1
|
Shan L, Guo P, Wen M, Sun Y, Gao F, Zhang K, Zhang N, Yang B. Knockdown of regulator of Calcineurin 2 promotes transcription factor EB-mediated lipophagy to prevent non-alcoholic fatty liver disease. Toxicol Appl Pharmacol 2024; 495:117210. [PMID: 39710154 DOI: 10.1016/j.taap.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model. Adeno-associated virus injection was performed to interference with RCAN2 in mice. RCAN2 knockdown meliorated HFD-induced NAFLD and impaired glucose metabolism. Abnormal lipid metabolism and inflammation in HFD-fed mice were relieved when RCAN2 was downregulated. Besides, hepatocyte Huh-7 cells, treated with free fatty acids (oleic acid and palmitic acid), were used as NAFLD models in vitro. We found that knockdown of RCAN2 inhibited the accumulation of lipid droplets and inflammation induced by free fatty acids. RCAN2 interference increased the activity of calcineurin (CaN), which enhanced the nuclear translocation of Transcription factor EB (TFEB). Autophagosome and lysosome biogenesis was augmented, and autophagy-dependent lipid degradation (lipophagy) was promoted. Collectively, we demonstrate that RCAN2 insufficiency protects against NAFLD by promoting TFEB-mediated lipophagy.
Collapse
Affiliation(s)
- Lei Shan
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Pengzhan Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Mumeike Wen
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Yue Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Fei Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Kai Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Ning Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Baoshan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Bernard M, Bergès T, Sebille S, Régnacq M. Calcineurin activation improves cell survival during amino acid starvation in lipid droplet-deficient yeasts. Biochem Biophys Res Commun 2024; 735:150670. [PMID: 39276520 DOI: 10.1016/j.bbrc.2024.150670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Lipid droplets (LD) are storage sites for neutral lipids that can be used as a source of energy during nutrient starvation, but also function as hubs for fatty acid (FA) trafficking between organelles. In the yeast Saccharomyces cerevisiae, the absence of LD causes a severe disorganization of the endomembrane network during starvation. Here we show that cells devoid of LD respond to amino acid (AA) starvation by activating the serine/threonine phosphatase calcineurin and the nuclear translocation of its target protein Crz1. This activation was inhibited by treatments that restore a normal endomembrane organization, i.e. inhibition of FA synthesis with cerulenin or deletion of the inhibitory transcription factor Opi1. Activation of calcineurin increased the lifespan of LD-deficient cells during AA starvation. Indeed, deletion of its regulatory or catalytic subunits accelerated cell death. Surprisingly, calcineurin activation appeared to be calcium-independent. An increase in intracellular calcium was observed in LD-deficient cells during AA starvation, but its inhibition by genetic deletion of MID1 or YVC1 did not affect calcineurin activity. In contrast, calcineurin activation required the direct regulator of calcineurin Rcn1 and its activating (GSK-3)-related protein kinase Mck1.
Collapse
Affiliation(s)
| | - Thierry Bergès
- Laboratoire PRéTI, UR 24184, Université de Poitiers, France
| | | | | |
Collapse
|
3
|
Ren Y, Chen H, Zhao SY, Ma L, He QX, Gong WB, Wu JW, Yao HW, Wang ZX. Biochemical analyses reveal new insights into RCAN1/Rcn1 inhibition of calcineurin. FEBS J 2024; 291:4813-4829. [PMID: 39241105 DOI: 10.1111/febs.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 09/08/2024]
Abstract
Calcineurin is a serine/threonine protein phosphatase that is highly conserved from yeast to human and plays a critical role in many physiological processes. Regulators of calcineurin (RCANs) are a family of endogenous calcineurin regulators, which are capable of inhibiting the catalytic activity of calcineurin in vivo and in vitro. In this study, we first characterized the biochemical properties of yeast calcineurin and its endogenous regulator Rcn1, a yeast homolog of RCAN1. Our data show that Rcn1 inhibits yeast calcineurin toward pNPP substrate with a noncompetitive mode; and Rcn1 binds cooperatively to yeast calcineurin through multiple low-affinity interactions at several docking regions. Next, we reinvestigated the mechanism underlying the inhibition of mammalian calcineurin by RCAN1 using a combination of biochemical, biophysical, and computational methods. In contrast to previous observations, RCAN1 noncompetitively inhibits calcineurin phosphatase activity toward both pNPP and phospho-RII peptide substrates by targeting the enzyme active site in part. Re-analysis of previously reported kinetic data reveals that the RCAN1 concentrations used were too low to distinguish between the inhibition mechanisms [Chan B et al. (2005) Proc Natl Acad Sci USA 102, 13075]. The results presented in this study provide new insights into the interaction between calcineurin and RCAN1/Rcn1.
Collapse
Affiliation(s)
- Yan Ren
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Department of Biochemistry and Molecular Biology, Beijing Normal University, China
| | - Hui Chen
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shan-Yue Zhao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Lei Ma
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qing-Xia He
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wei-Bin Gong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jia-Wei Wu
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Hong-Wei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhi-Xin Wang
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Mathuram TL. GSK-3: An "Ace" Among Kinases. Cancer Biother Radiopharm 2024; 39:619-631. [PMID: 38746994 DOI: 10.1089/cbr.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase known to participate in the regulation of β-catenin signaling (Wnt signaling). This aids in the establishment of a multicomponent destruction complex that stimulates phosphorylation, leading to the destruction of β-catenin. Evidence about the role of increasingly active β-catenin signaling is involved in many forms of human cancer. The understanding of GSK-3 remains elusive as recent research aims to focus on developing potent GSK-3 inhibitors to target this kinase. Objective: This short review aims to highlight the regulation of GSK-3 with emphasis on Wnt signaling while highlighting its interaction with miRNAs corresponding to pluripotency and epithelial mesenchymal transition substantiating this kinase as an "Ace" among kinases in regulation of cellular processes. Result: Significant findings of miRNA regulation by GSK-3 exemplify the underpinnings of kinase-mediated transcriptional regulation in cancers. Conclusion: The review provides evidence on the role of GSK-3 as a possible master regulator of proteins and noncoding RNA, thereby implicating the fate of a cell.
Collapse
|
5
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
6
|
Cao Y, Zhang C, Fang Y, Liu Y, Lyu K, Ding J, Wang X. Investigation the global effect of rare earth gadolinium on the budding Saccharomyces cerevisiae by genome-scale screening. Front Microbiol 2022; 13:1022054. [DOI: 10.3389/fmicb.2022.1022054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionThe rare earth gadolinium (Gd) is widely used in industry and medicine, which has been treated as an emerging pollutant in environment. The increasing pollution of Gd has potential hazards to living organisms. Thus it is essential to investigate the toxicity and action mechanism of Gd in biological system.MethodsIn this study, the global effect and activation mechanism of Gd on yeast were investigated by genome-scale screening.Results and discussionOur results show that 45 gene deletion strains are sensitive to Gd and 10 gene deletion strains are Gd resistant from the diploid gene deletion strain library of Saccharomyces cerevisiae. The result of localization analysis shows that most of these genes are involved in cell metabolism, cell cycle, transcription, translation, protein synthesis, protein folding, and cell transport. The result of functional analysis shows that four genes (CNB1, CRZ1, VCX1, and GDT1) are involved in the calcium signaling pathway, and four genes (PHO84, PHO86, PHO2, and PHO4) are involved in phosphorus metabolism. For Gd3+ has the similar ion radius with Ca2+ and easily binds to the phosphate radical, it affects Ca2+ signaling pathway and phosphorus metabolism. The genes ARF1, ARL1, ARL3, SYS1, COG5, COG6, YPT6, VPS9, SSO2, MRL1, AKL1, and TRS85 participate in vesicle transport and protein sorting. Thus, Gd accumulation affects the function of proteins related to vesicle transport, which may result in the failure of Gd transport out of cells. In addition, the intracellular Gd content in the 45 sensitive deletion strains is higher than that in the wild type yeast under Gd stress. It suggests that the sensitivity of yeast deletion strains is related to the excessive intracellular Gd accumulation.
Collapse
|
7
|
de Souza VS, da Cunha GCR, Versiani BR, de Oliveira CP, Rosa MTAS, de Oliveira SF, Moretti PN, Mazzeu JF, Pic-Taylor A. Characterization of Associated Nonclassical Phenotypes in Patients with Deletion in the WAGR Region Identified by Chromosomal Microarray: New Insights and Literature Review. Mol Syndromol 2022; 13:290-304. [PMID: 36158055 PMCID: PMC9421677 DOI: 10.1159/000518872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
WAGR syndrome (Wilms' tumor, aniridia, genitourinary changes, and intellectual disability) is a contiguous gene deletion syndrome characterized by the joint deletion of PAX6 and WT1 genes, located in the short arm of chromosome 11. However, most deletions include other genes, leading to multiple associated phenotypes. Therefore, understanding how genes deleted together can contribute to other clinical phenotypes is still considered a challenge. In order to establish genotype-phenotype correlation in patients with interstitial deletions of the short arm of chromosome 11, we selected 17 patients with deletions identified by chromosomal microarray analysis: 4 new subjects and 13 subjects previously described in the literature with detailed clinical data. Through the analysis of deleted regions and the phenotypic changes, it was possible to suggest the contribution of specific genes to several nonclassical phenotypes, contributing to the accuracy of clinical characterization of the syndrome and emphasizing the broad phenotypic spectrum found in the patients. This study reports the first patient with a PAX6 partial deletion who does not present any eye anomaly thus opening a new set of questions about the functional activity of PAX6.
Collapse
Affiliation(s)
- Vanessa Sodré de Souza
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Gabriela Corassa Rodrigues da Cunha
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Beatriz R. Versiani
- Hospital de Apoio de Brasília, Secretária de Estado de Saúde do Distrito Federal, Brasília, Brazil,Hospital Universitário, Universidade de Brasília, Brasília, Brazil
| | - Claudiner Pereira de Oliveira
- Hospital de Apoio de Brasília, Secretária de Estado de Saúde do Distrito Federal, Brasília, Brazil,Hospital Universitário, Universidade de Brasília, Brasília, Brazil
| | - Maria Teresa Alves Silva Rosa
- Hospital Universitário, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil
| | - Silviene F. de Oliveira
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Patricia N. Moretti
- Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil
| | - Juliana F. Mazzeu
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil,Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil,*Juliana F. Mazzeu,
| | - Aline Pic-Taylor
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil,**Aline Pic-Taylor,
| |
Collapse
|
8
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
9
|
Liu C, Liu T, Lv Z, Qin M, Qu Z, Zhang Z, Li F, Chen D, Zhang X, Chen XL, Shen M. A Calcineurin Regulator MoRCN1 Is Important for Asexual Development, Stress Response, and Plant Infection of Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:925645. [PMID: 35783935 PMCID: PMC9244802 DOI: 10.3389/fpls.2022.925645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 06/12/2023]
Abstract
The calcium/calcineurin signaling pathway plays a key role in the development and virulence of plant pathogenic fungi, but the regulation of this signaling pathway is still not clear. In this study, we identified a calcineurin regulator MoRCN1 in the plant pathogenic fungus Magnaporthe oryzae and found it is important for virulence by regulating the calcineurin pathway. MoRCN1 deletion mutants were severely decreased in colony growth and conidia formation. More importantly, the deletion of MoRCN1 led to a significant reduction in virulence due to defects in appressorium formation and invasive growth. The ΔMorcn1 mutants were more sensitive to different stresses and induced host ROS accumulation, suggesting a role of MoRCN1 in stress adaptation. We found that MoRCN1 directly interacted with the calcineurin catalytic subunit MoCNA and affected its protein stability, which was therefore important for regulating the calcineurin pathway. Transcriptome analysis showed that MoRCN1 significantly activated 491 genes and suppressed 337 genes in response to calcium ion, partially overlapped with the MoCRZ1-bound genes. Gene Ontology and KEGG pathway analyses indicated that MoRCN1-regulated genes were enriched in stress adaptation, lipid metabolism, and secondary metabolite biosynthesis, reflecting a function of MoRCN1 in host cell adaptation. Altogether, these results suggest MoRCN1 functions as a regulator of the calcium/calcineurin signaling pathway for fungal development and infection of host cells.
Collapse
Affiliation(s)
- Caiyun Liu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tiangu Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziwei Lv
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Qin
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiguang Qu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziwei Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuyan Li
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Deng Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mi Shen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| |
Collapse
|
10
|
Kim SS, Lee EH, Shin JH, Seo SR. MAP kinase/ERK kinase 1 (MEK1) phosphorylates regulator of calcineurin 1 (RCAN1) to regulate neuronal differentiation. J Cell Physiol 2021; 237:1406-1417. [PMID: 34647615 DOI: 10.1002/jcp.30609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Regulator of calcineurin 1 (RCAN1) is located close to the Down syndrome critical region (DSCR) on human chromosome 21 and is related to the Down syndrome (DS) phenotype. To identify a novel binding partner of RCAN1, we performed yeast two-hybrid screening and identified mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) as a partner. MEK1 was able to bind and phosphorylate RCAN1 in vitro and in vivo. MEK1-dependent RCAN1 phosphorylation caused an increase in RCAN1 expression by increasing the protein half-life. Nerve growth factor (NGF)-dependent activation of the MEK1 pathway consistently induced RCAN1 expression. Moreover, we found that RCAN1 overexpression inhibited NGF-induced neurite outgrowth and expression of neuronal marker genes, such as growth cone-associated protein 43 (GAP43) and synapsin I, via inhibition of MEK1-ERK1/2 pathways. Our findings provide evidence that MEK1-dependent RCAN1 phosphorylation acts as an important molecular mechanism in the control of neuronal differentiation.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Hak Shin
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
11
|
Ding HX, Xing N, Ma HF, Hou L, Zhou CX, Du YP, Wang FJ. Effect of umbilical cord blood stem cell transplantation on restenosis after endovascular interventional therapy for diabetic hindlimb vascular disease. PLoS One 2021; 16:e0255162. [PMID: 34379650 PMCID: PMC8357084 DOI: 10.1371/journal.pone.0255162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
This study aimed to investigate the mechanism of human umbilical cord blood stem cell (HUCBSC) transplantation on restenosis after percutaneous transluminal angioplasty (PTA) for diabetic hindlimb vascular disease in rabbits. After successfully preparing a rabbit model of diabetic hindlimb vascular disease, 16 rabbits were randomly assigned to two groups. Of these, 8 rabbits received PTA surgery alone (PTA group), and the other 8 rabbits received PTA and HUCBSC (PTA+HUCBSC group) treatments. Five more healthy rabbits were set as healthy control (HC group). Samples were collected after 4 weeks of treatment. The expressions of regulator of calcineurin 1 (RCAN1) and calcineurin A (CnA) in the diseased artery were detected by immunofluorescence staining. The distribution of HUCBSCs was observed by pathological examination in transplanted artery, distal artery, and liver. Cytology experiments were applied to assess the levels of JAK and STAT3, and the migration and proliferation of human aortic vascular smooth muscle cells (HA-VSMC). In the rabbit model of diabetic vascular lesions in the hindlimbs, we found the stenosis of the femoral artery became more and more serious with time, and the expression level of PCNA positive cells was also gradually increased. The expression levels of RCAN1 and CnA in the PTA+HUCBSC group were significantly lower than those in PTA group. HUCBSC inhibited the migration and proliferation of HA-VSMC via JAK/STAT3 pathway. After HUCBSC local transplantation, HUCBSC had no distal tissue distribution. HUCBSC transplantation may prevent restenosis after PTA of diabetic hindlimb vascular disease through JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Hai-Xia Ding
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong-Fang Ma
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Hou
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao-Xi Zhou
- Department of Gastrointestinal Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Ping Du
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fu-Jun Wang
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
12
|
Lane BM, Murray S, Benson K, Bierzynska A, Chryst-Stangl M, Wang L, Wu G, Cavalleri G, Doyle B, Fennelly N, Dorman A, Conlon S, Vega-Warner V, Fermin D, Vijayan P, Qureshi MA, Shril S, Barua M, Hildebrandt F, Pollak M, Howell D, Sampson MG, Saleem M, Conlon PJ, Spurney R, Gbadegesin R. A Rare Autosomal Dominant Variant in Regulator of Calcineurin Type 1 ( RCAN1) Gene Confers Enhanced Calcineurin Activity and May Cause FSGS. J Am Soc Nephrol 2021; 32:1682-1695. [PMID: 33863784 PMCID: PMC8425665 DOI: 10.1681/asn.2020081234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified. METHODS Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes. RESULTS Two variants in the gene encoding regulator of calcineurin type 1 (RCAN1) segregate with disease in two families with autosomal dominant FSGS/SRNS. In vitro, loss of RCAN1 reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant RCAN1 displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type RCAN1. Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3β, resulting in dysregulated calcineurin activity and apoptosis. CONCLUSIONS These data suggest mutations in RCAN1 can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3β, in the treatment of FSGS.
Collapse
Affiliation(s)
- Brandon M. Lane
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan Murray
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Katherine Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Agnieszka Bierzynska
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Megan Chryst-Stangl
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Guanghong Wu
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gianpiero Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Brendan Doyle
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Neil Fennelly
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Shane Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | | | - Damian Fermin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Poornima Vijayan
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Mohammad Azfar Qureshi
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Moumita Barua
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Martin Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Hospital and Harvard University Medical School, Boston, Massachusetts
| | - David Howell
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Moin Saleem
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Peter J. Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
- Division of Nephrology, Department of Medicine, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Robert Spurney
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
13
|
Wardaszka P, Soczewka P, Sienko M, Zoladek T, Kaminska J. Partial Inhibition of Calcineurin Activity by Rcn2 as a Potential Remedy for Vps13 Deficiency. Int J Mol Sci 2021; 22:ijms22031193. [PMID: 33530471 PMCID: PMC7865597 DOI: 10.3390/ijms22031193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Regulation of calcineurin, a Ca2+/calmodulin-regulated phosphatase, is important for the nervous system, and its abnormal activity is associated with various pathologies, including neurodegenerative disorders. In yeast cells lacking the VPS13 gene (vps13Δ), a model of VPS13-linked neurological diseases, we recently demonstrated that calcineurin is activated, and its downregulation reduces the negative effects associated with vps13Δ mutation. Here, we show that overexpression of the RCN2 gene, which encodes a negative regulator of calcineurin, is beneficial for vps13Δ cells. We studied the molecular mechanism underlying this effect through site-directed mutagenesis of RCN2. The interaction of the resulting Rcn2 variants with a MAPK kinase, Slt2, and subunits of calcineurin was tested. We show that Rcn2 binds preferentially to Cmp2, one of two alternative catalytic subunits of calcineurin, and partially inhibits calcineurin. Rcn2 ability to bind to and reduce the activity of calcineurin was important for the suppression. The binding of Rcn2 to Cmp2 requires two motifs in Rcn2: the previously characterized C-terminal motif and a new N-terminal motif that was discovered in this study. Altogether, our findings can help to better understand calcineurin regulation and to develop new therapeutic strategies against neurodegenerative diseases based on modulation of the activity of selected calcineurin isoforms.
Collapse
|
14
|
Growth hormone increases regulator of calcineurin 1-4 (Rcan1-4) mRNA through c-JUN in rat liver. PLoS One 2020; 15:e0235270. [PMID: 32589657 PMCID: PMC7319343 DOI: 10.1371/journal.pone.0235270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
Growth hormone (GH) activates multiple signal transduction pathways. To investigate these pathways, we identified novel genes whose transcription was induced by GH in the liver of hypophysectomized (HPX) rats using the suppression subtractive hybridization technique. We found that regulator of calcineurin 1 (Rcan1) mRNA was upregulated by GH administration. RCAN1 regulates the activity of calcineurin, a Ca/calmodulin-dependent phosphatase. Rcan1 encodes two major transcripts, Rcan1-1 and Rcan1-4, resulting from differential promoter use and first exon choice. We found that a single injection of GH increased the levels of Rcan1-4 mRNA and RCAN1-4 protein transiently, but did not increase Rcan1-1 mRNA in HPX rat liver. Then the molecular mechanism of GH to induce Rcan1-4 transcription was examined in rat hepatoma H4IIE cells. Experiments using inhibitors suggested that c-JUN N-terminal kinase was required for the induction of Rcan1-4 mRNA by GH. GH increased the levels of phosphorylated c-JUN protein and c-Jun mRNA in HPX rat liver. The luciferase and electrophoretic mobility shift assays showed that c-JUN upregulated Rcan1-4 mRNA by binding to the cAMP-responsive element in the upstream of Rcan1 exon 4. These results indicate that GH activates c-JUN to affect the activity of calcineurin by the induction of Rcan1-4 in rat liver.
Collapse
|
15
|
Dudilot A, Trillaud-Doppia E, Boehm J. RCAN1 Regulates Bidirectional Synaptic Plasticity. Curr Biol 2020; 30:1167-1176.e2. [DOI: 10.1016/j.cub.2020.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/14/2019] [Accepted: 01/13/2020] [Indexed: 01/26/2023]
|
16
|
Affiliation(s)
- Nerea Sanvisens Delgado
- UCSF Helen Diller Comprehensive Cancer Center, Univerisity of Califorinia, San Francisco, California, United States of America
| | - David P. Toczyski
- UCSF Helen Diller Comprehensive Cancer Center, Univerisity of Califorinia, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fischer D, Gessner G, Fill TP, Barnett R, Tron K, Dornblut K, Kloss F, Stallforth P, Hube B, Heinemann SH, Hertweck C, Scherlach K, Brunke S. Disruption of Membrane Integrity by the Bacterium-Derived Antifungal Jagaricin. Antimicrob Agents Chemother 2019; 63:e00707-19. [PMID: 31235622 PMCID: PMC6709453 DOI: 10.1128/aac.00707-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
Jagaricin is a lipopeptide produced by the bacterial mushroom pathogen Janthinobacterium agaricidamnosum, the causative agent of mushroom soft rot disease. Apart from causing lesions in mushrooms, jagaricin is a potent antifungal active against human-pathogenic fungi. We show that jagaricin acts by impairing membrane integrity, resulting in a rapid flux of ions, including Ca2+, into susceptible target cells. Accordingly, the calcineurin pathway is required for jagaricin tolerance in the fungal pathogen Candida albicans Transcriptional profiling of pathogenic yeasts further revealed that jagaricin triggers cell wall strengthening, general shutdown of membrane potential-driven transport, and the upregulation of lipid transporters, linking cell envelope integrity to jagaricin action and resistance. Whereas jagaricin shows hemolytic effects, it exhibited either no or low plant toxicity at concentrations at which the growth of prevalent phytopathogenic fungi is inhibited. Therefore, jagaricin may have potential for agricultural applications. The action of jagaricin as a membrane-disrupting antifungal is promising but would require modifications for use in humans.
Collapse
Affiliation(s)
- Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Guido Gessner
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Taicia Pacheco Fill
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Robert Barnett
- Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Kyrylo Tron
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Florian Kloss
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| |
Collapse
|
18
|
Abstract
Heterocycles are very common substructures in a number of pharmaceuticals. Over the past several years, the use of palladium-catalyzed oxidative cyclization for heterocyclic synthesis has become much more prevalent. This review collects recent reports using palladium catalysis to synthesize a wide variety of heterocyclic scaffolds. Many of these reactions use oxygen as the terminal oxidant. Some salient mechanistic features are discussed.
Collapse
Affiliation(s)
- John C. Hershberger
- Department of Chemistry and Physics, Arkansas State University, State University, AR, United States
| |
Collapse
|
19
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
20
|
The protein kinase Cmk2 negatively regulates the calcium/calcineurin signalling pathway and expression of calcium pump genes PMR1 and PMC1 in budding yeast. Cell Commun Signal 2019; 17:7. [PMID: 30665402 PMCID: PMC6341702 DOI: 10.1186/s12964-019-0320-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Through a genome-wide screen we have identified calcium-tolerant deletion mutants for five genes in the budding yeast Saccharomyces cerevisiae. In addition to CNB1 and RCN1 that are known to play a role in the calcium signalling pathway, the protein kinase gene CMK2, the sphingolipid homeostasis-related gene ORM2 and the gene SIF2 encoding the WD40 repeat-containing subunit of Set3C histone deacetylase complex are involved in the calcium sensitivity of yeast cells to extracellular calcium. Cmk2 and the transcription factor Crz1 have opposite functions in the response of yeast cells to calcium stress. Deletion of CMK2 elevates the level of calcium/calcineurin signalling and increases the expression level of PMR1 and PMC1, which is dependent on Crz1. Effects of Cmk2 on calcium sensitivity and calcium/calcineurin signalling are dependent on its kinase activity. Therefore, Cmk2 is a negative feedback controller of the calcium/calcineurin signalling pathway. Furthermore, the cmk2 crz1 double deletion mutant is more resistant than the crz1 deletion mutant, suggesting that Cmk2 has an additional Crz1-independent role in promoting calcium tolerance.
Collapse
|
21
|
Duda P, Wiśniewski J, Wójtowicz T, Wójcicka O, Jaśkiewicz M, Drulis-Fajdasz D, Rakus D, McCubrey JA, Gizak A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin Ther Targets 2018; 22:833-848. [PMID: 30244615 DOI: 10.1080/14728222.2018.1526925] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Glycogen synthase kinase 3 (GSK3) is at the center of cellular signaling and controls various aspects of brain functions, including development of the nervous system, neuronal plasticity and onset of neurodegenerative disorders. Areas covered: In this review, recent efforts in elucidating the roles of GSK3 in neuronal plasticity and development of brain pathologies; Alzheimer's and Parkinson's disease, schizophrenia, and age-related neurodegeneration are described. The effect of microglia and astrocytes on development of the pathological states is also discussed. Expert opinion: GSK3β and its signaling pathway partners hold great promise as therapeutic target(s) for a multitude of neurological disorders. Activity of the kinase is often elevated in brain disorders. However, due to the wide range of GSK3 cellular targets, global inhibition of the kinase leads to severe side-effects and GSK3 inhibitors rarely reach Phase-2 clinical trials. Thus, a selective modulation of a specific cellular pool of GSK3 or specific down- or upstream partners of the kinase might provide more efficient anti-neurodegenerative therapies.
Collapse
Affiliation(s)
- Przemysław Duda
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Janusz Wiśniewski
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Tomasz Wójtowicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Olga Wójcicka
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Michał Jaśkiewicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dominika Drulis-Fajdasz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dariusz Rakus
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - James A McCubrey
- b Department of Microbiology and Immunology , Brody School of Medicine at East Carolina University , Greenville , NC , USA
| | - Agnieszka Gizak
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| |
Collapse
|
22
|
Calcineurin Regulatory Subunit Calcium-Binding Domains Differentially Contribute to Calcineurin Signaling in Saccharomyces cerevisiae. Genetics 2018; 209:801-813. [PMID: 29735720 DOI: 10.1534/genetics.118.300911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
The protein phosphatase calcineurin is central to Ca2+ signaling pathways from yeast to humans. Full activation of calcineurin requires Ca2+ binding to the regulatory subunit CNB, comprised of four Ca2+-binding EF hand domains, and recruitment of Ca2+-calmodulin. Here we report the consequences of disrupting Ca2+ binding to individual Cnb1 EF hand domains on calcineurin function in Saccharomyces cerevisiae Calcineurin activity was monitored via quantitation of the calcineurin-dependent reporter gene, CDRE-lacZ, and calcineurin-dependent growth under conditions of environmental stress. Mutation of EF2 dramatically reduced CDRE-lacZ expression and failed to support calcineurin-dependent growth. In contrast, Ca2+ binding to EF4 was largely dispensable for calcineurin function. Mutation of EF1 and EF3 exerted intermediate phenotypes. Reduced activity of EF1, EF2, or EF3 mutant calcineurin was also observed in yeast lacking functional calmodulin and could not be rescued by expression of a truncated catalytic subunit lacking the C-terminal autoinhibitory domain either alone or in conjunction with the calmodulin binding and autoinhibitory segment domains. Ca2+ binding to EF1, EF2, and EF3 in response to intracellular Ca2+ signals therefore has functions in phosphatase activation beyond calmodulin recruitment and displacement of known autoinhibitory domains. Disruption of Ca2+ binding to EF1, EF2, or EF3 reduced Ca2+ responsiveness of calcineurin, but increased the sensitivity of calcineurin to immunophilin-immunosuppressant inhibition. Mutation of EF2 also increased the susceptibility of calcineurin to hydrogen peroxide inactivation. Our observations indicate that distinct Cnb1 EF hand domains differentially affect calcineurin function in vivo, and that EF4 is not essential despite conservation across taxa.
Collapse
|
23
|
Fu Q, Wu Y. RCAN1 in the inverse association between Alzheimer's disease and cancer. Oncotarget 2017; 9:54-66. [PMID: 29416595 PMCID: PMC5787488 DOI: 10.18632/oncotarget.23094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The inverse association between Alzheimer’s disease (AD) and cancer has been reported in several population-based studies although both of them are age-related disorders. However, molecular mechanisms of the inverse association remain elusive. Increased expression of regulator of calcineurin 1 (RCAN1) promotes the pathogenesis of AD, while it suppresses cancer growth and progression in many types of cancer. Moreover, aberrant RCAN1 expression is detected in both AD and various types of cancer. It suggests that RCAN1 may play a key role in the inverse association between AD and cancer. In this article, we aim to review the role of RCAN1 in the inverse association and discuss underlying mechanisms, providing an insight into developing a novel approach to treat AD and cancer.
Collapse
Affiliation(s)
- Qiang Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| |
Collapse
|
24
|
Zhou S, Sternglanz R, Neiman AM. Developmentally regulated internal transcription initiation during meiosis in budding yeast. PLoS One 2017; 12:e0188001. [PMID: 29136644 PMCID: PMC5685637 DOI: 10.1371/journal.pone.0188001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Sporulation of budding yeast is a developmental process in which cells undergo meiosis to generate stress-resistant progeny. The dynamic nature of the budding yeast meiotic transcriptome has been well established by a number of genome-wide studies. Here we develop an analysis pipeline to systematically identify novel transcription start sites that reside internal to a gene. Application of this pipeline to data from a synchronized meiotic time course reveals over 40 genes that display specific internal initiations in mid-sporulation. Consistent with the time of induction, motif analysis on upstream sequences of these internal transcription start sites reveals a significant enrichment for the binding site of Ndt80, the transcriptional activator of middle sporulation genes. Further examination of one gene, MRK1, demonstrates the Ndt80 binding site is necessary for internal initiation and results in the expression of an N-terminally truncated protein isoform. When the MRK1 paralog RIM11 is downregulated, the MRK1 internal transcript promotes efficient sporulation, indicating functional significance of the internal initiation. Our findings suggest internal transcriptional initiation to be a dynamic, regulated process with potential functional impacts on development.
Collapse
Affiliation(s)
- Sai Zhou
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, United States of America
| | - Rolf Sternglanz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
25
|
Bifurcations and limit cycles in cytosolic yeast calcium. Math Biosci 2017; 298:58-70. [PMID: 29104134 DOI: 10.1016/j.mbs.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/30/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022]
Abstract
Calcium homeostasis is a fundamental cellular process in yeast. The regulation of the cytosolic calcium concentration is required for volume preservation and to regulate many vital calcium dependent processes such as mating and response to stress. The homeostatic mechanism is often studied by applying calcium pulses: sharply changing the calcium concentration in the yeast environment and observing the cellular response. To address these experimental investigations, several mathematical models have been proposed to describe this response. In this article we demonstrate that a previously studied model for this response predicts the presence of limit point instabilities and limit cycles in the dynamics of the calcium homeostasis system. We discuss the ways in which such dynamic characteristics can be observed with luminometric techniques. We contrast these predictions with experimentally observed responses and find that the experiments reveal a number of features that are consistent with modeling predictions. In particular, we find that equilibrium cytosolic concentrations have a sharp change in behavior as pulse size changes in the micromolar range. We show that such change is consistent with the presence of limit point instabilities. Additionally, we find that the response of synchronized yeast cells to millimolar range pulses is non-monotonic in its late stages. This response has characteristics similar to those associated with limit cycles.
Collapse
|
26
|
Sutphin GL, Backer G, Sheehan S, Bean S, Corban C, Liu T, Peters MJ, van Meurs JBJ, Murabito JM, Johnson AD, Korstanje R. Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity. Aging Cell 2017; 16:672-682. [PMID: 28401650 PMCID: PMC5506438 DOI: 10.1111/acel.12595] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 12/21/2022] Open
Abstract
We report a systematic RNAi longevity screen of 82 Caenorhabditis elegans genes selected based on orthology to human genes differentially expressed with age. We find substantial enrichment in genes for which knockdown increased lifespan. This enrichment is markedly higher than published genomewide longevity screens in C. elegans and similar to screens that preselected candidates based on longevity‐correlated metrics (e.g., stress resistance). Of the 50 genes that affected lifespan, 46 were previously unreported. The five genes with the greatest impact on lifespan (>20% extension) encode the enzyme kynureninase (kynu‐1), a neuronal leucine‐rich repeat protein (iglr‐1), a tetraspanin (tsp‐3), a regulator of calcineurin (rcan‐1), and a voltage‐gated calcium channel subunit (unc‐36). Knockdown of each gene extended healthspan without impairing reproduction. kynu‐1(RNAi) alone delayed pathology in C. elegans models of Alzheimer's disease and Huntington's disease. Each gene displayed a distinct pattern of interaction with known aging pathways. In the context of published work, kynu‐1, tsp‐3, and rcan‐1 are of particular interest for immediate follow‐up. kynu‐1 is an understudied member of the kynurenine metabolic pathway with a mechanistically distinct impact on lifespan. Our data suggest that tsp‐3 is a novel modulator of hypoxic signaling and rcan‐1 is a context‐specific calcineurin regulator. Our results validate C. elegans as a comparative tool for prioritizing human candidate aging genes, confirm age‐associated gene expression data as valuable source of novel longevity determinants, and prioritize select genes for mechanistic follow‐up.
Collapse
Affiliation(s)
| | - Grant Backer
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Susan Sheehan
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Shannon Bean
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Caroline Corban
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Teresa Liu
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | - Marjolein J. Peters
- Department of Internal Medicine; Erasmus Medical Center; Postbus 2040 3000 CA Rotterdam The Netherlands
| | - Joyce B. J. van Meurs
- Department of Internal Medicine; Erasmus Medical Center; Postbus 2040 3000 CA Rotterdam The Netherlands
| | - Joanne M. Murabito
- Section of General Internal Medicine; Boston University School of Medicine; 801 Massachusetts Ave, Crosstown Center Boston MA 02118 USA
- The National Heart, Lung, and Blood Institute's Framingham Heart Study; 73 Mt. Wayte Ave, Suite 2 Framingham MA 01702-5827 USA
| | - Andrew D. Johnson
- The National Heart, Lung, and Blood Institute's Framingham Heart Study; 73 Mt. Wayte Ave, Suite 2 Framingham MA 01702-5827 USA
- Population Sciences Branch; National Heart, Lung, and Blood Institute; Building 31, Room 5A52, 31 Center Drive MSC 2486 Bethesda MD 20892 USA
| | - Ron Korstanje
- The Jackson Laboratory; 600 Main Street Bar Harbor ME 04609 USA
| | | |
Collapse
|
27
|
Han KA, Yoo L, Sung JY, Chung SA, Um JW, Kim H, Seol W, Chung KC. Leucine-Rich Repeat Kinase 2 (LRRK2) Stimulates IL-1β-Mediated Inflammatory Signaling through Phosphorylation of RCAN1. Front Cell Neurosci 2017; 11:125. [PMID: 28553204 PMCID: PMC5425608 DOI: 10.3389/fncel.2017.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a Ser/Thr kinase having mixed lineage kinase-like and GTPase domains, controlling neurite outgrowth and neuronal cell death. Evidence suggests that LRRK2 is involved in innate immune response signaling, but the underlying mechanism is yet unknown. A novel protein inhibitor of phosphatase 3B, RCAN1, is known to positively regulate inflammatory signaling through modulation of several intracellular targets of interleukins in immune cells. In the present study, we report that LRRK2 phosphorylates RCAN1 (RCAN1-1S) and is markedly up-regulated during interleukin-1β (IL-1β) treatment. During IL-1β treatment, LRRK2-mediated phosphorylation of RCAN1 promoted the formation of protein complexes, including that between Tollip and RCAN1. LRRK2 decreased binding between Tollip and IRAK1, which was accompanied by increased formation of the IRAK1-TRAF6 complex. TAK1 activity was significantly enhanced by LRRK2. Furthermore, LRRK2 enhanced transcriptional activity of NF-κB and cytokine IL-8 production. These findings suggest that LRRK2 might be important in positively modulating IL-1β-mediated signaling through selective phosphorylation of RCAN1.
Collapse
Affiliation(s)
- Kyung A Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Jee Y Sung
- Center for Pediatric Oncology, National Cancer CenterGoyang-si, South Korea
| | - Sun A Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Ji W Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu, South Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang UniversityGunpo-si, South Korea
| | - Kwang C Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| |
Collapse
|
28
|
Sheykhan M, Shafiee-Pour M, Abbasnia M. C–H Activation under the Guise of Diels–Alder Reaction: Annulation toward the Synthesis of Benzo[e]isoindole-1,3-diones. Org Lett 2017; 19:1270-1273. [DOI: 10.1021/acs.orglett.6b03757] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Sheykhan
- Chemistry
Department, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | - Maryam Shafiee-Pour
- Chemistry
Department, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | - Masoumeh Abbasnia
- School
of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
29
|
Kono K, Ikui AE. A new cell cycle checkpoint that senses plasma membrane/cell wall damage in budding yeast. Bioessays 2017; 39. [PMID: 28211950 DOI: 10.1002/bies.201600210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, cells face a variety of stresses that cause physical damage to the plasma membrane and cell wall. It is well established that evolutionarily conserved cell cycle checkpoints monitor various cellular perturbations, including DNA damage and spindle misalignment. However, the ability of these cell cycle checkpoints to sense a damaged plasma membrane/cell wall is poorly understood. To the best of our knowledge, our recent paper described the first example of such a checkpoint, using budding yeast as a model. In this review, we will discuss this important question as well as provide hypothetical explanations to be tested in the future.
Collapse
Affiliation(s)
- Keiko Kono
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Amy E Ikui
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| |
Collapse
|
30
|
Li W, Choi TW, Ahnn J, Lee SK. Allele-Specific Phenotype Suggests a Possible Stimulatory Activity of RCAN-1 on Calcineurin in Caenorhabditis elegans. Mol Cells 2016; 39:827-833. [PMID: 27871170 PMCID: PMC5125939 DOI: 10.14348/molcells.2016.0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022] Open
Abstract
Regulator of calcineurin 1 (RCAN1) binds to calcineurin through the PxIxIT motif, which is evolutionarily conserved. SP repeat phosphorylation in RCAN1 is required for its complete function. The specific interaction between RCAN1 and calcineurin is critical for calcium/calmodulin-dependent regulation of calcineurin serine/threonine phosphatase activity. In this study, we investigated two available deletion rcan-1 mutants in Caenorhabditis elegans, which proceed differently for transcription and translation. We found that rcan-1 may be required for calcineurin activity and possess calcineurin-independent function in body growth and egg-laying behavior. In the genetic background of enhanced calcineurin activity, the rcan-1 mutant expressing a truncated RCAN-1 which retains the calcineurin-binding PxIxIT motif but misses SP repeats stimulated growth, while rcan-1 lack mutant resulted in hyperactive egg-laying suppression. These data suggest rcan-1 has unknown functions independent of calcineurin, and may be a stimulatory calcineurin regulator under certain circumstances.
Collapse
Affiliation(s)
- Weixun Li
- Department of Life Science, Hanyang University, Seoul 04763,
Korea
- BK21 PLUS Life Science for BDR Team, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Tae-Woo Choi
- Department of Life Science, Hanyang University, Seoul 04763,
Korea
- BK21 PLUS Life Science for BDR Team, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Joohong Ahnn
- Department of Life Science, Hanyang University, Seoul 04763,
Korea
- BK21 PLUS Life Science for BDR Team, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Sun-Kyung Lee
- Department of Life Science, Hanyang University, Seoul 04763,
Korea
- BK21 PLUS Life Science for BDR Team, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
31
|
Hernández-Ortiz P, Espeso EA. Spatiotemporal dynamics of the calcineurin target CrzA. Cell Signal 2016; 29:168-180. [PMID: 27832964 DOI: 10.1016/j.cellsig.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/26/2016] [Accepted: 11/05/2016] [Indexed: 01/23/2023]
Abstract
The response of Aspergilli to elevated concentrations of extracellular calcium and manganese, or environmental alkalinization is mediated by CrzA, a calcineurin-responsive transcription factor (TF). CrzA is the effector of a signaling pathway which includes the apical protein's calmodulin and calcineurin, and the protein kinases GskA and CkiA. Preferentially located in the cytoplasm, CrzA is the only element of the pathway modifying its localization under those stress conditions, being imported into nuclei. Remarkably, there is a direct relationship between the nature/intensity of the stimulus and the pace of nuclear import and time of nuclear permanence of CrzA. Alkalinity caused a transient nuclear accumulation of CrzA while high Ca2+ and Mn2+ concentrations generated a long-lasting accumulation. Furthermore, Ca2+ concentrations (below 5mM) that are non-toxic for a crzAΔ mutant promoted full signaling of CrzA. However, micromolar concentrations or a mutation disrupting the interaction of CrzA with the phosphatase complex calcineurin, permitted the visualization of a transient and polarized nuclear accumulation of the TF in a tip-to-base gradient. Overall, these results support a model in which nucleo-cytoplasmic dynamics and transcriptional activity of CrzA are driven by apical signals transmitted by calmodulin and calcineurin. This communication is essential to understand Ca+2-induced stress response in fungi.
Collapse
Affiliation(s)
- Patricia Hernández-Ortiz
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
32
|
Regulator of Calcineurin 1 in Periodontal Disease. Mediators Inflamm 2016; 2016:5475821. [PMID: 27403036 PMCID: PMC4925939 DOI: 10.1155/2016/5475821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 05/05/2016] [Indexed: 11/18/2022] Open
Abstract
Nuclear factor of activated T-cells (NFAT) and NF-kB pathway associated processes are involved in the pathogenesis of various inflammatory disorders, for example, periodontal disease. The activation of these pathways is controlled by the regulator of calcineurin 1 (RCAN1). The aim of this study was to elucidate the role of RCAN1 in periodontal disease. Healthy and inflamed periodontal tissues were analyzed by immunohistochemistry and immunofluorescence using specific rabbit polyclonal anti-RCAN1 antibodies. For expression analysis human umbilical vein endothelial cells (HUVEC) were used. HUVEC were incubated for 2 h with Vascular Endothelial Growth Factor (VEGF) or with wild type and laboratory strains of Porphyromonas gingivalis (P. gingivalis). Expression analysis of rcan1 and cox2 was done by real time PCR using specific primers for rcan1.4 and cox2. The expression of rcan1 was found to be significantly suppressed in endothelial cells of chronically inflamed periodontal tissues compared to healthy controls. Rcan1 and cox2 were significantly induced by VEGF and wild type and laboratory P. gingivalis strains. Interestingly, the magnitude of the rcan1 and cox2 induction was strain dependent. The results of this study indicate that RCAN1 is suppressed in endothelial cells of chronically inflamed periodontal tissues. During an acute infection, however, rcan1 seems to be upregulated in endothelial cells, indicating a modulating role in immune homeostasis of periodontal tissues.
Collapse
|
33
|
Plasma membrane/cell wall perturbation activates a novel cell cycle checkpoint during G1 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2016; 113:6910-5. [PMID: 27274080 DOI: 10.1073/pnas.1523824113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cellular wound healing or the repair of plasma membrane/cell wall damage (plasma membrane damage) occurs frequently in nature. Although various cellular perturbations, such as DNA damage, spindle misalignment, and impaired daughter cell formation, are monitored by cell cycle checkpoint mechanisms in budding yeast, whether plasma membrane damage is monitored by any of these checkpoints remains to be addressed. Here, we define the mechanism by which cells sense membrane damage and inhibit DNA replication. We found that the inhibition of DNA replication upon plasma membrane damage requires GSK3/Mck1-dependent degradation of Cdc6, a component of the prereplicative complex. Furthermore, the CDK inhibitor Sic1 is stabilized in response to plasma membrane damage, leading to cell integrity maintenance in parallel with the Mck1-Cdc6 pathway. Cells defective in both Cdc6 degradation and Sic1 stabilization failed to grow in the presence of plasma membrane damage. Taking these data together, we propose that plasma membrane damage triggers G1 arrest via Cdc6 degradation and Sic1 stabilization to promote the cellular wound healing process.
Collapse
|
34
|
Alonso-Rodríguez E, Fernández-Piñar P, Sacristán-Reviriego A, Molina M, Martín H. An Analog-sensitive Version of the Protein Kinase Slt2 Allows Identification of Novel Targets of the Yeast Cell Wall Integrity Pathway. J Biol Chem 2016; 291:5461-5472. [PMID: 26786099 DOI: 10.1074/jbc.m115.683680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
The yeast cell wall integrity MAPK Slt2 mediates the transcriptional response to cell wall alterations through phosphorylation of transcription factors Rlm1 and SBF. However, the variety of cellular functions regulated by Slt2 suggests the existence of a significant number of still unknown substrates for this kinase. To identify novel Slt2 targets, we generated and characterized an analog-sensitive mutant of Slt2 (Slt2-as) that can be specifically inhibited by bulky kinase inhibitor analogs. We demonstrated that Slt2-as is able to use adenosine 5'-[γ-thio]triphosphate analogs to thiophosphorylate its substrates in yeast cell extracts as well as when produced as recombinant proteins in Escherichia coli. Taking advantage of this chemical-genetic approach, we found that Slt2 phosphorylates the MAPK phosphatase Msg5 both in the N-terminal regulatory and C-terminal catalytic domains. Moreover, we identified the calcineurin regulator Rcn2, the 4E-BP (translation initiation factor eIF4E-binding protein) translation repressor protein Caf20, and the Golgi-associated adaptor Gga1 as novel targets for Slt2. The Slt2 phosphorylation sites on Rcn2 and Caf20 were determined. We also demonstrated that, in the absence of SLT2, the GGA1 paralog GGA2 is essential for cells to survive under cell wall stress and for proper protein sorting through the carboxypeptidase Y pathway. Therefore, Slt2-as provides a powerful tool that can expand our knowledge of the outputs of the cell wall integrity MAPK pathway.
Collapse
Affiliation(s)
- Esmeralda Alonso-Rodríguez
- From the Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Pablo Fernández-Piñar
- From the Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Almudena Sacristán-Reviriego
- From the Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - María Molina
- From the Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| | - Humberto Martín
- From the Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| |
Collapse
|
35
|
Abstract
Calcium is an essential cation for a cell. This cation participates in the regulation of numerous processes in either prokaryotes or eukaryotes, from bacteria to humans. Saccharomyces cerevisiae has served as a model organism to understand calcium homeostasis and calcium-dependent signaling in fungi. In this chapter it will be reviewed known and predicted transport mechanisms that mediate calcium homeostasis in the yeast. How and when calcium enters the cell, how and where it is stored, when is reutilized, and finally secreted to the environment to close the cycle. As a second messenger, maintenance of a controlled free intracellular calcium concentration is important for mediating transcriptional regulation. Many environmental stimuli modify the concentration of cytoplasmic free calcium generating the "calcium signal". This is sensed and transduced through the calmodulin/calcineurin pathway to a transcription factor, named calcineurin-responsive zinc finger, CRZ, also known as "crazy", to mediate transcriptional regulation of a large number of genes of diverse pathways including a negative feedback regulation of the calcium homeostasis system.
Collapse
Affiliation(s)
- Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
36
|
Kingsbury TJ. Navigating toward an Understanding of the Role of Regulator of Calcineurin in Thermotaxis. J Mol Biol 2015; 427:3453-3456. [PMID: 26388410 DOI: 10.1016/j.jmb.2015.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tami J Kingsbury
- University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
37
|
Li W, Bell HW, Ahnn J, Lee SK. Regulator of Calcineurin (RCAN-1) Regulates Thermotaxis Behavior in Caenorhabditis elegans. J Mol Biol 2015; 427:3457-3468. [PMID: 26232604 DOI: 10.1016/j.jmb.2015.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 11/15/2022]
Abstract
Regulator of calcineurin (RCAN) is a calcineurin-interacting protein that inhibits calcineurin phosphatase when overexpressed, often upregulated under neuropathological conditions with impaired learning and memory processes, such as Down syndrome or Alzheimer's disease. Thermotactic behavior in the nematode Caenorhabditis elegans is a form of memory in which calcineurin signaling plays a pivotal role in the thermosensation of AFD neurons. In this study, we found that rcan-1 deletion mutants exhibited cryophilic behavior dependent on tax-6, which was rescued by expressing rcan-1 in AFD neurons. Interaction between RCAN-1 and TAX-6 requires the conserved PxIxIT motif of RCAN-1, without which thermotactic behavior could not be fully rescued. In addition, the loss of crh-1/CREB suppressed the thermotaxis phenotypes of rcan-1 and tax-6 mutants, indicating that crh-1 is crucial in thermotaxis memory in these mutants. Taken together, our results suggest that rcan-1 is an inhibitory regulator of tax-6 and that it acts in the formation of thermosensory behavioral memory in C. elegans.
Collapse
Affiliation(s)
- Weixun Li
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Harold W Bell
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA; Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Joohong Ahnn
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Sun-Kyung Lee
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
38
|
Abstract
Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downregulation of Rcan1 by expressing shRNA impaired neural progenitor proliferation and led to defects in radial migration and PH. Two isoforms of Rcan1 (Rcan1-1 and Rcan1-4) are expressed in the rat brain. Migration defects due to downregulation of Rcan1 could be prevented by shRNA-resistant expression of Rcan1-1 but not Rcan1-4. Furthermore, we found that Rcan1 knockdown significantly decreased the expression level of Flna, an F-actin cross-linking protein essential for cytoskeleton rearrangement and cell migration, mutation of which causes the most common form of bilateral PH in humans. Finally, overexpression of FLNA in Rcan1 knockdown neurons prevented migration abnormalities. Together, these findings demonstrate that Rcan1 acts upstream from Flna in regulating radial migration and suggest that impairment of Rcan1-Flna pathway may underlie PH pathogenesis.
Collapse
|
39
|
Hong A, Lee JE, Chung KWANGCHUL. Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination. J Cell Physiol 2015; 230:1651-60. [DOI: 10.1002/jcp.24917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/18/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Ahyoung Hong
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| | - Ji Eun Lee
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| | - KWANG CHUL Chung
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| |
Collapse
|
40
|
Juvvadi PR, Ma Y, Richards AD, Soderblom EJ, Moseley MA, Lamoth F, Steinbach WJ. Identification and mutational analyses of phosphorylation sites of the calcineurin-binding protein CbpA and the identification of domains required for calcineurin binding in Aspergillus fumigatus. Front Microbiol 2015; 6:175. [PMID: 25821446 PMCID: PMC4358225 DOI: 10.3389/fmicb.2015.00175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 11/26/2022] Open
Abstract
Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin belonging to the calcipressin family is an important parallel strategy. We previously identified the gene cbpA as the A. fumigatus calcipressin member and showed its involvement in hyphal growth and calcium homeostasis. However, the mechanism of its activation/inhibition through phosphorylation and its interaction with calcineurin remains unknown. Here we show that A. fumigatus CbpA is phosphorylated at three distinct domains, including the conserved SP repeat motif (phosphorylated domain-I; PD-I), a filamentous fungal-specific domain (PD-II), and the C-terminal CIC motif (Calcipressin Inhibitor of Calcineurin; PD-III). While mutation of three phosphorylated residues (Ser208, Ser217, Ser223) in the PD-II did not affect CbpA function in vivo, mutation of the two phosphorylated serines (Ser156, Ser160) in the SP repeat motif caused reduced hyphal growth and sensitivity to oxidative stress. Mutational analysis in the key domains in calcineurin A (CnaA) and proteomic interaction studies confirmed the requirement of PxIxIT motif-binding residues (352-NIR-354) and the calcineurin B (CnaB)-binding helix residue (V371) for the binding of CbpA to CnaA. Additionally, while the calmodulin-binding residues (442-RVF-444) did not affect CbpA binding to CnaA, three mutations (T359P, H361L, and L365S) clustered between the CnaA catalytic and the CnaB-binding helix were also required for CbpA binding. This is the first study to analyze the phosphorylation status of calcipressin in filamentous fungi and identify the domains required for binding to calcineurin.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Yan Ma
- Department of Dermatology and Venereology, The Second Hospital of Shanxi Medical University Taiyuan, Shanxi, China
| | - Amber D Richards
- Department of Dermatology and Venereology, The Second Hospital of Shanxi Medical University Taiyuan, Shanxi, China
| | - Erik J Soderblom
- Department of Dermatology and Venereology, The Second Hospital of Shanxi Medical University Taiyuan, Shanxi, China
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Durham, NC, USA
| | - Frédéric Lamoth
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center Durham, NC, USA ; Infectious Diseases Service, Department of Medicine, Lausanne University Hospital Lausanne, Switzerland ; Institute of Microbiology, Lausanne University Hospital Lausanne, Switzerland
| | - William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center Durham, NC, USA ; Department of Molecular Genetics and Microbiology, Duke University Medical Center Durham, NC, USA
| |
Collapse
|
41
|
Kim SS, Lee EH, Lee K, Jo SH, Seo SR. PKA regulates calcineurin function through the phosphorylation of RCAN1: identification of a novel phosphorylation site. Biochem Biophys Res Commun 2015; 459:604-9. [PMID: 25753203 DOI: 10.1016/j.bbrc.2015.02.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/20/2022]
Abstract
Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
42
|
Histone deacetylase 3 promotes RCAN1 stability and nuclear translocation. PLoS One 2014; 9:e105416. [PMID: 25144594 PMCID: PMC4140772 DOI: 10.1371/journal.pone.0105416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
Regulator of calcineurin 1 (RCAN1; also referred as DSCR1 or MCIP1) is located in close proximity to a Down syndrome critical region of human chromosome 21. Although RCAN1 is an endogenous inhibitor of calcineurin signaling that controls lymphocyte activation, apoptosis, heart development, skeletal muscle differentiation, and cardiac function, it is not yet clear whether RCAN1 might be involved in other cellular activities. In this study, we explored the extra-functional roles of RCAN1 by searching for novel RCAN1-binding partners. Using a yeast two-hybrid assay, we found that RCAN1 (RCAN1-1S) interacts with histone deacetylase 3 (HDAC3) in mammalian cells. We also demonstrate that HDAC3 deacetylates RCAN1. In addition, HDAC3 increases RCAN1 protein stability by inhibiting its poly-ubiquitination. Furthermore, HDAC3 promotes RCAN1 nuclear translocation. These data suggest that HDAC3, a new binding regulator of RCAN1, affects the protein stability and intracellular localization of RCAN1.
Collapse
|
43
|
Braun KA, Vaga S, Dombek KM, Fang F, Palmisano S, Aebersold R, Young ET. Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Sci Signal 2014; 7:ra64. [PMID: 25005228 DOI: 10.1126/scisignal.2005000] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stresses, such as glucose depletion, activate Snf1, the Saccharomyces cerevisiae ortholog of adenosine monophosphate-activated protein kinase (AMPK), enabling adaptive cellular responses. In addition to affecting transcription, Snf1 may also promote mRNA stability in a gene-specific manner. To understand Snf1-mediated signaling, we used quantitative mass spectrometry to identify proteins that were phosphorylated in a Snf1-dependent manner. We identified 210 Snf1-dependent phosphopeptides in 145 proteins. Thirteen of these proteins are involved in mRNA metabolism. Of these, we found that Ccr4 (the major cytoplasmic deadenylase), Dhh1 (an RNA helicase), and Xrn1 (an exoribonuclease) were required for the glucose-induced decay of Snf1-dependent mRNAs that were activated by glucose depletion. Unexpectedly, deletion of XRN1 reduced the accumulation of Snf1-dependent transcripts that were synthesized during glucose depletion. Deletion of SNF1 rescued the synthetic lethality of simultaneous deletion of XRN1 and REG1, which encodes a regulatory subunit of a phosphatase that inhibits Snf1. Mutation of three Snf1-dependent phosphorylation sites in Xrn1 reduced glucose-induced mRNA decay. Thus, Xrn1 is required for Snf1-dependent mRNA homeostasis in response to nutrient availability.
Collapse
Affiliation(s)
- Katherine A Braun
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Stefania Vaga
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Kenneth M Dombek
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Fang Fang
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Salvator Palmisano
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8057 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Elton T Young
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA.
| |
Collapse
|
44
|
Tsai HC, Chung KR. Calcineurin phosphatase and phospholipase C are required for developmental and pathological functions in the citrus fungal pathogen Alternaria alternata. MICROBIOLOGY-SGM 2014; 160:1453-1465. [PMID: 24763426 DOI: 10.1099/mic.0.077818-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excessive Ca(2+) or compounds interfering with phosphoinositide cycling have been found to inhibit the growth of the tangerine pathotype of Alternaria alternata, suggesting a crucial role of Ca(2+) homeostasis in this pathotype. The roles of PLC1, a phospholipase C-coding gene and CAL1, a calcineurin phosphatase-coding gene were investigated. Targeted gene disruption showed that both PLC1 and CAL1 were required for vegetative growth, conidial formation and pathogenesis in citrus. Fungal strains lacking PLC1 or CAL1 exhibited extremely slow growth and induced small lesions on calamondin leaves. Δplc1 mutants produced fewer conidia, which germinated at slower rates than wild-type. Δcal1 mutants produced abnormal hyphae and failed to produce any mature conidia, but instead produced highly melanized bulbous hyphae with distinct septae. Fluorescence microscopy using Fluo-3 dye as a Ca(2+) indicator revealed that the Δplc1 mutant hyphae emitted stronger cytosolic fluorescence, and the Δcal1 mutant hyphae emitted less cytosolic fluorescence, than those of wild-type. Infection assessed on detached calamondin leaves revealed that application of CaCl2 or neomycin 24 h prior to inoculation provided protection against Alt. alternata. These data indicate that a dynamic equilibrium of cellular Ca(2+) is critical for developmental and pathological processes of Alt. alternata.
Collapse
Affiliation(s)
- Hsieh-Chin Tsai
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Kuang-Ren Chung
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
45
|
Wu Y, Ly PTT, Song W. Aberrant expression of RCAN1 in Alzheimer's pathogenesis: a new molecular mechanism and a novel drug target. Mol Neurobiol 2014; 50:1085-97. [PMID: 24752590 DOI: 10.1007/s12035-014-8704-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
AD, a devastating neurodegenerative disorder, is the most common cause of dementia in the elderly. Patients with AD are characterized by three hallmarks of neuropathology including neuritic plaque deposition, neurofibrillary tangle formation, and neuronal loss. Growing evidences indicate that dysregulation of regulator of calcineurin 1 (RCAN1) plays an important role in the pathogenesis of AD. Aberrant RCAN1 expression facilitates neuronal apoptosis and Tau hyperphosphorylation, leading to neuronal loss and neurofibrillary tangle formation. This review aims to describe the recent advances of the regulation of RCAN1 expression and its physiological functions. Moreover, the AD risk factors-induced RCAN1 dysregulation and its role in promoting neuronal loss, synaptic impairments and neurofibrillary tangle formation are summarized. Furthermore, we provide an outlook into the effects of RCAN1 dysregulation on APP processing, Aβ generation and neuritic plaque formation, and the possible underlying mechanisms, as well as the potential of targeting RCAN1 as a new therapeutic approach.
Collapse
Affiliation(s)
- Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
46
|
Sun X, Wu Y, Herculano B, Song W. RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis. PLoS One 2014; 9:e95471. [PMID: 24751678 PMCID: PMC3994074 DOI: 10.1371/journal.pone.0095471] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/26/2014] [Indexed: 01/23/2023] Open
Abstract
Down Syndrome (DS) patients develop characteristic Alzheimer's Disease (AD) neuropathology after their middle age. Prominent neuronal loss has been observed in the cortical regions of AD brains. However, the underlying mechanism leading to this neuronal loss in both DS and AD remains to be elucidated. Calcium overloading and oxidative stress have been implicated in AD pathogenesis. Two major isoforms of regulator of calcineurin 1 (RCAN1), RCAN1.1 and RCAN1.4, are detected in human brains. In this report we defined the transcriptional regulation of RCAN1.1 and RCAN1.4 by two alternative promoters. Calcium overloading upregulated RCAN1.4 expression by activating RCAN1.4 promoter through calcineurin-NFAT signaling pathway, thus forming a negative feedback loop in isoform 4 regulation. Furthermore, RCAN1.4 overexpression exacerbated calcium overloading-induced neuronal apoptosis, which was mediated by caspase-3 apoptotic pathway. Our results suggest that downregulating RCAN1.4 expression in neurons could be beneficial to AD patients.
Collapse
Affiliation(s)
- Xiulian Sun
- Qilu Hospital of Shandong University, Jinan, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Yili Wu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Bruno Herculano
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
47
|
Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem 2014; 155:217-26. [PMID: 24505143 DOI: 10.1093/jb/mvu006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcineurin-nuclear factor of activated T cells (NFAT) signalling plays a critical role not only in the immune and nervous systems, but also in cardiovascular development and pathological endothelial cell activation during angiogenesis or inflammation. Studies in NFAT-null mice demonstrated that there is high redundancy between functions of the different NFAT family members. Deletion of only one NFAT causes mild phenotypes, but compound deletions of multiple NFAT family members leads to severe abnormalities in multiple organ systems. Genome-wide transcription analysis revealed that many NFAT target genes are related to cell growth and inflammation, whereas the gene most strongly induced by NFAT in endothelial cells is an auto-inhibitory molecule, Down syndrome critical region (DSCR)-1. The NFAT-DSCR-1 signalling axis may vary depending on the cell-type or signal dosage level under the microenvironment. In the endothelium, stable expression of the DSCR-1 short isoform attenuates septic inflammatory shock, tumour growth and tumour metastasis to lung. Moreover, dysfunction of DSCR-1 and the NFAT priming kinase, DYRK1A, prevents NFAT nuclear occupancy. This change in NFAT nuclear localization is responsible for many of the features of Down syndrome. Thus, fine-tuning of the NFAT-DSCR-1 negative feedback loop may enable therapeutic manipulation in vasculopathic diseases.
Collapse
Affiliation(s)
- Takashi Minami
- Div. of Vascular Biology, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
48
|
Regulator of calcineurin 1 modulates expression of innate anxiety and anxiogenic responses to selective serotonin reuptake inhibitor treatment. J Neurosci 2013; 33:16930-44. [PMID: 24155299 DOI: 10.1523/jneurosci.3513-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulator of calcineurin 1 (RCAN1) controls the activity of calcium/calmodulin-dependent phosphatase calcineurin (CaN), which has been implicated in human anxiety disorders. Previously, we reported that RCAN1 functioned as an inhibitor of CaN activity in the brain. However, we now find enhanced phosphorylation of a CaN substrate, cAMP response element-binding protein (CREB), in the brains of Rcan1 knock-out (KO) mice. Consistent with enhanced CREB activation, we also observe enhanced expression of a CREB transcriptional target, brain-derived neurotrophic factor (BDNF) in Rcan1 KO mice. We also discovered that RCAN1 deletion or blockade of RCAN1-CaN interaction reduced CaN and protein phosphatase-1 localization to nuclear-enriched protein fractions and promoted CREB activation. Because of the potential links between CREB, BDNF, and anxiety, we examined the role of RCAN1 in the expression of innate anxiety. Rcan1 KO mice displayed reduced anxiety in several tests of unconditioned anxiety. Acute pharmacological inhibition of CaN rescued these deficits while transgenic overexpression of human RCAN1 increased anxiety. Finally, we found that Rcan1 KO mice lacked the early anxiogenic response to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and had improved latency for its therapeutic anxiolytic effects. Together, our study suggests that RCAN1 plays an important role in the expression of anxiety-related and SSRI-related behaviors through CaN-dependent signaling pathways. These results identify RCAN1 as a mediator of innate emotional states and possible therapeutic target for anxiety.
Collapse
|
49
|
Martínez-Høyer S, Aranguren-Ibáñez Á, García-García J, Serrano-Candelas E, Vilardell J, Nunes V, Aguado F, Oliva B, Itarte E, Pérez-Riba M. Protein kinase CK2-dependent phosphorylation of the human Regulators of Calcineurin reveals a novel mechanism regulating the calcineurin–NFATc signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2311-21. [DOI: 10.1016/j.bbamcr.2013.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 11/28/2022]
|
50
|
Chang KT, Ro H, Wang W, Min KT. Meeting at the crossroads: common mechanisms in Fragile X and Down syndrome. Trends Neurosci 2013; 36:685-94. [PMID: 24075449 DOI: 10.1016/j.tins.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
Intellectual disability is characterized by significantly impaired cognitive abilities and is due to various etiological factors, including both genetic and non-genetic causes. Two of the most common genetic forms of intellectual disability are Fragile X syndrome (FXS) and Down syndrome (DS). Recent studies have shown that proteins altered in FXS and DS can physically interact and participate in common signaling pathways regulating dendritic spine development and local protein synthesis, thus supporting the notion that spine dysmorphogenesis and abnormal local protein synthesis may be molecular underpinnings of intellectual disability. Here we review the molecular constituents regulating local protein synthesis and spine morphology and their alterations in FXS and DS. We argue that these changes might ultimately affect synaptic homeostasis and alter cognitive performance.
Collapse
Affiliation(s)
- Karen T Chang
- Zilkha Neurogenetic Institute and Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|