1
|
Deepika, Madhu, Shekhawat J, Dixit S, Upadhyay SK. Pre-mRNA processing factor 4 kinases (PRP4Ks): Exploration of molecular features, interaction network and expression profiling in bread wheat. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-024-11489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
|
2
|
Shi W, Yang J, Chen D, Yin C, Zhang H, Xu X, Pan X, Wang R, Fei L, Li M, Qi L, Bhadauria V, Liu J, Peng YL. The rice blast fungus SR protein 1 regulates alternative splicing with unique mechanisms. PLoS Pathog 2022; 18:e1011036. [PMID: 36480554 PMCID: PMC9767378 DOI: 10.1371/journal.ppat.1011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are well known as splicing factors in humans, model animals and plants. However, they are largely unknown in regulating pre-mRNA splicing of filamentous fungi. Here we report that the SR protein MoSrp1 enhances and suppresses alternative splicing in a model fungal plant pathogen Magnaporthe oryzae. Deletion of MoSRP1 caused multiple defects, including reduced virulence and thousands of aberrant alternative splicing events in mycelia, most of which were suppressed or enhanced intron splicing. A GUAG consensus bound by MoSrp1 was identified in more than 94% of the intron or/and proximate exons having the aberrant splicing. The dual functions of regulating alternative splicing of MoSrp1 were exemplified in enhancing and suppressing the consensus-mediated efficient splicing of the introns in MoATF1 and MoMTP1, respectively, which both were important for mycelial growth, conidiation, and virulence. Interestingly, MoSrp1 had a conserved sumoylation site that was essential to nuclear localization and enhancing GUAG binding. Further, we showed that MoSrp1 interacted with a splicing factor and two components of the exon-joining complex via its N-terminal RNA recognition domain, which was required to regulate mycelial growth, development and virulence. In contrast, the C-terminus was important only for virulence and stress responses but not for mycelial growth and development. In addition, only orthologues from Pezizomycotina species could completely rescue defects of the deletion mutants. This study reveals that the fungal conserved SR protein Srp1 regulates alternative splicing in a unique manner.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huixia Zhang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaozhou Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiao Pan
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ruijin Wang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Liwang Fei
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengfei Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Linlu Qi
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Vijai Bhadauria
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
3
|
Samadi M, Beigi L, Yadegari F, Ansari AM, Majidzadeh-A K, Eskordi M, Farahmand L. Recognition of functional genetic polymorphism using ESE motif definition: a conservative evolutionary approach to CYP2D6/CYP2C19 gene variants. Genetica 2022; 150:289-297. [PMID: 35913522 DOI: 10.1007/s10709-022-00161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
Although predicting the effects of variants near intron-exon boundaries is relatively straightforward, predicting the functional Exon Splicing Enhancers (ESEs) and the possible effects of variants within ESEs remains a challenge. Considering the essential role of CYP2D6/CYP2C19 genes in drug metabolism, we attempted to identify variants that are most likely to disrupt splicing through their effect on these ESEs. ESEs were predicted in these two genes using ESEfinder 3.0, incorporating a series of filters (increased threshold and evolutionary conservation). Finally, reported mutations were evaluated for their potential to disrupt splicing by affecting these ESEs. Initially, 169 and 243 ESEs were predicted for CYP2C19/CYP2D6, respectively. However, applying the filters, the number of predicted ESEs was reduced to 26 and 19 in CYP2C19/CYP2D6, respectively. Comparing prioritized predicted ESEs with known sequence variants in CYP2C19/CYP2D6 genes highlights 18 variations within conserved ESEs for each gene. We found good agreement in cases where such predictions could be compared to experimental evidence. In total, we prioritized a subset of mutational changes in CYP2C19/CYP2D6 genes that may affect the function of these genes and lead to altered drug responses. Clinical studies and functional analysis for investigating detailed functional consequences of the mentioned mutations and their phenotypic outcomes is mostly recommended.
Collapse
Affiliation(s)
- Mitra Samadi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Laleh Beigi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Madjid Ansari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Maryam Eskordi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
De Franco S, Vandenameele J, Brans A, Verlaine O, Bendak K, Damblon C, Matagne A, Segal DJ, Galleni M, Mackay JP, Vandevenne M. Exploring the suitability of RanBP2-type Zinc Fingers for RNA-binding protein design. Sci Rep 2019; 9:2484. [PMID: 30792407 PMCID: PMC6384913 DOI: 10.1038/s41598-019-38655-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Transcriptomes consist of several classes of RNA that have wide-ranging but often poorly described functions and the deregulation of which leads to numerous diseases. Engineering of functionalized RNA-binding proteins (RBPs) could therefore have many applications. Our previous studies suggested that the RanBP2-type Zinc Finger (ZF) domain is a suitable scaffold to investigate the design of single-stranded RBPs. In the present work, we have analyzed the natural sequence specificity of various members of the RanBP2-type ZF family and characterized the interaction with their target RNA. Surprisingly, our data showed that natural RanBP2-type ZFs with different RNA-binding residues exhibit a similar sequence specificity and therefore no simple recognition code can be established. Despite this finding, different discriminative abilities were observed within the family. In addition, in order to target a long RNA sequence and therefore gain in specificity, we generated a 6-ZF array by combining ZFs from the RanBP2-type family but also from different families, in an effort to achieve a wider target sequence repertoire. We showed that this chimeric protein recognizes its target sequence (20 nucleotides), both in vitro and in living cells. Altogether, our results indicate that the use of ZFs in RBP design remains attractive even though engineering of specificity changes is challenging.
Collapse
Affiliation(s)
- Simona De Franco
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - Julie Vandenameele
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - Alain Brans
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - Olivier Verlaine
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - Katerina Bendak
- Children's Cancer Institute Lowy Cancer Research, Kensington, 2033, Australia
| | - Christian Damblon
- Laboratoire de Chimie Biologique Structurale (CBS), Département de Chimie, Université de Liège, Liège, 4000, Belgium
| | - André Matagne
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95616, USA
| | - Moreno Galleni
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium.
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, N.S.W, 2006, Australia
| | - Marylène Vandevenne
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium.
| |
Collapse
|
5
|
Melangath G, Sen T, Kumar R, Bawa P, Srinivasan S, Vijayraghavan U. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS One 2017; 12:e0188159. [PMID: 29236736 PMCID: PMC5728500 DOI: 10.1371/journal.pone.0188159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast.
Collapse
Affiliation(s)
- Geetha Melangath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Titash Sen
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rakesh Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Subha Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Zhang Y, Gao X, Sun M, Liu H, Xu JR. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2017; 19:4065-4079. [PMID: 28654215 DOI: 10.1111/1462-2920.13844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.
Collapse
Affiliation(s)
- Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Fair BJ, Pleiss JA. The power of fission: yeast as a tool for understanding complex splicing. Curr Genet 2016; 63:375-380. [PMID: 27628706 DOI: 10.1007/s00294-016-0647-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/12/2023]
Abstract
Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases. Dating almost to the initial discovery of splicing, researchers have taken advantage of the genetic tractability of budding yeast to identify the components and decipher the mechanisms of splicing. However, budding yeast lacks the complex splicing machinery and alternative splicing patterns most relevant to humans. More recently, many researchers have turned their efforts to study the fission yeast, Schizosaccharomyces pombe, which has retained many features of complex splicing, including degenerate splice site sequences, the usage of exonic splicing enhancers, and SR proteins. Here, we review recent work using fission yeast genetics to examine pre-mRNA splicing, highlighting its promise for modeling the complex splicing seen in higher eukaryotes.
Collapse
Affiliation(s)
- Benjamin Jung Fair
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:1513-23. [PMID: 27172183 PMCID: PMC4889648 DOI: 10.1534/g3.116.027508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways.
Collapse
|
9
|
Cwf16p Associating with the Nineteen Complex Ensures Ordered Exon Joining in Constitutive Pre-mRNA Splicing in Fission Yeast. PLoS One 2015; 10:e0136336. [PMID: 26302002 PMCID: PMC4547733 DOI: 10.1371/journal.pone.0136336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/01/2015] [Indexed: 12/13/2022] Open
Abstract
Exons are ligated in an ordered manner without the skipping of exons in the constitutive splicing of pre-mRNAs with multiple introns. To identify factors ensuring ordered exon joining in constitutive pre-mRNA splicing, we previously screened for exon skipping mutants in Schizosaccharomyces pombe using a reporter plasmid, and characterized three exon skipping mutants named ods1 (ordered splicing 1), ods2, and ods3, the responsible genes of which encode Prp2/U2AF59, U2AF23, and SF1, respectively. They form an SF1-U2AF59-U2AF23 complex involved in recognition of the branch and 3' splice sites in pre-mRNA. In the present study, we identified a fourth ods mutant, ods4, which was isolated in an exon-skipping screen. The ods4+ gene encodes Cwf16p, which interacts with the NineTeen Complex (NTC), a complex thought to be involved in the first catalytic step of the splicing reaction. We isolated two multi-copy suppressors for the ods4-1 mutation, Srp2p, an SR protein essential for pre-mRNA splicing, and Tif213p, a translation initiation factor, in S. pombe. The overexpression of Srp2p suppressed the exon-skipping phenotype of all ods mutants, whereas Tif213p suppressed only ods4-1, which has a mutation in the translational start codon of the cwf16 gene. We also showed that the decrease in the transcriptional elongation rate induced by drug treatment suppressed exon skipping in ods4-1. We propose that Cwf16p/NTC participates in the early recognition of the branch and 3' splice sites and cooperates with the SF1-U2AF59-U2AF23 complex to maintain ordered exon joining.
Collapse
|
10
|
Stepankiw N, Raghavan M, Fogarty EA, Grimson A, Pleiss JA. Widespread alternative and aberrant splicing revealed by lariat sequencing. Nucleic Acids Res 2015; 43:8488-501. [PMID: 26261211 PMCID: PMC4787815 DOI: 10.1093/nar/gkv763] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures.
Collapse
Affiliation(s)
- Nicholas Stepankiw
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Madhura Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Lareau LF, Brenner SE. Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible. Mol Biol Evol 2015; 32:1072-9. [PMID: 25576366 PMCID: PMC4379411 DOI: 10.1093/molbev/msv002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and NMD, one might expect this regulation to have originated in an early SR gene and persisted as duplications expanded the SR family. But in fact, unproductive splicing of most human SR genes arose independently (Lareau et al. 2007). This paradox led us to investigate the origin and proliferation of unproductive splicing in SR genes. We demonstrate that unproductive splicing of the splicing factor SRSF5 (SRp40) is conserved among all animals and even observed in fungi; this is a rare example of alternative splicing conserved between kingdoms, yet its effect is to trigger mRNA degradation. As the gene duplicated, the ancient unproductive splicing was lost in paralogs, and distinct unproductive splicing evolved rapidly and repeatedly to take its place. SR genes have consistently employed unproductive splicing, and while it is exceptionally conserved in some of these genes, turnover in specific events among paralogs shows flexible means to the same regulatory end.
Collapse
Affiliation(s)
- Liana F Lareau
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley Department of Biochemistry, Stanford University School of Medicine
| | - Steven E Brenner
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley
| |
Collapse
|
12
|
Ishida K, Kuboshima M, Morita H, Maeda H, Okamoto A, Takeuchi M, Yamagata Y. Diversity in mRNA expression of the serine-type carboxypeptidase ocpG in Aspergillus oryzae through intron retention. Biosci Biotechnol Biochem 2014; 78:1328-36. [PMID: 25130734 DOI: 10.1080/09168451.2014.923291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Alternative splicing is thought to be a means for diversification of products by mRNA modification. Although some intron retentions are predicted by transcriptome analysis in Aspergillus oryzae, its physiological significance remains unknown. We found that intron retention occurred occasionally in the serine-type carboxypeptidase gene, ocpG. Analysis under various culture conditions revealed that extracellular nitrogen conditions influence splicing patterns; this suggested that there might be a correlation between splicing efficiency and the necessity of OcpG activity for obtaining a nitrogen source. Since further analysis showed that splicing occurred independently in each intron, we constructed ocpG intron-exchanging strain by interchanging the positions of intron-1 and intron-2. The splicing pattern indicated the probability that ocpG intron retention was affected by the secondary structures of intronic mRNA.
Collapse
Affiliation(s)
- Ken Ishida
- a Department of Agriscience and Bioscience , Tokyo University of Agriculture and Technology , Tokyo , Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci U S A 2013; 110:12762-7. [PMID: 23861491 DOI: 10.1073/pnas.1218353110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing is a potent regulator of gene expression that vastly increases proteomic diversity in multicellular eukaryotes and is associated with organismal complexity. Although alternative splicing is widespread in vertebrates, little is known about the evolutionary origins of this process, in part because of the absence of phylogenetically conserved events that cross major eukaryotic clades. Here we describe a lariat-sequencing approach, which offers high sensitivity for detecting splicing events, and its application to the unicellular fungus, Schizosaccharomyces pombe, an organism that shares many of the hallmarks of alternative splicing in mammalian systems but for which no previous examples of exon-skipping had been demonstrated. Over 200 previously unannotated splicing events were identified, including examples of regulated alternative splicing. Remarkably, an evolutionary analysis of four of the exons identified here as subject to skipping in S. pombe reveals high sequence conservation and perfect length conservation with their homologs in scores of plants, animals, and fungi. Moreover, alternative splicing of two of these exons have been documented in multiple vertebrate organisms, making these the first demonstrations of identical alternative-splicing patterns in species that are separated by over 1 billion y of evolution.
Collapse
|
14
|
Wu X, Tronholm A, Cáceres EF, Tovar-Corona JM, Chen L, Urrutia AO, Hurst LD. Evidence for deep phylogenetic conservation of exonic splice-related constraints: splice-related skews at exonic ends in the brown alga Ectocarpus are common and resemble those seen in humans. Genome Biol Evol 2013; 5:1731-45. [PMID: 23902749 PMCID: PMC3787667 DOI: 10.1093/gbe/evt115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 12/22/2022] Open
Abstract
The control of RNA splicing is often modulated by exonic motifs near splice sites. Chief among these are exonic splice enhancers (ESEs). Well-described ESEs in mammals are purine rich and cause predictable skews in codon and amino acid usage toward exonic ends. Looking across species, those with relatively abundant intronic sequence are those with the more profound end of exon skews, indicative of exonization of splice site recognition. To date, the only intron-rich species that have been analyzed are mammals, precluding any conclusions about the likely ancestral condition. Here, we examine the patterns of codon and amino acid usage in the vicinity of exon-intron junctions in the brown alga Ectocarpus siliculosus, a species with abundant large introns, known SR proteins, and classical splice sites. We find that amino acids and codons preferred/avoided at both 3' and 5' ends in Ectocarpus, of which there are many, tend, on average, to also be preferred/avoided at the same exon ends in humans. Moreover, the preferences observed at the 5' ends of exons are largely the same as those at the 3' ends, a symmetry trend only previously observed in animals. We predict putative hexameric ESEs in Ectocarpus and show that these are purine rich and that there are many more of these identified as functional ESEs in humans than expected by chance. These results are consistent with deep phylogenetic conservation of SR protein binding motifs. Assuming codons preferred near boundaries are "splice optimal" codons, in Ectocarpus, unlike Drosophila, splice optimal and translationally optimal codons are not mutually exclusive. The exclusivity of translationally optimal and splice optimal codon sets is thus not universal.
Collapse
Affiliation(s)
- XianMing Wu
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| | - Ana Tronholm
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
- Present address: Department of Biological Sciences, University of Alabama, Mary Harmon Bryant Hall, Tuscaloosa, AL
| | - Eva Fernández Cáceres
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| | - Jaime M. Tovar-Corona
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| | - Lu Chen
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
| | - Araxi O. Urrutia
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| | - Laurence D. Hurst
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| |
Collapse
|
15
|
Martin F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 2012; 58:367-75. [PMID: 22841566 DOI: 10.1016/j.ymeth.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/14/2023] Open
Abstract
In 1996, the Wickens and the Kuhl labs developed the yeast three-hybrid system independently. By expressing two chimeric proteins and one chimeric RNA molecule in Saccharomyces cerevisiae, this method allows in vivo monitoring of RNA-protein interactions by measuring the expression levels of HIS3 and LacZ reporter genes. Specific RNA targets have been used to characterize unknown RNA binding proteins. Previously described RNA binding proteins have also been used as bait to select new RNA targets. Finally, this method has been widely used to investigate or confirm previously suspected RNA-protein interactions. However, this method falls short in some aspects, such as RNA display and selection of false positive molecules. This review will summarize the results obtained with this method from the past 15years, as well as on recent efforts to improve its specificity.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg CEDEX, France.
| |
Collapse
|
16
|
Potter K, Cremona N, Sunder S, Wise JA. A dominant role for meiosis-specific 3' RNA processing in controlling expression of a fission yeast cyclin gene. RNA (NEW YORK, N.Y.) 2012; 18:1408-1420. [PMID: 22647846 PMCID: PMC3383971 DOI: 10.1261/rna.033423.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
Meiotic gene regulation provides a rich source of insight into mechanisms of temporal control during development. We previously reported that accumulation of many meiotic mRNAs in fission yeast is governed by changes in 3' RNA processing and elucidated the molecular basis of this regulatory mechanism for an early meiotic gene. Here, we report that cleavage/polyadenylation is also the nexus of negative control for middle meiotic genes. Parallel profiles of splicing and polyadenylation are observed over a meiotic time course for both rem1 and spo4 but not for a constitutive control gene. Nevertheless, polyadenylation of rem1 transcripts is restricted to meiosis by a splicing-independent mechanism. Through systematic sequence substitutions, we identified a negative control region (NCR) located upstream of the rem1 transcription start site and found that it is required to block 3' RNA processing in proliferating cells. Ablation of the NCR relieves inhibition regardless of whether the intron is present, absent, or carries splice site mutations. Consistent with the previous report of a polypeptide encoded by the first exon of rem1, we discovered a second 3' processing site just downstream from the 5' splice site. Polyadenylation within the intron is activated concurrent with the downstream site during meiosis, is controlled by the NCR, and is enhanced when splicing is blocked via 5' junction or branch point mutations. Taken together, these data suggest a novel regulatory mechanism in which a 5' element modulates the dynamic interplay between splicing and polyadenylation.
Collapse
Affiliation(s)
- Kristine Potter
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | - Nicole Cremona
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | - Jo Ann Wise
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| |
Collapse
|
17
|
Abstract
The assembly of prespliceosomes is responsible for selection of intron sites for splicing. U1 and U2 snRNPs recognize 5' splice sites and branch sites, respectively; although there is information regarding the composition of these complexes, little is known about interaction among the components or between the two snRNPs. Here we describe the protein network of interactions linking U1 and U2 snRNPs with the ATPase Prp5, important for branch site recognition and fidelity during the first steps of the reaction, using fission yeast Schizosaccharomyces pombe. The U1 snRNP core protein U1A binds to a novel SR-like protein, Rsd1, which has homologs implicated in transcription. Rsd1 also contacts S. pombe Prp5 (SpPrp5), mediated by SR-like domains in both proteins. SpPrp5 then contacts U2 snRNP through SF3b, mediated by a conserved DPLD motif in Prp5. We show that mutations in this motif have consequences not only in vitro (defects in prespliceosome formation) but also in vivo, yielding intron retention and exon skipping defects in fission yeast and altered intron recognition in budding yeast Saccharomyces cerevisiae, indicating that the U1-U2 network provides critical, evolutionarily conserved contacts during intron definition.
Collapse
|
18
|
Busch A, Hertel KJ. Evolution of SR protein and hnRNP splicing regulatory factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:1-12. [PMID: 21898828 DOI: 10.1002/wrna.100] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The splicing of pre-mRNAs is an essential step of gene expression in eukaryotes. Introns are removed from split genes through the activities of the spliceosome, a large ribonuclear machine that is conserved throughout the eukaryotic lineage. While unicellular eukaryotes are characterized by less complex splicing, pre-mRNA splicing of multicellular organisms is often associated with extensive alternative splicing that significantly enriches their proteome. The alternative selection of splice sites and exons permits multicellular organisms to modulate gene expression patterns in a cell type-specific fashion, thus contributing to their functional diversification. Alternative splicing is a regulated process that is mainly influenced by the activities of splicing regulators, such as SR proteins or hnRNPs. These modular factors have evolved from a common ancestor through gene duplication events to a diverse group of splicing regulators that mediate exon recognition through their sequence-specific binding to pre-mRNAs. Given the strong correlations between intron expansion, the complexity of pre-mRNA splicing, and the emergence of splicing regulators, it is argued that the increased presence of SR and hnRNP proteins promoted the evolution of alternative splicing through relaxation of the sequence requirements of splice junctions.
Collapse
Affiliation(s)
- Anke Busch
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA
| | | |
Collapse
|
19
|
Zago P, Buratti E, Stuani C, Baralle FE. Evolutionary connections between coding and splicing regulatory regions in the fibronectin EDA exon. J Mol Biol 2011; 411:1-15. [PMID: 21663748 DOI: 10.1016/j.jmb.2011.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 01/03/2023]
Abstract
Research on exonic coding sequences has demonstrated that many substitutions at the amino acid level may also reflect profound changes at the level of splicing regulatory regions. These results have revealed that, for many alternatively spliced exons, there is considerable pressure to strike a balance between two different and sometimes conflicting forces: the drive to improve the quality and production efficiency of proteins and the maintenance of proper exon recognition by the splicing machinery. Up to now, the systems used to investigate these connections have mostly focused on short alternatively spliced exons that contain a high density of splicing regulatory elements. Although this is obviously a desirable feature in order to maximize the chances of spotting connections, it also complicates the process of drawing straightforward evolutionary pathways between different species (because of the numerous alternative pathways through which the same end point can be achieved). The alternatively spliced fibronectin extra domain A exon (also referred to as EDI or EIIIA) does not have these limitations, as its inclusion is already known to depend on a single exonic splicing enhancer element within its sequence. In this study, we have compared the rat and human fibronectin EDA exons with regard to RNA structure, exonic splicing enhancer strengths, and SR protein occupancy. The results gained from these analyses have then been used to perform an accurate evaluation of EDA sequences observed in a wide range of animal species. This comparison strongly suggests the existence of an evolutionary connection between changes at the nucleotide levels and the need to maintain efficient EDA recognition in different species.
Collapse
Affiliation(s)
- Paola Zago
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
20
|
Niu DK, Yang YF. Why eukaryotic cells use introns to enhance gene expression: splicing reduces transcription-associated mutagenesis by inhibiting topoisomerase I cutting activity. Biol Direct 2011; 6:24. [PMID: 21592350 PMCID: PMC3118952 DOI: 10.1186/1745-6150-6-24] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background The costs and benefits of spliceosomal introns in eukaryotes have not been established. One recognized effect of intron splicing is its known enhancement of gene expression. However, the mechanism regulating such splicing-mediated expression enhancement has not been defined. Previous studies have shown that intron splicing is a time-consuming process, indicating that splicing may not reduce the time required for transcription and processing of spliced pre-mRNA molecules; rather, it might facilitate the later rounds of transcription. Because the densities of active RNA polymerase II on most genes are less than one molecule per gene, direct interactions between the splicing apparatus and transcriptional complexes (from the later rounds of transcription) are infrequent, and thus unlikely to account for splicing-mediated gene expression enhancement. Presentation of the hypothesis The serine/arginine-rich protein SF2/ASF can inhibit the DNA topoisomerase I activity that removes negative supercoiling of DNA generated by transcription. Consequently, splicing could make genes more receptive to RNA polymerase II during the later rounds of transcription, and thus affect the frequency of gene transcription. Compared with the transcriptional enhancement mediated by strong promoters, intron-containing genes experience a lower frequency of cut-and-paste processes. The cleavage and religation activity of DNA strands by DNA topoisomerase I was recently shown to account for transcription-associated mutagenesis. Therefore, intron-mediated enhancement of gene expression could reduce transcription-associated genome instability. Testing the hypothesis Experimentally test whether transcription-associated mutagenesis is lower in intron-containing genes than in intronless genes. Use bioinformatic analysis to check whether exons flanking lost introns have higher frequencies of short deletions. Implications of the hypothesis The mechanism of intron-mediated enhancement proposed here may also explain the positive correlation observed between intron size and gene expression levels in unicellular organisms, and the greater number of intron containing genes in higher organisms. Reviewers This article was reviewed by Dr Arcady Mushegian, Dr Igor B Rogozin (nominated by Dr I King Jordan) and Dr Alexey S Kondrashov. For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Deng-Ke Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | | |
Collapse
|
21
|
Campion Y, Neel H, Gostan T, Soret J, Bordonné R. Specific splicing defects in S. pombe carrying a degron allele of the Survival of Motor Neuron gene. EMBO J 2010; 29:1817-29. [PMID: 20400941 DOI: 10.1038/emboj.2010.70] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 03/24/2010] [Indexed: 11/09/2022] Open
Abstract
Spinal muscular atrophy results from deletions or mutations in the survival of motor neuron (SMN1) gene. The SMN protein has an essential role in the biogenesis of spliceosomal snRNPs, but the link between a defect in this process and specific splicing inhibition of pre-mRNAs has not been established. In this study, we report the construction of a temperature-degron (td) allele of the Schizosaccharomyces pombe SMN protein and show that its depletion at 37 degrees C affects splicing and formation of U1, U2, U4 and U5 snRNPs, but not of U6 and U3 ribonucleoproteins. The function of the tdSMN allele in snRNP assembly is already perturbed at 25 degrees C, suggesting a deleterious effect of the tag at this temperature. Using a genome-wide approach, we report that introns react unequally to lower levels of snRNPs in tdSMN cells and that increasing the length of the polypyrimidine tract can improve the splicing efficiency of some, but not all, affected introns. Altogether, our results suggest that the defects observed in tdSMN fission yeast cells mimic splicing deficits observed in SMN-deficient metazoan cells.
Collapse
Affiliation(s)
- Yannick Campion
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535/IFR122, Université Montpellier I and II, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
22
|
Meili D, Kralovicova J, Zagalak J, Bonafé L, Fiori L, Blau N, Thöny B, Vorechovsky I. Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail. Hum Mutat 2009; 30:823-31. [PMID: 19280650 DOI: 10.1002/humu.20969] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryptic exons or pseudoexons are typically activated by point mutations that create GT or AG dinucleotides of new 5' or 3' splice sites in introns, often in repetitive elements. Here we describe two cases of tetrahydrobiopterin deficiency caused by mutations improving the branch point sequence and polypyrimidine tracts of repeat-containing pseudoexons in the PTS gene. In the first case, we demonstrate a novel pathway of antisense Alu exonization, resulting from an intronic deletion that removed the poly(T)-tail of antisense AluSq. The deletion brought a favorable branch point sequence within proximity of the pseudoexon 3' splice site and removed an upstream AG dinucleotide required for the 3' splice site repression on normal alleles. New Alu exons can thus arise in the absence of poly(T)-tails that facilitated inclusion of most transposed elements in mRNAs by serving as polypyrimidine tracts, highlighting extraordinary flexibility of Alu repeats in shaping intron-exon structure. In the other case, a PTS pseudoexon was activated by an A>T substitution 9 nt upstream of its 3' splice site in a LINE-2 sequence, providing the first example of a disease-causing exonization of the most ancient interspersed repeat. These observations expand the spectrum of mutational mechanisms that introduce repetitive sequences in mature transcripts and illustrate the importance of intronic mutations in alternative splicing and phenotypic variability of hereditary disorders.
Collapse
Affiliation(s)
- David Meili
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Plass M, Agirre E, Reyes D, Camara F, Eyras E. Co-evolution of the branch site and SR proteins in eukaryotes. Trends Genet 2008; 24:590-4. [PMID: 18992956 DOI: 10.1016/j.tig.2008.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/19/2008] [Accepted: 10/02/2008] [Indexed: 11/15/2022]
Abstract
Serine-arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with variable arginine-rich regions analogous to the arginine-serine-rich (RS) domain in metazoans. The density of RS repeats in these regions correlates with the conservation of the branch site signal, providing evidence for an ancestral origin of SR proteins and indicating that the SR proteins and the branch site co-evolved.
Collapse
Affiliation(s)
- Mireya Plass
- Computational Genomics Group, Universitat Pompeu Fabra, PRBB, Dr. Aiguader 88 E08003, Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
|
25
|
McGuire AM, Pearson MD, Neafsey DE, Galagan JE. Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biol 2008; 9:R50. [PMID: 18321378 PMCID: PMC2397502 DOI: 10.1186/gb-2008-9-3-r50] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/28/2008] [Accepted: 03/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variations in transcript splicing can reveal how eukaryotes recognize intronic splice sites. Retained introns (RIs) commonly appear when the intron definition (ID) mechanism of splice site recognition inconsistently identifies intron-exon boundaries, and cassette exons (CEs) are often caused by variable recognition of splice junctions by the exon definition (ED) mechanism. We have performed a comprehensive survey of alternative splicing across 42 eukaryotes to gain insight into how spliceosomal introns are recognized. RESULTS All eukaryotes we studied exhibit RIs, which appear more frequently than previously thought. CEs are also present in all kingdoms and most of the organisms in our analysis. We observe that the ratio of CEs to RIs varies substantially among kingdoms, while the ratio of competing 3' acceptor and competing 5' donor sites remains nearly constant. In addition, we find the ratio of CEs to RIs in each organism correlates with the length of its introns. In all 14 fungi we examined, as well as in most of the 9 protists, RIs far outnumber CEs. This differs from the trend seen in 13 multicellular animals, where CEs occur much more frequently than RIs. The six plants we analyzed exhibit intermediate proportions of CEs and RIs. CONCLUSION Our results suggest that most extant eukaryotes are capable of recognizing splice sites via both ID and ED, although ED is most common in multicellular animals and ID predominates in fungi and most protists.
Collapse
Affiliation(s)
- Abigail M McGuire
- The Broad Institute of MIT and Harvard, Cambridge Center, Cambridge, MA 02142, USA
| | - Matthew D Pearson
- The Broad Institute of MIT and Harvard, Cambridge Center, Cambridge, MA 02142, USA
| | - Daniel E Neafsey
- The Broad Institute of MIT and Harvard, Cambridge Center, Cambridge, MA 02142, USA
| | - James E Galagan
- The Broad Institute of MIT and Harvard, Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
26
|
Warnecke T, Parmley JL, Hurst LD. Finding exonic islands in a sea of non-coding sequence: splicing related constraints on protein composition and evolution are common in intron-rich genomes. Genome Biol 2008; 9:R29. [PMID: 18257921 PMCID: PMC2374712 DOI: 10.1186/gb-2008-9-2-r29] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/23/2007] [Accepted: 02/07/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In mammals, splice-regulatory domains impose marked trends on the relative abundance of certain amino acids near exon-intron boundaries. Is this a mammalian particularity or symptomatic of exonic splicing regulation across taxa? Are such trends more common in species that a priori have a harder time identifying exon ends, that is, those with pre-mRNA rich in intronic sequence? We address these questions surveying exon composition in a sample of phylogenetically diverse genomes. RESULTS Biased amino acid usage near exon-intron boundaries is common throughout the metazoa but not restricted to the metazoa. There is extensive cross-species concordance as to which amino acids are affected, and reduced/elevated abundances are well predicted by knowledge of splice enhancers. Species expected to rely on exon definition for splicing, that is, those with a higher ratio of intronic to coding sequence, more introns per gene and longer introns, exhibit more amino acid skews. Notably, this includes the intron-rich basidiomycete Cryptococcus neoformans, which, unlike intron-poor ascomycetes (Schizosaccharomyces pombe, Saccharomyces cerevisiae), exhibits compositional biases reminiscent of the metazoa. Strikingly, 5 prime ends of nematode exons deviate radically from normality: amino acids strongly preferred near boundaries are strongly avoided in other species, and vice versa. This we suggest is a measure to avoid attracting trans-splicing machinery. CONCLUSION Constraints on amino acid composition near exon-intron boundaries are phylogenetically widespread and characteristic of species where exon localization should be problematic. That compositional biases accord with sequence preferences of splice-regulatory proteins and are absent in ascomycetes is consistent with selection on exonic splicing regulation.
Collapse
Affiliation(s)
- Tobias Warnecke
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | | |
Collapse
|
27
|
A premature termination codon mutation at the C terminus of foamy virus Gag downregulates the levels of spliced pol mRNA. J Virol 2007; 82:1656-64. [PMID: 18057244 DOI: 10.1128/jvi.00990-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Foamy viruses (FV) comprise a subfamily of retroviruses. Orthoretroviruses, such as human immunodeficiency virus type 1, synthesize Gag and Pol from unspliced genomic RNA. However, FV Pol is expressed from a spliced mRNA independently of Gag. FV pol splicing uses a 3' splice site located at the 3' end of gag, resulting in a shared exon between gag and pol. Previously, our laboratory showed that C-terminal Gag premature termination codon (PTC) mutations in the 3' shared exon led to greatly decreased levels of Pol protein (C. R. Stenbak and M. L. Linial, J. Virol. 78:9423-9430, 2004). To further characterize these mutants, we quantitated the levels of unspliced gag and spliced pol mRNAs using a real-time PCR assay. In some of the PTC mutants, the levels of spliced pol mRNA were reduced as much as 30-fold, whereas levels of unspliced gag RNA were not affected. Substitutions of a missense codon in place of a PTC restored normal levels of spliced pol mRNA. Disrupting Upf proteins involved in nonsense-mediated mRNA decay (NMD) did not affect Pol protein expression. Introduction of an exonic splicing enhancer downstream of the PTC mutation restored pol splicing to the wild-type level. Taken together, our results show that the PTC mutation itself is responsible for decreased levels of pol mRNA but that mechanisms other than NMD might be involved in downregulating Pol expression. The results also suggest that normal pol splicing utilizes a suboptimal splice site seen for other spliced mRNAs in most retroviruses, in that introduced exonic enhancer elements can increase splicing efficiency.
Collapse
|
28
|
Tang Z, Tsurumi A, Alaei S, Wilson C, Chiu C, Oya J, Ngo B. Dsk1p kinase phosphorylates SR proteins and regulates their cellular localization in fission yeast. Biochem J 2007; 405:21-30. [PMID: 17362205 PMCID: PMC1925236 DOI: 10.1042/bj20061523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evolutionarily conserved SR proteins (serine/arginine-rich proteins) are important factors for alternative splicing and their activity is modulated by SRPKs (SR protein-specific kinases). We previously identified Dsk1p (dis1-suppressing protein kinase) as the orthologue of human SRPK1 in fission yeast. In addition to its similarity of gene structure to higher eukaryotes, fission yeast Schizosaccharomyces pombe is a unicellular eukaryotic organism in which alternative splicing takes place. In the present study, we have revealed for the first time that SR proteins, Srp1p and Srp2p, are the in vivo substrates of Dsk1p in S. pombe. Moreover, the cellular localization of the SR proteins and Prp2p splicing factor is dependent on dsk1(+): Dsk1p is required for the efficient nuclear localization of Srp2p and Prp2p, while it promotes the cytoplasmic distribution of Srp1p, thereby differentially influencing the destinations of these proteins in the cell. The present study offers the first biochemical and genetic evidence for the in vivo targets of the SRPK1 orthologue, Dsk1p, in S. pombe and the significant correlation between Dsk1p-mediated phosphorylation and the cellular localization of the SR proteins, providing information about the physiological functions of Dsk1p. Furthermore, the results demonstrate that the regulatory function of SRPKs in the nuclear targeting of SR proteins is conserved from fission yeast to human, indicating a general mechanism of reversible phosphorylation to control the activities of SR proteins in RNA metabolism through cellular partitioning.
Collapse
Affiliation(s)
- Zhaohua Tang
- W.M. Keck Science Center, 925 North Mills Avenue, The Claremont Colleges, Claremont, CA 91711, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Buratti E, Stuani C, De Prato G, Baralle FE. SR protein-mediated inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic splicing silencer. Nucleic Acids Res 2007; 35:4359-68. [PMID: 17576688 PMCID: PMC1935002 DOI: 10.1093/nar/gkm444] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intronic splicing silencer (ISS) of CFTR exon 9 promotes exclusion of this exon from the mature mRNA. This negative influence has important consequences with regards to human pathologic events, as lack of exon 9 correlates well with the occurrence of monosymptomatic and full forms of CF disease. We have previously shown that the ISS element interacts with members of the SR protein family. In this work, we now provide the identification of SF2/ASF and SRp40 as the specific SR proteins binding to this element and map their precise binding sites in IVS9. We have also performed a functional analysis of the ISS element using a variety of unrelated SR-binding sequences and different splicing systems. Our results suggest that SR proteins mediate CFTR exon 9 exclusion by providing a ‘decoy’ sequence in the vicinity of its suboptimal donor site. The results of this study give an insight on intron ‘exonization’ mechanisms and provide useful indications for the development of novel therapeutic strategies aimed at the recovery of exon inclusion.
Collapse
|
30
|
Paz A, Mester D, Nevo E, Korol A. Looking for organization patterns of highly expressed genes: purine-pyrimidine composition of precursor mRNAs. J Mol Evol 2007; 64:248-60. [PMID: 17211550 DOI: 10.1007/s00239-006-0135-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 11/19/2006] [Indexed: 01/05/2023]
Abstract
We analyzed precursor messenger RNAs (pre-mRNAs) of 12 eukaryotic species. In each species, three groups of highly expressed genes, ribosomal proteins, heat shock proteins, and amino-acyl tRNA synthetases, were compared with a control group (randomly selected genes). The purine-pyrimidine (R-Y) composition of pre-mRNAs of the three targeted gene groups proved to differ significantly from the control. The exons of the three groups tested have higher purine contents and R-tract abundance and lower abundance of Y-tracts compared to the control (R-tract-tract of sequential purines with Rn>or=5; Y-tract-tract of sequential pyrimidines with Yn>or=5). In species widely employing "intron definition" in the splicing process, the Y content of introns of the three targeted groups appeared to be higher compared to the control group. Furthermore, in all examined species, the introns of the targeted genes have a lower abundance of R-tracts compared to the control. We hypothesized that the R-Y composition of the targeted gene groups contributes to high rate and efficiency of both splicing and translation, in addition to the mRNA coding role. This is presumably achieved by (1) reducing the possibility of the formation of secondary structures in the mRNA, (2) using the R-tracts and R-biased sequences as exonic splicing enhancers, (3) lowering the amount of targets for pyrimidine tract binding protein in the exons, and (4) reducing the amount of target sequences for binding of serine/arginine-rich (SR) proteins in the introns, thereby allowing SR proteins to bind to proper (exonic) targets.
Collapse
Affiliation(s)
- A Paz
- Institute of Evolution, Haifa University, Mount Carmel, Haifa, 31905, Israel
| | | | | | | |
Collapse
|
31
|
Raponi M, Baralle FE, Pagani F. Reduced splicing efficiency induced by synonymous substitutions may generate a substrate for natural selection of new splicing isoforms: the case of CFTR exon 12. Nucleic Acids Res 2006; 35:606-13. [PMID: 17172597 PMCID: PMC1802620 DOI: 10.1093/nar/gkl1087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing has been associated with increased evolutionary changes and with recent exon creation or loss. The addition of a new exon can be explained by its inclusion in only a fraction of the transcripts leaving the original form intact and giving to the new form the possibility to evolve independently but the exon loss phenomenon is less clear. To explore the mechanism that could be involved in CFTR exon 12 lower splicing efficiency in primates, we have analyzed the effect of multiple synonymous variations. Random patterns of synonymous variations were created in CFTR exon12 and the majority of them induced exon inclusion, suggesting a suboptimal splicing efficiency of the human gene. In addition, the effect of each single synonymous substitution on splicing is strongly dependent on the exonic context and does not correlate with available in silico exon splicing prediction programs. We propose that casual synonymous substitutions may lead to a reduced splicing efficiency that can result in a variable proportion of exon loss. If this phenomenon happens in in-frame exons and to an extent tolerated by the cells it can have an important evolutionary effect since it may generate a substrate for natural selection of new splicing isoforms.
Collapse
Affiliation(s)
| | | | - Franco Pagani
- To whom correspondence should be addressed: Tel: +39 040 37571; Fax: +39 040 226555;
| |
Collapse
|
32
|
Ram O, Ast G. SR proteins: a foot on the exon before the transition from intron to exon definition. Trends Genet 2006; 23:5-7. [PMID: 17070958 DOI: 10.1016/j.tig.2006.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 09/05/2006] [Accepted: 10/17/2006] [Indexed: 10/24/2022]
Abstract
Two recent publications illuminate the evolution of alternative splicing, showing that a SR (serine-arginine-rich) protein that regulates alternative splicing in multicellular organisms is also found in a unicellular organism without alternative splicing, in which it can assist in the splicing of weak introns. Moreover, insertion of SR proteins into an organism lacking such proteins can restore the splicing of weak introns. These results imply that SR proteins had already facilitated the splicing of weak introns before the evolution of alternative splicing.
Collapse
Affiliation(s)
- Oren Ram
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
33
|
Izquierdo JM, Valcárcel J. A simple principle to explain the evolution of pre-mRNA splicing. Genes Dev 2006; 20:1679-84. [PMID: 16818600 DOI: 10.1101/gad.1449106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- José-María Izquierdo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | | |
Collapse
|
34
|
Pettigrew C, Wayte N, Lovelock PK, Tavtigian SV, Chenevix-Trench G, Spurdle AB, Brown MA. Evolutionary conservation analysis increases the colocalization of predicted exonic splicing enhancers in the BRCA1 gene with missense sequence changes and in-frame deletions, but not polymorphisms. Breast Cancer Res 2005; 7:R929-39. [PMID: 16280041 PMCID: PMC1410749 DOI: 10.1186/bcr1324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 08/24/2005] [Accepted: 09/02/2005] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Aberrant pre-mRNA splicing can be more detrimental to the function of a gene than changes in the length or nature of the encoded amino acid sequence. Although predicting the effects of changes in consensus 5' and 3' splice sites near intron:exon boundaries is relatively straightforward, predicting the possible effects of changes in exonic splicing enhancers (ESEs) remains a challenge. METHODS As an initial step toward determining which ESEs predicted by the web-based tool ESEfinder in the breast cancer susceptibility gene BRCA1 are likely to be functional, we have determined their evolutionary conservation and compared their location with known BRCA1 sequence variants. RESULTS Using the default settings of ESEfinder, we initially detected 669 potential ESEs in the coding region of the BRCA1 gene. Increasing the threshold score reduced the total number to 464, while taking into consideration the proximity to splice donor and acceptor sites reduced the number to 211. Approximately 11% of these ESEs (23/211) either are identical at the nucleotide level in human, primates, mouse, cow, dog and opossum Brca1 (conserved) or are detectable by ESEfinder in the same position in the Brca1 sequence (shared). The frequency of conserved and shared predicted ESEs between human and mouse is higher in BRCA1 exons (2.8 per 100 nucleotides) than in introns (0.6 per 100 nucleotides). Of conserved or shared putative ESEs, 61% (14/23) were predicted to be affected by sequence variants reported in the Breast Cancer Information Core database. Applying the filters described above increased the colocalization of predicted ESEs with missense changes, in-frame deletions and unclassified variants predicted to be deleterious to protein function, whereas they decreased the colocalization with known polymorphisms or unclassified variants predicted to be neutral. CONCLUSION In this report we show that evolutionary conservation analysis may be used to improve the specificity of an ESE prediction tool. This is the first report on the prediction of the frequency and distribution of ESEs in the BRCA1 gene, and it is the first reported attempt to predict which ESEs are most likely to be functional and therefore which sequence variants in ESEs are most likely to be pathogenic.
Collapse
Affiliation(s)
- Christopher Pettigrew
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicola Wayte
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Paul K Lovelock
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | | | | | - Amanda B Spurdle
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Melissa A Brown
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
35
|
Current awareness on yeast. Yeast 2005. [DOI: 10.1002/yea.1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|