformation that is formed by multiple internal long-range contact regions near areas enriched for EZH2, other PcG proteins, and the signature PcG histone mark, H3K27me3. Small interfering RNA (siRNA)–mediated depletion of EZH2 in undifferentiated Tera-2 cells leads to a significant reduction in the frequency of long-range associations at the GATA-4 locus, seemingly dependent on affecting the H3K27me3 enrichments around those chromatin regions, accompanied by a modest increase in GATA-4 transcription. The chromatin loops completely dissolve, accompanied by loss of PcG proteins and H3K27me3 marks, when Tera-2 cells receive differentiation signals which induce a ∼60-fold increase in GATA-4 expression. In colon cancer cells, however, the frequency of the long-range interactions are increased in a setting where GATA-4 has no basal transcription and the loops encompass multiple, abnormally DNA hypermethylated CpG islands, and the methyl-cytosine binding protein MBD2 is localized to these CpG islands, including ones near the gene promoter. Removing DNA methylation through genetic disruption of DNA methyltransferases (DKO cells) leads to loss of MBD2 occupancy and to a decrease in the frequency of long-range contacts, such that these now more resemble those in undifferentiated Tera-2 cells. Our findings reveal unexpected similarities in higher order chromatin conformation between stem/precursor cells and adult cancers. We also provide novel insight that PcG-occupied and H3K27me3-enriched regions can form chromatin loops and physically interact in cis around a single gene in mammalian cells. The loops associate with a poised, low transcription state in EC cells and, with the addition of DNA methylation, completely repressed transcription in adult cancer cells. Polycomb group (PcG) proteins and DNA methylation are fundamental epigenetic regulators of gene expression. The mechanisms underlying such regulation, the crosstalk between these mechanisms, and the role of higher order chromatin folding in mediating transcriptional control of involved genes remains unclear. Abnormal DNA methylation at gene promoters in cancer has been linked to PcG promoter occupancy and PcG-mediated maintenance of genes in a poised, low expression state in embryonic cells. We now strengthen these links and show that PcG occupancy around an entire gene, GATA-4, represses transcription by maintaining a series of long-range chromatin interactions. In embryonic cells, where DNA methylation is largely absent, GATA-4 is in a low, poised transcription state, and the loops can be virtually eliminated by retinoid-induced cellular differentiation, with attendant robust transcriptional up-regulation. When GATA-4 is DNA hypermethylated in colon cancer cells, the intensity of the long-range interactions is increased and associates with complete lack of transcription. Removal of DNA methylation in the cancer cells only slightly loosens the loops and restores expression to a low, poised state. Together, these findings suggest that both repressive pathways operate in part by the formation of chromatin higher order structures and provide important translational ramifications for targeting re-expression of epigenetically silenced genes for cancer therapy. Chromatin regions enriched for Polycomb group proteins physically interact in a series of loops around a single gene in mammalian cells. This higher order structure maintains a poised, low transcription state in embryonic cancer cells and, with addition of DNA methylation, a completely repressed transcription in adult cancer cells.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kelly M McGarvey
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Julien D.F Licchesi
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Joyce E Ohm
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - James G Herman
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephen B Baylin
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Courel M, Friesenhahn L, Lees JA. E2f6 and Bmi1 cooperate in axial skeletal development. Dev Dyn 2008; 237:1232-42. [PMID: 18366140 DOI: 10.1002/dvdy.21516] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bmi1 is a Polycomb Group protein that functions as a component of Polycomb Repressive Complex 1 (PRC1) to control axial skeleton development through Hox gene repression. Bmi1 also represses transcription of the Ink4a-Arf locus and is consequently required to maintain the proliferative and self-renewal properties of hematopoietic and neural stem cells. Previously, one E2F family member, E2F6, has been shown to interact with Bmi1 and other known PRC1 components. However, the biological relevance of this interaction is unknown. In this study, we use mouse models to investigate the interplay between E2F6 and Bmi1. This analysis shows that E2f6 and Bmi1 cooperate in the regulation of Hox genes, and consequently axial skeleton development, but not in the repression of the Ink4a-Arf locus. These findings underscore the significance of the E2F6-Bmi1 interaction in vivo and suggest that the Hox and Ink4a-Arf loci are regulated by somewhat different mechanisms.
Collapse
Affiliation(s)
- Maria Courel
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
45
|
Sasaki M, Yamaguchi J, Itatsu K, Ikeda H, Nakanuma Y. Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J Pathol 2008; 215:175-83. [PMID: 18393368 DOI: 10.1002/path.2345] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycomb group protein EZH2 and Bmi1 are reportedly involved in the progression of malignant tumours. We examined the participation of EZH2 in multi-step cholangiocarcinogenesis in hepatolithiasis with respect to tumour suppressor gene p16 INK4a. We examined 20 hepatolithiatic livers with intrahepatic cholangiocarcinoma (ICC) and 10 histologically normal livers. Neoplastic biliary lesions were classified into biliary intraepithelial neoplasm (BilIN-1, 2 and 3) and invasive carcinoma. We selected 15 foci of invasive carcinoma, 8 BilIN-3 (carcinoma in situ), 12 BilIN-2 (high-grade dysplasia), 32 BilIN-1 (low-grade dysplasia) and 37 non-neoplastic biliary epithelia from these livers. Expression of p16 INK4a, EZH2 and Bmi1 were surveyed in these foci. P16 INK4a promoter methylation was examined in microdissected tissues. Taking advantage of two cell lines of CC (HuCTT-1 and TFK-1) and small interfering RNA (siRNA), the effects of the knockdown of EZH2 on p16 INK4a methylation of CC cells were examined. Expression of p16 INK4a, which was frequent in BilIN1, was decreased in BilIN-2/3 and invasive carcinoma, while EZH2 expression showed step-wise increase from BilIN-1, -2 and -3 to invasive carcinoma (p < 0.01). P16 INK4a promoter hypermethylation was related to aberrant expression of EZH2. The knockdown of EZH2 in cultured CC cells decreased p16 INK4a methylation and decreased binding of EZH2 to the p16 INK4a gene promoter. The latter suggested that direct binding of EZH2 is involved in the regulation of the p16 INK4a gene. Our data suggest that over-expression of EZH2 may induce hypermethylation of p16 INK4a promoter followed by decreased expression of p16 INK4a in the multi-step cholangiocarcinogenesis through intraepithelial neoplasm in hepatolithiasis.
Collapse
Affiliation(s)
- M Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
46
|
Sanchez-Pulido L, Devos D, Sung ZR, Calonje M. RAWUL: a new ubiquitin-like domain in PRC1 ring finger proteins that unveils putative plant and worm PRC1 orthologs. BMC Genomics 2008; 9:308. [PMID: 18588675 PMCID: PMC2447854 DOI: 10.1186/1471-2164-9-308] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycomb group (PcG) proteins are a set of chromatin-modifying proteins that play a key role in epigenetic gene regulation. The PcG proteins form large multiprotein complexes with different activities. The two best-characterized PcG complexes are the PcG repressive complex 1 (PRC1) and 2 (PRC2) that respectively possess histone 2A lysine 119 E3 ubiquitin ligase and histone 3 lysine 27 methyltransferase activities. While PRC2-like complexes are conserved throughout the eukaryotic kingdoms, PRC1-like complexes have only been described in Drosophila and vertebrates. Since both complexes are required for the gene silencing mechanism in Drosophila and vertebrates, how PRC1 function is realized in organisms that apparently lack PRC1 such as plants, is so far unknown. In vertebrates, PRC1 includes three proteins, Ring1B, Ring1A, and Bmi-1 that form an E3 ubiquitin ligase complex. These PRC1 proteins have an N-terminally located Ring finger domain associated to a poorly characterized conserved C-terminal region. RESULTS We obtained statistically significant evidences of sequence similarity between the C-terminal region of the PRC1 Ring finger proteins and the ubiquitin (Ubq)-like family proteins, thus defining a new Ubq-like domain, the RAWUL domain. In addition, our analysis revealed the existence of plant and worm proteins that display the conserved combination of a Ring finger domain at the N-terminus and a RAWUL domain at the C-terminus. CONCLUSION Analysis of the conserved domain architecture among PRC1 Ring finger proteins revealed the existence of long sought PRC1 protein orthologs in these organisms, suggesting the functional conservation of PRC1 throughout higher eukaryotes.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Centro Nacional de Biotecnología (CNB-CSIC). Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | |
Collapse
|
47
|
Abstract
The papillomavirus life cycle is intimately coupled to the differentiation state of the infected epithelium. Since papillomaviruses lack most of the rate-limiting enzymes required for genome synthesis, they need to uncouple keratinocyte differentiation from cell cycle arrest and maintain or reestablish a replication-competent state within terminally differentiated keratinocytes. The human papillomavirus (HPV) E7 protein appears to be a major determinant for this activity and induces aberrant S-phase entry through the inactivation of the retinoblastoma tumor suppressor and related pocket proteins. In addition, E7 can abrogate p21 and p27. Together, this leads to the activation of E2F1 to E2F5, enhanced expression of E2F-responsive genes, and increased cdk2 activity. E2F6 is a pRB-independent, noncanonical member of the E2F transcription factor family that acts as a transcriptional repressor. E2F6 expression is activated in S phase through an E2F-dependent mechanism and thus may provide a negative-feedback mechanism that slows down S-phase progression and/or exit in response to the activation of the other E2F transcription factors. Here, we show that low- and high-risk HPV E7 proteins, as well as simian virus 40 T antigen and adenovirus E1A, can associate with and inactivate the transcriptional repression activity of E2F6, thereby subverting a critical cellular defense mechanism. This may result in the extended S-phase competence of HPV-infected cells. E2F6 is a component of polycomb group complexes, which bind to silenced chromatin and are critical for the maintenance of cell fate. We show that E7-expressing cells show decreased staining for E2F6/polycomb complexes and that this is at least in part dependent on the association with E2F6.
Collapse
|
48
|
Bachmann IM, Puntervoll HE, Otte AP, Akslen LA. Loss of BMI-1 expression is associated with clinical progress of malignant melanoma. Mod Pathol 2008; 21:583-90. [PMID: 18246051 DOI: 10.1038/modpathol.2008.17] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BMI-1 is a member of the Polycomb group of genes (PcGs) and is involved in embryonic gene regulation and maintenance of adult stem cells. It has been suggested that BMI-1 protein is important in cell cycle regulation, since both p16/INK4a and p14/ARF are downstream BMI-1 targets. BMI-1 has been implicated in the development and progression of several malignancies, but its role in melanocytic tumors of the skin is unknown. In the present study, using immunohistochemistry on 178 benign and malignant melanocytic lesions and two different antibodies, BMI-1 expression was reduced in melanomas compared with benign nevi. In established melanomas, loss of BMI-1 expression was associated with features of aggressive tumors, such as increased tumor cell proliferation, presence of necrosis and increased expression of both N-cadherin and beta3-integrin, indicating a more invasive and mesenchymal phenotype. Low BMI-1 expression was associated with low p14 and CDK4 but not with p16 expression. Low levels of BMI-1 expression were also significantly associated with decreased patient survival.
Collapse
Affiliation(s)
- Ingeborg M Bachmann
- Section for Pathology, The Gade Institute, University of Bergen, Haukeland University Hospital, Bergen, Norway
| | | | | | | |
Collapse
|
49
|
Tonini T, D'Andrilli G, Fucito A, Gaspa L, Bagella L. Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements. J Cell Physiol 2007; 214:295-300. [PMID: 17786943 DOI: 10.1002/jcp.21241] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An understanding of the mechanisms that uncover the dynamic changes in the distribution of the chromatin modifying enzymes and regulatory proteins on their target loci could provide further insight into the phenomenon of malignant transformation. Based on the current available data, it seems more and more clear that an abnormal expression of Ezh2, a member of the Polycomb group (PcG) protein, may be involved in the tumorigenesis process, in addition, different studies identify Ezh2 as a potential marker that distinguish aggressive prostate and breast cancer from indolent one. Recent investigation show that ectopic expression of Ezh2 provides proliferative advantage to primary cells through interaction with the pathways of key elements that control cell growth arrest and differentiation, like members of the retinoblastoma (Rb) family. Here, we outline how these pathways converge and we review the recent advances on the molecular mechanisms that promote cell cycle progression through deregulation of Ezh2 protein level, providing novel links between cancer progression and chromatin remodeling machineries.
Collapse
Affiliation(s)
- Tiziana Tonini
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
50
|
Canola K, Angénieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, Schorderet DF, Arsenijevic Y. Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci 2007; 48:446-54. [PMID: 17197566 PMCID: PMC2823590 DOI: 10.1167/iovs.06-0190] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the potential of newborn retinal stem cells (RSCs) isolated from the radial glia population to integrate the retina, this study was conducted to investigate the fate of in vitro expanded RSCs transplanted into retinas devoid of photoreceptors (adult rd1 and old VPP mice and rhodopsin-mutated transgenic mice) or partially degenerated retina (adult VPP mice) retinas. METHODS Populations of RSCs and progenitor cells were isolated either from DBA2J newborn mice and labeled with the red lipophilic fluorescent dye (PKH26) or from GFP (green fluorescent protein) transgenic mice. After expansion in EGF+FGF2 (epidermal growth factor+fibroblast growth factor), cells were transplanted intravitreally or subretinally into the eyes of adult wild-type, transgenic mice undergoing slow (VPP strain) or rapid (rd1 strain) retinal degeneration. RESULTS Only limited migration and differentiation of the cells were observed in normal mice injected subretinally or in VPP and rd1 mice injected intravitreally. After subretinal injection in old VPP mice, transplanted cells massively migrated into the ganglion cell layer and, at 1 and 4 weeks after injection, harbored neuronal and glial markers expressed locally, such as beta-tubulin-III, NeuN, Brn3b, or glial fibrillary acidic protein (GFAP), with a marked preference for the glial phenotype. In adult VPP retinas, the grafted cells behaved similarly. Few grafted cells stayed in the degenerating outer nuclear layer (ONL). These cells were, in rare cases, positive for rhodopsin or recoverin, markers specific for photoreceptors and some bipolar cells. CONCLUSIONS These results show that the grafted cells preferentially integrate into the GCL and IPL and express ganglion cell or glial markers, thus exhibiting migratory and differentiation preferences when injected subretinally. It also appears that the retina, whether partially degenerated or already degenerated, does not provide signals to induce massive differentiation of RSCs into photoreceptors. This observation suggests that a predifferentiation of RSCs into photoreceptors before transplantation may be necessary to obtain graft integration in the ONL.
Collapse
Affiliation(s)
- Kriss Canola
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Brigitte Angénieux
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Meriem Tekaya
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander Quiambao
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Francis L. Munier
- Unit of Clinical Oculogenetics, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|