1
|
Smith SF, Islam AFMT, Alimukhamedov S, Weiss ET, Charest PG. Molecular determinants of Ras-mTORC2 signaling. J Biol Chem 2024; 300:107423. [PMID: 38815864 PMCID: PMC11255897 DOI: 10.1016/j.jbc.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.
Collapse
Affiliation(s)
- Stephen F Smith
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - A F M Tariqul Islam
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Ethan T Weiss
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Pascale G Charest
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
2
|
Biondo M, Panuzzo C, Ali SM, Bozzaro S, Osella M, Bracco E, Pergolizzi B. The Dynamics of Aerotaxis in a Simple Eukaryotic Model. Front Cell Dev Biol 2021; 9:720623. [PMID: 34888305 PMCID: PMC8650612 DOI: 10.3389/fcell.2021.720623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
In aerobic organisms, oxygen is essential for efficient energy production, and it acts as the last acceptor of the mitochondrial electron transport chain and as regulator of gene expression. However, excessive oxygen can lead to production of deleterious reactive oxygen species. Therefore, the directed migration of single cells or cell clumps from hypoxic areas toward a region of optimal oxygen concentration, named aerotaxis, can be considered an adaptive mechanism that plays a major role in biological and pathological processes. One relevant example is the development of O2 gradients when tumors grow beyond their vascular supply, leading frequently to metastasis. In higher eukaryotic organisms, aerotaxis has only recently begun to be explored, but genetically amenable model organisms suitable to dissect this process remain an unmet need. In this regard, we sought to assess whether Dictyostelium cells, which are an established model for chemotaxis and other motility processes, could sense oxygen gradients and move directionally in their response. By assessing different physical parameters, our findings indicate that both growing and starving Dictyostelium cells under hypoxic conditions migrate directionally toward regions of higher O2 concentration. This migration is characterized by a specific pattern of cell arrangement. A thickened circular front of high cell density (corona) forms in the cell cluster and persistently moves following the oxygen gradient. Cells in the colony center, where hypoxia is more severe, are less motile and display a rounded shape. Aggregation-competent cells forming streams by chemotaxis, when confined under hypoxic conditions, undergo stream or aggregate fragmentation, giving rise to multiple small loose aggregates that coordinately move toward regions of higher O2 concentration. By testing a panel of mutants defective in chemotactic signaling, and a catalase-deficient strain, we found that the latter and the pkbR1null exhibited altered migration patterns. Our results suggest that in Dictyostelium, like in mammalian cells, an intracellular accumulation of hydrogen peroxide favors the migration toward optimal oxygen concentration. Furthermore, differently from chemotaxis, this oxygen-driven migration is a G protein-independent process.
Collapse
Affiliation(s)
- Marta Biondo
- Department of Physics, INFN, University of Turin, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Shahzad M Ali
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Matteo Osella
- Department of Physics, INFN, University of Turin, Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, Turin, Italy
| | - Barbara Pergolizzi
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| |
Collapse
|
3
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Yang Y, Li D, Chao X, Singh SP, Thomason P, Yan Y, Dong M, Li L, Insall RH, Cai H. Leep1 interacts with PIP3 and the Scar/WAVE complex to regulate cell migration and macropinocytosis. J Cell Biol 2021; 220:212090. [PMID: 33978708 PMCID: PMC8127007 DOI: 10.1083/jcb.202010096] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Polarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain–containing protein we named Leep1 as a novel polarity regulator. We combined imaging, biochemical, and phenotypic analyses to demonstrate that Leep1 localizes selectively at the leading edge of cells by binding to PIP3, where it modulates pseudopod and macropinocytic cup dynamics by negatively regulating the Scar/WAVE complex. The spatiotemporal coordination of PIP3 signaling, Leep1, and the Scar/WAVE complex provides a cellular mechanism for organizing protrusive structures at the leading edge.
Collapse
Affiliation(s)
- Yihong Yang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shashi P Singh
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Peter Thomason
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Meena NP, Jaiswal P, Chang FS, Brzostowski J, Kimmel AR. DPF is a cell-density sensing factor, with cell-autonomous and non-autonomous functions during Dictyostelium growth and development. BMC Biol 2019; 17:97. [PMID: 31791330 PMCID: PMC6889452 DOI: 10.1186/s12915-019-0714-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cellular functions can be regulated by cell-cell interactions that are influenced by extra-cellular, density-dependent signaling factors. Dictyostelium grow as individual cells in nutrient-rich sources, but, as nutrients become depleted, they initiate a multi-cell developmental program that is dependent upon a cell-density threshold. We hypothesized that novel secreted proteins may serve as density-sensing factors to promote multi-cell developmental fate decisions at a specific cell-density threshold, and use Dictyostelium in the identification of such a factor. Results We show that multi-cell developmental aggregation in Dictyostelium is lost upon minimal (2-fold) reduction in local cell density. Remarkably, developmental aggregation response at non-permissive cell densities is rescued by addition of conditioned media from high-density, developmentally competent cells. Using rescued aggregation of low-density cells as an assay, we purified a single, 150-kDa extra-cellular protein with density aggregation activity. MS/MS peptide sequence analysis identified the gene sequence, and cells that overexpress the full-length protein accumulate higher levels of a development promoting factor (DPF) activity than parental cells, allowing cells to aggregate at lower cell densities; cells deficient for this DPF gene lack density-dependent developmental aggregation activity and require higher cell density for cell aggregation compared to WT. Density aggregation activity co-purifies with tagged versions of DPF and tag-affinity-purified DPF possesses density aggregation activity. In mixed development with WT, cells that overexpress DPF preferentially localize at centers for multi-cell aggregation and define cell-fate choice during cytodifferentiation. Finally, we show that DPF is synthesized as a larger precursor, single-pass transmembrane protein, with the p150 fragment released by proteolytic cleavage and ectodomain shedding. The TM/cytoplasmic domain of DPF possesses cell-autonomous activity for cell-substratum adhesion and for cellular growth. Conclusions We have purified a novel secreted protein, DPF, that acts as a density-sensing factor for development and functions to define local collective thresholds for Dictyostelium development and to facilitate cell-cell communication and multi-cell formation. Regions of high DPF expression are enriched at centers for cell-cell signal-response, multi-cell formation, and cell-fate determination. Additionally, DPF has separate cell-autonomous functions for regulation of cellular adhesion and growth.
Collapse
Affiliation(s)
- Netra Pal Meena
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pundrik Jaiswal
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fu-Sheng Chang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Brzostowski
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA.,Laboratory of Immunogenetics Twinbrook Imaging Facility, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Rockville, MD, 20852, USA
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
7
|
Tariqul Islam AFM, Scavello M, Lotfi P, Daniel D, Haldeman P, Charest PG. Caffeine inhibits PI3K and mTORC2 in Dictyostelium and differentially affects multiple other cAMP chemoattractant signaling effectors. Mol Cell Biochem 2019; 457:157-168. [PMID: 30879206 PMCID: PMC6551265 DOI: 10.1007/s11010-019-03520-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/09/2019] [Indexed: 01/30/2023]
Abstract
Caffeine is commonly used in Dictyostelium to inhibit the synthesis of the chemoattractant cAMP and, therefore, its secretion and the autocrine stimulation of cells, in order to prevent its interference with the study of chemoattractant-induced responses. However, the mechanism through which caffeine inhibits cAMP synthesis in Dictyostelium has not been characterized. Here, we report the effects of caffeine on the cAMP chemoattractant signaling network. We found that caffeine inhibits phosphatidylinositol 3-kinase (PI3K) and mechanistic target of rapamycin complex 2 (mTORC2). Both PI3K and mTORC2 are essential for the chemoattractant-stimulated cAMP production, thereby providing a mechanism for the caffeine-mediated inhibition of cAMP synthesis. Our results also reveal that caffeine treatment of cells leads to an increase in cAMP-induced RasG and Rap1 activation, and inhibition of the PKA, cGMP, MyoII, and ERK1 responses. Finally, we observed that caffeine has opposite effects on F-actin and ERK2 depending on the assay and Dictyostelium strain used, respectively. Altogether, our findings reveal that caffeine considerably affects the cAMP-induced chemotactic signaling pathways in Dictyostelium, most likely acting through multiple targets that include PI3K and mTORC2.
Collapse
Affiliation(s)
- A F M Tariqul Islam
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Margarethakay Scavello
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
- Eurofins Lancaster Laboratories Professional Scientific Services, LLC, Malvern, PA, USA
| | - Pouya Lotfi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Dustin Daniel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ, USA
| | - Pearce Haldeman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
- Division of Biology and Biological Engineering, Joint Center for Transitional Medicine, California Institute of Technology, Pasadena, CA, USA
| | - Pascale G Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Senoo H, Kamimura Y, Kimura R, Nakajima A, Sawai S, Sesaki H, Iijima M. Phosphorylated Rho-GDP directly activates mTORC2 kinase towards AKT through dimerization with Ras-GTP to regulate cell migration. Nat Cell Biol 2019; 21:867-878. [PMID: 31263268 PMCID: PMC6650273 DOI: 10.1038/s41556-019-0348-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
mTORC2 plays critical roles in metabolism, cell survival and actin cytoskeletal dynamics through the phosphorylation of AKT. Despite its importance to biology and medicine, it is unclear how mTORC2-mediated AKT phosphorylation is controlled. Here, we identify an unforeseen principle by which a GDP-bound form of the conserved small G protein Rho GTPase directly activates mTORC2 in AKT phosphorylation in social amoebae (Dictyostelium discoideum) cells. Using biochemical reconstitution with purified proteins, we demonstrate that Rho-GDP promotes AKT phosphorylation by assembling a supercomplex with Ras-GTP and mTORC2. This supercomplex formation is controlled by the chemoattractant-induced phosphorylation of Rho-GDP at S192 by GSK-3. Furthermore, Rho-GDP rescues defects in both mTORC2-mediated AKT phosphorylation and directed cell migration in Rho-null cells in a manner dependent on phosphorylation of S192. Thus, in contrast to the prevailing view that the GDP-bound forms of G proteins are inactive, our study reveals that mTORC2-AKT signalling is activated by Rho-GDP.
Collapse
Affiliation(s)
- Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, Quantitative Biology Center, RIKEN, Suita, Japan
| | - Reona Kimura
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akihiko Nakajima
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
张 杰, 韩 增, 董 立, 李 甄, 栗 坤, 石 明, 刘 志, 李 健. [MicroRNA-152 and microRNA-448 inhibit proliferation of colorectal cancer cells in vitro by targeting Rictor]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:533-539. [PMID: 31140416 PMCID: PMC6743937 DOI: 10.12122/j.issn.1673-4254.2019.05.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To screen the microRNAs (miRNAs) targeting Rictor and investigate their effects in regulating the biological behaviors of colorectal cancer (CRC). METHODS Human colorectal cancer cell line KM12SM was transfected with the miRNAs targeting Rictor identified by prediction software to test inhibitory effects of these miRNAs on Rictor expression using qRT-PCR and Western blotting. Dual luciferase reporter assay was used to further confirm the binding of these miRNAs to the 3'UTR of Rictor mRNA. Cell survival and colony formation assays were used to investigate the effects of these miRNAs on survival and colony formation in KM12SM cells. RESULTS miR-152 and miR-448 were identified as the Rictor-targeting miRNAs, which significantly inhibited the expression of Rictor in KM12SM cells (P < 0.05). The two miRNAs were confirmed to bind to the 3'UTR of Rictor mRNA and significantly inhibited luciferase activity in KM12SM cells (P < 0.01, P < 0.05); they also showed activities of posttranscriptional modulation of Rictor. Overexpression of miR-152 and miR-448 both significantly inhibited the growth and colony formation of KM12SM cells. CONCLUSIONS miR-152 and miR-448 can down-regulate the protein expression of Rictor by targeting Rictor mRNA to negatively regulate the growth and colony formation of colorectal cancer cells.
Collapse
Affiliation(s)
- 杰 张
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - 增胜 韩
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| | - 立新 董
- 河北省秦皇岛市第一医院肿瘤科,河北 秦皇岛 066000Department of Oncology, First Hospital of Qinhuangdao City, Qinhuangdao 066000, China
| | - 甄 李
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - 坤 栗
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| | - 明 石
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
- 秦皇岛拜恩发生物技术有限公司,河北 秦皇岛 066000Qinhuangdao Biopha Biotechnology co. LTD., Qinhuangdao 066000, China
| | - 志伟 刘
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
- 秦皇岛拜恩发生物技术有限公司,河北 秦皇岛 066000Qinhuangdao Biopha Biotechnology co. LTD., Qinhuangdao 066000, China
| | - 健 李
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Pergolizzi B, Panuzzo C, Ali MS, Lo Iacono M, Levron CL, Ponzone L, Prelli M, Cilloni D, Calautti E, Bozzaro S, Bracco E. Mammals and Dictyostelium rictor mutations swapping reveals two essential Gly residues for mTORC2 activity and integrity. J Cell Sci 2019; 132:jcs.236505. [DOI: 10.1242/jcs.236505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
mTORC2 regulates a variety of vital cellular processes, and its aberrant functioning is often associated with various diseases. Rictor is a peculiar and distinguishing mTORC2 component playing a pivotal role in controlling its assembly and activity. Among living organisms Rictor is conserved from unicellular eukaryotes to metazoan. We replaced two distinct, but conserved, glycines in both the Dictyostelium piaA gene and its human ortholog, rictor. The two conserved residues are spaced by approximately 50 aminoacids and both are embedded within a conserved region falling in between the Ras-GEFN2 and Rictor_V domains. The effects of point mutations on the mTORC2 activity and integrity were assessed by biochemical and functional assays.In both cases, the reciprocal exchange between mammals and Dictyostelium rictor and piaA gene point mutations impaired mTORC2 activity and integrity.Our data indicate that the two Gly residues are essential for the maintenance of mTORC2 activity and integrity in organisms that appear to be distantly related, suggesting a primeval role in the assembly and proper TOR complex 2 functioning.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - M. Shahzad Ali
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Chiara Levra Levron
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Luca Ponzone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Marta Prelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| |
Collapse
|
11
|
The role of mTOR-mediated signaling in the regulation of cellular migration. Immunol Lett 2018; 196:74-79. [PMID: 29408410 DOI: 10.1016/j.imlet.2018.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Mechanistic target for rapamycin (mTOR) is a serine/threonine protein kinase that forms two distinct complexes mTORC1 and mTORC2, integrating mitogen and nutrient signals to regulate cell survival and proliferation; processes which are commonly deregulated in human cancers. mTORC1 and mTORC2 have divergent molecular associations and cellular functions: mTORC1 regulates in mRNA translation and protein synthesis, while mTORC2 is involved in the regulation of cellular survival and metabolism. Through AKT phosphorylation/activation, mTORC2 has also been reported to regulate cell migration. Recent attention has focused on the aberrant activation of the PI3K/mTOR pathway in B cell malignancies and there is growing evidence for its involvement in disease pathogenesis, due to its location downstream of other established novel drug targets that intercept B cell receptor (BCR) signals. Shared pharmacological features of BCR signal inhibitors include a striking "lymphocyte redistribution" effect whereby patients experience a sharp increase in lymphocyte count on initiation of therapy followed by a steady decline. Chronic lymphocytic leukemia (CLL) serves as a paradigm for migration studies as lymphocytes are among the most widely travelled cells in the body, a product of their role in immunological surveillance. The subversion of normal lymphocyte movement in CLL is being elucidated; this review aims to describe the migration impairment which occurs as part of the wider context of cancer cell migration defects, with a focus on the role of mTOR in mediating migration effects downstream of BCR ligation and other microenvironmental signals.
Collapse
|
12
|
Kim LW. Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration. BMB Rep 2017; 50:437-444. [PMID: 28571594 PMCID: PMC5625690 DOI: 10.5483/bmbrep.2017.50.9.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/20/2022] Open
Abstract
Different types of eukaryotic cells may adopt seemingly distinct modes of directional cell migration. However, several core aspects are regarded common whether the movement is either ameoboidal or mesenchymal. The region of cells facing the attractive signal is often termed leading edge where lamellipodial structures dominates and the other end of the cell called rear end is often mediating cytoskeletal F-actin contraction involving Myosin-II. Dynamic remodeling of cell-to-matrix adhesion involving integrin is also evident in many types of migrating cells. All these three aspects of cell migration are significantly affected by signaling networks of TorC2, TorC1, and PP2A/B56. Here we review the current views of the mechanistic understanding of these regulatory signaling networks and how these networks affect eukaryotic cell migration.
Collapse
Affiliation(s)
- Lou W Kim
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
13
|
Pergolizzi B, Bracco E, Bozzaro S. A new HECT ubiquitin ligase regulating chemotaxis and development in Dictyostelium discoideum. J Cell Sci 2017; 130:551-562. [PMID: 28049717 DOI: 10.1242/jcs.194225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023] Open
Abstract
Cyclic AMP (cAMP) binding to G-protein-coupled receptors (GPCRs) orchestrates chemotaxis and development in Dictyostelium. By activating the RasC-TORC2-PKB (PKB is also known as AKT in mammals) module, cAMP regulates cell polarization during chemotaxis. TORC2 also mediates GPCR-dependent stimulation of adenylyl cyclase A (ACA), enhancing cAMP relay and developmental gene expression. Thus, mutants defective in the TORC2 Pia subunit (also known as Rictor in mammals) are impaired in chemotaxis and development. Near-saturation mutagenesis of a Pia mutant by random gene disruption led to selection of two suppressor mutants in which spontaneous chemotaxis and development were restored. PKB phosphorylation and chemotactic cell polarization were rescued, whereas Pia-dependent ACA stimulation was not restored but bypassed, leading to cAMP-dependent developmental gene expression. Knocking out the gene encoding the adenylylcyclase B (ACB) in the parental strain showed ACB to be essential for this process. The gene tagged in the suppressor mutants encodes a newly unidentified HECT ubiquitin ligase that is homologous to mammalian HERC1, but harbours a pleckstrin homology domain. Expression of the isolated wild-type HECT domain, but not a mutant HECT C5185S form, from this protein was sufficient to reconstitute the parental phenotype. The new ubiquitin ligase appears to regulate cell sensitivity to cAMP signalling and TORC2-dependent PKB phosphorylation.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| |
Collapse
|
14
|
Khanna A, Lotfi P, Chavan AJ, Montaño NM, Bolourani P, Weeks G, Shen Z, Briggs SP, Pots H, Van Haastert PJM, Kortholt A, Charest PG. The small GTPases Ras and Rap1 bind to and control TORC2 activity. Sci Rep 2016; 6:25823. [PMID: 27172998 PMCID: PMC4865869 DOI: 10.1038/srep25823] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/22/2016] [Indexed: 02/05/2023] Open
Abstract
Target of Rapamycin Complex 2 (TORC2) has conserved roles in regulating cytoskeleton dynamics and cell migration and has been linked to cancer metastasis. However, little is known about the mechanisms regulating TORC2 activity and function in any system. In Dictyostelium, TORC2 functions at the front of migrating cells downstream of the Ras protein RasC, controlling F-actin dynamics and cAMP production. Here, we report the identification of the small GTPase Rap1 as a conserved binding partner of the TORC2 component RIP3/SIN1, and that Rap1 positively regulates the RasC-mediated activation of TORC2 in Dictyostelium. Moreover, we show that active RasC binds to the catalytic domain of TOR, suggesting a mechanism of TORC2 activation that is similar to Rheb activation of TOR complex 1. Dual Ras/Rap1 regulation of TORC2 may allow for integration of Ras and Rap1 signaling pathways in directed cell migration.
Collapse
Affiliation(s)
- Ankita Khanna
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | - Pouya Lotfi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Anita J. Chavan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Nieves M. Montaño
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Parvin Bolourani
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Gerald Weeks
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| | - Steven P. Briggs
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | - Pascale G. Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
15
|
Abstract
SUMMARY Stimuli that promote cell migration, such as chemokines, cytokines, and growth factors in metazoans and cyclic AMP in Dictyostelium, activate signaling pathways that control organization of the actin cytoskeleton and adhesion complexes. The Rho-family GTPases are a key convergence point of these pathways. Their effectors include actin regulators such as formins, members of the WASP/WAVE family and the Arp2/3 complex, and the myosin II motor protein. Pathways that link to the Rho GTPases include Ras GTPases, TorC2, and PI3K. Many of the molecules involved form gradients within cells, which define the front and rear of migrating cells, and are also established in related cellular behaviors such as neuronal growth cone extension and cytokinesis. The signaling molecules that regulate migration can be integrated to provide a model of network function. The network displays biochemical excitability seen as spontaneous waves of activation that propagate along the cell cortex. These events coordinate cell movement and can be biased by external cues to bring about directed migration.
Collapse
Affiliation(s)
- Peter Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
16
|
Loomis WF. Genetic control of morphogenesis in Dictyostelium. Dev Biol 2015; 402:146-61. [PMID: 25872182 PMCID: PMC4464777 DOI: 10.1016/j.ydbio.2015.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Cells grow, move, expand, shrink and die in the process of generating the characteristic shapes of organisms. Although the structures generated during development of the social amoeba Dictyostelium discoideum look nothing like the structures seen in metazoan embryogenesis, some of the morphogenetic processes used in their making are surprisingly similar. Recent advances in understanding the molecular basis for directed cell migration, cell type specific sorting, differential adhesion, secretion of matrix components, pattern formation, regulation and terminal differentiation are reviewed. Genes involved in Dictyostelium aggregation, slug formation, and culmination of fruiting bodies are discussed.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
17
|
Gao R, Zhao S, Jiang X, Sun Y, Zhao S, Gao J, Borleis J, Willard S, Tang M, Cai H, Kamimura Y, Huang Y, Jiang J, Huang Z, Mogilner A, Pan T, Devreotes PN, Zhao M. A large-scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum. Sci Signal 2015; 8:ra50. [PMID: 26012633 PMCID: PMC4470479 DOI: 10.1126/scisignal.aab0562] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Directional cell migration in an electric field, a phenomenon called galvanotaxis or electrotaxis, occurs in many types of cells, and may play an important role in wound healing and development. Small extracellular electric fields can guide the migration of amoeboid cells, and we established a large-scale screening approach to search for mutants with electrotaxis phenotypes from a collection of 563 Dictyostelium discoideum strains with morphological defects. We identified 28 strains that were defective in electrotaxis and 10 strains with a slightly higher directional response. Using plasmid rescue followed by gene disruption, we identified some of the mutated genes, including some previously implicated in chemotaxis. Among these, we studied PiaA, which encodes a critical component of TORC2, a kinase protein complex that transduces changes in motility by activating the kinase PKB (also known as Akt). Furthermore, we found that electrotaxis was decreased in mutants lacking gefA, rasC, rip3, lst8, or pkbR1, genes that encode other components of the TORC2-PKB pathway. Thus, we have developed a high-throughput screening technique that will be a useful tool to elucidate the molecular mechanisms of electrotaxis.
Collapse
Affiliation(s)
- Runchi Gao
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China. Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, School of Medicine, University of California at Davis, Davis, CA 95817, USA. Department of Cell Biology and Anatomy, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Siwei Zhao
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Xupin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400042, China
| | - Yaohui Sun
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, School of Medicine, University of California at Davis, Davis, CA 95817, USA
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China. Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, School of Medicine, University of California at Davis, Davis, CA 95817, USA
| | - Jing Gao
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China. Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, School of Medicine, University of California at Davis, Davis, CA 95817, USA
| | - Jane Borleis
- Department of Cell Biology and Anatomy, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Stacey Willard
- Department of Cell Biology and Anatomy, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ming Tang
- Department of Cell Biology and Anatomy, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Huaqing Cai
- Department of Cell Biology and Anatomy, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Yoichiro Kamimura
- Department of Cell Biology and Anatomy, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Yuesheng Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400042, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400042, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Peter N Devreotes
- Department of Cell Biology and Anatomy, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Min Zhao
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, School of Medicine, University of California at Davis, Davis, CA 95817, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032;
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, 75205 Paris cedex 13, France;
| |
Collapse
|
19
|
Narita TB, Chen ZH, Schaap P, Saito T. The hybrid type polyketide synthase SteelyA is required for cAMP signalling in early Dictyostelium development. PLoS One 2014; 9:e106634. [PMID: 25222736 PMCID: PMC4164351 DOI: 10.1371/journal.pone.0106634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In our previous study we found that the expression of stlA showed peaks both in the early and last stages of development and that a product of SteelyA, 4-methyl-5-pentylbenzene-1,3-diol (MPBD), controlled Dictyostelium spore maturation during the latter. In this study we focused on the role of SteelyA in early stage development. PRINCIPAL FINDINGS Our stlA null mutant showed aggregation delay and abnormally small aggregation territories. Chemotaxis analysis revealed defective cAMP chemotaxis in the stlA null mutant. cAMP chemotaxis was restored by MPBD addition during early stage development. Assay for cAMP relay response revealed that the stlA null mutant had lower cAMP accumulation during aggregation, suggesting lower ACA activity than the wild type strain. Exogenous cAMP pulses rescued the aggregation defect of the stlA null strain in the absence of MPBD. Expression analysis of cAMP signalling genes revealed lower expression levels in the stlA null mutant during aggregation. CONCLUSION Our data indicate a regulatory function by SteelyA on cAMP signalling during aggregation and show that SteelyA is indispensable for full activation of ACA.
Collapse
Affiliation(s)
- Takaaki B. Narita
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science (DC2), Tokyo, Japan
| | - Zhi-hui Chen
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tamao Saito
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| |
Collapse
|
20
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
21
|
Agarwal NK, Kazyken D, Sarbassov DD. Rictor encounters RhoGDI2: the second pilot is taking a lead. Small GTPases 2013; 4:102-5. [PMID: 23354413 DOI: 10.4161/sgtp.23346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rictor's role in cell migration has been first indicated in the original chemotaxis studies in Dictyostelium and more recent studies reported that rictor is required for migration of cancer cells. How rictor promotes cell migration remains poorly characterized. Based on our proteomics study we have identified a novel functional role of rictor in regulation of cell migration. Here, we discuss our recent finding that rictor by suppressing RhoGDI2 maintains activity of the Rac1/cdc42 GTPases and promotes cell migration. Our finding outlines a critical role of rictor in the regulation of RhoGDI2 activity. This study opens new avenues in the investigation of cancer metastasis by analyzing the rictor dependent post-translational modification of RhoGDI2.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
22
|
Campetelli A, Bonazzi D, Minc N. Electrochemical regulation of cell polarity and the cytoskeleton. Cytoskeleton (Hoboken) 2012; 69:601-12. [PMID: 22736620 DOI: 10.1002/cm.21047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 01/08/2023]
Abstract
Cell polarity plays a key role in regulating cell-cell communication, tissue architecture, and development. Both internal and external cues participate in directing polarity and feedback onto each other for robust polarization. One poorly appreciated layer of polarity regulation comes from electrochemical signals spatially organized at the level of the cell or the tissue. These signals which include ion fluxes, membrane potential gradients, or even steady electric fields, emerge from the polarized activation of specific ion transporters, and may guide polarity in wound-healing, development or regeneration. How a given electrochemical cue may influence cytoskeletal elements and cell polarity remains unclear. Here, we review recent progress highlighting the role of electrochemical signals in cell and tissue spatial organization, and elucidating the mechanisms for how such signals may regulate cytoskeletal assembly for cell polarity.
Collapse
Affiliation(s)
- Alexis Campetelli
- Institut Curie, UMR 144 CNRS/IC, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
23
|
Agarwal NK, Chen CH, Cho H, Boulbès DR, Spooner E, Sarbassov DD. Rictor regulates cell migration by suppressing RhoGDI2. Oncogene 2012; 32:2521-6. [PMID: 22777355 PMCID: PMC3470753 DOI: 10.1038/onc.2012.287] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rictor and its binding partner Sin1 are indispensable components of mTORC2 (mammalian Target of Rapamycin Complex 2). The mTORC2 signaling complex functions as the regulatory kinase of the distinct members of AGC kinase family known to regulate cell proliferation and survival. In the early chemotaxis studies in Dictyostelium, the rictor's ortholog has been identified as a regulator of cell migration. How rictor regulates cell migration is poorly characterized. Here we show that rictor regulates cell migration by controlling a potent inhibitor of Rho proteins known as the Rho-GDP dissociation inhibitor 2 (RhoGDI2). Based on our proteomics study we identified that the rictor-dependent deficiency in cell migration is caused by up-regulation of RhoGDI2 leading to a low activity of Rac and Cdc42. We found that a suppression of RhoGDI2 by rictor is not related to the Sin1 or raptor function that excludes a role of mTORC2 or mTORC1 in regulation of RhoGDI2. Our study reveals that rictor by suppressing RhoGDI2 promotes activity of the Rho proteins and cell migration.
Collapse
Affiliation(s)
- N K Agarwal
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
24
|
A Gβγ effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis. Dev Cell 2012; 22:92-103. [PMID: 22264729 DOI: 10.1016/j.devcel.2011.11.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 10/19/2011] [Accepted: 11/15/2011] [Indexed: 10/14/2022]
Abstract
Activation of G protein-coupled receptors (GPCRs) leads to the dissociation of heterotrimeric G-proteins into Gα and Gβγ subunits, which go on to regulate various effectors involved in a panoply of cellular responses. During chemotaxis, Gβγ subunits regulate actin assembly and migration, but the protein(s) linking Gβγ to the actin cytoskeleton remains unknown. Here, we identified a Gβγ effector, ElmoE in Dictyostelium, and demonstrated that it is required for GPCR-mediated chemotaxis. Remarkably, ElmoE associates with Gβγ and Dock-like proteins to activate the small GTPase Rac, in a GPCR-dependent manner, and also associates with Arp2/3 complex and F-actin. Thus, ElmoE serves as a link between chemoattractant GPCRs, G-proteins and the actin cytoskeleton. The pathway, consisting of GPCR, Gβγ, Elmo/Dock, Rac, and Arp2/3, spatially guides the growth of dendritic actin networks in pseudopods of eukaryotic cells during chemotaxis.
Collapse
|
25
|
Rosel D, Khurana T, Majithia A, Huang X, Bhandari R, Kimmel AR. TOR complex 2 (TORC2) in Dictyostelium suppresses phagocytic nutrient capture independently of TORC1-mediated nutrient sensing. J Cell Sci 2012; 125:37-48. [PMID: 22266904 DOI: 10.1242/jcs.077040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The TOR protein kinase functions in two distinct complexes, TOR complex 1 (TORC1) and 2 (TORC2). TORC1 is required for growth in response to growth factors, nutrients and the cellular energy state; TORC2 regulates AKT signaling, which can modulate cytoskeletal polarization. In its ecological niche, Dictyostelium engulf bacteria and yeast for nutrient capture. Despite the essential role of TORC1 in control of cellular growth, we show that nutrient particle capture (phagocytosis) in Dictyostelium is independent of TORC1-mediated nutrient sensing and growth regulation. However, loss of Dictyostelium TORC2 components Rictor/Pia, SIN1/RIP3 and Lst8 promotes nutrient particle uptake; inactivation of TORC2 leads to increased efficiency and speed of phagocytosis. In contrast to phagocytosis, we show that macropinocytosis, an AKT-dependent process for cellular uptake of fluid phase nutrients, is not regulated by either of the TOR complexes. The integrated and balanced regulation of TORC1 and TORC2 might be crucial in Dictyostelium to coordinate growth and energy needs with other essential TOR-regulated processes.
Collapse
Affiliation(s)
- Daniel Rosel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-8028, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Dictyostelium discoideum is an excellent model organism for the study of directed cell migration, since Dictyostelium cells show robust chemotactic responses to the chemoattractant cAMP. Many powerful experimental tools are applicable, including forward and reverse genetics, biochemistry, microscopy, and proteomics. Recent studies have demonstrated that many components involved in chemotaxis are functionally conserved between human neutrophils and Dictyostelium amoebae. In this chapter, we describe how to define the functions of proteins that mediate and regulate cell motility, cell polarity, and directional sensing during chemotaxis in Dictyostelium.
Collapse
Affiliation(s)
- Huaqing Cai
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 107 Hunterian 107, 725 N. Wolfe St., Baltimore, MD, 21205. Phone: (410) 502-6836
| | - Chuan-Hsiang Huang
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 107 Hunterian 107, 725 N. Wolfe St., Baltimore, MD, 21205. Phone: (410) 502-6836
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 107 Hunterian 107, 725 N. Wolfe St., Baltimore, MD, 21205. Phone: (410) 502-6836
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 107 Hunterian 107, 725 N. Wolfe St., Baltimore, MD, 21205. Phone: (410) 502-6836
| |
Collapse
|
27
|
Abstract
Cell migration is a fundamental process in a wide array of biological and
pathological responses. It is regulated by complex signal transduction pathways
in response to external cues that couple to growth factor and chemokine
receptors. In recent years, the target of rapamycin (TOR) kinase, as part of
either TOR complex 1 (TORC1) or TOR complex 2 (TORC2), has been shown to be an
important signaling component linking external signals to the cytoskeletal
machinery in a variety of cell types and organisms. Thus, these complexes have
emerged as key regulators of cell migration and chemotaxis.
Collapse
Affiliation(s)
- Lunhua Liu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
Das S, Rericha EC, Bagorda A, Parent CA. Direct biochemical measurements of signal relay during Dictyostelium development. J Biol Chem 2011; 286:38649-38658. [PMID: 21911494 DOI: 10.1074/jbc.m111.284182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon starvation, individual Dictyostelium discoideum cells enter a developmental program that leads to collective migration and the formation of a multicellular organism. The process is mediated by extracellular cAMP binding to the G protein-coupled cAMP receptor 1, which initiates a signaling cascade leading to the activation of adenylyl cyclase A (ACA), the synthesis and secretion of additional cAMP, and an autocrine and paracrine activation loop. The release of cAMP allows neighboring cells to polarize and migrate directionally and form characteristic chains of cells called streams. We now report that cAMP relay can be measured biochemically by assessing ACA, ERK2, and TORC2 activities at successive time points in development after stimulating cells with subsaturating concentrations of cAMP. We also find that the activation profiles of ACA, ERK2, and TORC2 change in the course of development, with later developed cells showing a loss of sensitivity to the relayed signal. We examined mutants in PKA activity that have been associated with precocious development and find that this loss in responsiveness occurs earlier in these mutants. Remarkably, we show that this loss in sensitivity correlates with a switch in migration patterns as cells transition from streams to aggregates. We propose that as cells proceed through development, the cAMP-induced desensitization and down-regulation of cAMP receptor 1 impacts the sensitivities of chemotactic signaling cascades leading to changes in migration patterns.
Collapse
Affiliation(s)
- Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Erin C Rericha
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
| | - Anna Bagorda
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
29
|
Tang M, Iijima M, Devreotes P. Generation of cells that ignore the effects of PIP3 on cytoskeleton. Cell Cycle 2011; 10:2817-8. [PMID: 21869609 DOI: 10.4161/cc.10.17.16744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
30
|
Cai H, Devreotes PN. Moving in the right direction: how eukaryotic cells migrate along chemical gradients. Semin Cell Dev Biol 2011; 22:834-41. [PMID: 21821139 DOI: 10.1016/j.semcdb.2011.07.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/19/2011] [Accepted: 07/23/2011] [Indexed: 02/07/2023]
Abstract
Many cells have the ability to grow or migrate towards chemical cues. Oriented growth and movement require detection of the external chemical gradient, transduction of signals, and reorganization of the cytoskeleton. Recent studies in Dictyostelium discoideum and mammalian neutrophils have revealed a complex signaling network that enables cells to migrate in chemical gradients.
Collapse
Affiliation(s)
- Huaqing Cai
- The Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
31
|
Wakefield L, Gadoury DM, Seem RC, Milgroom MG, Sun Q, Cadle-Davidson L. Differential gene expression during conidiation in the grape powdery mildew pathogen, Erysiphe necator. PHYTOPATHOLOGY 2011; 101:839-46. [PMID: 21405992 DOI: 10.1094/phyto-11-10-0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Asexual sporulation (conidiation) is coordinately regulated in the grape powdery mildew pathogen Erysiphe necator but nothing is known about its genetic regulation. We hypothesized that genes required for conidiation in other fungi would be upregulated at conidiophore initiation or full conidiation (relative to preconidiation vegetative growth and development of mature ascocarps), and that the obligate biotrophic lifestyle of E. necator would necessitate some novel gene regulation. cDNA amplified fragment length polymorphism analysis with 45 selective primer combinations produced ≈1,600 transcript-derived fragments (TDFs), of which 620 (39%) showed differential expression. TDF sequences were annotated using BLAST analysis of GenBank and of a reference transcriptome for E. necator developed by 454-FLX pyrosequencing of a normalized cDNA library. One-fourth of the differentially expressed, annotated sequences had similarity to fungal genes of unknown function. The remaining genes had annotated function in metabolism, signaling, transcription, transport, and protein fate. As expected, a portion of orthologs known in other fungi to be involved in developmental regulation was upregulated immediately prior to or during conidiation; particularly noteworthy were several genes associated with the light-dependent VeA regulatory system, G-protein signaling (Pth11 and a kelch repeat), and nuclear transport (importin-β and Ran). This work represents the first investigation into differential gene expression during morphogenesis in E. necator and identifies candidate genes and hypotheses for characterization in powdery mildews. Our results indicate that, although control of conidiation in powdery mildews may share some basic elements with established systems, there are significant points of divergence as well, perhaps due, in part, to the obligate biotrophic lifestyle of powdery mildews.
Collapse
Affiliation(s)
- Laura Wakefield
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | | | |
Collapse
|
32
|
Protein kinase B gene homologue pkbR1 performs one of its roles at first finger stage of Dictyostelium. EUKARYOTIC CELL 2011; 10:512-20. [PMID: 21335531 DOI: 10.1128/ec.00200-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium discoideum has protein kinases AKT/PKBA and PKBR1 that belong to the AGC family of kinases. The protein kinase B-related kinase (PKBR1) has been studied with emphasis on its role in chemotaxis, but its roles in late development remained obscure. The pkbR1 null mutant stays in the first finger stage for about 16 h or longer. Only a few aggregates continue to the migrating slug stage; however, the slugs immediately go back probably to the previous first finger stage and stay there for approximately 37 h. Finally, the mutant fingers diversify into various multicellular bodies. The expression of the pkbR1 finger protein probably is required for development to the slug stage and to express ecmB, which is first observed in migrating slugs. The mutant also showed no ST-lacZ expression, which is of the earliest step in differentiation to one of the stalk cell subtypes. The pkbR1 null mutant forms a small number of aberrant fruiting bodies, but in the presence of 10% of wild-type amoebae the mutant preferentially forms viable spores, driving the wild type to form nonviable stalk cells. These results suggest that the mutant has defects in a system that changes the physiological dynamics in the prestalk cell region of a finger. We suggest that the arrest of its development is due to the loss of the second wave of expression of a protein kinase A catalytic subunit gene (pkaC) only in the prestalk region of the pkbR1 null mutant.
Collapse
|
33
|
mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2011; 19:845-57. [PMID: 21145500 DOI: 10.1016/j.devcel.2010.11.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/16/2010] [Accepted: 11/03/2010] [Indexed: 11/22/2022]
Abstract
We studied the role of the target of rapamycin complex 2 (mTORC2) during neutrophil chemotaxis, a process that is mediated through the polarization of actin and myosin filament networks. We show that inhibition of mTORC2 activity, achieved via knock down (KD) of Rictor, severely inhibits neutrophil polarization and directed migration induced by chemoattractants, independently of Akt. Rictor KD also abolishes the ability of chemoattractants to induce cAMP production, a process mediated through the activation of the adenylyl cyclase 9 (AC9). Cells with either reduced or higher AC9 levels also exhibit specific and severe tail retraction defects that are mediated through RhoA. We further show that cAMP is excluded from extending pseudopods and remains restricted to the cell body of migrating neutrophils. We propose that the mTORC2-dependent regulation of MyoII occurs through a cAMP/RhoA-signaling axis, independently of actin reorganization during neutrophil chemotaxis.
Collapse
|
34
|
Zhang F, Zhang X, Li M, Chen P, Zhang B, Guo H, Cao W, Wei X, Cao X, Hao X, Zhang N. mTOR Complex Component Rictor Interacts with PKCζ and Regulates Cancer Cell Metastasis. Cancer Res 2010; 70:9360-70. [PMID: 20978191 DOI: 10.1158/0008-5472.can-10-0207] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Chemotaxis/drug effects
- Epidermal Growth Factor/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Immunohistochemistry
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphatic Metastasis
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, SCID
- Microscopy, Confocal
- Phosphorylation/drug effects
- Protein Binding/drug effects
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- RNA Interference
- Rapamycin-Insensitive Companion of mTOR Protein
- Reverse Transcriptase Polymerase Chain Reaction
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Fei Zhang
- Tianjin Medical University, Cancer Institute and Hospital, Research Center of Basic Medical Sciences, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cai H, Das S, Kamimura Y, Long Y, Parent CA, Devreotes PN. Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. ACTA ACUST UNITED AC 2010; 190:233-45. [PMID: 20660630 PMCID: PMC2930282 DOI: 10.1083/jcb.201001129] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RasC controls the spatial and temporal activity of TORC2 to regulate directional cell migration. In chemotactic cells, G protein–coupled receptors activate Ras proteins, but it is unclear how Ras-associated pathways link extracellular signaling to cell migration. We show that, in Dictyostelium discoideum, activated forms of RasC prolong the time course of TORC2 (target of rapamycin [Tor] complex 2)-mediated activation of a myristoylated protein kinase B (PKB; PKBR1) and the phosphorylation of PKB substrates, independently of phosphatidylinositol-(3,4,5)-trisphosphate. Paralleling these changes, the kinetics of chemoattractant-induced adenylyl cyclase activation and actin polymerization are extended, pseudopodial activity is increased and mislocalized, and chemotaxis is impaired. The effects of activated RasC are suppressed by deletion of the TORC2 subunit PiaA. In vitro RasCQ62L-dependent PKB phosphorylation can be rapidly initiated by the addition of a PiaA-associated immunocomplex to membranes of TORC2-deficient cells and blocked by TOR-specific inhibitor PP242. Furthermore, TORC2 binds specifically to the activated form of RasC. These results demonstrate that RasC is an upstream regulator of TORC2 and that the TORC2–PKB signaling mediates effects of activated Ras proteins on the cytoskeleton and cell migration.
Collapse
Affiliation(s)
- Huaqing Cai
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
36
|
Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 2010; 39:265-89. [PMID: 20192768 DOI: 10.1146/annurev.biophys.093008.131228] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
37
|
Boulbes D, Chen CH, Shaikenov T, Agarwal NK, Peterson TR, Addona TA, Keshishian H, Carr SA, Magnuson MA, Sabatini DM, Sarbassov DD. Rictor phosphorylation on the Thr-1135 site does not require mammalian target of rapamycin complex 2. Mol Cancer Res 2010; 8:896-906. [PMID: 20501647 DOI: 10.1158/1541-7786.mcr-09-0409] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In animal cells, growth factors coordinate cell proliferation and survival by regulating the phosphoinositide 3-kinase/Akt signaling pathway. Deregulation of this signaling pathway is common in a variety of human cancers. The PI3K-dependent signaling kinase complex defined as mammalian target of rapamycin complex 2 (mTORC2) functions as a regulatory Ser-473 kinase of Akt. We find that activation of mTORC2 by growth factor signaling is linked to the specific phosphorylation of its component rictor on Thr-1135. The phosphorylation of this site is induced by the growth factor stimulation and expression of the oncogenic forms of ras or PI3K. Rictor phosphorylation is sensitive to the inhibition of PI3K, mTOR, or expression of integrin-linked kinase. The substitution of wild-type rictor with its specific phospho-mutants in rictor null mouse embryonic fibroblasts did not alter the growth factor-dependent phosphorylation of Akt, indicating that the rictor Thr-1135 phosphorylation is not critical in the regulation of the mTORC2 kinase activity. We found that this rictor phosphorylation takes place in the mTORC2-deficient cells, suggesting that this modification might play a role in the regulation of not only mTORC2 but also the mTORC2-independent function of rictor.
Collapse
Affiliation(s)
- Delphine Boulbes
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kamimura Y, Devreotes PN. Phosphoinositide-dependent protein kinase (PDK) activity regulates phosphatidylinositol 3,4,5-trisphosphate-dependent and -independent protein kinase B activation and chemotaxis. J Biol Chem 2010; 285:7938-46. [PMID: 20075071 DOI: 10.1074/jbc.m109.089235] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotactic cells must sense shallow extracellular gradients and produce localized intracellular responses. We previously showed that the temporal and spatial activation of two protein kinase B (PKB) homologues, PkbA and PkbR1, in Dictyostelium discoideum by phosphorylation of activation loops (ALs) and hydrophobic motifs had important roles in chemotaxis. We found that hydrophobic motif phosphorylation depended on regulation of TorC2 (target of rapamycin complex 2); however, the regulation of AL phosphorylation remains to be determined at a molecular level. Here, we show that two PDK (phosphoinositide-dependent protein kinase) homologues, PdkA and PdkB, function as the key AL kinases. Cells lacking both PdkA and PdkB are defective in PKB activation, chemotaxis, and fruiting body formation upon nutrient deprivation. The pleckstrin homology domain of PdkA is sufficient to localize it to the membrane, but transient activation of PdkA is independent of PIP(3) as well as TorC2 and dispensable for full function. These results confirm the importance of the TorC2-PDK-PKB pathway in chemotaxis and point to a novel mechanism of regulation of PDKs by chemoattractant.
Collapse
Affiliation(s)
- Yoichiro Kamimura
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
39
|
Abstract
The ability of cells to migrate directionally in gradients of chemoattractant is a fundamental biological response that is essential for the survival of the social amoebae Dictyostelium discoideum. In Dictyostelium, cAMP is the most potent chemoattractant and the detection, synthesis, and degradation of cAMP is exquisitely regulated. Interestingly, as Dictyostelium cells migrate directionally, they do so in a head-to-tail fashion, forming characteristic streams. This group behavior is acquired through the relay of the cAMP signals to neighboring cells. This chapter describes experimental procedures used to obtain synchronized populations of chemotactically competent cells and to assess their streaming behavior. In addition, we provide a detailed account of the method used to measure the ability of chemoattractants to directly stimulate adenylyl cyclase activity. Together, these techniques provide a way to combine cell biological and biochemical approaches to the study of signal relay.
Collapse
Affiliation(s)
- Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | |
Collapse
|
40
|
TORC2 and Chemotaxis in Dictyostelium discoideum. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1874-6047(10)28006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
King JS, Insall RH. Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 2009; 19:523-30. [PMID: 19733079 DOI: 10.1016/j.tcb.2009.07.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/03/2009] [Accepted: 07/08/2009] [Indexed: 12/22/2022]
Abstract
Understanding cell migration is centrally important to modern cell biology. However, despite years of study, progress has been hindered by experimental limitations and the complexity of the process. This has led to the popularity of Dictyostelium discoideum, with its experimentally-friendly lifestyle and small, haploid genome, as a tool to dissect the pathways involved in migration. This humble amoeba is now established at the centre of dramatic changes in our understanding of cell movement. In this review we describe the recent reinterpretation of the role of phosphatidylinositol trisphosphate (PIP(3)) and other intracellular messengers that connect signalling and migration, and the transition to models of chemotaxis driven by multiple, intertwined signalling pathways. In shallow gradients, pseudopods are generated with random directions, and we discuss how chemotaxis can operate by biasing this process. Overall we describe how Dictyostelium has the potential to unlock many fundamental questions in the cell motility field.
Collapse
|
42
|
Shemarova IV. cAMP-dependent signal pathways in unicellular eukaryotes. Crit Rev Microbiol 2009; 35:23-42. [PMID: 19514907 DOI: 10.1080/10408410802645646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The review summarizes current data about mechanisms of signal transduction with participation of cAMP (cyclic adenosine monophosphate) and elements of the complex cAMP-protein kinase A (PKA) signal pathway in unicellular eukaryotes. Conceptions of evolutionary origin of eukaryotic signal transduction systems are developed.
Collapse
Affiliation(s)
- Irina V Shemarova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
43
|
Jones KT, Greer ER, Pearce D, Ashrafi K. Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biol 2009; 7:e60. [PMID: 19260765 PMCID: PMC2650726 DOI: 10.1371/journal.pbio.1000060] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/02/2009] [Indexed: 11/19/2022] Open
Abstract
The target of rapamycin (TOR) kinase coordinately regulates fundamental metabolic and cellular processes to support growth, proliferation, survival, and differentiation, and consequently it has been proposed as a therapeutic target for the treatment of cancer, metabolic disease, and aging. The TOR kinase is found in two biochemically and functionally distinct complexes, termed TORC1 and TORC2. Aided by the compound rapamycin, which specifically inhibits TORC1, the role of TORC1 in regulating translation and cellular growth has been extensively studied. The physiological roles of TORC2 have remained largely elusive due to the lack of pharmacological inhibitors and its genetic lethality in mammals. Among potential targets of TORC2, the pro-survival kinase AKT has garnered much attention. Within the context of intact animals, however, the physiological consequences of phosphorylation of AKT by TORC2 remain poorly understood. Here we describe viable loss-of-function mutants in the Caenorhabditis elegans homolog of the TORC2-specific component, Rictor (CeRictor). These mutants display a mild developmental delay and decreased body size, but have increased lipid storage. These functions of CeRictor are not mediated through the regulation of AKT kinases or their major downstream target, the insulin-regulated FOXO transcription factor DAF-16. We found that loss of sgk-1, a homolog of the serum- and glucocorticoid-induced kinase, mimics the developmental, growth, and metabolic phenotypes of CeRictor mutants, while a novel, gain-of-function mutation in sgk-1 suppresses these phenotypes, indicating that SGK-1 is a mediator of CeRictor activity. These findings identify new physiological roles for TORC2, mediated by SGK, in regulation of C. elegans lipid accumulation and growth, and they challenge the notion that AKT is the primary effector of TORC2 function. The target of rapamycin (TOR) kinase acts as a conserved sensor of energy status and governs diverse functions such as metabolism, growth, and cell size via two separate multiprotein complexes. TOR complex 1 (TORC1), which is sensitive to the immunosuppressant drug rapamycin, is well understood but the physiological roles and molecular mechanisms of action of the second TOR complex (TORC2) are not so clear. We describe mutants in the single Caenorhabditis elegans homolog of the gene Rictor, which is the defining component of the TORC2 signaling complex. Mutant worms are small, developmentally delayed, have reduced fecundity, and store more fat than wild-type C. elegans does. Akt kinases, which are pro-survival kinases that mediate the effects of insulin and other growth factors, have been postulated to be key mediators of TORC2 signaling, as they are targets of TORC2 phosphorylation. We find, however, that in C. elegans, TORC2 regulates fat storage, size, and development entirely independent of the Akt kinases and of the major target of insulin signaling, the FOXO-family transcription factor DAF-16. Instead, we show genetically that TORC2 acts through the activation of SGK-1, a kinase closely related to Akt, to govern all three phenotypes. This work indicates a role for TORC2 in fat regulation and shows that SGK-1 is a physiologically significant mediator of TORC2 signaling. C. elegans TOR complex 2 regulates lipid storage, body size, and development through downstream activation of the SGK-1 kinase, independent of AKT kinases and of the DAF-16/FOXO transcription factor.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Physiology and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Elisabeth R Greer
- Department of Physiology and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - David Pearce
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Assays for chemotaxis and chemoattractant-stimulated TorC2 activation and PKB substrate phosphorylation in Dictyostelium. Methods Mol Biol 2009; 571:255-70. [PMID: 19763972 DOI: 10.1007/978-1-60761-198-1_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemotaxis is a highly coordinated biological system where chemoattractants trigger multiple signal transduction pathways which act in concert to bring about directed migration. A signaling pathway acting through PIP(3), which accumulates at the leading edge of the cell, has been extensively characterized. However, chemotaxis still remains in cells depleted of PIP(3), suggesting there are PIP(3)-independent pathways. We have identified a pathway involving TorC2-PKBR1 as well as another containing PLA2 activity that act in parallel with PIP(3). Activation of PKBR1, a myristoylated Protein Kinase B homolog, is dependent on TorC2 (Rapamycin-insensitive Tor complex 2) kinase but is completely independent of PIP(3). In response to chemoattractant, PKBs rapidly phosphorylate at least eight proteins, including Talin B, PI4P 5-kinase, two RasGefs, and a RhoGap. These studies help to link the signaling pathways to specific effectors and provide a more complete understanding of chemotaxis.
Collapse
|
45
|
Sultana H, Neelakanta G, Eichinger L, Rivero F, Noegel AA. Microarray phenotyping places cyclase associated protein CAP at the crossroad of signaling pathways reorganizing the actin cytoskeleton in Dictyostelium. Exp Cell Res 2009; 315:127-40. [DOI: 10.1016/j.yexcr.2008.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/29/2008] [Accepted: 10/14/2008] [Indexed: 01/31/2023]
|
46
|
Abstract
The ability of cells to migrate in response to external cues, a process known as chemotaxis, is a fundamental phenomenon in biology. It is exhibited by a wide variety of cell types in the context of embryogenesis, angiogenesis, inflammation, wound healing and many other complex physiological processes. Here, we discuss the signals that control the directed migration of the social amoebae Dictyostelium discoideum both as single cells and in the context of group migration. This multi-cellular organism has served as an excellent model system to decipher amoeboid-like leukocyte migration and has played a key role in establishing signalling paradigms in the chemotaxis field. We envision that Dictyostelium will continue to bring forward basic knowledge as we seek to understand the mechanisms regulating group cell migration.
Collapse
Affiliation(s)
- G L Garcia
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
47
|
Kamimura Y, Xiong Y, Iglesias PA, Hoeller O, Bolourani P, Devreotes PN. PIP3-independent activation of TorC2 and PKB at the cell's leading edge mediates chemotaxis. Curr Biol 2008; 18:1034-43. [PMID: 18635356 DOI: 10.1016/j.cub.2008.06.068] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 01/23/2023]
Abstract
BACKGROUND Studies show that high phosphotidylinositol 3,4,5-trisphosphate (PIP(3)) promotes cytoskeletal rearrangements and alters cell motility and chemotaxis, possibly through activation of protein kinase Bs (PKBs). However, chemotaxis can still occur in the absence of PIP(3), and the identities of the PIP(3)-independent pathways remain unknown. RESULTS Here, we outline a PIP(3)-independent pathway linking temporal and spatial activation of PKBs by Tor complex 2 (TorC2) to the chemotactic response. Within seconds of stimulating Dictyostelium cells with chemoattractant, two PKB homologs, PKBA and PKBR1, mediate transient phosphorylation of at least eight proteins, including Talin, PI4P 5-kinase, two Ras GEFs, and a RhoGap. Surprisingly, all of the substrates are phosphorylated with normal kinetics in cells lacking PI 3-kinase activity. Cells deficient in TorC2 or PKB activity show reduced phosphorylation of the endogenous substrates and are impaired in chemotaxis. The PKBs are activated through phosphorylation of their hydrophobic motifs via TorC2 and subsequent phosphorylation of their activation loops. These chemoattractant-inducible events are restricted to the cell's leading edge even in the absence of PIP(3). Activation of TorC2 depends on heterotrimeric G protein function and intermediate G proteins, including Ras GTPases. CONCLUSIONS The data lead to a model where cytosolic TorC2, encountering locally activated small G protein(s) at the leading edge of the cell, becomes activated and phosphorylates PKBs. These in turn phosphorylate a series of signaling and cytoskeletal proteins, thereby regulating directed migration.
Collapse
Affiliation(s)
- Yoichiro Kamimura
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
48
|
McMains VC, Liao XH, Kimmel AR. Oscillatory signaling and network responses during the development of Dictyostelium discoideum. Ageing Res Rev 2008; 7:234-48. [PMID: 18657484 PMCID: PMC5155118 DOI: 10.1016/j.arr.2008.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 12/22/2022]
Abstract
Periodic biological variations reflect interactions among molecules and cells, or even organisms. The Dictyostelium cAMP oscillatory circuit is a highly robust example. cAMP oscillations in Dictyostelium arise intracellularly by a complex interplay of activating and inhibiting pathways, are transmitted extracellularly, and synchronize an entire local population. Once established, cAMP signal-relay persists stably for hours. On a two-dimensional surface, >100,000 cells may form a single coordinated territory. In suspension culture, >10(10) cells can oscillate in harmony. This review focuses on molecular mechanisms that cyclically activate and attenuate signal propagation and on chemotactic responses to oscillatory wave progression.
Collapse
Affiliation(s)
- Vanessa C McMains
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-8028, USA
| | | | | |
Collapse
|
49
|
Kay RR, Langridge P, Traynor D, Hoeller O. Changing directions in the study of chemotaxis. Nat Rev Mol Cell Biol 2008; 9:455-63. [PMID: 18500256 DOI: 10.1038/nrm2419] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chemotaxis--the guided movement of cells in chemical gradients--probably first emerged in our single-celled ancestors and even today is recognizably similar in neutrophils and amoebae. Chemotaxis enables immune cells to reach sites of infection, allows wounds to heal and is crucial for forming embryonic patterns. Furthermore, the manipulation of chemotaxis may help to alleviate disease states, including the metastasis of cancer cells. This review discusses recent results concerning how cells orientate in chemotactic gradients and the role of phosphatidylinositol-3,4,5-trisphosphate, what produces the force for projecting pseudopodia and a new role for the endocytic cycle in movement.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Hill Road, Cambridge CB2 0QH, UK.
| | | | | | | |
Collapse
|
50
|
Helmick L, Antúnez de Mayolo A, Zhang Y, Cheng CM, Watkins SC, Wu C, LeDuc PR. Spatiotemporal response of living cell structures in Dictyostelium discoideum with semiconductor quantum dots. NANO LETTERS 2008; 8:1303-1308. [PMID: 18386936 DOI: 10.1021/nl073144l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ability to monitor the spatial and temporal organization of molecules such as biopolymers within a cell is essential to enable the ability to understand the complexity and dynamics existing in biological processes. However, many limitations currently exist in specifically labeling proteins in living cells. In our study, we incorporate nanometer-sized semiconductor quantum dots (QDs) into living cells for spatiotemporal protein imaging of actin polymers in Dictyostelium discoideum without the necessity of using complicating transmembrane transport approaches. We first demonstrate cytoplasmic distribution of QDs within these living amoebae cells and then show molecular targeting through actin filament labeling. Also, we have developed a microfluidic system to control and visualize the spatiotemporal response of the cellular environment during cell motility, which allows us to demonstrate specific localization control of the QD-protein complexes in living cells. This study provides a valuable tool for the specific targeting and analysis of proteins within Dictyostelium without the encumbrance of transmembrane assisted methods, which has implication in fields including polymer physics, material science, engineering, and biology.
Collapse
Affiliation(s)
- Lam Helmick
- Department of Mechanical, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|