1
|
Gonskikh Y, Tirrito C, Bommisetti P, Mendoza-Figueroa M, Stoute J, Kim J, Wang Q, Song Y, Liu K. Spatial regulation of NSUN2-mediated tRNA m5C installation in cognitive function. Nucleic Acids Res 2025; 53:gkae1169. [PMID: 39673800 PMCID: PMC11754655 DOI: 10.1093/nar/gkae1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024] Open
Abstract
Enzyme-mediated modifications of tRNA, such as 5-methylcytosine (m5C) installed by nuclear-enriched NOP2/Sun RNA methyltransferase 2 (NSUN2), play a critical role in neuronal development and function. However, our understanding of these modifications' spatial installation and biological functions remains incomplete. In this study, we demonstrate that a nucleoplasm-localized G679R NSUN2 mutant, linked to intellectual disability, diminishes NSUN2-mediated tRNA m5C in human cell lines and Drosophila. Our findings indicate that inability of G679R-NSUN2 to install m5C is primarily attributed to its reduced binding to tRNA rather than its nucleoplasmic localization. Conversely, an NSUN2 variant lacking an internal intrinsically disordered region (ΔIDR-NSUN2) can install ∼80% m5C within the nucleoplasm. Furthermore, we show that tRNA m5C levels are positively correlated to cognitive performance in Drosophila, where expressing G679R-NSUN2 leads to the most severe social behavioral deficits while expressing ΔIDR-NSUN2 results in less pronounced deficits. This work illuminates the molecular mechanism underlying G679R disease mutation in cognitive function and offers valuable insights into the significance of the cellular localization of m5C installation on tRNA for neuronal function.
Collapse
Affiliation(s)
- Yulia Gonskikh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christian Tirrito
- Biology Graduate Group, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Praneeth Bommisetti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua Kim
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Qin Wang
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanquan Song
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Yan D, Hua L. Nucleolar stress: Friend or foe in cardiac function? Front Cardiovasc Med 2022; 9:1045455. [PMID: 36386352 PMCID: PMC9659567 DOI: 10.3389/fcvm.2022.1045455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 03/14/2024] Open
Abstract
Studies in the past decades have uncovered an emerging role of the nucleolus in stress response and human disease progression. The disruption of ribosome biogenesis in the nucleolus causes aberrant nucleolar architecture and function, termed nucleolar stress, to initiate stress-responsive pathways via nucleolar release sequestration of various proteins. While data obtained from both clinical and basic investigations have faithfully demonstrated an involvement of nucleolar stress in the pathogenesis of cardiomyopathy, much remains unclear regarding its precise role in the progression of cardiac diseases. On the one hand, the initiation of nucleolar stress following acute myocardial damage leads to the upregulation of various cardioprotective nucleolar proteins, including nucleostemin (NS), nucleophosmin (NPM) and nucleolin (NCL). As a result, nucleolar stress plays an important role in facilitating the survival and repair of cardiomyocytes. On the other hand, abnormalities in nucleolar architecture and function are correlated with the deterioration of cardiac diseases. Notably, the cardiomyocytes of advanced ischemic and dilated cardiomyopathy display impaired silver-stained nucleolar organiser regions (AgNORs) and enlarged nucleoli, resembling the characteristics of tissue aging. Collectively, nucleolar abnormalities are critically involved in the development of cardiac diseases.
Collapse
Affiliation(s)
- Daliang Yan
- Department of Cardiovascular Surgery, Taizhou People’s Hospital, Taizhou, China
| | - Lu Hua
- Department of Oncology, Taizhou People’s Hospital, Taizhou, China
| |
Collapse
|
3
|
Jarrous N, Mani D, Ramanathan A. Coordination of transcription and processing of tRNA. FEBS J 2021; 289:3630-3641. [PMID: 33929081 DOI: 10.1111/febs.15904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Coordination of transcription and processing of RNA is a basic principle in regulation of gene expression in eukaryotes. In the case of mRNA, coordination is primarily founded on a co-transcriptional processing mechanism by which a nascent precursor mRNA undergoes maturation via cleavage and modification by the transcription machinery. A similar mechanism controls the biosynthesis of rRNA. However, the coordination of transcription and processing of tRNA, a rather short transcript, remains unknown. Here, we present a model for high molecular weight initiation complexes of human RNA polymerase III that assemble on tRNA genes and process precursor transcripts to mature forms. These multifunctional initiation complexes may support co-transcriptional processing, such as the removal of the 5' leader of precursor tRNA by RNase P. Based on this model, maturation of tRNA is predetermined prior to transcription initiation.
Collapse
Affiliation(s)
- Nayef Jarrous
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dhivakar Mani
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aravind Ramanathan
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
4
|
Abstract
The innate immune system has numerous signal transduction pathways that lead to the production of type I interferons in response to exposure of cells to external stimuli. One of these pathways comprises RNA polymerase (Pol) III that senses common DNA viruses, such as cytomegalovirus, vaccinia, herpes simplex virus-1 and varicella zoster virus. This polymerase detects and transcribes viral genomic regions to generate AU-rich transcripts that bring to the induction of type I interferons. Remarkably, Pol III is also stimulated by foreign non-viral DNAs and expression of one of its subunits is induced by an RNA virus, the Sindbis virus. Moreover, a protein subunit of RNase P, which is known to associate with Pol III in initiation complexes, is induced by viral infection. Accordingly, alliance of the two tRNA enzymes in innate immunity merits a consideration.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Israel-Canada
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Israel-Canada.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
5
|
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16:e1008330. [PMID: 32324744 PMCID: PMC7200024 DOI: 10.1371/journal.pgen.1008330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
The tRNA isopentenyltransferases (IPTases), which add an isopentenyl group to N6 of A37 (i6A37) of certain tRNAs, are among a minority of enzymes that modify cytosolic and mitochondrial tRNAs. Pathogenic mutations to the human IPTase, TRIT1, that decrease i6A37 levels, cause mitochondrial insufficiency that leads to neurodevelopmental disease. We show that TRIT1 encodes an amino-terminal mitochondrial targeting sequence (MTS) that directs mitochondrial import and modification of mitochondrial-tRNAs. Full understanding of IPTase function must consider the tRNAs selected for modification, which vary among species, and in their cytosol and mitochondria. Selection is principally via recognition of the tRNA A36-A37-A38 sequence. An exception is unmodified tRNATrpCCA-A37-A38 in Saccharomyces cerevisiae, whereas tRNATrpCCA is readily modified in Schizosaccharomyces pombe, indicating variable IPTase recognition systems and suggesting that additional exceptions may account for some of the tRNA-i6A37 paucity in higher eukaryotes. Yet TRIT1 had not been characterized for restrictive type substrate-specific recognition. We used i6A37-dependent tRNA-mediated suppression and i6A37-sensitive northern blotting to examine IPTase activities in S. pombe and S. cerevisiae lacking endogenous IPTases on a diversity of tRNA-A36-A37-A38 substrates. Point mutations to the TRIT1 MTS that decrease human mitochondrial import, decrease modification of mitochondrial but not cytosolic tRNAs in both yeasts. TRIT1 exhibits clear substrate-specific restriction against a cytosolic-tRNATrpCCA-A37-A38. Additional data suggest that position 32 of tRNATrpCCA is a conditional determinant for substrate-specific i6A37 modification by the restrictive IPTases, Mod5 and TRIT1. The cumulative biochemical and phylogenetic sequence analyses provide new insights into IPTase activities and determinants of tRNA-i6A37 profiles in cytosol and mitochondria.
Collapse
Affiliation(s)
- Abdul Khalique
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandy Mattijssen
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Haddad
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
- Commissioned Corps, United States Public Health Service, Rockville, Maryland, United States of America
| |
Collapse
|
6
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
7
|
Friedrich D, Friedel L, Finzel A, Herrmann A, Preibisch S, Loewer A. Stochastic transcription in the p53-mediated response to DNA damage is modulated by burst frequency. Mol Syst Biol 2019; 15:e9068. [PMID: 31885199 PMCID: PMC6886302 DOI: 10.15252/msb.20199068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Discontinuous transcription has been described for different mammalian cell lines and numerous promoters. However, our knowledge of how the activity of individual promoters is adjusted by dynamic signaling inputs from transcription factors is limited. To address this question, we characterized the activity of selected target genes that are regulated by pulsatile accumulation of the tumor suppressor p53 in response to ionizing radiation. We performed time-resolved measurements of gene expression at the single-cell level by smFISH and used the resulting data to inform a mathematical model of promoter activity. We found that p53 target promoters are regulated by frequency modulation of stochastic bursting and can be grouped along three archetypes of gene expression. The occurrence of these archetypes cannot solely be explained by nuclear p53 abundance or promoter binding of total p53. Instead, we provide evidence that the time-varying acetylation state of p53's C-terminal lysine residues is critical for gene-specific regulation of stochastic bursting.
Collapse
Affiliation(s)
- Dhana Friedrich
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
- Department for BiologyHumboldt Universität zu BerlinBerlinGermany
| | - Laura Friedel
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Ana Finzel
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
| | - Andreas Herrmann
- Department for BiologyHumboldt Universität zu BerlinBerlinGermany
| | - Stephan Preibisch
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
- Janelia Research CampusHoward Hughes Medical InstituteVAAshburnUSA
| | - Alexander Loewer
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
| |
Collapse
|
8
|
Cerqueira AV, Lemos B. Ribosomal DNA and the Nucleolus as Keystones of Nuclear Architecture, Organization, and Function. Trends Genet 2019; 35:710-723. [PMID: 31447250 DOI: 10.1016/j.tig.2019.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.
Collapse
Affiliation(s)
- Amanda V Cerqueira
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Trotta E. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast. J Biol Chem 2019; 294:12349-12358. [PMID: 31235518 PMCID: PMC6699833 DOI: 10.1074/jbc.ra119.008529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/19/2019] [Indexed: 07/24/2023] Open
Abstract
In yeast (Saccharomyces cerevisiae), the synthesis of tRNAs by RNA polymerase III (RNAP III) down-regulates the transcription of the nearby RNAP II-transcribed genes by a mechanism that is poorly understood. To clarify the basis of this tRNA gene-mediated (TGM) silencing, here, conducting a bioinformatics analysis of available ChIP-chip and ChIP-sequencing genomic data from yeast, we investigated whether the RNAP III transcriptional machinery can recruit protein factors required for RNAP II transcription. An analysis of 46 genome-wide protein-density profiles revealed that 12 factors normally implicated in RNAP II-mediated gene transcription are more enriched at tRNA than at mRNA loci. These 12 factors typically have RNA-binding properties, participate in the termination stage of the RNAP II transcription, and preferentially localize to the tRNA loci by a mechanism that apparently is based on the RNAP III transcription level. The factors included two kinases of RNAP II (Bur1 and Ctk1), a histone demethylase (Jhd2), and a mutated form of a nucleosome-remodeling factor (Spt6) that have never been reported to be recruited to tRNA loci. Moreover, we show that the expression levels of RNAP II-transcribed genes downstream of tRNA loci correlate with the distance from the tRNA gene by a mechanism that depends on their orientation. These results are consistent with the notion that pre-tRNAs recruit RNAP II-associated factors, thereby reducing the availability of these factors for RNAP II transcription and contributing, at least in part, to the TGM-silencing mechanism.
Collapse
Affiliation(s)
- Edoardo Trotta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Roma 00133, Italy.
| |
Collapse
|
10
|
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8:cells8050421. [PMID: 31071985 PMCID: PMC6562600 DOI: 10.3390/cells8050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| |
Collapse
|
11
|
Purcell O, Cao J, Müller IE, Chen YC, Lu TK. Artificial Repeat-Structured siRNA Precursors as Tunable Regulators for Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:2403-2412. [PMID: 30176724 DOI: 10.1021/acssynbio.8b00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA interference (RNAi) is widely used as a research tool for studying biological systems and implementing artificial genetic circuits that function by modulating RNA concentrations. Here we engineered Saccharomyces cerevisiae containing a heterologous Saccharomyces castelli RNAi system as a test-bed for RNAi-based circuits. Unlike prior approaches, we describe a strategy that leverages repeat-structured siRNA precursors with incrementally sized stems formed from 23 bp-repeats to achieve modular RNAi-based gene regulation. These enable repression strength to be tuned in a systematic manner by changing the size of the siRNA precursor hairpin stem, without modifying the number or sequence of target sites in the target RNA. We demonstrate that this hairpin-based regulation is able to target both cytoplasmic and nuclear localized RNAs and is stable over extended growth periods. This platform enables the targeting of cellular RNAs as a tunable regulatory layer for sophisticated gene circuits in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Oliver Purcell
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jicong Cao
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Isaak E. Müller
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Microbiology Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ying-Chou Chen
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy K. Lu
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Abstract
A wide variety of factors are required for the conversion of pre-tRNA molecules into the mature tRNAs that function in translation. To identify factors influencing tRNA biogenesis, we previously performed a screen for strains carrying mutations that induce lethality when combined with a sup61-T47:2C allele, encoding a mutant form of [Formula: see text]. Analyzes of two complementation groups led to the identification of Tan1 as a protein involved in formation of the modified nucleoside N4-acetylcytidine (ac4C) in tRNA and Bud13 as a factor controlling the levels of ac4C by promoting TAN1 pre-mRNA splicing. Here, we describe the remaining complementation groups and show that they include strains with mutations in genes for known tRNA biogenesis factors that modify (DUS2, MOD5 and TRM1), transport (LOS1), or aminoacylate (SES1) [Formula: see text]. Other strains carried mutations in genes for factors involved in rRNA/mRNA synthesis (RPA49, RRN3 and MOT1) or magnesium uptake (ALR1). We show that mutations in not only DUS2, LOS1 and SES1 but also in RPA49, RRN3 and MOT1 cause a reduction in the levels of the altered [Formula: see text]. These results indicate that Rpa49, Rrn3 and Mot1 directly or indirectly influence [Formula: see text] biogenesis.
Collapse
Affiliation(s)
- Fu Xu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yang Zhou
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Anders S Byström
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | | |
Collapse
|
13
|
Tiku V, Antebi A. Nucleolar Function in Lifespan Regulation. Trends Cell Biol 2018; 28:662-672. [PMID: 29779866 DOI: 10.1016/j.tcb.2018.03.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
The nucleolus is a prominent membraneless organelle residing within the nucleus. The nucleolus has been regarded as a housekeeping structure mainly known for its role in ribosomal RNA (rRNA) production and ribosome assembly. However, accumulating evidence has revealed its functions in numerous cellular processes that control organismal physiology, thereby taking the nucleolus much beyond its conventional role in ribosome biogenesis. Perturbations in nucleolar functions have been associated with severe diseases such as cancer and progeria. Recent studies have also uncovered the role of the nucleolus in development and aging. In this review we discuss major nucleolar functions that impact organismal aging.
Collapse
Affiliation(s)
- Varnesh Tiku
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Present Address: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
14
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
15
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
16
|
Abstract
The three-dimensional (3D) genome structure is highly ordered by a hierarchy of organizing events ranging from enhancer-promoter or gene-gene contacts to chromosomal territorial arrangement. It is becoming clear that the cohesin and condensin complexes are key molecular machines that organize the 3D genome structure. These complexes are highly conserved from simple systems, e.g., yeast cells, to the much more complex human system. Therefore, knowledge from the budding and fission yeast systems illuminates highly conserved molecular mechanisms of how cohesin and condensin establish the functional 3D genome structures. Here I discuss how these complexes are recruited across the yeast genomes, mediate distinct genome-organizing events such as gene contacts and topological domain formation, and participate in important nuclear activities including transcriptional regulation and chromosomal dynamics.
Collapse
Affiliation(s)
- Ken-Ichi Noma
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
17
|
Generation of an arginine-tRNA-adapted Saccharomyces cerevisiae strain for effective heterologous protein expression. Curr Genet 2017; 64:589-598. [PMID: 29098364 DOI: 10.1007/s00294-017-0774-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
The tRNA population reflects the codon bias of the organism and affects the translation of heterologous target mRNA molecules. In this study, Saccharomyces cerevisiae strains with modified levels of rare tRNA were engineered, that allowed efficient generation of recombinant proteins with unfavorable codon usage. We established a novel synthetic tRNA expression cassette and verified functional nonsense suppressor tRNAGlnSCUA generation in a stop codon read-through assay with a modified β-galactosidase reporter gene. Correlation between altered tRNA and protein level was shown by survival of copper sensitive S. cerevisiae cells in the presence of copper ions by an increased transcription of tRNAArgCCG molecules, recognizing rare codons in a modified CUP1 gene. Genome integration of tRNA expression cassette led to the generation of arginine-tRNA-adapted S. cerevisiae strains, which showed elevated tRNA levels (tRNAArgCCG, tRNAArgGCG and tRNAArgUCG) pairing to rare codons. The modified strain MNY3 revealed a considerably improved monitoring of protein-protein interaction from Aspergillus fumigatus bait and prey sequences in yeast two-hybrid experiments. In future, this principle to overcome limited recombinant protein expression by tRNA adaption of expression strains instead of codon adaption might provide new designer yeast cells for an efficient protein production and for improved genome-wide protein-protein interaction analyses.
Collapse
|
18
|
Jarrous N. Roles of RNase P and Its Subunits. Trends Genet 2017; 33:594-603. [PMID: 28697848 DOI: 10.1016/j.tig.2017.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022]
Abstract
Recent studies show that nuclear RNase P is linked to chromatin structure and function. Thus, variants of this ribonucleoprotein (RNP) complex bind to chromatin of small noncoding RNA genes; integrate into initiation complexes of RNA polymerase (Pol) III; repress histone H3.3 nucleosome deposition; control tRNA and PIWI-interacting RNA (piRNA) gene clusters for genome defense; and respond to Werner syndrome helicase (WRN)-related replication stress and DNA double-strand breaks (DSBs). Likewise, the related RNase MRP and RMRP-TERT (telomerase reverse transcriptase) are implicated in RNA-dependent RNA polymerization for chromatin silencing, whereas the telomerase carries out RNA-dependent DNA polymerization for telomere lengthening. Remarkably, the four RNPs share several protein subunits, including two Alba-like chromatin proteins that possess DEAD-like and ATPase motifs found in chromatin modifiers and remodelers. Based on available data, RNase P and related RNPs act in transition processes of DNA to RNA and vice versa and connect these processes to genome preservation, including replication, DNA repair, and chromatin remodeling.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
19
|
Tsekrekou M, Stratigi K, Chatzinikolaou G. The Nucleolus: In Genome Maintenance and Repair. Int J Mol Sci 2017; 18:ijms18071411. [PMID: 28671574 PMCID: PMC5535903 DOI: 10.3390/ijms18071411] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
20
|
Belagal P, Normand C, Shukla A, Wang R, Léger-Silvestre I, Dez C, Bhargava P, Gadal O. Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III-transcribed genes in budding yeast. Mol Biol Cell 2016; 27:3164-3177. [PMID: 27559135 PMCID: PMC5063623 DOI: 10.1091/mbc.e16-03-0145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023] Open
Abstract
In budding yeast, RNA polymerase III–transcribed genes preferentially associate with the nucleolar and nuclear periphery when permitted by the Rabl-like orientation of interphase chromosomes. The association of RNA polymerase III (Pol III)–transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III–transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements—centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III–transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III–transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III–dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III–transcribed genes required active transcription. We conclude that the association of Pol III–transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization.
Collapse
Affiliation(s)
- Praveen Belagal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Christophe Normand
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Ashutosh Shukla
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500007, India
| | - Renjie Wang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500007, India
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
21
|
Stępiński D. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways. Histochem Cell Biol 2016; 146:119-39. [PMID: 27142852 DOI: 10.1007/s00418-016-1443-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
22
|
Wu J, Bao A, Chatterjee K, Wan Y, Hopper AK. Genome-wide screen uncovers novel pathways for tRNA processing and nuclear-cytoplasmic dynamics. Genes Dev 2016; 29:2633-44. [PMID: 26680305 PMCID: PMC4699390 DOI: 10.1101/gad.269803.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this resource, Wu et al. present the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. The findings from this genome-wide screen describe putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear–cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology.
Collapse
Affiliation(s)
- Jingyan Wu
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - Kunal Chatterjee
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yao Wan
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
23
|
Chromosome dynamics and folding in eukaryotes: Insights from live cell microscopy. FEBS Lett 2015; 589:3014-22. [PMID: 26188544 DOI: 10.1016/j.febslet.2015.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 11/24/2022]
Abstract
How chromosomes are folded and how this folding relates to function remain fundamental questions. Answering them is rendered difficult by the stochasticity of chromatin fiber motion which inevitably results in heterogeneity of the populations analyzed. Even if single cell analyses are beginning to yield precious insights, how can we determine whether a snapshot of position is related to function of the probed locus or cell-type? Fluorescence labeling of DNA at single or multiple loci allows determination of their position relative to nuclear landmarks and to each other, enabling us to derive physical parameters of the underlying chromatin fiber. Here I review the contribution of quantitative spatial and temporal analysis of labeled DNA to our understanding of chromosome conformation in different cell types, highlighting live cell imaging techniques and large scale geometrical analysis of multiple loci in 3D.
Collapse
|
24
|
Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Mol Cell Biol 2015; 35:1169-81. [PMID: 25605335 DOI: 10.1128/mcb.01230-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the RNA polymerase III (Pol III) complex assembly and its transport to the nucleus. We demonstrate that a missense cold-sensitive mutation, rpc128-1007, in the sequence encoding the C-terminal part of the second largest Pol III subunit, C128, affects the assembly and stability of the enzyme. The cellular levels and nuclear concentration of selected Pol III subunits were decreased in rpc128-1007 cells, and the association between Pol III subunits as evaluated by coimmunoprecipitation was also reduced. To identify the proteins involved in Pol III assembly, we performed a genetic screen for suppressors of the rpc128-1007 mutation and selected the Rbs1 gene, whose overexpression enhanced de novo tRNA transcription in rpc128-1007 cells, which correlated with increased stability, nuclear concentration, and interaction of Pol III subunits. The rpc128-1007 rbs1Δ double mutant shows a synthetic growth defect, indicating that rpc128-1007 and rbs1Δ function in parallel ways to negatively regulate Pol III assembly. Rbs1 physically interacts with a subset of Pol III subunits, AC19, AC40, and ABC27/Rpb5. Additionally, Rbs1 interacts with the Crm1 exportin and shuttles between the cytoplasm and nucleus. We postulate that Rbs1 binds to the Pol III complex or subcomplex and facilitates its translocation to the nucleus.
Collapse
|
25
|
Saito Y, Takeda J, Adachi K, Nobe Y, Kobayashi J, Hirota K, Oliveira DV, Taoka M, Isobe T. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway. PLoS One 2014; 9:e112488. [PMID: 25401760 PMCID: PMC4234475 DOI: 10.1371/journal.pone.0112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/17/2014] [Indexed: 01/07/2023] Open
Abstract
Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Jun Takeda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Kousuke Adachi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuko Nobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Junya Kobayashi
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Douglas V. Oliveira
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Stępiński D. Functional ultrastructure of the plant nucleolus. PROTOPLASMA 2014; 251:1285-306. [PMID: 24756369 PMCID: PMC4209244 DOI: 10.1007/s00709-014-0648-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 04/08/2014] [Indexed: 05/23/2023]
Abstract
Nucleoli are nuclear domains present in almost all eukaryotic cells. They not only specialize in the production of ribosomal subunits but also play roles in many fundamental cellular activities. Concerning ribosome biosynthesis, particular stages of this process, i.e., ribosomal DNA transcription, primary RNA transcript processing, and ribosome assembly proceed in precisely defined nucleolar subdomains. Although eukaryotic nucleoli are conservative in respect of their main function, clear morphological differences between these structures can be noticed between individual kingdoms. In most cases, a plant nucleolus shows well-ordered structure in which four main ultrastructural components can be distinguished: fibrillar centers, dense fibrillar component, granular component, and nucleolar vacuoles. Nucleolar chromatin is an additional crucial structural component of this organelle. Nucleolonema, although it is not always an unequivocally distinguished nucleolar domain, has often been described as a well-grounded morphological element, especially of plant nucleoli. The ratios and morphology of particular subcompartments of a nucleolus can change depending on its metabolic activity which in turn is correlated with the physiological state of a cell, cell type, cell cycle phase, as well as with environmental influence. Precise attribution of functions to particular nucleolar subregions in the process of ribosome biosynthesis is now possible using various approaches. The presented description of plant nucleolar morphology summarizes previous knowledge regarding the function of nucleoli as well as of their particular subdomains not only in the course of ribosome biosynthesis.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland,
| |
Collapse
|
27
|
|
28
|
Bai B, Yegnasubramanian S, Wheelan SJ, Laiho M. RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs. PLoS One 2014; 9:e107519. [PMID: 25203660 PMCID: PMC4159348 DOI: 10.1371/journal.pone.0107519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/18/2014] [Indexed: 01/21/2023] Open
Abstract
Small non-coding RNAs represent RNA species that are not translated to proteins, but which have diverse and broad functional activities in physiological and pathophysiological states. The knowledge of these small RNAs is rapidly expanding in part through the use of massive parallel (deep) sequencing efforts. We present here the first deep sequencing of small RNomes in subcellular compartments with particular emphasis on small RNAs (sRNA) associated with the nucleolus. The vast majority of the cellular, cytoplasmic and nuclear sRNAs were identified as miRNAs. In contrast, the nucleolar sRNAs had a unique size distribution consisting of 19-20 and 25 nt RNAs, which were predominantly composed of small snoRNA-derived box C/D RNAs (termed as sdRNA). Sequences from 47 sdRNAs were identified, which mapped to both 5' and 3' ends of the snoRNAs, and retained conserved box C or D motifs. SdRNA reads mapping to SNORD44 comprised 74% of all nucleolar sdRNAs, and were confirmed by Northern blotting as comprising both 20 and 25 nt RNAs. A novel 120 nt SNORD44 form was also identified. The expression of the SNORD44 sdRNA and 120 nt form was independent of Dicer/Drosha-mediated processing pathways but was dependent on the box C/D snoRNP proteins/sno-ribonucleoproteins fibrillarin and NOP58. The 120 nt SNORD44-derived RNA bound to fibrillarin suggesting that C/D sno-ribonucleoproteins are involved in regulating the stability or processing of SNORD44. This study reveals sRNA cell-compartment specific expression and the distinctive unique composition of the nucleolar sRNAs.
Collapse
Affiliation(s)
- Baoyan Bai
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah J. Wheelan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
29
|
Weber C, Hartig A, Hartmann RK, Rossmanith W. Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms. PLoS Genet 2014; 10:e1004506. [PMID: 25101763 PMCID: PMC4125048 DOI: 10.1371/journal.pgen.1004506] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/27/2014] [Indexed: 11/22/2022] Open
Abstract
The RNase P family is a diverse group of endonucleases responsible for the removal of 5′ extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility. Many biocatalysts apparently evolved independently more than once, leading to structurally unrelated macromolecules catalyzing the same biochemical reaction. The RNase P enzyme family is an exceptional case of this phenomenon called convergent evolution. RNase P enzymes use not only unrelated, but chemically distinct macromolecules, either RNA or protein, to catalyze a specific step in the biogenesis of transfer RNAs, the ubiquitous adaptor molecules in protein synthesis. However, this fundamental difference in the identity of the actual catalyst, together with a broad variation in structural complexity of the diverse forms of RNase P, cast doubts on their functional equivalence. Here we compared two of the structurally most extreme variants of RNase P by replacing the yeast nuclear enzyme, a 10-subunit RNA-protein complex, with a single-protein from plants representing the apparently simplest form of RNase P. Surprisingly, the viability and fitness of these RNase P-swapped yeasts and their molecular analyses demonstrated the full functional exchangeability of the highly dissimilar enzymes. The RNase P family, with its combination of structural diversity and functional uniformity, thus not only truly represents an extraordinary case of convergent evolution, but also demonstrates that increased structural complexity does not necessarily entail broadened functionality, but may rather be the result of “neutral” evolutionary mechanisms.
Collapse
Affiliation(s)
- Christoph Weber
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Andreas Hartig
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Roland K. Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
30
|
Chen M, Gartenberg MR. Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast. Genes Dev 2014; 28:959-70. [PMID: 24788517 PMCID: PMC4018494 DOI: 10.1101/gad.236729.113] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along budding yeast chromosomes. Here, Chen and Gartenberg examined the spatial and temporal aspects of tRNA gene expression. Unexpectedly, they found that tRNA genes are transcribed in a periodic manner during cell cycle progression. Moreover, tRNA genes migrate to nuclear pore complexes when transcription peaks in M phase. This study demonstrates how RNA polymerase III-transcribed genes are gated to nuclear pore complexes in yeast. tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC–tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs.
Collapse
Affiliation(s)
- Miao Chen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
31
|
Pai DA, Kaplan CD, Kweon HK, Murakami K, Andrews PC, Engelke DR. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template. RNA (NEW YORK, N.Y.) 2014; 20:644-655. [PMID: 24614752 PMCID: PMC3988566 DOI: 10.1261/rna.040444.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.
Collapse
Affiliation(s)
- Dave A. Pai
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Craig D. Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kenji Murakami
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Philip C. Andrews
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
32
|
Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta Mol Basis Dis 2014; 1842:802-16. [PMID: 24389329 DOI: 10.1016/j.bbadis.2013.12.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
The contribution of the nucleolus to cancer is well established with respect to its traditional role in facilitating ribosome biogenesis and proliferative capacity. More contemporary studies however, infer that nucleoli contribute a much broader role in malignant transformation. Specifically, extra-ribosomal functions of the nucleolus position it as a central integrator of cellular proliferation and stress signaling, and are emerging as important mechanisms for modulating how oncogenes and tumor suppressors operate in normal and malignant cells. The dependence of certain tumor cells to co-opt nucleolar processes to maintain their cancer phenotypes has now clearly been demonstrated by the application of small molecule inhibitors of RNA Polymerase I to block ribosomal DNA transcription and disrupt nucleolar function (Bywater et al., 2012 [1]). These drugs, which selectively kill tumor cells in vivo while sparing normal cells, have now progressed to clinical trials. It is likely that we have only just begun to scratch the surface of the potential of the nucleolus as a new target for cancer therapy, with "suppression of nucleolar stress" representing an emerging "hallmark" of cancer. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Jaclyn E Quin
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer R Devlin
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donald Cameron
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Kate M Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
33
|
Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2013; 110:21042-7. [PMID: 24297920 DOI: 10.1073/pnas.1316579110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, transfer RNAs (tRNAs) are transcribed in the nucleus yet function in the cytoplasm; thus, tRNA movement within the cell was believed to be unidirectional--from the nucleus to the cytoplasm. It is now known that mature tRNAs also move in a retrograde direction from the cytoplasm to the nucleus via retrograde tRNA nuclear import, a process that is conserved from yeast to vertebrates. The biological significance of this tRNA nuclear import is not entirely clear. We hypothesized that retrograde tRNA nuclear import might function in proofreading tRNAs to ensure that only proper tRNAs reside in the cytoplasm and interact with the translational machinery. Here we identify two major types of aberrant tRNAs in yeast: a 5', 3' end-extended, spliced tRNA and hypomodified tRNAs. We show that both types of aberrant tRNAs accumulate in mutant cells that are defective in tRNA nuclear traffic, suggesting that they are normally imported into the nucleus and are repaired or degraded. The retrograde pathway functions in parallel with the cytoplasmic rapid tRNA decay pathway previously demonstrated to monitor tRNA quality, and cells are not viable if they lack both pathways. Our data support the hypothesis that the retrograde process provides a newly discovered level of tRNA quality control as a pathway that monitors both end processing of pre-tRNAs and the modification state of mature tRNAs.
Collapse
|
34
|
Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing. Proc Natl Acad Sci U S A 2013; 110:E3081-9. [PMID: 23898186 DOI: 10.1073/pnas.1219946110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification.
Collapse
|
35
|
Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell 2013; 49:773-82. [PMID: 23473598 DOI: 10.1016/j.molcel.2013.02.011] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/17/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Mammalian genomes encode genetic information in their linear sequence, but appropriate expression of their genes requires chromosomes to fold into complex three-dimensional structures. Transcriptional control involves the establishment of physical connections among genes and regulatory elements, both along and between chromosomes. Recent technological innovations in probing the folding of chromosomes are providing new insights into the spatial organization of genomes and its role in gene regulation. It is emerging that folding of large complex chromosomes involves a hierarchy of structures, from chromatin loops that connect genes and enhancers to larger chromosomal domains and nuclear compartments. The larger these structures are along this hierarchy, the more stable they are within cells, while becoming more stochastic between cells. Here, we review the experimental and theoretical data on this hierarchy of structures and propose a key role for the recently discovered topologically associating domains.
Collapse
Affiliation(s)
- Johan H Gibcus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | | |
Collapse
|
36
|
Nozawa K, Ishitani R, Yoshihisa T, Sato M, Arisaka F, Kanamaru S, Dohmae N, Mangroo D, Senger B, Becker HD, Nureki O. Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm. Nucleic Acids Res 2013; 41:3901-14. [PMID: 23396276 PMCID: PMC3616705 DOI: 10.1093/nar/gkt010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, transcribed precursor tRNAs are maturated by processing and modification processes in nucleus and are transported to the cytoplasm. The cytoplasmic export protein (Cex1p) captures mature tRNAs from the nuclear export receptor (Los1p) on the cytoplasmic side of the nuclear pore complex, and it delivers them to eukaryotic elongation factor 1α. This conserved Cex1p function is essential for the quality control of mature tRNAs to ensure accurate translation. However, the structural basis of how Cex1p recognizes tRNAs and shuttles them to the translational apparatus remains unclear. Here, we solved the 2.2 Å resolution crystal structure of Saccharomyces cerevisiae Cex1p with C-terminal 197 disordered residues truncated. Cex1p adopts an elongated architecture, consisting of N-terminal kinase-like and a C-terminal α-helical HEAT repeat domains. Structure-based biochemical analyses suggested that Cex1p binds tRNAs on its inner side, using the positively charged HEAT repeat surface and the C-terminal disordered region. The N-terminal kinase-like domain acts as a scaffold to interact with the Ran-exportin (Los1p·Gsp1p) machinery. These results provide the structural basis of Los1p·Gsp1p·Cex1p·tRNA complex formation, thus clarifying the dynamic mechanism of tRNA shuttling from exportin to the translational apparatus.
Collapse
Affiliation(s)
- Kayo Nozawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
As the most prominent sub-nuclear compartment in the interphase nucleus and the site of ribosome biogenesis, the nucleolus synthesizes and processes rRNA and also assembles ribosomal subunits. Though several lines of research in recent years have indicated that the nucleolus might have additional functions-such as the assembling of signal recognition particles, the processing of mRNA, tRNA and telomerase activities, and regulating the cell cycle-proteomic analyses of the nucleolus in three representative eukaryotic species has shown that a plethora of proteins either have no association with ribosome biogenesis or are of presently unknown function. This phenomenon further indicates that the composition and function of the nucleolus is far more complicated than previously thought. Meanwhile, the available nucleolar proteome databases has provided new approaches and led to remarkable progress in understanding the nucleolus. Here, we have summarized recent advances in the study of the nucleolus, including new discoveries of its structure, function, genomics/proteomics as well as its origin and evolution. Moreover, we highlight several of the important unresolved issues in this field.
Collapse
|
38
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Struktur und Funktion nicht-kanonischer Nukleobasen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Structure and function of noncanonical nucleobases. Angew Chem Int Ed Engl 2012; 51:7110-31. [PMID: 22744788 DOI: 10.1002/anie.201201193] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Indexed: 12/19/2022]
Abstract
DNA and RNA contain, next to the four canonical nucleobases, a number of modified nucleosides that extend their chemical information content. RNA is particularly rich in modifications, which is obviously an adaptation to their highly complex and variable functions. In fact, the modified nucleosides and their chemical structures establish a second layer of information which is of central importance to the function of the RNA molecules. Also the chemical diversity of DNA is greater than originally thought. Next to the four canonical bases, the DNA of higher organisms contains a total of four epigenetic bases: m(5) dC, hm(5) dC, f(5) dC und ca(5) dC. While all cells of an organism contain the same genetic material, their vastly different function and properties inside complex higher organisms require the controlled silencing and activation of cell-type specific genes. The regulation of the underlying silencing and activation process requires an additional layer of epigenetic information, which is clearly linked to increased chemical diversity. This diversity is provided by the modified non-canonical nucleosides in both DNA and RNA.
Collapse
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Krehan M, Heubeck C, Menzel N, Seibel P, Schön A. RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex. Nucleic Acids Res 2012; 40:7956-66. [PMID: 22641852 PMCID: PMC3439889 DOI: 10.1093/nar/gks476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.
Collapse
Affiliation(s)
- Mario Krehan
- Molekulare Zelltherapie, Biotechnologisch-Biomedizinisches Zentrum, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
41
|
Hiraga SI, Botsios S, Donze D, Donaldson AD. TFIIIC localizes budding yeast ETC sites to the nuclear periphery. Mol Biol Cell 2012; 23:2741-54. [PMID: 22496415 PMCID: PMC3395662 DOI: 10.1091/mbc.e11-04-0365] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes contain multiple extra TFIIIC (ETC) sites that bind the TFIIIC transcription factor without recruiting RNA polymerase. TFIIIC directs the localization of Saccharomyces cerevisiae ETC sites to the nuclear periphery. Remarkably, however, perinuclear localization is not required for ETC sites to act as chromatin boundaries. Chromatin function requires specific three-dimensional architectures of chromosomes. We investigated whether Saccharomyces cerevisiae extra TFIIIC (ETC) sites, which bind the TFIIIC transcription factor but do not recruit RNA polymerase III, show specific intranuclear positioning. We show that six of the eight known S. cerevisiae ETC sites localize predominantly at the nuclear periphery, and that ETC sites retain their tethering function when moved to a new chromosomal location. Several lines of evidence indicate that TFIIIC is central to the ETC peripheral localization mechanism. Mutating or deleting the TFIIIC-binding consensus ablated ETC -site peripheral positioning, and inducing degradation of the TFIIIC subunit Tfc3 led to rapid release of an ETC site from the nuclear periphery. We find, moreover, that anchoring one TFIIIC subunit at an ectopic chromosomal site causes recruitment of others and drives peripheral tethering. Localization of ETC sites at the nuclear periphery also requires Mps3, a Sad1-UNC-84–domain protein that spans the inner nuclear membrane. Surprisingly, we find that the chromatin barrier and insulator functions of an ETC site do not depend on correct peripheral localization. In summary, TFIIIC and Mps3 together direct the intranuclear positioning of a new class of S. cerevisiae genomic loci positioned at the nuclear periphery.
Collapse
Affiliation(s)
- Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | |
Collapse
|
42
|
Hipp K, Galani K, Batisse C, Prinz S, Böttcher B. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy. Nucleic Acids Res 2011; 40:3275-88. [PMID: 22167472 PMCID: PMC3326328 DOI: 10.1093/nar/gkr1217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.
Collapse
Affiliation(s)
- Katharina Hipp
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | | | | | | | |
Collapse
|
43
|
Marvin MC, Clauder-Münster S, Walker SC, Sarkeshik A, Yates JR, Steinmetz LM, Engelke DR. Accumulation of noncoding RNA due to an RNase P defect in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2011; 17:1441-50. [PMID: 21665995 PMCID: PMC3153969 DOI: 10.1261/rna.2737511] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 04/28/2011] [Indexed: 05/25/2023]
Abstract
Ribonuclease P (RNase P) is an essential endoribonuclease that catalyzes the cleavage of the 5' leader of pre-tRNAs. In addition, a growing number of non-tRNA substrates have been identified in various organisms. RNase P varies in composition, as bacterial RNase P contains a catalytic RNA core and one protein subunit, while eukaryotic nuclear RNase P retains the catalytic RNA but has at least nine protein subunits. The additional eukaryotic protein subunits most likely provide additional functionality to RNase P, with one possibility being additional RNA recognition capabilities. To investigate the possible range of additional RNase P substrates in vivo, a strand-specific, high-density microarray was used to analyze what RNA accumulates with a mutation in the catalytic RNA subunit of nuclear RNase P in Saccharomyces cerevisiae. A wide variety of noncoding RNAs were shown to accumulate, suggesting that nuclear RNase P participates in the turnover of normally unstable nuclear RNAs. In some cases, the accumulated noncoding RNAs were shown to be antisense to transcripts that commensurately decreased in abundance. Pre-mRNAs containing introns also accumulated broadly, consistent with either compromised splicing or failure to efficiently turn over pre-mRNAs that do not enter the splicing pathway. Taken together with the high complexity of the nuclear RNase P holoenzyme and its relatively nonspecific capacity to bind and cleave mixed sequence RNAs, these data suggest that nuclear RNase P facilitates turnover of nuclear RNAs in addition to its role in pre-tRNA biogenesis.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | - Scott C. Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | - Ali Sarkeshik
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| |
Collapse
|
44
|
Abstract
Although the nonrandom nature of interphase chromosome arrangement is widely accepted, how nuclear organization relates to genomic function remains unclear. Nuclear subcompartments may play a role by offering rich microenvironments that regulate chromatin state and ensure optimal transcriptional efficiency. Technological advances now provide genome-wide and four-dimensional analyses, permitting global characterizations of nuclear order. These approaches will help uncover how seemingly separate nuclear processes may be coupled and aid in the effort to understand the role of nuclear organization in development and disease.
Collapse
Affiliation(s)
- Indika Rajapakse
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
45
|
Li D, Wang Y, Zhang K, Jiao Z, Zhu X, Skogerboe G, Guo X, Chinnusamy V, Bi L, Huang Y, Dong S, Chen R, Kan Y. Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori. Nucleic Acids Res 2011; 39:3792-805. [PMID: 21227919 PMCID: PMC3089462 DOI: 10.1093/nar/gkq1317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidences show that small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. The silkworm is an important model for studies on insect genetics and control of lepidopterous pests. Here, we have performed the first systematic identification and analysis of intermediate size ncRNAs (50–500 nt) in the silkworm. We identified 189 novel ncRNAs, including 141 snoRNAs, six snRNAs, three tRNAs, one SRP and 38 unclassified ncRNAs. Forty ncRNAs showed significantly altered expression during silkworm development or across specific stage transitions. Genomic comparisons revealed that 123 of these ncRNAs are potentially silkworm-specific. Analysis of the genomic organization of the ncRNA loci showed that 32.62% of the novel snoRNA loci are intergenic, and that all the intronic snoRNAs follow the pattern of one-snoRNA-per-intron. Target site analysis predicted a total of 95 2′-O-methylation and pseudouridylation modification sites of rRNAs, snRNAs and tRNAs. Together, these findings provide new clues for future functional study of ncRNA during insect development and evolution.
Collapse
Affiliation(s)
- Dandan Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Global genome organization mediated by RNA polymerase III-transcribed genes in fission yeast. Gene 2010; 493:195-200. [PMID: 21195141 DOI: 10.1016/j.gene.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/22/2010] [Indexed: 12/27/2022]
Abstract
Eukaryotic genomes exist as an elaborate three-dimensional structure in the nucleus. Recent studies have shown that this higher-order organization of the chromatin fiber is coupled to various nuclear processes including transcription. In fission yeast, we demonstrated that RNA polymerase III (Pol III)-transcribed genes such as tRNA and 5S rRNA genes, dispersed throughout chromosomal arm regions, localize to centromeres in interphase. This centromeric association of Pol III genes, mediated by the condensin complex, becomes prominent during mitosis. Here, we discuss potential roles of the Pol III gene-mediated genome organization during interphase and mitosis, and hypothesize that the interphase genome structure serves as a scaffold for the efficient assembly of condensed mitotic chromosomes and that tethering of chromosomal arm regions to centromeres allows chromosomes to properly segregate along the spindle microtubules during anaphase.
Collapse
|
47
|
Abstract
Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
48
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
49
|
Abstract
IMPORTANCE OF THE FIELD Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) is a newly identified cytokine-induced apoptosis inhibitor, which has roles in cell division and angiogenesis. Owing to its prognostic value for human tumors and involvement in cancer progression and tumor cell resistance to anticancer agents, CIAPIN1 has been proposed as an attractive target for new anticancer interventions. AREAS COVERED IN THIS REVIEW We define CIAPIN1's potential function as a new therapeutic target for anticancer interventions and this review covers all related literature on CIAPIN1 in cancer from the past 5 years WHAT THE READER WILL GAIN Several preclinical studies have demonstrated that CIAPIN1 is associated with chemotherapy resistance, increased tumor recurrence and shorter patient survival in different human tumor models, making anti-CIAPIN1 therapy an attractive cancer treatment strategy. Recent studies also suggest that CIAPIN1 is expressed at low levels in some types of malignant tumors and that its overexpression may inhibit their proliferation or tumorigenesis. TAKE HOME MESSAGE Considering that the exact expression and function of CIAPIN1 are still not well characterized and understood, better knowledge of CIAPIN1 in normal versus tumor tissues will be instrumental for the design of optimal strategies to selectively disrupt CIAPIN1 in cancer.
Collapse
Affiliation(s)
- Xiaohua Li
- The Fourth Military Medical University, State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, 17 Changle Western Road, Xi'an, 710032, China
| | | | | |
Collapse
|
50
|
Sáez-Vásquez J, Gadal O. Genome organization and function: a view from yeast and Arabidopsis. MOLECULAR PLANT 2010; 3:678-690. [PMID: 20601371 DOI: 10.1093/mp/ssq034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent progress in understanding higher-order chromatin organization in the nucleus has been considerable. From single gene to chromosome territory, realistic biophysical models can now accurately predict some of the structural feature of cell nuclei. Despite growing evidence of a deterministic nuclear organization, the physiological consequence of spatial genome organization is still unclear. In the simple eukaryotic model, Saccharomyces cerevisiae, clear correlation between gene position and transcription has been established. In this review, we will focus on higher-order chromatin organization in yeast with respect to the nuclear envelope and nucleolus. In Arabidopsis thaliana, a model plant for which we have a complete genome sequence, chromosome territory (CT) arrangement and somatic homologous pairing in interphase nuclei seem to occur randomly. Since chromosomes containing nucleolar organizer regions associate more frequently to form a single nucleolar structure, as in yeast, the nucleolus seems to play a major role in organizing nuclear space. Recent findings have begun to elucidate how plant regulatory factors, such as chromatin remodeling or histone chaperones, affect the chromatin state of ribosomal DNA genes located in two distinct CT arrangements in the nucleus. The functional outcome of yeast nuclear organization allowed us to propose how nuclear organization might contribute to a novel type of epigenetic regulation: the spatial regulation of transcription.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- LGDP-UMR 5096 CNRS-IRD-Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | | |
Collapse
|