1
|
Tridgett M, Mulet M, Johny SP, Ababi M, Raghunath M, Fustinoni C, Galabova B, Fernández-Díaz C, Mikalajūnaitė I, Tomás HA, Kucej M, Dunajová L, Zgrundo Z, Page E, McCall L, Parker-Manuel R, Payne T, Peckett M, Kent J, Holland L, Asatryan R, Montgomery L, Chow TL, Beveridge R, Salkauskaite I, Alam MT, Hollard D, Dowding S, Gabriel HB, Branciaroli C, Cawood R, Valenti W, Chang D, Patrício MI, Liu Q. Lentiviral vector packaging and producer cell lines yield titers equivalent to the industry-standard four-plasmid process. Mol Ther Methods Clin Dev 2024; 32:101315. [PMID: 39282073 PMCID: PMC11401174 DOI: 10.1016/j.omtm.2024.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Lentiviral vector (LVV)-mediated cell and gene therapies have the potential to cure diseases that currently require lifelong intervention. However, the requirement for plasmid transfection hinders large-scale LVV manufacture. Moreover, large-scale plasmid production, testing, and transfection contribute to operational risk and the high cost associated with this therapeutic modality. Thus, we developed LVV packaging and producer cell lines, which reduce or eliminate the need for plasmid transfection during LVV manufacture. To develop a packaging cell line, lentiviral packaging genes were stably integrated by random integration of linearized plasmid DNA. Then, to develop EGFP- and anti-CD19 chimeric antigen receptor-encoding producer cell lines, transfer plasmids were integrated by transposase-mediated integration. Single-cell isolation and testing were performed to isolate the top-performing clonal packaging and producer cell lines. Production of LVVs that encode various cargo genes revealed consistency in the production performance of the packaging and producer cell lines compared to the industry-standard four-plasmid transfection method. By reducing or eliminating the requirement for plasmid transfection, while achieving production performance consistent with the current industry standard, the packaging and producer cell lines developed here can reduce costs and operational risks of LVV manufacture, thus increasing patient access to LVV-mediated cell and gene therapies.
Collapse
Affiliation(s)
- Matthew Tridgett
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Marie Mulet
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Sherin Parokkaran Johny
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Maria Ababi
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Meenakshi Raghunath
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Chloé Fustinoni
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Boryana Galabova
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Cristina Fernández-Díaz
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Iveta Mikalajūnaitė
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Hélio A Tomás
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Marek Kucej
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Lucia Dunajová
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Zofia Zgrundo
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Emma Page
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Lorna McCall
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Richard Parker-Manuel
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Tom Payne
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Matthew Peckett
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Jade Kent
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Louise Holland
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Robert Asatryan
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Louise Montgomery
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Tsz Lung Chow
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Ryan Beveridge
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Ieva Salkauskaite
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Mohine T Alam
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Daniel Hollard
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Sarah Dowding
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Heloísa Berti Gabriel
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Corinne Branciaroli
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Ryan Cawood
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Weimin Valenti
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
- WuXi Advanced Therapies, 4701 League Island Blvd, Philadelphia, PA 19112, USA
| | - David Chang
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
- WuXi Advanced Therapies, 4701 League Island Blvd, Philadelphia, PA 19112, USA
| | - Maria I Patrício
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| | - Qian Liu
- OXGENE, A WuXi Advanced Therapies Company, Medawar Centre, Robert Robinson Avenue, Oxford, Oxfordshire OX4 4HG, UK
| |
Collapse
|
2
|
Mandić K, Milutin Gašperov N, Božinović K, Dediol E, Krasić J, Sinčić N, Grce M, Sabol I, Barešić A. Integrative analysis in head and neck cancer reveals distinct role of miRNome and methylome as tumour epigenetic drivers. Sci Rep 2024; 14:9062. [PMID: 38643268 PMCID: PMC11032388 DOI: 10.1038/s41598-024-59312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024] Open
Abstract
Head and neck cancer is the sixth most common malignancy worldwide, with the relatively low 5-year survival rate, mainly because it is diagnosed at a late stage. Infection with HPV is a well known aetiology, which affects the nature of these cancers and patients' survival. Besides, it is considered that the main driving force for this type of cancer could be epigenetics. In this study we aimed to find potential epigenetic biomarkers, by integrating miRNome, methylome, and transcriptome analyses. From the fresh head and neck cancer tissue samples, we chose a group for miRNome, methylome and transcriptome profiling, in comparison to adequate control samples. Bioinformatics analyses are performed in R v4.2.2. Count normalisation and group differential expression for mRNA and the previously obtained miRNA count data was performed with DESeq2 v1.36. Gene set enrichment analysis was performed and visualised using gProfiler2 v0.2.1 Identification of miRNA targets was performed by querying in miRTarBase using multiMiR v1.18.0. Annotation of CpG sites merging into islands was obtained from RnBeads.hg19 v1.28.0. package. For the integrative analysis we performed kmeans clustering using stats v4.2.2 package, using 8-12 clusters and nstart 100. We found that transcriptome analysis divides samples into cancers and controls clusters, with no relation to HPV status or cancer anatomical location. Differentially expressed genes (n = 2781) were predominantly associated with signalling pathways of tumour progression. We identified a cluster of genes under the control of the transcription factor E2F that are significantly underexpressed in cancer tissue, as well as T cell immunity genes and genes related to regulation of transcription. Among overexpressed genes in tumours we found those that belong to cell cycle regulation and vasculature. A small number of genes were found significantly differentially expressed in HPV-positive versus HPV-negative tumours (for example NEFH, ZFR2, TAF7L, ZNF541, and TYMS). In this comprehensive study on an overlapping set of samples where the integration of miRNome, methylome and transcriptome analysis were performed for head and neck cancer, we demonstrated that the majority of genes were associated exclusively with miRNome or methylome and, to a lesser extent, under the control of both epigenetic mechanisms.
Collapse
Affiliation(s)
- Katarina Mandić
- Division of Electronics, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ksenija Božinović
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Emil Dediol
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Jure Krasić
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nino Sinčić
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
- Biomedical Research Centre Šalata, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Anja Barešić
- Division of Electronics, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
3
|
He Q, Fan X, Wang S, Chen S, Chen J. Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter. INSECT MOLECULAR BIOLOGY 2024; 33:124-135. [PMID: 37916965 DOI: 10.1111/imb.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Differentiation of imaginal epidermal cells of Drosophila melanogaster to form adult cuticles occurs at approximately 40-93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene Acp65A has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene Krüppel homologue 1 (Kr-h1) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of Kr-h1 mimicked-while knocking down of Kr-h1 attenuated-the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of Acp65A by directly binding to the consensus Kr-h1 binding site (KBS) within the Acp65A promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of Acp65A. This study advances our understanding of the molecular basis of the "status quo" action of JH on the Drosophila adult metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaochun Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shunxin Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
4
|
Giandomenico SL, Schuman EM. Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research. FEBS Open Bio 2023. [PMID: 36815235 DOI: 10.1002/2211-5463.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Gaining a mechanistic understanding of the molecular pathways underpinning cellular and organismal physiology invariably relies on the perturbation of an experimental system to infer causality. This can be achieved either by genetic manipulation or by pharmacological treatment. Generally, the former approach is applicable to a wider range of targets, is more precise, and can address more nuanced functional aspects. Despite such apparent advantages, genetic manipulation (i.e., knock-down, knock-out, mutation, and tagging) in mammalian systems can be challenging due to problems with delivery, low rates of homologous recombination, and epigenetic silencing. The advent of CRISPR-Cas9 in combination with the development of robust differentiation protocols that can efficiently generate a variety of different cell types in vitro has accelerated our ability to probe gene function in a more physiological setting. Often, the main obstacle in this path of enquiry is to achieve the desired genetic modification. In this short review, we will focus on gene perturbation in mammalian cells and how editing and differentiation of pluripotent stem cells can complement more traditional approaches. Additionally, we introduce novel targeted protein degradation approaches as an alternative to DNA/RNA-based manipulation. Our aim is to present a broad overview of recent approaches and in vitro systems to study mammalian cell biology. Due to space limitations, we limit ourselves to providing the inexperienced reader with a conceptual framework on how to use these tools, and for more in-depth information, we will provide specific references throughout.
Collapse
Affiliation(s)
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Аpplication of massive parallel reporter analysis in biotechnology and medicine. КЛИНИЧЕСКАЯ ПРАКТИКА 2023. [DOI: 10.17816/clinpract115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development and functioning of an organism relies on tissue-specific gene programs. Genome regulatory elements play a key role in the regulation of such programs, and disruptions in their function can lead to the development of various pathologies, including cancers, malformations and autoimmune diseases. The emergence of high-throughput genomic studies has led to massively parallel reporter analysis (MPRA) methods, which allow the functional verification and identification of regulatory elements on a genome-wide scale. Initially MPRA was used as a tool to investigate fundamental aspects of epigenetics, but the approach also has great potential for clinical and practical biotechnology. Currently, MPRA is used for validation of clinically significant mutations, identification of tissue-specific regulatory elements, search for the most promising loci for transgene integration, and is an indispensable tool for creating highly efficient expression systems, the range of application of which extends from approaches for protein development and design of next-generation therapeutic antibody superproducers to gene therapy. In this review, the main principles and areas of practical application of high-throughput reporter assays will be discussed.
Collapse
|
6
|
Fehér A, Schnúr A, Muenthaisong S, Bellák T, Ayaydin F, Várady G, Kemter E, Wolf E, Dinnyés A. Establishment and characterization of a novel human induced pluripotent stem cell line stably expressing the iRFP720 reporter. Sci Rep 2022; 12:9874. [PMID: 35701501 PMCID: PMC9198085 DOI: 10.1038/s41598-022-12956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Stem cell therapy has great potential for replacing beta-cell loss in diabetic patients. However, a key obstacle to cell therapy’s success is to preserve viability and function of the engrafted cells. While several strategies have been developed to improve engrafted beta-cell survival, tools to evaluate the efficacy within the body by imaging are limited. Traditional labeling tools, such as GFP-like fluorescent proteins, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent this limitation, a near-infrared fluorescent mutant version of the DrBphP bacteriophytochrome, iRFP720, has been developed for in vivo imaging and stem/progenitor cell tracking. Here, we present the generation and characterization of an iRFP720 expressing human induced pluripotent stem cell (iPSC) line, which can be used for real-time imaging in various biological applications. To generate the transgenic cells, the CRISPR/Cas9 technology was applied. A puromycin resistance gene was inserted into the AAVS1 locus, driven by the endogenous PPP1R12C promoter, along with the CAG-iRFP720 reporter cassette, which was flanked by insulator elements. Proper integration of the transgene into the targeted genomic region was assessed by comprehensive genetic analysis, verifying precise genome editing. Stable expression of iRFP720 in the cells was confirmed and imaged by their near-infrared fluorescence. We demonstrated that the reporter iPSCs exhibit normal stem cell characteristics and can be efficiently differentiated towards the pancreatic lineage. As the genetically modified reporter cells show retained pluripotency and multilineage differentiation potential, they hold great potential as a cellular model in a variety of biological and pharmacological applications.
Collapse
Affiliation(s)
- Anita Fehér
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Andrea Schnúr
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | | | - Tamás Bellák
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary.,Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6724, Hungary
| | - Ferhan Ayaydin
- Functional Cell Biology and Immunology Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, University of Szeged (HCEMM-USZ), Szeged, 6720, Hungary.,Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, 1117, Hungary
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - András Dinnyés
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary. .,HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, 6723, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary.
| |
Collapse
|
7
|
Lensch S, Herschl MH, Ludwig CH, Sinha J, Hinks MM, Mukund A, Fujimori T, Bintu L. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 2022; 11:e75115. [PMID: 35678392 PMCID: PMC9183234 DOI: 10.7554/elife.75115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.
Collapse
Affiliation(s)
- Sarah Lensch
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael H Herschl
- University of California, Berkeley—University of California, San Francisco Graduate Program in BioengineeringBerkeleyUnited States
| | - Connor H Ludwig
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Michaela M Hinks
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Adi Mukund
- Biophysics Program, Stanford UniversityStanfordUnited States
| | - Taihei Fujimori
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
8
|
Comprehensive assessment of NR ligand polypharmacology by a multiplex reporter NR assay. Sci Rep 2022; 12:3115. [PMID: 35210493 PMCID: PMC8873415 DOI: 10.1038/s41598-022-07031-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Nuclear receptors (NR) are ligand-modulated transcription factors that regulate multiple cell functions and thus represent excellent drug targets. However, due to a considerable NR structural homology, NR ligands often interact with multiple receptors. Here, we describe a multiplex reporter assay (the FACTORIAL NR) that enables parallel assessment of NR ligand activity across all 48 human NRs. The assay comprises one-hybrid GAL4-NR reporter modules transiently transfected into test cells. To evaluate the reporter activity, we assessed their RNA transcripts. We used a homogeneous RNA detection approach that afforded equal detection efficacy and permitted the multiplex detection in a single-well format. For validation, we examined a panel of selective NR ligands and polypharmacological agonists and antagonists of the progestin, estrogen, PPAR, ERR, and ROR receptors. The assay produced highly reproducible NR activity profiles (r > 0.96) permitting quantitative assessment of individual NR responses. The inferred EC50 values agreed with the published data. The assay showed excellent quality (<Z'> = 0.73) and low variability (<CV> = 7.2%). Furthermore, the assay permitted distinguishing direct and non-direct NR responses to ligands. Therefore, the FACTORIAL NR enables comprehensive evaluation of NR ligand polypharmacology.
Collapse
|
9
|
Dehdilani N, Taemeh SY, Goshayeshi L, Dehghani H. Genetically engineered birds; pre-CRISPR and CRISPR era. Biol Reprod 2021; 106:24-46. [PMID: 34668968 DOI: 10.1093/biolre/ioab196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
Generating biopharmaceuticals in genetically engineered bioreactors continues to reign supreme. Hence, genetically engineered birds have attracted considerable attention from the biopharmaceutical industry. Fairly recent genome engineering methods have made genome manipulation an easy and affordable task. In this review, we first provide a broad overview of the approaches and main impediments ahead of generating efficient and reliable genetically engineered birds, and various factors that affect the fate of a transgene. This section provides an essential background for the rest of the review, in which we discuss and compare different genome manipulation methods in the pre-CRISPR and CRISPR era in the field of avian genome engineering.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Papayanni PG, Psatha N, Christofi P, Li XG, Melo P, Volpin M, Montini E, Liu M, Kaltsounis G, Yiangou M, Emery DW, Anagnostopoulos A, Papayannopoulou T, Huang S, Stamatoyannopoulos G, Yannaki E. Investigating the Barrier Activity of Novel, Human Enhancer-Blocking Chromatin Insulators for Hematopoietic Stem Cell Gene Therapy. Hum Gene Ther 2021; 32:1186-1199. [PMID: 34477013 DOI: 10.1089/hum.2021.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the unequivocal success of hematopoietic stem and progenitor cell gene therapy, limitations still exist including genotoxicity and variegation/silencing of transgene expression. A class of DNA regulatory elements known as chromatin insulators (CIs) can mitigate both vector transcriptional silencing (barrier CIs) and vector-induced genotoxicity (enhancer-blocking CIs) and have been proposed as genetic modulators to minimize unwanted vector/genome interactions. Recently, a number of human, small-sized, and compact CIs bearing strong enhancer-blocking activity were identified. To ultimately uncover an ideal CI with a dual, enhancer-blocking and barrier activity, we interrogated these elements in vitro and in vivo. After initial screening of a series of these enhancer-blocking insulators for potential barrier activity, we identified three distinct categories with no, partial, or full protection against transgene silencing. Subsequently, the two CIs with full barrier activity (B4 and C1) were tested for their ability to protect against position effects in primary cells, after incorporation into lentiviral vectors (LVs) and transduction of human CD34+ cells. B4 and C1 did not adversely affect vector titers due to their small size, while they performed as strong barrier insulators in CD34+ cells, both in vitro and in vivo, shielding transgene's long-term expression, more robustly when placed in the forward orientation. Overall, the incorporation of these dual-functioning elements into therapeutic viral vectors will potentially provide a new generation of safer and more efficient LVs for all hematopoietic stem cell gene therapy applications.
Collapse
Affiliation(s)
- Penelope-Georgia Papayanni
- Hematopoietic Cell Transplantation Unit, Hematology Department, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoletta Psatha
- Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Panayota Christofi
- Hematopoietic Cell Transplantation Unit, Hematology Department, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Pamela Melo
- Hematopoietic Cell Transplantation Unit, Hematology Department, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Monica Volpin
- San Raffaele Telethon Institute for Gene Therapy-IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy-IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Mingdong Liu
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Georgios Kaltsounis
- Hematopoietic Cell Transplantation Unit, Hematology Department, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - David W Emery
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Achilles Anagnostopoulos
- Hematopoietic Cell Transplantation Unit, Hematology Department, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | | | - Suming Huang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | - Evangelia Yannaki
- Hematopoietic Cell Transplantation Unit, Hematology Department, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Li S, Tollefsbol TO. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2020; 187:28-43. [PMID: 33039572 DOI: 10.1016/j.ymeth.2020.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
DNA methylation provides a pivotal layer of epigenetic regulation in eukaryotes that has significant involvement for numerous biological processes in health and disease. The function of methylation of cytosine bases in DNA was originally proposed as a "silencing" epigenetic marker and focused on promoter regions of genes for decades. Improved technologies and accumulating studies have been extending our understanding of the roles of DNA methylation to various genomic contexts including gene bodies, repeat sequences and transcriptional start sites. The demand for comprehensively describing DNA methylation patterns spawns a diversity of DNA methylation profiling technologies that target its genomic distribution. These approaches have enabled the measurement of cytosine methylation from specific loci at restricted regions to single-base-pair resolution on a genome-scale level. In this review, we discuss the different DNA methylation analysis technologies primarily based on the initial treatments of DNA samples: bisulfite conversion, endonuclease digestion and affinity enrichment, involving methodology evolution, principles, applications, and their relative merits. This review may offer referable information for the selection of various platforms for genome-wide analysis of DNA methylation.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
12
|
Funikov SY, Rezvykh AP, Kulikova DA, Zelentsova ES, Protsenko LA, Chuvakova LN, Tyukmaeva VI, Arkhipova IR, Evgen'ev MB. Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins. Sci Rep 2020; 10:11893. [PMID: 32681087 PMCID: PMC7368049 DOI: 10.1038/s41598-020-68879-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/23/2020] [Indexed: 01/11/2023] Open
Abstract
Pericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that evolutionary gene relocation between euchromatin and pericentric heterochromatin occurred with preservation of sites of insulation of BEAF-32 in evolutionarily distant species, i.e. D. melanogaster and D. virilis. Moreover, promoters of virtually all protein-coding genes located in heterochromatin in D. melanogaster are enriched with insulator proteins BEAF-32, GAF and dCTCF. Applying RNA-seq of a BEAF-32 mutant, we show that the impairment of BEAF-32 function has a complex effect on gene expression in D. melanogaster, affecting even those genes that lack BEAF-32 association in their promoters. We propose that conserved intrinsic properties of genes, such as sites of insulation near the promoter regions, may contribute to adaptation of genes to the heterochromatic environment and, hence, facilitate the evolutionary relocation of genes loci between euchromatin and heterochromatin.
Collapse
Affiliation(s)
- Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Dina A Kulikova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Lyudmila A Protsenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Lyubov N Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Venera I Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Parajuli S, Kannan B, Karan R, Sanahuja G, Liu H, Garcia‐Ruiz E, Kumar D, Singh V, Zhao H, Long S, Shanklin J, Altpeter F. Towards oilcane: Engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB BIOENERGY 2020; 12:476-490. [DOI: 10.1111/gcbb.12684] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/16/2020] [Indexed: 08/30/2024]
Abstract
AbstractMetabolic engineering to divert carbon flux from sucrose to oil in high biomass crop like sugarcane is an emerging strategy to boost lipid yields per hectare for biodiesel production. Sugarcane stems comprise more than 70% of the crops' biomass and can accumulate sucrose in excess of 20% of their extracted juice. The energy content of oils in the form of triacylglycerol (TAG) is more than twofold that of carbohydrates. Here, we report a step change in TAG accumulation in sugarcane stem tissues achieving an average of 4.3% of their dry weight (DW) in replicated greenhouse experiments by multigene engineering. The metabolic engineering included constitutive co‐expression of wrinkled1; diacylglycerol acyltransferase1‐2; cysteine‐oleosin; and ribonucleic acid interference‐suppression of sugar‐dependent1. The TAG content in leaf tissue was also elevated by more than 400‐fold compared to non‐engineered sugarcane to an average of 8.0% of the DW and the amount of total fatty acids reached about 13% of the DW. With increasing TAG accumulation an increase of 18:1 unsaturated fatty acids was observed at the expense of 16:0 and 18:0 saturated fatty acids. Total biomass accumulation, soluble lignin, Brix and juice content were significantly reduced in the TAG hyperaccumulating sugarcane lines. Overcoming this yield drag by engineering lipid accumulation into late stem development will be critical to exceed lipid yields of current oilseed crops.
Collapse
Affiliation(s)
- Saroj Parajuli
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Baskaran Kannan
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Gainesville FL USA
| | - Ratna Karan
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Georgina Sanahuja
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Hui Liu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Upton NY USA
- Biosciences Department Brookhaven National Laboratory Upton NY USA
| | - Eva Garcia‐Ruiz
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Deepak Kumar
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
| | - Stephen Long
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
- Departments of Plant Biology and Crop Sciences Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | - John Shanklin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Upton NY USA
- Biosciences Department Brookhaven National Laboratory Upton NY USA
| | - Fredy Altpeter
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Gainesville FL USA
| |
Collapse
|
14
|
Abstract
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engineering also to CHO. The availability of a reference genome sequence, genome-scale metabolic models and the growing number of various “omics” datasets can help overcome the complexity of CHO cells and support design strategies to boost their production performance. Modular design approaches applied to engineer industrially relevant cell lines have evolved to reduce the time and effort needed for the generation of new producer cells and to allow the achievement of desired product titers and quality. Nevertheless, important steps to enable the design of a chassis platform similar to those in use in the microbial world are still missing. In this review, we highlight the importance of mammalian cellular platforms for the production of biopharmaceuticals and compare them to microbial platforms, with an emphasis on describing novel approaches and discussing still open questions that need to be resolved to reach the objective of designing enhanced modular chassis CHO cell lines.
Collapse
|
15
|
Zhao B, Chaturvedi P, Zimmerman DL, Belmont AS. Efficient and Reproducible Multigene Expression after Single-Step Transfection Using Improved BAC Transgenesis and Engineering Toolkit. ACS Synth Biol 2020; 9:1100-1116. [PMID: 32216371 DOI: 10.1021/acssynbio.9b00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Achieving stable expression of a single transgene in mammalian cells remains challenging; even more challenging is obtaining simultaneous stable expression of multiple transgenes at reproducible, relative expression levels. Previously, we attained copy-number-dependent, chromosome-position-independent expression of reporter minigenes by embedding them within a BAC "scaffold" containing the mouse Msh3-Dhfr locus (DHFR BAC). Here, we extend this "BAC TG-EMBED" approach. First, we report a toolkit of endogenous promoters capable of driving transgene expression over a 0.01- to 5-fold expression range relative to the CMV promoter, allowing fine-tuning of relative expression levels of multiple reporter genes. Second, we demonstrate little variation in expression level and long-term expression stability of a reporter gene embedded in BACs containing either transcriptionally active or inactive genomic regions, making the choice of BAC scaffolds more flexible. Third, we present a novel BAC assembly scheme, "BAC-MAGIC", for inserting multiple transgenes into BAC scaffolds, which is much more time-efficient than traditional galK-based methods. As a proof-of-principle for our improved BAC TG-EMBED toolkit, we simultaneously fluorescently labeled three nuclear compartments at reproducible, relative intensity levels in 94% of stable clones after a single transfection using a DHFR BAC scaffold containing 4 transgenes assembled with BAC-MAGIC. Our extended BAC TG-EMBED toolkit and BAC-MAGIC method provide an efficient, versatile platform for stable simultaneous expression of multiple transgenes at reproducible, relative levels.
Collapse
Affiliation(s)
- Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David L. Zimmerman
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrew S. Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Tigani W, Rossi MP, Artimagnella O, Santo M, Rauti R, Sorbo T, Ulloa Severino FP, Provenzano G, Allegra M, Caleo M, Ballerini L, Bozzi Y, Mallamaci A. Foxg1 Upregulation Enhances Neocortical Activity. Cereb Cortex 2020; 30:5147-5165. [PMID: 32383447 DOI: 10.1093/cercor/bhaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/19/2022] Open
Abstract
Foxg1 is an ancient transcription factor gene orchestrating a number of neurodevelopmental processes taking place in the rostral brain. In this study, we investigated its impact on neocortical activity. We found that mice overexpressing Foxg1 in neocortical pyramidal cells displayed an electroencephalography (EEG) with increased spike frequency and were more prone to kainic acid (KA)-induced seizures. Consistently, primary cultures of neocortical neurons gain-of-function for Foxg1 were hyperactive and hypersynchronized. That reflected an unbalanced expression of key genes encoding for ion channels, gamma aminobutyric acid and glutamate receptors, and was likely exacerbated by a pronounced interneuron depletion. We also detected a transient Foxg1 upregulation ignited in turn by neuronal activity and mediated by immediate early genes. Based on this, we propose that even small changes of Foxg1 levels may result in a profound impact on pyramidal cell activity, an issue relevant to neuronal physiology and neurological aberrancies associated to FOXG1 copy number variations.
Collapse
Affiliation(s)
- Wendalina Tigani
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Moira Pinzan Rossi
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy.,AgenTus Therapeutics, Inc., Cambridge CB4 OWG, United Kingdom
| | - Osvaldo Artimagnella
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Manuela Santo
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Rossana Rauti
- Laboratory of Neurons and Nanomaterials, Neuroscience Area, SISSA, Trieste 34136, Italy.,Dept. Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Teresa Sorbo
- Laboratory of Neurons and Nanomaterials, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Francesco Paolo Ulloa Severino
- Laboratory of Bionanotechnologies, Neuroscience Area, SISSA, Trieste 34136, Italy.,Cell Biology Dept, Duke University Medical Center, Duke University, Durham NC-27710, USA
| | - Giovanni Provenzano
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento 38123, Italy
| | - Manuela Allegra
- Neuroscience Institute, Neurophysiology Section, National Research Council (CNR), Pisa 56124, Italy.,Laboratory G5 Circuits Neuronaux, Institut Pasteur, Paris 75015, France
| | - Matteo Caleo
- Neuroscience Institute, Neurophysiology Section, National Research Council (CNR), Pisa 56124, Italy.,Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Laura Ballerini
- Laboratory of Neurons and Nanomaterials, Neuroscience Area, SISSA, Trieste 34136, Italy
| | - Yuri Bozzi
- Neuroscience Institute, Neurophysiology Section, National Research Council (CNR), Pisa 56124, Italy.,Center for Mind/Brain Sciences, University of Trento, Trento 38068, Italy
| | - Antonello Mallamaci
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste 34136, Italy
| |
Collapse
|
17
|
Farzaneh F, Mirzapoor Z, Jahangirian E, Heidari F, Hashemi E, Rahim-Tayefeh A, Fatemi N, Jamshidizad A, Dashtizad M, Shamsara M. The chicken hypersensitive site-4 insulator cannot fully shield the murine phosphoglycerate kinase-1 promoter from integration site effects in transgenic mice. 3 Biotech 2019; 9:255. [PMID: 31192080 DOI: 10.1007/s13205-019-1786-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022] Open
Abstract
Differential expression of transgenes in transgenic animals is one of the main drawbacks of pronuclear injection. To overwhelm this issue, the genetic constructs are equipped with insulators. In this study, the consensus of exerting chicken hypersensitive site-4 (cHS4) insulator was examined on the shield of phosphoglycerate kinase-1 (Pgk-1) promoter from the surrounding chromatin in transgenic mice. The PGK-EGFP cassette was flanked by insertion of three copies of the cHS4 insulators. Mouse zygotes' microinjection by the constructed cassette was resulted in the birth of nine transgenic founders (F0). Copy-number-dependent expression of the EGFP was investigated in the transgenic F1 offspring by fluorometry and real-time PCR. They showed no correlation between the expression level of transgene and gene copy number among the transgenic lines. Moreover, dissection of the EGFP-expressing mice revealed heterogeneous expression of the EGFP in the different organs. In conclusion, for the first time, these findings indicated that the cHS4 sequence is not a perfect insulator to fully protect the Pgk-1 promoter from the side effects of integration site in transgenic mice and it needs probably to some additional elements of the cHS4 locus to reach this goal.
Collapse
Affiliation(s)
- Fatemeh Farzaneh
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Zohreh Mirzapoor
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Ehsan Jahangirian
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Farid Heidari
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Ehsan Hashemi
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Aidin Rahim-Tayefeh
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Nayeralsadat Fatemi
- 2Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box 19395-4644, Tehran, Iran
| | - Abbas Jamshidizad
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Mojtaba Dashtizad
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| | - Mehdi Shamsara
- 1National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
| |
Collapse
|
18
|
Lien YC, Condon DE, Georgieff MK, Simmons RA, Tran PV. Dysregulation of Neuronal Genes by Fetal-Neonatal Iron Deficiency Anemia Is Associated with Altered DNA Methylation in the Rat Hippocampus. Nutrients 2019; 11:nu11051191. [PMID: 31137889 PMCID: PMC6566599 DOI: 10.3390/nu11051191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Early-life iron deficiency results in long-term abnormalities in cognitive function and affective behavior in adulthood. In preclinical models, these effects have been associated with long-term dysregulation of key neuronal genes. While limited evidence suggests histone methylation as an epigenetic mechanism underlying gene dysregulation, the role of DNA methylation remains unknown. To determine whether DNA methylation is a potential mechanism by which early-life iron deficiency induces gene dysregulation, we performed whole genome bisulfite sequencing to identify loci with altered DNA methylation in the postnatal day (P) 15 iron-deficient (ID) rat hippocampus, a time point at which the highest level of hippocampal iron deficiency is concurrent with peak iron demand for axonal and dendritic growth. We identified 229 differentially methylated loci and they were mapped within 108 genes. Among them, 63 and 45 genes showed significantly increased and decreased DNA methylation in the P15 ID hippocampus, respectively. To establish a correlation between differentially methylated loci and gene dysregulation, the methylome data were compared to our published P15 hippocampal transcriptome. Both datasets showed alteration of similar functional networks regulating nervous system development and cell-to-cell signaling that are critical for learning and behavior. Collectively, the present findings support a role for DNA methylation in neural gene dysregulation following early-life iron deficiency.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David E Condon
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Alhaji SY, Ngai SC, Abdullah S. Silencing of transgene expression in mammalian cells by DNA methylation and histone modifications in gene therapy perspective. Biotechnol Genet Eng Rev 2018; 35:1-25. [PMID: 30514178 DOI: 10.1080/02648725.2018.1551594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.
Collapse
Affiliation(s)
- Suleiman Yusuf Alhaji
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,b Department of Human Anatomy , College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi, ATBU , Bauchi , Nigeria
| | - Siew Ching Ngai
- c School of Biosciences, Faculty of Science , University of Nottingham Malaysia , Semenyih , Malaysia
| | - Syahril Abdullah
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,d UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience , Universiti Putra Malaysia, UPM , Serdang , Malaysia
| |
Collapse
|
20
|
|
21
|
Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki JI, Masumoto H, Earnshaw WC, Larionov V. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synth Biol 2018; 7:1974-1989. [PMID: 30075081 PMCID: PMC6154217 DOI: 10.1021/acssynbio.8b00230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| | - Nikolai Petrov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Oscar Molina
- Josep
Carreras Leukaemia Research Institute, School of Medicine, University
of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Mikhail Liskovykh
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Elisa Pesenti
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Jun-ichirou Ohzeki
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan
| | - Hiroshi Masumoto
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan,E-mail: . Tel: +81-438-52-395
| | - William C. Earnshaw
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland,E-mail: . Tel: +44-(0)131-650-7101
| | - Vladimir Larionov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| |
Collapse
|
22
|
Chaturvedi P, Zhao B, Zimmerman DL, Belmont AS. Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther 2018; 25:376-391. [PMID: 29930343 PMCID: PMC6195848 DOI: 10.1038/s41434-018-0021-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/20/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Reproducible and stable transgene expression is an important goal in both basic research and biotechnology, with each application demanding a range of transgene expression. Problems in achieving stable transgene expression include multi-copy transgene silencing, chromosome-position effects, and loss of expression during long-term culture, induced cell quiescence, and/or cell differentiation. Previously, we described the “BAC TG-EMBED” method for copy-number dependent, chromosome position-independent expression of embedded transgenes within a BAC containing ~170 kb of the mouse Dhfr locus. Here we demonstrate wider applicability of the method by identifying a BAC and promoter combination that drives reproducible, copy-number dependent, position-independent transgene expression even after induced quiescence and/or cell differentiation into multiple cell types. Using a GAPDH BAC containing ~200 kb of the human GAPDH gene locus and a 1.2 kb human UBC promoter, we achieved stable GFP-ZeoR reporter expression in mouse NIH 3T3 cells after low-serum induced cell cycle arrest or differentiation into adipocytes. More notably, GFP-ZeoR expression remained stable and copy-number dependent even after differentiation of mouse ESCs into several distinct lineages. These results highlight the potential use of BAC TG-EMBED as an expression platform for high-level but stable, long-term expression of transgene independent of cell proliferative or differentiated state.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - David L Zimmerman
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.,Biology Department, College of the Ozarks, Point Lookout, MO, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
23
|
Ujfaludi Z, Tuzesi A, Majoros H, Rothler B, Pankotai T, Boros IM. Coordinated activation of a cluster of MMP genes in response to UVB radiation. Sci Rep 2018; 8:2660. [PMID: 29422610 PMCID: PMC5805780 DOI: 10.1038/s41598-018-20999-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet (UV) B radiation is a dangerous environmental stressor, which can lead to photoaging, inflammation, immune suppression and tumour formation. A recent report has shown the transcriptional activation of several skin-specific genes including matrix metalloproteases (MMPs) in response to UV irradiation. Here, we use a novel human keratinocyte model, HKerE6SFM, to demonstrate that UVB activates the transcription of most members of the 11q22.3 MMP gene cluster including MMP13, MMP12, MMP3, MMP1 and MMP10. Curiously, the expression of the well-characterized UVB-inducible MMP9, which is located outside of the cluster, remains unchanged. In accordance with the increased expression of the MMP gene cluster upon UVB irradiation, RNA polymerase II showed increased occupancy at their promoters following UVB irradiation. The results also demonstrate increased acetylated histone H3K9 levels at the promoters of the MMP13, MMP12, MMP3, MMP1 and MMP10 genes. These findings suggest a coordinated transcriptional activation of genes in the MMP cluster at 11q22.3 and that acetylation of histone H3 at lysine 9 has an important role in the UVB-dependent enhancement of transcription of MMP genes in this region.
Collapse
Affiliation(s)
- Zsuzsanna Ujfaludi
- Department of Biochemistry and Molecular Biology, FSI, USZ, Közép fasor 52, Szeged, H6726, Hungary
| | - Agota Tuzesi
- Institute of Biochemistry, BRC, HAS, Temesvári körút 62, H6726, Szeged, Hungary
| | - Hajnalka Majoros
- Department of Biochemistry and Molecular Biology, FSI, USZ, Közép fasor 52, Szeged, H6726, Hungary
| | - Balint Rothler
- Department of Biochemistry and Molecular Biology, FSI, USZ, Közép fasor 52, Szeged, H6726, Hungary
| | - Tibor Pankotai
- Department of Biochemistry and Molecular Biology, FSI, USZ, Közép fasor 52, Szeged, H6726, Hungary.
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, FSI, USZ, Közép fasor 52, Szeged, H6726, Hungary. .,Institute of Biochemistry, BRC, HAS, Temesvári körút 62, H6726, Szeged, Hungary.
| |
Collapse
|
24
|
Romanova N, Noll T. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnol J 2017; 13:e1700232. [DOI: 10.1002/biot.201700232] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology; Faculty of Technology; Bielefeld University; Germany
| | - Thomas Noll
- Cell Culture Technology; Faculty of Technology; Bielefeld University; Germany
- Bielefeld University; Center for Biotechnology (CeBiTec); Germany
| |
Collapse
|
25
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
26
|
Neville JJ, Orlando J, Mann K, McCloskey B, Antoniou MN. Ubiquitous Chromatin-opening Elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol Adv 2017; 35:557-564. [DOI: 10.1016/j.biotechadv.2017.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
|
27
|
Baumann M, Gludovacz E, Sealover N, Bahr S, George H, Lin N, Kayser K, Borth N. Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnol Bioeng 2017; 114:2616-2627. [DOI: 10.1002/bit.26388] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/13/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB); Graz Austria
| | | | | | - Scott Bahr
- MilliporeSigma (SAFC); St. Louis Minnesota
| | | | - Nan Lin
- MilliporeSigma (SAFC); St. Louis Minnesota
| | | | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB); Graz Austria
- University of Natural Resources and Life Sciences (BOKU); Vienna Austria
| |
Collapse
|
28
|
Using nanoBRET and CRISPR/Cas9 to monitor proximity to a genome-edited protein in real-time. Sci Rep 2017; 7:3187. [PMID: 28600500 PMCID: PMC5466623 DOI: 10.1038/s41598-017-03486-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) has been a vital tool for understanding G protein-coupled receptor (GPCR) function. It has been used to investigate GPCR-protein and/or -ligand interactions as well as GPCR oligomerisation. However the utility of BRET is limited by the requirement that the fusion proteins, and in particular the donor, need to be exogenously expressed. To address this, we have used CRISPR/Cas9-mediated homology-directed repair to generate protein-Nanoluciferase (Nluc) fusions under endogenous promotion, thus allowing investigation of proximity between the genome-edited protein and an exogenously expressed protein by BRET. Here we report BRET monitoring of GPCR-mediated β-arrestin2 recruitment and internalisation where the donor luciferase was under endogenous promotion, in live cells and in real time. We have investigated the utility of CRISPR/Cas9 genome editing to create genome-edited fusion proteins that can be used as BRET donors and propose that this strategy can be used to overcome the need for exogenous donor expression.
Collapse
|
29
|
Manipulation of OCT4 Levels in Human Embryonic Stem Cells Results in Induction of Differential Cell Types. Exp Biol Med (Maywood) 2016; 232:1368-80. [DOI: 10.3181/0703-rm-63] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To fully understand self-renewal and pluripotency and their regulation in human embryonic stem cells (hESCs), it is necessary to generate genetically modified cells and analyze the consequences of elevated and reduced expression of genes. Genes expressed in hESCs using plasmid vectors, however, are subject to silencing. Moreover, hESCs have a low plating efficiency when dissociated to single cells, making creation of subcloned lines inefficient. In addition to overexpression experiments, it is important to perform loss-of-function studies, which can be achieved rapidly using RNA interference (RNAi). We report stable long-term expression of enhanced green fluorescent protein (eGFP) in hESCs using a lentiviral vector, and establishment of an eGFP-expressing subline (RG6) using manual dissection. To demonstrate the efficacy of RNAi in hESCs, an RNAi expression vector was used to achieve reduced expression of eGFP in hESCs. To evaluate the role of OCT4 in the regulation of hESC self-renewal and differentiation, a vector expressing a hairpin RNA targeting endogenous expression of OCT4 was constructed. In a novel experiment in hESCs, the OCT4 cDNA sequence was cloned into an expression vector to allow for the transient upregulation of OCT4 in hESCs. The ability to manipulate levels of OCT4 above and below enodogenous levels allows the determination of OCT4 function in hESCs. Specifically, reduced expression of OCT4 in hESCs promoted upregulation of markers indicative of mesoderm and endoderm differentiation, and elevated levels of OCT4 in hESCs promoted upregulation of markers indicative of endoderm derivatives. Thus, both upregulation and downregulation of Oct4 in hESCs results in differentiation, but with patterns distinct from parallel experiments in mice.
Collapse
|
30
|
Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production. Cytotechnology 2016; 69:451-460. [PMID: 27544513 DOI: 10.1007/s10616-016-0017-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used for therapeutic protein production. When a transgene is integrated into the genome of a CHO cell, the expression level is highly dependent on the site of integration because of positional effects such as gene silencing. To overcome negative positional effects and establish stable CHO cell lines with high productivity, several regulatory DNA elements are used in vector construction. Previously, we established the CHO DR1000L-4N cell line, a stable and high copy number Dhfr gene-amplified cell line. It was hypothesized that the chromosomal location of the exogenous gene-amplified region in the CHO DR1000L-4N genome contains regulatory motifs for stable protein production. Therefore, we isolated DNA regulatory motifs from the CHO DR1000L-4N cell line and determined whether these motifs act as an insulator. Our results suggest that stable expression of a transgene can be promoted by the CHO genome sequence, and it would be a powerful tool for therapeutic protein manufacturing.
Collapse
|
31
|
Yoshida M, Taguchi A, Kawana K, Adachi K, Kawata A, Ogishima J, Nakamura H, Fujimoto A, Sato M, Inoue T, Nishida H, Furuya H, Tomio K, Arimoto T, Koga K, Wada-Hiraike O, Oda K, Nagamatsu T, Kiyono T, Osuga Y, Fujii T. Modification of the Tumor Microenvironment in KRAS or c-MYC-Induced Ovarian Cancer-Associated Peritonitis. PLoS One 2016; 11:e0160330. [PMID: 27483433 PMCID: PMC4970724 DOI: 10.1371/journal.pone.0160330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
The most common properties of oncogenes are cell proliferation and the prevention of apoptosis in malignant cells, which, as a consequence, induce tumor formation and dissemination. However, the effects of oncogenes on the tumor microenvironment (TME) have not yet been examined in detail. The accumulation of ascites accompanied by chronic inflammation and elevated concentrations of VEGF is a hallmark of the progression of ovarian cancer. We herein demonstrated the mechanisms by which oncogenes contribute to modulating the ovarian cancer microenvironment. c-MYC and KRAS were transduced into the mouse ovarian cancer cell line ID8. ID8, ID8-c-MYC, or ID8-KRAS cells were then injected into the peritoneal cavities of C57/BL6 mice and the production of ascites was assessed. ID8-c-MYC and ID8-KRAS both markedly accelerated ovarian cancer progression in vivo, whereas no significant differences were observed in proliferative activity in vitro. ID8-KRAS in particular induced the production of ascites, which accumulated between approximately two to three weeks after the injection, more rapidly than ID8 and ID8-c-MYC (between nine and ten weeks and between six and seven weeks, respectively). VEGF concentrations in ascites significantly increased in c-MYC-induced ovarian cancer, whereas the concentrations of inflammatory cytokines in ascites were significantly high in KRAS-induced ovarian cancer and were accompanied by an increased number of neutrophils in ascites. A cytokine array revealed that KRAS markedly induced the expression of granulocyte macrophage colony-stimulating factor (GM-CSF) in ID8 cells. These results suggest that oncogenes promote cancer progression by modulating the TME in favor of cancer progression.
Collapse
Affiliation(s)
- Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
- * E-mail:
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Juri Ogishima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Hitomi Furuya
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Tohru Kiyono
- Division of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104–0045, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| |
Collapse
|
32
|
Li Y, Yi X, Zhuang Y, Chu J. Regulation of porcine circovirus type 2-like particles expressed in baculovirus expression system. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0114-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Aravalli RN, Park CW, Steer CJ. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis. Biochem Biophys Res Commun 2016; 477:317-21. [PMID: 27329815 DOI: 10.1016/j.bbrc.2016.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/18/2016] [Indexed: 01/04/2023]
Abstract
The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed a series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, University of Minnesota Medical School, MMC 292, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Chang W Park
- Department of Medicine, University of Minnesota Medical School, MMC 36, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, MMC 36, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Baiamonte E, Spinelli G, Maggio A, Acuto S, Cavalieri V. The Sea Urchin sns5 Chromatin Insulator Shapes the Chromatin Architecture of a Lentivirus Vector Integrated in the Mammalian Genome. Nucleic Acid Ther 2016; 26:318-326. [PMID: 27248156 DOI: 10.1089/nat.2016.0614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lentivirus vectors are presently the favorite vehicles for therapeutic gene transfer in hematopoietic cells. Nonetheless, these vectors integrate randomly throughout the genome, exhibiting variegation of transgene expression due to the spreading of heterochromatin into the vector sequences. Moreover, the cis-regulatory elements harbored by the vector could disturb the proper transcription of resident genes neighboring the integration site. The incorporation of chromatin insulators in flanking position to the transferred unit can alleviate both the above-mentioned dangerous effects, due to the insulator-specific barrier and enhancer-blocking activities. In this study, we report the valuable properties of the sea urchin-derived sns5 insulator in improving the expression efficiency of a lentivirus vector integrated in the mammalian erythroid genome. We show that these results neither reflect an intrinsic sns5 enhancer activity nor rely on the recruitment of the erythroid-specific GATA-1 factor to sns5. Furthermore, by using the Chromosome Conformation Capture technology, we report that a single copy of the sns5-insulated vector is specifically organized into an independent chromatin loop at the provirus locus. Our results not only provide new clues concerning the molecular mechanism of sns5 function in the erythroid genome but also reassure the use of sns5 to improve the performance of gene therapy vectors.
Collapse
Affiliation(s)
- Elena Baiamonte
- 1 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital , Palermo, Italy
| | - Giovanni Spinelli
- 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo , Palermo, Italy
| | - Aurelio Maggio
- 1 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital , Palermo, Italy
| | - Santina Acuto
- 1 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital , Palermo, Italy
| | - Vincenzo Cavalieri
- 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo , Palermo, Italy
- 3 Mediterranean Center for Human Health Advanced Biotechnologies (CHAB), University of Palermo , Palermo, Italy
| |
Collapse
|
35
|
Seita Y, Tsukiyama T, Iwatani C, Tsuchiya H, Matsushita J, Azami T, Okahara J, Nakamura S, Hayashi Y, Hitoshi S, Itoh Y, Imamura T, Nishimura M, Tooyama I, Miyoshi H, Saitou M, Ogasawara K, Sasaki E, Ema M. Generation of transgenic cynomolgus monkeys that express green fluorescent protein throughout the whole body. Sci Rep 2016; 6:24868. [PMID: 27109065 PMCID: PMC4843004 DOI: 10.1038/srep24868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022] Open
Abstract
Nonhuman primates are valuable for human disease modelling, because rodents poorly recapitulate some human diseases such as Parkinson’s disease and Alzheimer’s disease amongst others. Here, we report for the first time, the generation of green fluorescent protein (GFP) transgenic cynomolgus monkeys by lentivirus infection. Our data show that the use of a human cytomegalovirus immediate-early enhancer and chicken beta actin promoter (CAG) directed the ubiquitous expression of the transgene in cynomolgus monkeys. We also found that injection into mature oocytes before fertilization achieved homogenous expression of GFP in each tissue, including the amnion, and fibroblasts, whereas injection into fertilized oocytes generated a transgenic cynomolgus monkey with mosaic GFP expression. Thus, the injection timing was important to create transgenic cynomolgus monkeys that expressed GFP homogenously in each of the various tissues. The strategy established in this work will be useful for the generation of transgenic cynomolgus monkeys for transplantation studies as well as biomedical research.
Collapse
Affiliation(s)
- Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Chizuru Iwatani
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Tsuchiya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Jun Matsushita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Azami
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Junko Okahara
- Central Institute for Experimental Animals, 1430 Nogawa, Miyamae-ku, Kawasaki, Kanagawa 216-0001, Japan
| | - Shinichiro Nakamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yoshitaka Hayashi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Seiji Hitoshi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Takeshi Imamura
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitinori Saitou
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazumasa Ogasawara
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, 1430 Nogawa, Miyamae-ku, Kawasaki, Kanagawa 216-0001, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
36
|
Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory Mechanisms of Intermediate Filaments. Methods Enzymol 2016; 568:635-60. [DOI: 10.1016/bs.mie.2015.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
37
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
38
|
González-Buendía E, Escamilla-Del-Arenal M, Pérez-Molina R, Tena JJ, Guerrero G, Suaste-Olmos F, Ayala-Ortega E, Gómez-Skarmeta JL, Recillas-Targa F. A novel chromatin insulator regulates the chicken folate receptor gene from the influence of nearby constitutive heterochromatin and the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:955-65. [DOI: 10.1016/j.bbagrm.2015.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/17/2022]
|
39
|
Abstract
Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH-Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)-TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP-TH interneurons. Optogenetic activation of striatal EGFP-TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons.
Collapse
|
40
|
Yoshida W, Tomikawa J, Inaki M, Kimura H, Onodera M, Hata K, Nakabayashi K. An insulator element located at the cyclin B1 interacting protein 1 gene locus is highly conserved among mammalian species. PLoS One 2015; 10:e0131204. [PMID: 26110280 PMCID: PMC4481373 DOI: 10.1371/journal.pone.0131204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/30/2015] [Indexed: 11/25/2022] Open
Abstract
Insulators are cis-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse Ccnb1ip1 (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the Ccnb1ip1 insulator and the Ccnb1ip1 enhancer. The Ccnb1ip1 insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the Ccnb1ip1 locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of Ccnb1ip1. These newly identified cis-elements may be involved in transcriptional regulation of Ccnb1ip1, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle.
Collapse
Affiliation(s)
- Wataru Yoshida
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
- * E-mail: (WY); (KN)
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Makoto Inaki
- Department of Human Genetics, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
- * E-mail: (WY); (KN)
| |
Collapse
|
41
|
Mariati, Koh EYC, Yeo JHM, Ho SCL, Yang Y. Toward stable gene expression in CHO cells. Bioengineered 2015; 5:340-5. [PMID: 25482237 DOI: 10.4161/bioe.32111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific.
Collapse
Affiliation(s)
- Mariati
- a Bioprocessing Technology Institute; Agency for Science, Technology, and Research (A*STAR); Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
42
|
Chromatin function modifying elements in an industrial antibody production platform--comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 2015; 10:e0120096. [PMID: 25849659 PMCID: PMC4388700 DOI: 10.1371/journal.pone.0120096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023] Open
Abstract
The isolation of stably transfected cell lines suitable for the manufacture of biotherapeutic protein products can be an arduous process relying on the identification of a high expressing clone; this frequently involves transgene amplification and maintenance of the clones' expression over at least 60 generations. Maintenance of expression, or cell line stability, is highly dependent upon the nature of the genomic environment at the site of transgene integration, where epigenetic mechanisms lead to variable expression and silencing in the vast majority of cases. We have assessed four chromatin function modifying elements (A2UCOE, MAR X_S29, STAR40 and cHS4) for their ability to negate chromatin insertion site position effects and their ability to express and maintain monoclonal antibody expression. Each element was analysed by insertion into different positions within a vector, either flanking or between heavy chain (HC) and light chain (LC) antibody expression cassettes. Our results clearly show that the A2UCOE is the most beneficial element in this system, with stable cell pools and clones increasing antibody yields 6.5-fold and 6.75-fold respectively. Stability analysis demonstrated that the reduction in antibody expression, seen with cells transfected with the control vector over 120 generations, was mitigated in the clones containing A2UCOE-augmented transgenes. Analysis also showed that the A2UCOE reduced the amount of transgene promoter DNA methylation, which contributed to the maintenance of starting levels of expression.
Collapse
|
43
|
Cre recombinase-regulated Endothelin1 transgenic mouse lines: novel tools for analysis of embryonic and adult disorders. Dev Biol 2015; 400:191-201. [PMID: 25725491 DOI: 10.1016/j.ydbio.2015.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/31/2014] [Accepted: 01/25/2015] [Indexed: 01/06/2023]
Abstract
Endothelin-1 (EDN1) influences both craniofacial and cardiovascular development and a number of adult physiological conditions by binding to one or both of the known endothelin receptors, thus initiating multiple signaling cascades. Animal models containing both conventional and conditional loss of the Edn1 gene have been used to dissect EDN1 function in both embryos and adults. However, while transgenic Edn1 over-expression or targeted genomic insertion of Edn1 has been performed to understand how elevated levels of Edn1 result in or exacerbate disease states, an animal model in which Edn1 over-expression can be achieved in a spatiotemporal-specific manner has not been reported. Here we describe the creation of Edn1 conditional over-expression transgenic mouse lines in which the chicken β-actin promoter and an Edn1 cDNA are separated by a strong stop sequence flanked by loxP sites. In the presence of Cre, the stop cassette is removed, leading to Edn1 expression. Using the Wnt1-Cre strain, in which Cre expression is targeted to the Wnt1-expressing domain of the central nervous system (CNS) from which neural crest cells (NCCs) arise, we show that stable chicken β-actin-Edn1 (CBA-Edn1) transgenic lines with varying EDN1 protein levels develop defects in NCC-derived tissues of the face, though the severity differs between lines. We also show that Edn1 expression can be achieved in other embryonic tissues utilizing other Cre strains, with this expression also resulting in developmental defects. CBA-Edn1 transgenic mice will be useful in investigating diverse aspects of EDN1-mediated-development and disease, including understanding how NCCs achieve and maintain a positional and functional identity and how aberrant EDN1 levels can lead to multiple physiological changes and diseases.
Collapse
|
44
|
Kononenko AV, Lee NCO, Liskovykh M, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. Generation of a conditionally self-eliminating HAC gene delivery vector through incorporation of a tTAVP64 expression cassette. Nucleic Acids Res 2015; 43:e57. [PMID: 25712097 PMCID: PMC4482055 DOI: 10.1093/nar/gkv124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/07/2015] [Indexed: 11/25/2022] Open
Abstract
Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by virus-based vectors. The recently developed alphoidtetO-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of chromatin modifiers, tTA or tTS, to its centromeric tetO sequences. This provides a unique control for phenotypes induced by genes loaded into the HAC. The alphoidtetO-HAC elimination is highly efficient when a high level of chromatin modifiers as tetR fusion proteins is achieved following transfection of cells by a retrovirus vector. However, such vectors are potentially mutagenic and might want to be avoided under some circumstances. Here, we describe a novel system that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. We demonstrated that a single copy of tTAVP64 carrying four tandem repeats of the VP16 domain constitutively expressed from the HAC is capable to generate chromatin changes in the HAC kinetochore that are not compatible with its function. To adopt the alphoidtetO-HAC for routine gene function studies, we constructed a new TAR-BRV- tTAVP64 cloning vector that allows a selective isolation of a gene of interest from genomic DNA in yeast followed by its direct transfer to bacterial cells and subsequent loading into the loxP site of the alphoidtetO-HAC in hamster CHO cells from where the HAC may be MMCT-transferred to the recipient human cells.
Collapse
Affiliation(s)
- Artem V Kononenko
- Developmental Therapeutic Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicholas C O Lee
- Developmental Therapeutic Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mikhail Liskovykh
- Developmental Therapeutic Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Vladimir Larionov
- Developmental Therapeutic Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutic Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm 2015; 95:353-67. [PMID: 25592325 DOI: 10.1016/j.ejpb.2014.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression.
Collapse
|
46
|
Ginder GD. Epigenetic regulation of fetal globin gene expression in adult erythroid cells. Transl Res 2015; 165:115-25. [PMID: 24880147 PMCID: PMC4227965 DOI: 10.1016/j.trsl.2014.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The developmental regulation of globin gene expression has served as an important model for understanding higher eukaryotic transcriptional control mechanisms. During human erythroid development, there is a sequential switch from expression of the embryonic ε-globin gene to the fetal ɣ-globin gene in utero, and postpartum the ɣ-globin gene is silenced, as the β-globin gene becomes the predominantly expressed locus. Because the expression of normally silenced fetal ɣ-type globin genes and resultant production of fetal hemoglobin (HbF) in adult erythroid cells can ameliorate the pathophysiological consequences of both abnormal β-globin chains in sickle cell anemia and deficient β-globin chain production in β-thalassemia, understanding the complex mechanisms of this developmental switch has direct translational clinical relevance. Of particular interest for translational research are the factors that mediate silencing of the ɣ-globin gene in adult stage erythroid cells. In addition to the regulatory roles of transcription factors and their cognate DNA sequence motifs, there has been a growing appreciation of the role of epigenetic signals and their cognate factors in gene regulation, and in particular in gene silencing through chromatin. Much of the information about epigenetic silencing stems from studies of globin gene regulation. As discussed here, the term epigenetics refers to postsynthetic modifications of DNA and chromosomal histone proteins that affect gene expression and can be inherited through somatic cell replication. A full understanding of the molecular mechanisms of epigenetic silencing of HbF expression should facilitate the development of more effective treatment of β-globin chain hemoglobinopathies.
Collapse
Affiliation(s)
- Gordon D Ginder
- Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
47
|
González-Buendía E, Pérez-Molina R, Ayala-Ortega E, Guerrero G, Recillas-Targa F. Experimental strategies to manipulate the cellular levels of the multifunctional factor CTCF. Methods Mol Biol 2014; 1165:53-69. [PMID: 24839018 DOI: 10.1007/978-1-4939-0856-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular homeostasis is the result of an intricate and coordinated combinatorial of biochemical and molecular processes. Among them is the control of gene expression in the context of the chromatin structure which is central for cell survival. Interdependent action of transcription factors, cofactors, chromatin remodeling activities, and three-dimensional organization of the genome are responsible to reach exquisite levels of gene expression. Among such transcription factors there is a subset of highly specialized nuclear factors with features resembling master regulators with a large variety of functions. This is turning to be the case of the multifunctional nuclear factor CCCTC-binding protein (CTCF) which is involved in gene regulation, chromatin organization, and three-dimensional conformation of the genome inside the cell nucleus. Technically its study has turned to be challenging, in particular its posttranscriptional interference by small interference RNAs. Here we describe three main strategies to downregulate the overall abundance of CTCF in culture cell lines.
Collapse
Affiliation(s)
- Edgar González-Buendía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, DF, 04510, México
| | | | | | | | | |
Collapse
|
48
|
Wang C, Szaro BG. A method for using direct injection of plasmid DNA to study cis-regulatory element activity in F0 Xenopus embryos and tadpoles. Dev Biol 2014; 398:11-23. [PMID: 25448690 DOI: 10.1016/j.ydbio.2014.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
The ability to express exogenous reporter genes in intact, externally developing embryos, such as Xenopus, is a powerful tool for characterizing the activity of cis-regulatory gene elements during development. Although methods exist for generating transgenic Xenopus lines, more simplified methods for use with F0 animals would significantly speed the characterization of these elements. We discovered that injecting 2-cell stage embryos with a plasmid bearing a ϕC31 integrase-targeted attB element and two dual β-globin HS4 insulators flanking a reporter transgene in opposite orientations relative to each other yielded persistent expression with sufficiently high penetrance for characterizing the activity of the promoter without having to coinject integrase RNA. Expression began appropriately during development and persisted into swimming tadpole stages without perturbing the expression of the cognate endogenous gene. Coinjected plasmids having the same elements but expressing different reporter proteins were reliably coexpressed within the same cells, providing a useful control for variations in injections between animals. To overcome the high propensity of these plasmids to undergo recombination, we developed a method for generating them using conventional cloning methods and DH5α cells for propagation. We conclude that this method offers a convenient and reliable way to evaluate the activity of cis-regulatory gene elements in the intact F0 embryo.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| | - Ben G Szaro
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
49
|
Mariati, Yeo JHM, Koh EYC, Ho SCL, Yang Y. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells. Biotechnol Prog 2014; 30:523-34. [DOI: 10.1002/btpr.1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Mariati
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Esther Y. C. Koh
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University; Singapore 637459 Singapore
| |
Collapse
|
50
|
Ahn Y, Mullan HE, Krumlauf R. Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development. Dev Biol 2014; 388:134-44. [PMID: 24525295 DOI: 10.1016/j.ydbio.2014.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/13/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Retinoic acid (RA) signaling plays an important role in determining the anterior boundary of Hox gene expression in the neural tube during embryogenesis. In particular, RA signaling is implicated in a rostral expansion of the neural expression domain of 5׳ Hoxb genes (Hoxb9-Hoxb5) in mice. However, underlying mechanisms for this gene regulation have remained elusive due to the lack of RA responsive element (RARE) in the 5׳ half of the HoxB cluster. To identify cis-regulatory elements required for the rostral expansion, we developed a recombineering technology to serially label multiple genes with different reporters in a single bacterial artificial chromosome (BAC) vector containing the mouse HoxB cluster. This allowed us to simultaneously monitor the expression of multiple genes. In contrast to plasmid-based reporters, transgenic BAC reporters faithfully recapitulated endogenous gene expression patterns of the Hoxb genes including the rostral expansion. Combined inactivation of two RAREs, DE-RARE and ENE-RARE, in the BAC completely abolished the rostral expansion of the 5׳ Hoxb genes. Knock-out of endogenous DE-RARE lead to significantly reduced expression of multiple Hoxb genes and attenuated Hox gene response to exogenous RA treatment in utero. Regulatory potential of DE-RARE was further demonstrated by its ability to anteriorize 5׳ Hoxa gene expression in the neural tube when inserted into a HoxA BAC reporter. Our data demonstrate that multiple RAREs cooperate to remotely regulate 5׳ Hoxb genes during CNS development, providing a new insight into the mechanisms for gene regulation within the Hox clusters.
Collapse
Affiliation(s)
- Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hillary E Mullan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|