1
|
Selvaraji S, Mosberger J, Fann DY, Lai MK, Hsian Chen CL, Arumugam TV. Unveiling the Therapeutic Promise of Epigenetics in Vascular Cognitive Impairment and Vascular Dementia. Aging Dis 2025:AD.2025.0010. [PMID: 39965251 DOI: 10.14336/ad.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative disease characterized by cognitive decline and memory deficits. Despite its significant prevalence and impact, the pathophysiology of VaD remains poorly understood, and current treatments are limited to symptom management. Emerging evidence highlights the importance of lifestyle-associated risk factors in VaD, emphasizing the role of gene-environment interactions, particularly in the realm of epigenetics. While preclinical studies using animal models have provided valuable insights into epigenetic mechanisms, the translatability of these findings to human clinical settings remains limited, and research into VaD-specific epigenetics is still in its infancy. This review aims to elucidate the intricate interplay between epigenetics and VaD, shedding light on potential therapeutic interventions rooted in epigenetic mechanisms. By synthesizing insights from existing literature, we also discuss the challenges and opportunities in translating preclinical findings into clinically viable treatments, underscoring the need for further research to bridge the gap between animal models and human applications.
Collapse
Affiliation(s)
- Sharmelee Selvaraji
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
- Research Laboratory of Electronics, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Jasmine Mosberger
- Research Laboratory of Electronics, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Mitchell Kp Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
2
|
Leggio L, Paternò G, Cavallaro F, Falcone M, Vivarelli S, Manna C, Calogero AE, Cannarella R, Iraci N. Sperm epigenetics and sperm RNAs as drivers of male infertility: truth or myth? Mol Cell Biochem 2025; 480:659-682. [PMID: 38717684 PMCID: PMC11835981 DOI: 10.1007/s11010-024-04962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2025]
Abstract
Male infertility represents a complex clinical condition that often challenges the ability of reproductive specialists to find its etiology and then propose an adequate treatment. The unexplained decline in sperm count, as well as the association between male infertility and mortality, morbidity, and cancer, has prompted researchers toward an urgent need to better understand the causes of male infertility. Therefore, molecular biologists are increasingly trying to study whether sperm epigenetic alterations may be involved in male infertility and embryo developmental abnormalities. In this context, research is also trying to uncover the hidden role of sperm RNAs, both coding and non-coding. This narrative review aims to thoroughly and comprehensively present the relationship between sperm epigenetics, sperm RNAs, and human fertility. We first focused on the technological aspects of studying sperm epigenetics and RNAs, relating to the complex role(s) played in sperm maturation, fertilization, and embryo development. Then, we examined the intricate connections between epigenetics and RNAs with fertility measures, namely sperm concentration, embryo growth and development, and live birth rate, in both animal and human studies. A better understanding of the molecular mechanisms involved in sperm epigenetic regulation, as well as the impact of RNA players, will help to tackle infertility.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Fabrizio Cavallaro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Marco Falcone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125, Messina, Italy
| | - Claudio Manna
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Biofertility IVF and Infertility Center, Rome, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy.
| |
Collapse
|
3
|
Li Y, Luo H, Pang H, Qin B. Epigenetic Targeting for Controlling Persistent Neurotropic Infections Caused by Borna Virus and HIV. Rev Med Virol 2025; 35:e70000. [PMID: 39643925 DOI: 10.1002/rmv.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 12/09/2024]
Abstract
Long-lasting persistence within infected cells is a major challenge for viral pathogens, as it necessitates an exact regulation of viral replication to reduce viral cytopathic effects. This is particularly challenging for viruses that persistently infect cells with limited renewal capabilities, such as neurons. Accordingly, neurotropic viruses have evolved various specific mechanisms to promote a long-lasting persistent infection in the host cells without inducing an exacerbated cytopathic effect. Borna disease virus (BDV) and Human immunodeficiency virus (HIV) are two neurotropic RNA viruses that, in contrast to other RNA viruses, can establish long-lasting intranuclear infections within the nervous system. These viruses interact with different cellular processes such as epigenetic modifications to develop a successful persistence infection. Studies show that cellular epigenetic mechanisms play a significant role in the pathogenesis of BDV and HIV and their neurological disorders. Hence, targeting these mechanisms by epigenetic modulator agents can be regarded as a novel therapeutic strategy to manage BDV- and HIV-associated neurological diseases. This review provides an overview of different epigenetic modulator compounds as a potential therapeutic target for controlling persistent neurotropic intranuclear infections caused by BDV and HIV.
Collapse
Affiliation(s)
- Yadi Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Montoya-Novoa I, Gardeazábal-Torbado JL, Alegre-Martí A, Fuentes-Prior P, Estébanez-Perpiñá E. Androgen receptor post-translational modifications and their implications for pathology. Biochem Soc Trans 2024; 52:1673-1694. [PMID: 38958586 DOI: 10.1042/bst20231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A major mechanism to modulate the biological activities of the androgen receptor (AR) involves a growing number of post-translational modifications (PTMs). In this review we summarise the current knowledge on the structural and functional impact of PTMs that affect this major transcription factor. Next, we discuss the cross-talk between these different PTMs and the presence of clusters of modified residues in the AR protein. Finally, we discuss the implications of these covalent modifications for the aetiology of diseases such as spinal and bulbar muscular atrophy (Kennedy's disease) and prostate cancer, and the perspectives for pharmacological intervention.
Collapse
Affiliation(s)
- Inés Montoya-Novoa
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - José Luis Gardeazábal-Torbado
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
6
|
Zhang H, Liu W, Wu Y, Chen C. USP3: Key deubiquitylation enzyme in human diseases. Cancer Sci 2024; 115:2094-2106. [PMID: 38651282 PMCID: PMC11247611 DOI: 10.1111/cas.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Ubiquitination and deubiquitylation are pivotal posttranslational modifications essential for regulating cellular protein homeostasis and are implicated in the development of human diseases. Ubiquitin-specific protease 3 (USP3), a member of the ubiquitin-specific protease family, serves as a key deubiquitylation enzyme, playing a critical role in diverse cellular processes including the DNA damage response, cell cycle regulation, carcinogenesis, tumor cell proliferation, migration, and invasion. Despite notable research efforts, our current understanding of the intricate and context-dependent regulatory networks governing USP3 remains incomplete. This review aims to comprehensively synthesize existing published works on USP3, elucidating its multifaceted roles, functions, and regulatory mechanisms, while offering insights for future investigations. By delving into the complexities of USP3, this review strives to provide a foundation for a more nuanced understanding of its specific roles in various cellular processes. Furthermore, the exploration of USP3's regulatory networks may uncover novel therapeutic strategies targeting this enzyme in diverse human diseases, thereby holding promising clinical implications. Overall, an in-depth comprehension of USP3's functions and regulatory pathways is crucial for advancing our knowledge and developing targeted therapeutic approaches for human diseases.
Collapse
Affiliation(s)
- Hongyan Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
- Medical SchoolKunming University of Science and TechnologyKunmingChina
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yingying Wu
- The First Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Ceshi Chen
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
- Academy of Biomedical EngineeringKunming Medical UniversityKunmingChina
| |
Collapse
|
7
|
Xu BY, Yu XL, Gao WX, Gao TT, Hu HY, Wu TT, Shen C, Huang XY, Zheng B, Wu YB. RNF187 governs the maintenance of mouse GC-2 cell development by facilitating histone H3 ubiquitination at K57/80. Asian J Androl 2024; 26:272-281. [PMID: 38156805 PMCID: PMC11156453 DOI: 10.4103/aja202368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
RING finger 187 (RNF187), a ubiquitin-ligating (E3) enzyme, plays a crucial role in the proliferation of cancer cells. However, it remains unclear whether RNF187 exhibits comparable functionality in the development of germline cells. To investigate the potential involvement of RNF187 in germ cell development, we conducted interference and overexpression assays using GC-2 cells, a mouse spermatocyte-derived cell line. Our findings reveal that the interaction between RNF187 and histone H3 increases the viability, proliferation, and migratory capacity of GC-2 cells. Moreover, we provide evidence demonstrating that RNF187 interacts with H3 and mediates the ubiquitination of H3 at lysine 57 (K57) or lysine 80 (K80), directly or indirectly resulting in increased cellular transcription. This is a study to report the role of RNF187 in maintaining the development of GC-2 cells by mediating histone H3 ubiquitination, thus highlighting the involvement of the K57 and K80 residues of H3 in the epistatic regulation of gene transcription. These discoveries provide a new theoretical foundation for further comprehensive investigations into the function of RNF187 in the reproductive system.
Collapse
Affiliation(s)
- Bing-Ya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Xiang-Ling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Wen-Xin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Ting-Ting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Hao-Yue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tian-Tian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiao-Yan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yi-Bo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
9
|
Kowalski A. Sequence-based prediction of the effects of histones H1 post-translational modifications: impact on the features related to the function. J Biomol Struct Dyn 2024:1-10. [PMID: 38353488 DOI: 10.1080/07391102.2024.2316773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/04/2024] [Indexed: 03/11/2025]
Abstract
Post-translational modifications modulate histones H1 activity but their impact on proteins features was not studied so far. Therefore, this work was intended to answer how the most common modifications, i.e. acetylation, methylation, phosphorylation and ubiquitination, can influence on histones H1 to alter their physicochemical and molecular properties. Investigations were done with the use of sequence-based predictors trained on various protein features. Because a full set of histones H1 modifications is not included in the databases of histone proteins, the survey was performed on the human, animals, plants, fungi and protist sequences selected from UniProtKB/Swiss-Prot database. Quantitative proportions of modifications were similar between the groups of organisms (CV = 0.11) but different within the group (p < 0.05). The effects of modifications were evaluated with the use of mutated sequences obtained through the substitution of modified residue of Lys, Ser and Thr by a neutral residue of the Ala. An advantage of deleterious mutations at the sites of acetylation, methylation and ubiquitination over the sites of phosphorylation (p < 0.05) indicate that this modification have more redundant character. Modifications evoke an increase of protein solubility and stability as well as acceleration of folding kinetics and a weaken of binding affinity. Besides, they also maintain a higher extent of intrinsic structural disorder. The obtained results prove that modifications should be perceived as relevant factors influencing physicochemical features determining molecular properties. Thus, histones H1 functioning is strictly correlated with the status of modifications.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
10
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
11
|
Shi P, Wu J, Li M, Cao Y, Wu J, Ren P, Liu K, Zhou J, Sha Y, Zhang Q, Sun H. Upregulation of Hsp27 via further inhibition of histone H2A ubiquitination confers protection against myocardial ischemia/reperfusion injury by promoting glycolysis and enhancing mitochondrial function. Cell Death Discov 2023; 9:466. [PMID: 38114486 PMCID: PMC10730859 DOI: 10.1038/s41420-023-01762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Research suggests that ischemic glycolysis improves myocardial tolerance to anoxia and low-flow ischemia. The rate of glycolysis during ischemia reflects the severity of the injury caused by ischemia and subsequent functional recovery following reperfusion. Histone H2AK119 ubiquitination (H2Aub) is a common modification that is primarily associated with gene silencing. Recent studies have demonstrated that H2Aub contributes to the development of cardiovascular diseases. However, the underlying mechanism remains unclear. This study identified Hsp27 (heat shock protein 27) as a H2Aub binding protein and explored its involvement in mediating glycolysis and mitochondrial function. Functional studies revealed that inhibition of PRC1 (polycomb repressive complex 1) decreased H2Aub occupancy and promoted Hsp27 expression through inhibiting ubiquitination. Additionally, it increased glycolysis by activating the NF-κB/PFKFB3 signaling pathway during myocardial ischemia. Furthermore, Hsp27 reduced mitochondrial ROS production by chaperoning COQ9, and suppressed ferroptosis during reperfusion. A delivery system was developed based on PCL-PEG-MAL (PPM)-PCM-SH (CWLSEAGPVVTVRALRGTGSW) to deliver PRT4165 (PRT), a potent inhibitor of PRC1, to damaged myocardium, resulting in decreased H2Aub. These findings revealed a novel epigenetic mechanism connecting glycolysis and ferroptosis in protecting the myocardium against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Jiawei Wu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Minghui Li
- Department of Pharmaceutics, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Jiabi Wu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Ping Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Kai Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Jiajun Zhou
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Yuetong Sha
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
12
|
Li HL, Liu ZY, Wang XN, Han Y, You CX, An JP. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple. PLANT, CELL & ENVIRONMENT 2023; 46:3902-3918. [PMID: 37658649 DOI: 10.1111/pce.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Auxin/indole-3-acetic acid (AUX/IAA) and auxin response factor (ARF) proteins are important components of the auxin signalling pathway, but their ubiquitination modification and the mechanism of auxin-mediated anthocyanin biosynthesis remain elusive. Here, the ARF MdARF5-1 was identified as a negative regulator of anthocyanin biosynthesis in apple, and it integrates auxin and ethylene signals by inhibiting the expression of the ethylene response factor MdERF3. The auxin repressor MdIAA29 decreased the inhibitory effect of MdARF5-1 on anthocyanin biosynthesis by attenuating the transcriptional inhibition of MdERF3 by MdARF5-1. In addition, the E3 ubiquitin ligases MdSINA4 and MdSINA11 played negative and positive regulatory roles in anthocyanin biosynthesis by targeting MdIAA29 and MdARF5-1 for ubiquitination degradation, respectively. MdSINA4 destabilized MdSINA11 to regulate anthocyanin accumulation in response to auxin signalling. In sum, our data revealed the crosstalk between auxin and ethylene signals mediated by the IAA29-ARF5-1-ERF3 module and provide new insights into the ubiquitination modification of the auxin signalling pathway.
Collapse
Affiliation(s)
- Hong-Liang Li
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhi-Ying Liu
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Na Wang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jian-Ping An
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Pourmirzaei M, Ramazi S, Esmaili F, Shojaeilangari S, Allahvardi A. Machine learning-based approaches for ubiquitination site prediction in human proteins. BMC Bioinformatics 2023; 24:449. [PMID: 38017391 PMCID: PMC10683244 DOI: 10.1186/s12859-023-05581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Protein ubiquitination is a critical post-translational modification (PTMs) involved in numerous cellular processes. Identifying ubiquitination sites (Ubi-sites) on proteins offers valuable insights into their function and regulatory mechanisms. Due to the cost- and time-consuming nature of traditional approaches for Ubi-site detection, there has been a growing interest in leveraging artificial intelligence for computer-aided Ubi-site prediction. In this study, we collected experimentally verified Ubi-sites of human proteins from the dbPTM database, then conducted comprehensive state-of-the art computational methods along with standard evaluation metrics and a proper validation strategy for Ubi-site prediction. We presented the effectiveness of our framework by comparing ten machine learning (ML) based approaches in three different categories: feature-based conventional ML methods, end-to-end sequence-based deep learning (DL) techniques, and hybrid feature-based DL models. Our results revealed that DL approaches outperformed the classical ML methods, achieving a 0.902 F1-score, 0.8198 accuracy, 0.8786 precision, and 0.9147 recall as the best performance for a DL model using both raw amino acid sequences and hand-crafted features. Interestingly, our experimental results disclosed that the performance of DL methods had a positive correlation with the length of amino acid fragments, suggesting that utilizing the entire sequence can lead to more accurate predictions in future research endeavors. Additionally, we developed a meticulously curated benchmark for Ubi-site prediction in human proteins. This benchmark serves as a valuable resource for future studies, enabling fair and accurate comparisons between different methods. Overall, our work highlights the potential of ML, particularly DL techniques, in predicting Ubi-sites and furthering our knowledge of protein regulation through ubiquitination in cells.
Collapse
Affiliation(s)
- Mahdi Pourmirzaei
- Department of Information Technology, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Farzaneh Esmaili
- Department of Information Technology, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Seyedehsamaneh Shojaeilangari
- Biomedical Engineering Group, Department of Electrical and Information Technology, Iranian Research Organization for Science and Technology (IROST), 33535111, Tehran, Iran.
| | - Abdollah Allahvardi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| |
Collapse
|
14
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
15
|
Huang YH, Lee YH, Lin CJ, Hsu LH, Chen YL. Deubiquitination module is critical for oxidative stress response and biofilm formation in Candida glabrata. Med Mycol 2023; 61:myad099. [PMID: 37844959 DOI: 10.1093/mmy/myad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/02/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
Candidiasis is one of the most important fungal diseases and generally refers to diseases of the skin or mucosal tissues caused by Candida species. Candida glabrata is an opportunistic human fungal pathogen. Infection with C. glabrata has significantly increased due to innate antifungal drug tolerance and the ability to adhere to mucocutaneous surfaces. Spt-Ada-Gcn5 acetyltransferase complex contains two different post-translational modifications, histone acetylation (HAT) module and deubiquitination (DUB) module, which are decisive in gene regulation and highly conserved in eukaryotes. Previous research in our laboratory found that the HAT module ADA2 could regulate C. glabrata oxidative stress tolerance, drug tolerance, cell wall integrity, and virulence. However, the roles of the DUB module that is comprised of UBP8, SGF11, SGF73, and SUS1 genes in those phenotypes are not yet understood. In this study, we found that DUB module genes UBP8, SGF11, and SUS1, but not SGF73 positively regulate histone H2B DUB. Furthermore, ubp8, sgf11, and sus1 mutants exhibited decreased biofilm formation and sensitivity to cell wall-perturbing agent sodium dodecyl sulfate and antifungal drug amphotericin B. In addition, the sgf73 mutant showed increased biofilm formation but was susceptible to oxidative stresses, antifungal drugs, and cell wall perturbing agents. The ubp8, sgf11, and sus1 mutants showed marginal hypovirulence, whereas the sgf73 mutant exhibited virulence similar to the wild type in a murine systemic infection model. In conclusion, the C. glabrata DUB module plays distinct roles in H2B ubiquitination, oxidative stress response, biofilm formation, cell wall integrity, and drug tolerance, but exhibits minor roles in virulence.
Collapse
Affiliation(s)
- Yue-Han Huang
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Yi-Hang Lee
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Chi-Jan Lin
- Institute of Molecular Biology, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Li-Hang Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
16
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
17
|
Sun X, Wang D, Li W, Gao Q, Tao J, Liu H. Comprehensive analysis of nonsurrounded nucleolus and surrounded nucleolus oocytes on chromatin accessibility using ATAC-seq. Mol Reprod Dev 2023; 90:87-97. [PMID: 36598871 DOI: 10.1002/mrd.23668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/05/2023]
Abstract
Mouse germinal vesicle (GV) oocytes are divided into surrounded nucleolus (SN) and nonsurrounded nucleolus (NSN) oocytes based on chromatin morphology. NSN oocytes spontaneously transform into SN oocytes after accumulating enough maternal transcripts. SN oocytes show transcriptional silencing. When oocyte maturation is abnormal or takes place in vitro, NSN oocytes do not go through SN stage before proceeding to MII. Nontransitive oocytes show developmental retardation, a low fertilization rate, and arrest at the two-cell embryo stage in mice. Here, chromatin-binding ribonucleic acid polymerase II (RNAP II) activity, newly synthesized RNA, and chromatin accessibility in GV oocytes were examined. In SN oocytes, RNAP II did not bind to DNA, neo-RNA was not generated in nuclei, and the phosphorylation state of RNAP II did not affect the chromatin-binding activity. The number of accessible genes in SN oocytes was remarkably lower than that in NSN oocytes. The accessibility of different functional genes was also different between the two types of oocytes. Thus, low chromatin accessibility leads to transcriptional silencing in SN oocytes.
Collapse
Affiliation(s)
- Xiaofan Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dayu Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Gao
- Laboratory Animal Center, College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Sengupta M, Pluciennik A, Merry DE. The role of ubiquitination in spinal and bulbar muscular atrophy. Front Mol Neurosci 2022; 15:1020143. [PMID: 36277484 PMCID: PMC9583669 DOI: 10.3389/fnmol.2022.1020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.
Collapse
Affiliation(s)
| | | | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Quantitative Assessment of Histone H2B Monoubiquitination in Yeast Using Immunoblotting. Methods Protoc 2022; 5:mps5050074. [PMID: 36287046 PMCID: PMC9609377 DOI: 10.3390/mps5050074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023] Open
Abstract
Studies in Saccharomyces cerevisiae and Schizosaccharomyces pombe have enhanced our understanding of the regulation and functions of histone H2B monoubiquitination (H2Bub1), a key epigenetic marker with important roles in transcription and other processes. The detection of H2Bub1 in yeasts using immunoblotting has been greatly facilitated by the commercial availability of antibodies against yeast histone H2B and the cross-reactivity of an antibody raised against monoubiquitinated human H2BK120. These antibodies have obviated the need to express epitope-tagged histone H2B to detect H2Bub1 in yeasts. Here, we provide a step-by-step protocol and best practices for the quantification of H2Bub1 in yeast systems, from cell extract preparation to immunoblotting using the commercially available antibodies. We demonstrate that the commercial antibodies can effectively and accurately detect H2Bub1 in S. cerevisiae and S. pombe. Further, we show that the C-terminal epitope-tagging of histone H2B alters the steady-state levels of H2Bub1 in yeast systems. We report a sectioned blot probing approach combined with the serial dilution of protein lysates and the use of reversibly stained proteins as loading controls that together provide a cost-effective and sensitive method for the quantitative evaluation of H2Bub1 in yeast.
Collapse
|
20
|
Fottner M, Heimgärtner J, Gantz M, Mühlhofer R, Nast-Kolb T, Lang K. Site-Specific Protein Labeling and Generation of Defined Ubiquitin-Protein Conjugates Using an Asparaginyl Endopeptidase. J Am Chem Soc 2022; 144:13118-13126. [PMID: 35850488 PMCID: PMC9335880 DOI: 10.1021/jacs.2c02191] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Asparaginyl endopeptidases
(AEPs) have recently been widely utilized
for peptide and protein modification. Labeling is however restricted
to protein termini, severely limiting flexibility and scope in creating
diverse conjugates as needed for therapeutic and diagnostic applications.
Here, we use genetic code expansion to site-specifically modify target
proteins with an isopeptide-linked glycylglycine moiety that serves
as an acceptor nucleophile in AEP-mediated transpeptidation with various
probes containing a tripeptidic recognition motif. Our approach allows
simple and flexible labeling of recombinant proteins at any internal
site and leaves a minimal, entirely peptidic footprint (NGG) in the
conjugation product. We show site-specific labeling of diverse target
proteins with various biophysical probes, including dual labeling
at an internal site and the N-terminus. Furthermore, we harness AEP-mediated
transpeptidation for generation of ubiquitin- and ubiquitin-like-modifier
conjugates bearing a native isopeptide bond and only one point mutation
in the linker region.
Collapse
Affiliation(s)
- Maximilian Fottner
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Johannes Heimgärtner
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Gantz
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Rahel Mühlhofer
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Timon Nast-Kolb
- Center for Protein Assemblies (CPA) and Lehrstuhl für Biophysik (E27), Physics Department, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.,Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
21
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
22
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
23
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
24
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Morgan M, Ikenoue T, Suga H, Wolberger C. Potent macrocycle inhibitors of the human SAGA deubiquitinating module. Cell Chem Biol 2022; 29:544-554.e4. [PMID: 34936860 PMCID: PMC9035043 DOI: 10.1016/j.chembiol.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator contains a four-protein subcomplex called the deubiquitinating enzyme (DUB) module that removes ubiquitin from histone H2B-K120. The human DUB module contains the catalytic subunit ubiquitin-specific protease 22 (USP22), which is overexpressed in a number of cancers that are resistant to available therapies. We screened a massive combinatorial library of cyclic peptides and identified potent inhibitors of USP22. The top hit was highly specific for USP22 compared with a panel of 44 other human DUBs. Cells treated with peptide had increased levels of H2B monoubiquitination, demonstrating the ability of the cyclic peptides to enter human cells and inhibit H2B deubiquitination. These macrocycle inhibitors are, to our knowledge, the first reported inhibitors of USP22/SAGA DUB module and show promise for development.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatsuya Ikenoue
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Hu R, Liu C, Lu W, Wei G, Yu D, Li W, Chen P, Li G, Zhao Q. Probing the Effect of Ubiquitinated Histone on Mononucleosomes by Translocation Dynamics Study through Solid-State Nanopores. NANO LETTERS 2022; 22:888-895. [PMID: 35060726 DOI: 10.1021/acs.nanolett.1c02978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-translational modifications (PTMs), such as ubiquitination, are critically important in regulating genetic expressions by adjusting the nucleosome stability. A fast and label-free technology inspecting dynamic nucleosome structures can facilitate the interrogation of PTMs effects. Here we leverage the advantages of mechanically stable solid-state nanopores and detect the effect of a ubiquitinated histone on mononucleosomes at the single-molecule level. By comparing the translocation dynamics of natural and cross-linked mononucleosomes, we verified that the nucleosomal DNA unravelled from histones in natural mononucleosomes. Furthermore, we found that a turning point of voltage corresponds to the onset of nucleosome rupture. More importantly, we reveal that ubH2A stabilizes the nucleosome by shifting the turning point to a larger value and investigated the effect of ubiquitination on different histones (ubH2A and ubH2B). These findings open promising possibilities for developing a miniaturized and portable device for the fast screening of PTMs on nucleosomes.
Collapse
Affiliation(s)
- Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Dapeng Yu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Institute for Quantum Science and Technology and Department of Physics, South University of Science and Technology of China (SUSTech), Shenzhen 518055, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
28
|
Du H, Zhang L. DOT1L Epigenetically Induces the Expression Level of FoxM1 through H3K79me2 and Affects the Malignant Behaviors of Head and Neck Squamous Cell Carcinoma Cells. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Huanle Du
- Otolaryngology Head and Neck Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine
| | - Lin Zhang
- Otolaryngology Head and Neck Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine
| |
Collapse
|
29
|
Vijayasimha K, Dolan BP. The Many Potential Fates of Non-Canonical Protein Substrates Subject to NEDDylation. Cells 2021; 10:2660. [PMID: 34685640 PMCID: PMC8534235 DOI: 10.3390/cells10102660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) is a ubiquitin-like protein (UBL) whose canonical function involves binding to, and thus, activating Cullin-Ring finger Ligases (CRLs), one of the largest family of ubiquitin ligases in the eukaryotic cell. However, in recent years, several non-canonical protein substrates of NEDD8 have been identified. Here we attempt to review the recent literature regarding non-canonical NEDDylation of substrates with a particular focus on how the covalent modification of NEDD8 alters the protein substrate. Like much in the study of ubiquitin and UBLs, there are no clear and all-encompassing explanations to satisfy the textbooks. In some instances, NEDD8 modification appears to alter the substrates localization, particularly during times of stress. NEDDylation may also have conflicting impacts upon a protein's stability: some reports indicate NEDDylation may protect against degradation whereas others show NEDDylation can promote degradation. We also examine how many of the in vitro studies measuring non-canonical NEDDylation were conducted and compare those conditions to those which may occur in vivo, such as cancer progression. It is likely that the conditions used to study non-canonical NEDDylation are similar to some types of cancers, such as glioblastoma, colon and rectal cancers, and lung adenocarcinomas. Although the full outcomes of non-canonical NEDDylation remain unknown, our review of the literature suggests that researchers keep an open mind to the situations where this modification occurs and determine the functional impacts of NEDD8-modification to the specific substrates which they study.
Collapse
Affiliation(s)
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
30
|
Kim HG, Cho JH, Kim J, Kim SJ. The Role of Epigenetic Changes in the Progression of Alcoholic Steatohepatitis. Front Physiol 2021; 12:691738. [PMID: 34335299 PMCID: PMC8323660 DOI: 10.3389/fphys.2021.691738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic steatohepatitis (ASH) is a progression hepatitis with severe fatty liver and its mortality rate for 30-days in patients are over 30%. Additionally, ASH is well known for one-fifth all alcoholic related liver diseases in the world. Excessive chronic alcohol consumption is one of the most common causes of the progression of ASH and is associated with poor prognosis and liver failure. Alcohol abuse dysregulates the lipid homeostasis and causes oxidative stress and inflammation in the liver. Consequently, metabolic pathways stimulating hepatic accumulation of excessive lipid droplets are induced. Recently, many studies have indicated a link between ASH and epigenetic changes, showing differential expression of alcohol-induced epigenetic genes in the liver. However, the specific mechanisms underlying the pathogenesis of ASH remain elusive. Thus, we here summarize the current knowledge about the roles of epigenetics in lipogenesis, inflammation, and apoptosis in the context of ASH pathophysiology. Especially, we highlight the latest findings on the roles of Sirtuins, a conserved family of class-III histone deacetylases, in ASH. Additionally, we discuss the involvement of DNA methylation, histone modifications, and miRNAs in ASH as well as the ongoing efforts for the clinical translation of the findings in ASH-related epigenetic changes.
Collapse
Affiliation(s)
- Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jung-Hyo Cho
- Department of East & West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Seung-Jin Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
31
|
Xu M, Jin P, Liu T, Gao S, Zhang T, Zhang F, Han X, He L, Chen J, Yang J. Genome-wide identification and characterization of UBP gene family in wheat ( Triticum aestivum L.). PeerJ 2021; 9:e11594. [PMID: 34178465 PMCID: PMC8212830 DOI: 10.7717/peerj.11594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Ubiquitination is essential for plant growth and development. Deubiquitination cooperates with ubiquitination to regulate the ubiquitination levels of target proteins. The ubiquitin-specific protease (UBP) family is the largest group of deubiquitinases (DUBs), which perform extensive and significant roles in eukaryotic organisms. However, the UBP genes in wheat (TaUBPs) are not identified, and the functions of TaUBPs are unknown. The present study identified 97 UBP genes in the whole genome of T. aestivum. These genes were divided into 15 groups and non-randomly distributed on chromosomes of T. aestivum. Analyses of evolutionary patterns revealed that TaUBPs mainly underwent purification selection. The studies of cis-acting regulatory elements indicated that they might be involved in response to hormones. Quantitative real-time PCR (qRT-PCR) results showed that TaUBPs were differentially expressed in different tissues. Besides, several TaUBPs were significantly up-regulated when plants were treated with salicylic acid (SA), implying that these DUBs may play a role in abiotic stress responses in plants and few TaUBPs displayed differential expression after viral infection. Furthermore, TaUBP1A.1 (TraesCS1A02G432600.1) silenced by virus-induced gene silencing (VIGS) facilitates Chinese wheat mosaic virus (CWMV) infection in wheat, indicating that TaUBP1A.1 may be involved in a defense mechanism against viruses. This study comprehensively analyzed the UBP gene family in wheat and provided a basis for further research of TaUBPs functions in wheat plant response to viral infection.
Collapse
Affiliation(s)
- Miaoze Xu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tingting Liu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiqi Gao
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaolei Han
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
32
|
Miao C, Liang C, Li P, Liu B, Qin C, Yuan H, Liu Y, Zhu J, Cui Y, Xu A, Wang S, Su S, Li J, Shao P, Wang Z. TRIM37 orchestrates renal cell carcinoma progression via histone H2A ubiquitination-dependent manner. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:195. [PMID: 34130705 PMCID: PMC8204444 DOI: 10.1186/s13046-021-01980-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
Background Ubiquitylation modification is one of the multiple post-transcriptional process to regulate cellular physiology, including cell signaling, cycle regulation, DNA repair and transcriptional regulation. Members of TRIM family proteins could be defined as E3 ubiquitin ligases as they contain a RING-finger domain, and alterations of TRIM proteins are involved into a broad range of diverse disorders including cancer. TRIM37 is a novel discovered E3 ubiquitin ligase and acts as a oncoprotein in multiple human neoplasms, however its biological role in RCC still remains elusive. Methods RCC microarray chips and public datasets were screened to identify novel TRIMs member as TRIM37, which was dysregulated in RCC. Gain or loss of functional cancer cell models were constructed, and in vitro and in vivo assays were performed to elucidate its tumorigenic phenotypes. Interactive network analyses were utilized to define intrinsic mechanism. Results We identified TRIM37 was upregulated in RCC tumors, and its aberrant function predicted aggressive neoplastic phenotypes, poorer survival endings. TRIM37 promoted RCC cells EMT and malignant progression via TGF-β1 signaling activation, as a consequence of directly mediated by ubiquitinating-H2A modifications. Conclusions Our findings identified a previously unappreciated role of TRIM37 in RCC progression and prognostic prediction. Importantly, we declared a novel ubiquitination-dependent link between TRIM ubiquitin ligases and TGF-β1 signaling in regulating cancerous malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01980-0.
Collapse
Affiliation(s)
- Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Han Yuan
- Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore, SG, 169857, Singapore
| | - Yiyang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jundong Zhu
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, 213003, China
| | - Yankang Cui
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shifeng Su
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
33
|
Siklos M, Kubicek S. Therapeutic targeting of chromatin: status and opportunities. FEBS J 2021; 289:1276-1301. [PMID: 33982887 DOI: 10.1111/febs.15966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The molecular characterization of mechanisms underlying transcriptional control and epigenetic inheritance since the 1990s has paved the way for the development of targeted therapies that modulate these pathways. In the past two decades, cancer genome sequencing approaches have uncovered a plethora of mutations in chromatin modifying enzymes across tumor types, and systematic genetic screens have identified many of these proteins as specific vulnerabilities in certain cancers. Now is the time when many of these basic and translational efforts start to bear fruit and more and more chromatin-targeting drugs are entering the clinic. At the same time, novel pharmacological approaches harbor the potential to modulate chromatin in unprecedented fashion, thus generating entirely novel opportunities. Here, we review the current status of chromatin targets in oncology and describe a vision for the epigenome-modulating drugs of the future.
Collapse
Affiliation(s)
- Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
34
|
Shmueli MD, Sheban D, Eisenberg-Lerner A, Merbl Y. Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J 2021; 289:3304-3316. [PMID: 33914417 PMCID: PMC9292675 DOI: 10.1111/febs.15903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin‐transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome‐dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
35
|
Liu Y, Wang Y, Yang L, Sun F, Li S, Wang Y, Zhang GA, Dong T, Zhang LL, Duan W, Zhang X, Cui W, Chen S. The nucleolus functions as the compartment for histone H2B protein degradation. iScience 2021; 24:102256. [PMID: 33796843 PMCID: PMC7995529 DOI: 10.1016/j.isci.2021.102256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Histones are main components of chromatin, and the protein levels of histones significantly affect chromatin assembly. However, how histone protein levels are regulated, especially whether and how histones are degraded, is largely unclear. Here, we found that histone H2B is mainly degraded through the proteasome-mediated pathway, and the lysine-120 site of H2B is essential for its K48-linked polyubiquitination and degradation. Moreover, the degradation-impaired H2BK120R mutant shows an increased nucleolus localization, and inhibition of the proteasome results in an elevated nucleolus distribution of wild-type H2B, which is similar to that of H2BK120R mutants. More importantly, the nucleolus fractions can ubiquitinate and degrade the purified H2B in vitro, suggesting that the nucleolus, in addition to its canonical roles regulating ribosome genesis and protein translation, likely associates with H2B degradation. Therefore, these findings revealed a novel mechanism for the regulation of H2B degradation in which a nucleolus-associated proteasome pathway is involved. Histone H2B can be polyubiquitinated at the lysine 120 residue The degradation of histone H2B is achieved via the ubiquitination-proteasome pathway The nucleolus regulates the protein degradation of histone H2B
Collapse
Affiliation(s)
- Yanping Liu
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yufei Wang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai 200092, PR China
| | - Sheng Li
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yequan Wang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guo-An Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Tingting Dong
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Lei-Lei Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wanglin Duan
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiaojun Zhang
- Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China
| | - Wen Cui
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China.,School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China.,Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan 475004, PR China
| |
Collapse
|
36
|
He D, Damaris RN, Li M, Khan I, Yang P. Advances on Plant Ubiquitylome-From Mechanism to Application. Int J Mol Sci 2020; 21:E7909. [PMID: 33114409 PMCID: PMC7663383 DOI: 10.3390/ijms21217909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins enable modulation of their structure, function, localization and turnover. To date, over 660 PTMs have been reported, among which, reversible PTMs are regarded as the key players in cellular signaling. Signaling mediated by PTMs is faster than re-initiation of gene expression, which may result in a faster response that is particularly crucial for plants due to their sessile nature. Ubiquitylation has been widely reported to be involved in many aspects of plant growth and development and it is largely determined by its target protein. It is therefore of high interest to explore new ubiquitylated proteins/sites to obtain new insights into its mechanism and functions. In the last decades, extensive protein profiling of ubiquitylation has been achieved in different plants due to the advancement in ubiquitylated proteins (or peptides) affinity and mass spectrometry techniques. This obtained information on a large number of ubiquitylated proteins/sites helps crack the mechanism of ubiquitylation in plants. In this review, we have summarized the latest advances in protein ubiquitylation to gain comprehensive and updated knowledge in this field. Besides, the current and future challenges and barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA;
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| |
Collapse
|
37
|
Shepard RD, Nugent FS. Early Life Stress- and Drug-Induced Histone Modifications Within the Ventral Tegmental Area. Front Cell Dev Biol 2020; 8:588476. [PMID: 33102491 PMCID: PMC7554626 DOI: 10.3389/fcell.2020.588476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Psychiatric illnesses are a major public health concern due to their prevalence and heterogeneity of symptom presentation resulting from a lack of efficacious treatments. Although dysregulated dopamine (DA) signaling has been observed in a myriad of psychiatric conditions, different pathophysiological mechanisms have been implicated which impede the development of adequate treatments that work across all patient populations. The ventral tegmental area (VTA), a major source of DA neurons in the brain reward pathway, has been shown to have altered activity that contributes to reward dysregulation in mental illnesses and drug addiction. It has now become better appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as through histone modifications, which dynamically regulate transcription rates of critical genes important in synaptic plasticity underlying learning and memory. Here, we provide a focused review on differential histone modifications within the VTA observed in both humans and animal models, as well as their relevance to disease-based phenotypes, specifically focusing on epigenetic dysregulation of histones in the VTA associated with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting of individual histone modifications at specific genes within the VTA presents novel therapeutic targets which can result in greater efficacy and better long-term health outcomes in susceptible individuals that are at increased risk for substance use and psychiatric disorders.
Collapse
Affiliation(s)
- Ryan D Shepard
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fereshteh S Nugent
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
38
|
Qian W, Li Z, Song W, Zhao T, Wang W, Peng J, Wei L, Xia Q, Cheng D. A novel transcriptional cascade is involved in Fzr-mediated endoreplication. Nucleic Acids Res 2020; 48:4214-4229. [PMID: 32182338 PMCID: PMC7192621 DOI: 10.1093/nar/gkaa158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/29/2020] [Indexed: 01/08/2023] Open
Abstract
Endoreplication, known as endocycle, is a variant of the cell cycle that differs from mitosis and occurs in specific tissues of different organisms. Endoreplicating cells generally undergo multiple rounds of genome replication without chromosome segregation. Previous studies demonstrated that Drosophila fizzy-related protein (Fzr) and its mammalian homolog Cdh1 function as key regulators of endoreplication entrance by activating the anaphase-promoting complex/cyclosome to initiate the ubiquitination and subsequent degradation of cell cycle factors such as Cyclin B (CycB). However, the molecular mechanism underlying Fzr-mediated endoreplication is not completely understood. In this study, we demonstrated that the transcription factor Myc acts downstream of Fzr during endoreplication in Drosophila salivary gland. Mechanistically, Fzr interacts with chromatin-associated histone H2B to enhance H2B ubiquitination in the Myc promoter and promotes Myc transcription. In addition to negatively regulating CycB transcription, the Fzr-ubiquitinated H2B (H2Bub)-Myc signaling cascade also positively regulates the transcription of the MCM6 gene that is involved in DNA replication by directly binding to specific motifs within their promoters. We further found that the Fzr-H2Bub-Myc signaling cascade regulating endoreplication progression is conserved between insects and mammalian cells. Altogether, our work uncovers a novel transcriptional cascade that is involved in Fzr-mediated endoreplication.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Wei Song
- Medical Research Institute, Wuhan University, Wuhan 430071, China.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Weina Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
39
|
Epigenetic Alterations in Oesophageal Cancer: Expression and Role of the Involved Enzymes. Int J Mol Sci 2020; 21:ijms21103522. [PMID: 32429269 PMCID: PMC7278932 DOI: 10.3390/ijms21103522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.
Collapse
|
40
|
Debnath P, Mondal A, Sen K, Mishra D, Mondal NK. Genotoxicity study of nano Al 2O 3, TiO 2 and ZnO along with UV-B exposure: An Allium cepa root tip assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136592. [PMID: 31955093 DOI: 10.1016/j.scitotenv.2020.136592] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/17/2023]
Abstract
The present effort aims to investigate the cytotoxic and genotoxic impact of three widely used nanoparticles (ZnO, TiO2 and Al2O3) on root cells of Allium cepa as a test organism. The root tip of Allium cepa were treated with three different concentrations (0.1 10 and 100 mg/L) of the above-mentioned NPs and the observations were recorded after proper growth of root under both nanoparticle solutions and UV-B exposure in combined conditions and separately. The parameters such as mitotic index, various forms of chromosomal aberrations, various reactive oxygen species (ROS) generation such as superoxide radical (O-2·), hydrogen peroxide, hydroxyl radical (·OH), lipid peroxidation and bio-uptake of nanoparticles were assessed. The results revealed that for all the three nanoparticles, mitotic index (MI) was highly reduced in comparison to control. Among the three nanoparticles, the MI value of TiO2 was 59.5% at 0.1 mg/L. Chromosomal aberration data suggest that nano Al2O3 exhibited disturbed metaphase at 0.1 mg/L, and abnormal anaphase and sticky metaphase at 10 and 100 mg/L, respectively. Similarly, lagged metaphase and anaphase with multiple chromatin bridges were recorded for both nano ZnO and nano TiO2 at 0.1 mg/L. But, nonsignificant (p > 0.05) results were recorded between only nano metal oxide and UV-B along with nano metal oxide. ROS generation data revealed that ZnO is more active under UV-B than TiO2 and Al2O3. The cellular deformation and the existence of metal in A. cepa under nano ZnO, TiO2 and Al2O3 treatment were evaluated by Scanning Electron Micrograph (SEM) and X-ray fluorescence (XRF) study, respectively. It may safely be concluded that with respect to chromosomal aberration and mitotic index, out of the three nanoparticles, Al2O3 is the most severe at higher concentrations and nano ZnO shows lowest mitotic index under UV-B exposure.
Collapse
Affiliation(s)
- Priyanka Debnath
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Arghadip Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Kamalesh Sen
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Debojyoti Mishra
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
41
|
Tan W, van Twest S, Leis A, Bythell-Douglas R, Murphy VJ, Sharp M, Parker MW, Crismani W, Deans AJ. Monoubiquitination by the human Fanconi anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays. eLife 2020; 9:e54128. [PMID: 32167469 PMCID: PMC7156235 DOI: 10.7554/elife.54128] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here, we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show using electron microscopy that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Andrew Leis
- Bio21 Institute, University of MelbourneParkvilleAustralia
| | | | - Vincent J Murphy
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Michael Sharp
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Michael W Parker
- Bio21 Institute, University of MelbourneParkvilleAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| |
Collapse
|
42
|
Abstract
OTUB1 is a highly expressed cysteine protease that specifically cleaves K48-linked polyubiquitin chains. This unique deubiquitinating enzyme (DUB) can bind to a subset of E2 ubiquitin conjugating enzymes, forming complexes in which the two enzymes can regulate one another's activity. OTUB1 can noncatalytically suppress the ubiquitin conjugating activity of its E2 partners by sequestering the charged E2∼Ub thioester and preventing ubiquitin transfer. The same E2 enzymes, when uncharged, can stimulate the DUB activity of OTUB1 in vitro, although the importance of OTUB1 stimulation in vivo remains unclear. To assess the potential balance between these activities that might occur in cells, we characterized the kinetics and thermodynamics governing the formation and activity of OTUB1:E2 complexes. We show that both stimulation of OTUB1 by E2 enzymes and noncatalytic inhibition of E2 enzymes by OTUB1 occur at physiologically relevant concentrations of both partners. Whereas E2 partners differ in their ability to stimulate OTUB1 activity, we find that this variability is not correlated with the affinity of each E2 for OTUB1. In addition to UBE2N and the UBE2D isoforms, we find that OTUB1 inhibits the polyubiquitination activity of all three UBE2E enzymes, UBE2E1, UBE2E2, and UBE2E3. Interestingly, although OTUB1 also inhibits the auto-monoubiquitination and autopolyubiquitination activity of UBE2E1 and UBE2E2, it is unable to suppress autoubiquitination by UBE2E3. Our quantitative analysis provides a basis for further exploring the biological roles of OTUB1:E2 complexes in cells.
Collapse
Affiliation(s)
- Lauren T. Que
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| | - Marie E. Morrow
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210-2185 USA
| |
Collapse
|
43
|
He D, Li M, Damaris RN, Bu C, Xue J, Yang P. Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1430-1447. [PMID: 31677306 DOI: 10.1111/tpj.14593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 05/22/2023]
Abstract
During seed germination, cells embark on extensive post-transcriptional and post-translational modifications (PTM), providing a perfect platform to study these events in embryo rebooting from relative quiescenct to highly active state. PR-619, a deubiquitylase inhibitor, delayed the rice seed germination and resulted in the accumulation of ubiquitylated proteins, which indicated the protein ubiquitylation is involved in this process. Using the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectrometry, a list of 2576 lysine ubiquitylated (Kub) sites in 1171 proteins was compiled for rice embryos at 0, 12 and 24 h after imbibition (HAI). Of these, the abundance of 1419 Kub sites in 777 proteins changed significantly. Most of them substantially increased within the first 12 HAI, which is similar to the dynamic state previously observed for protein phosphorylation, implying that the first 12 HAI are essential for subsequent switch during rice seed germination. We also quantitatively analyzed the embryo proteome in these samples. Generally, a specific protein's abundance in the ubiquitylome was uncorrelated to that in the proteome. The differentially ubiquitinated proteins were greatly enriched in the categories of protein processing, DNA and RNA processing/regulation related, signaling, and transport. The DiGly footprint of the Kub sites was significantly reduced on K48, a linkage typically associated with proteasome-mediated degradation. These observations suggest ubiquitylation may modulate the protein function more than providing 26S degradation signals in the early stage of rice seed germination. Revealing this comprehensive ubiquitylome greatly increases our understanding of this critical PTM during seed germination.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rebecca N Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chen Bu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Jianyou Xue
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
44
|
Wang Y, Liu H, Liu X, Zhang X, Wu J, Yuan L, Du X, Wang R, Ma Y, Chen X, Cheng X, Zhuang D, Zhang H. Histone acetylation plays an important role in MC-LR-induced apoptosis and cycle disorder in SD rat testicular cells. CHEMOSPHERE 2020; 241:125073. [PMID: 31683423 DOI: 10.1016/j.chemosphere.2019.125073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a variant of microcystins (MCs), which poses a serious threat to the reproductive system. Histone acetylation modification can regulate the expressions of apoptosis-related genes. However the mechanisms of histone acetylation involving MC-LR-induced apoptosis were not understood. This study investigated the change of histone acetylation and its role in apoptosis and cell cycle arrest induced by MC-LR. MC-LR enhanced the activity of histone deacetylase (HDAC), decreased the activity of histone acetylase (HAT), up-regulated the expression of HDAC1, and down-regulated the expressions of Ac-H3 and Ac-H4 in vitro and vivo. Meanwhile, MC-LR induced testicular tissue injury and increased the expressions of apoptosis-related genes, such as Bax, Caspase3 and Caspase8, ultimately causing cells apoptosis in testicular tissues. Furthermore, MC-LR also induced cell cycle arrest in S phase, increased the expression of P21Wif1/Cip1, and inhibited the expressions of cyclinD1, cyclinE1, CDK2 and E2F1. Importantly, HDAC inhibitor Trichostatin A (TSA) could ameliorate MC-LR-induced apoptosis and cell cycle arrest by reverse-regulating the expressions of these proteins. These results indicated that MC-LR could activate the mitochondrial apoptotic pathway and disorder the cell cycle pathway to induce the cell apoptosis by enhancing HDAC activity and reducing histone acetylation of normal testicular cells in SD rats. Hence, histone acetylation has a vital function in MC-LR-induced apoptosis in SD rat testicular cells, which provides a new insight on the reproductive toxicity of male induced by MC-LR.
Collapse
Affiliation(s)
- Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
45
|
Abstract
The epigenetic modifications of histones are versatile marks that are intimately connected to development and disease pathogenesis including human cancers. In this review, we will discuss the many different types of histone modifications and the biological processes with which they are involved. Specifically, we review the enzymatic machineries and modifications that are involved in cancer development and progression, and how to apply currently available small molecule inhibitors for histone modifiers as tool compounds to study the functional significance of histone modifications and their clinical implications.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Simpson Querrey 7th Floor 303 E. Superior Street, Chicago, IL 60611 USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Simpson Querrey 7th Floor 303 E. Superior Street, Chicago, IL 60611 USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
46
|
Shah P, Wu WS, Chen CS. Systematical Analysis of the Protein Targets of Lactoferricin B and Histatin-5 Using Yeast Proteome Microarrays. Int J Mol Sci 2019; 20:ijms20174218. [PMID: 31466342 PMCID: PMC6747642 DOI: 10.3390/ijms20174218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) have potential antifungal activities; however, their intracellular protein targets are poorly reported. Proteome microarray is an effective tool with high-throughput and rapid platform that systematically identifies the protein targets. In this study, we have used yeast proteome microarrays for systematical identification of the yeast protein targets of Lactoferricin B (Lfcin B) and Histatin-5. A total of 140 and 137 protein targets were identified from the triplicate yeast proteome microarray assays for Lfcin B and Histatin-5, respectively. The Gene Ontology (GO) enrichment analysis showed that Lfcin B targeted more enrichment categories than Histatin-5 did in all GO biological processes, molecular functions, and cellular components. This might be one of the reasons that Lfcin B has a lower minimum inhibitory concentration (MIC) than Histatin-5. Moreover, pairwise essential proteins that have lethal effects on yeast were analyzed through synthetic lethality. A total of 11 synthetic lethal pairs were identified within the protein targets of Lfcin B. However, only three synthetic lethal pairs were identified within the protein targets of Histatin-5. The higher number of synthetic lethal pairs identified within the protein targets of Lfcin B might also be the reason for Lfcin B to have lower MIC than Histatin-5. Furthermore, two synthetic lethal pairs were identified between the unique protein targets of Lfcin B and Histatin-5. Both the identified synthetic lethal pairs proteins are part of the Spt-Ada-Gcn5 acetyltransferase (SAGA) protein complex that regulates gene expression via histone modification. Identification of synthetic lethal pairs between Lfcin B and Histatin-5 and their involvement in the same protein complex indicated synergistic combination between Lfcin B and Histatin-5. This hypothesis was experimentally confirmed by growth inhibition assay.
Collapse
Affiliation(s)
- Pramod Shah
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan.
- Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan.
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan.
| |
Collapse
|
47
|
Robinson HA, Pozzo-Miller L. The role of MeCP2 in learning and memory. ACTA ACUST UNITED AC 2019; 26:343-350. [PMID: 31416907 PMCID: PMC6699413 DOI: 10.1101/lm.048876.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 01/31/2023]
Abstract
Gene transcription is a crucial step in the sequence of molecular, synaptic, cellular, and systems mechanisms underlying learning and memory. Here, we review the experimental evidence demonstrating that alterations in the levels and functionality of the methylated DNA-binding transcriptional regulator MeCP2 are implicated in the learning and memory deficits present in mouse models of Rett syndrome and MECP2 duplication syndrome. The significant impact that MeCP2 has on gene transcription through a variety of mechanisms, combined with well-defined models of learning and memory, make MeCP2 an excellent candidate to exemplify the role of gene transcription in learning and memory. Together, these studies have strengthened the concept that precise control of activity-dependent gene transcription is a fundamental mechanism that ensures long-term adaptive behaviors necessary for the survival of individuals interacting with their congeners in an ever-changing environment.
Collapse
Affiliation(s)
- Holly A Robinson
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
48
|
Prasher D, Greenway SC, Singh RB. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol 2019; 98:12-22. [PMID: 31112654 DOI: 10.1139/bcb-2019-0045] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mortality and morbidity from cardiovascular diseases (CVDs) represents a huge burden to society. It is recognized that environmental factors and individual lifestyles play important roles in disease susceptibility, but the link between these external risk factors and our genetics has been unclear. However, the discovery of sequence-independent heritable DNA changes (epigenetics) have helped us to explain the link between genes and the environment. Multiple diverse epigenetic processes, including DNA methylation, histone modification, and the expression of non-coding RNA molecules affect the expression of genes that produce important changes in cellular differentiation and function, influencing the health and adaptability of the organism. CVDs such as congenital heart disease, cardiomyopathy, heart failure, cardiac fibrosis, hypertension, and atherosclerosis are now being viewed as much more complex and dynamic disorders. The role of epigenetics in these and other CVDs is currently under intense scrutiny, and we can expect important insights to emerge, including novel biomarkers and new approaches to enable precision medicine. This review summarizes the recent advances in our understanding of the role of epigenetics in CVD.
Collapse
Affiliation(s)
- Dimple Prasher
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Steven C Greenway
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raja B Singh
- Alberta Epigenetics Network, 3512-33 Street, NW, Suite 200, Calgary, AB, Canada.,University of Alberta, Faculty of Medicine and Dentistry, Edmonton, AB T2L 2A6, Canada
| |
Collapse
|
49
|
Yang X, Lu Y, Zhao X, Jiang L, Xu S, Peng J, Zheng H, Lin L, Wu Y, MacFarlane S, Chen J, Yan F. Downregulation of Nuclear Protein H2B Induces Salicylic Acid Mediated Defense Against PVX Infection in Nicotiana benthamiana. Front Microbiol 2019; 10:1000. [PMID: 31134032 PMCID: PMC6517552 DOI: 10.3389/fmicb.2019.01000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
Histone H2B protein is not only structurally important for chromosomal DNA packaging but is also involved in the regulation of gene expression, including the immune response of plants against pathogens. In this study, we show that the potato virus X (PVX) infection resulted in the reduced expression of H2B at both the mRNA and protein level in Nicotiana benthamiana. Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) was then used to down-regulate the expression of H2B in N. benthamiana and tests showed that the titre of TRV was similar in these plants to that in control treated plants. When these H2B-silenced plants were inoculated with PVX, the virus spread more slowly through the plant and there was a lower titre of PVX compared to non-silenced plants. Abnormal leaf development and stem necrosis were observed in the H2B-silenced plants, which were alleviated in H2B-silenced NahG transgenic plants suggesting the involvement of salicylic acid (SA) in the production of these symptoms. Indeed, quantitative reverse transcription (qRT)-PCR and liquid chromatography tandem mass spectroscopy (LC-MS) results showed that endogenous SA is increased in H2B-silenced N. benthamiana. Thus, downregulation of H2B induced the accumulation of endogenous SA, which was correlated with stem necrosis and a decreased accumulation of PVX in N. benthamiana.
Collapse
Affiliation(s)
- Xue Yang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuwen Lu
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xing Zhao
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Liangliang Jiang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease – Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shengchun Xu
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease – Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease – Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease – Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanhua Wu
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Stuart MacFarlane
- Cell and Molecular Sciences Group, The James Hutton Institute, Dundee, United Kingdom
| | - Jianping Chen
- Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease – Key Laboratory of Biotechnology in Plant Protection, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
50
|
Kumar VS, Vellaichamy A. Sequence and structure‐based characterization of ubiquitination sites in human and yeast proteins using Chou's sample formulation. Proteins 2019; 87:646-657. [DOI: 10.1002/prot.25689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022]
|