1
|
Hou H, Jin Q, Ren Y, Chen Z, Wang Q, Xu Y. Structure of the SNAPc-bound RNA polymerase III preinitiation complex. Cell Res 2023; 33:565-568. [PMID: 37165065 PMCID: PMC10313668 DOI: 10.1038/s41422-023-00819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianwei Jin
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenguo Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
3
|
Sun J, Li X, Hou X, Cao S, Cao W, Zhang Y, Song J, Wang M, Wang H, Yan X, Li Z, Roeder RG, Wang W. Structural basis of human SNAPc recognizing proximal sequence element of snRNA promoter. Nat Commun 2022; 13:6871. [PMID: 36369505 PMCID: PMC9652321 DOI: 10.1038/s41467-022-34639-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, small nuclear RNAs (snRNAs) function in many fundamental cellular events such as precursor messenger RNA splicing, gene expression regulation, and ribosomal RNA processing. The snRNA activating protein complex (SNAPc) exclusively recognizes the proximal sequence element (PSE) at snRNA promoters and recruits RNA polymerase II or III to initiate transcription. In view that homozygous gene-knockout of SNAPc core subunits causes mouse embryonic lethality, functions of SNAPc are almost housekeeping. But so far, the structural insight into how SNAPc assembles and regulates snRNA transcription initiation remains unclear. Here we present the cryo-electron microscopy structure of the essential part of human SNAPc in complex with human U6-1 PSE at an overall resolution of 3.49 Å. This structure reveals the three-dimensional features of three conserved subunits (N-terminal domain of SNAP190, SNAP50, and SNAP43) and explains how they are assembled into a stable mini-SNAPc in PSE-binding state with a "wrap-around" mode. We identify three important motifs of SNAP50 that are involved in both major groove and minor groove recognition of PSE, in coordination with the Myb domain of SNAP190. Our findings further elaborate human PSE sequence conservation and compatibility for SNAPc recognition, providing a clear framework of snRNA transcription initiation, especially the U6 system.
Collapse
Affiliation(s)
- Jianfeng Sun
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.134907.80000 0001 2166 1519Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, 10065 USA
| | - Xue Li
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Xuben Hou
- grid.27255.370000 0004 1761 1174School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Sujian Cao
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Wenjin Cao
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Ye Zhang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Jinyang Song
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Manfu Wang
- grid.512077.6Wuxi Biortus Biosciences Co. Ltd., Jiangyin, 214437 China
| | - Hao Wang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Xiaodong Yan
- grid.512077.6Wuxi Biortus Biosciences Co. Ltd., Jiangyin, 214437 China
| | - Zengpeng Li
- grid.453137.70000 0004 0406 0561Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - Robert G. Roeder
- grid.134907.80000 0001 2166 1519Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, 10065 USA
| | - Wei Wang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Interventional Medicine Department, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033 China
| |
Collapse
|
4
|
Jiménez-Mejía G, Montalvo-Méndez R, Hernández-Bautista C, Altamirano-Torres C, Vázquez M, Zurita M, Reséndez-Pérez D. Trimeric complexes of Antp-TBP with TFIIEβ or Exd modulate transcriptional activity. Hereditas 2022; 159:23. [PMID: 35637493 PMCID: PMC9150345 DOI: 10.1186/s41065-022-00239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hox proteins finely coordinate antero-posterior axis during embryonic development and through their action specific target genes are expressed at the right time and space to determine the embryo body plan. As master transcriptional regulators, Hox proteins recognize DNA through the homeodomain (HD) and interact with a multitude of proteins, including general transcription factors and other cofactors. HD binding specificity increases by protein–protein interactions with a diversity of cofactors that outline the Hox interactome and determine the transcriptional landscape of the selected target genes. All these interactions clearly demonstrate Hox-driven transcriptional regulation, but its precise mechanism remains to be elucidated. Results Here we report Antennapedia (Antp) Hox protein–protein interaction with the TATA-binding protein (TBP) and the formation of novel trimeric complexes with TFIIEβ and Extradenticle (Exd), as well as its participation in transcriptional regulation. Using Bimolecular Fluorescence Complementation (BiFC), we detected the interaction of Antp-TBP and, in combination with Förster Resonance Energy Transfer (BiFC-FRET), the formation of the trimeric complex with TFIIEβ and Exd in living cells. Mutational analysis showed that Antp interacts with TBP through their N-terminal polyglutamine-stretches. The trimeric complexes of Antp-TBP with TFIIEβ and Exd were validated using different Antp mutations to disrupt the trimeric complexes. Interestingly, the trimeric complex Antp-TBP-TFIIEβ significantly increased the transcriptional activity of Antp, whereas Exd diminished its transactivation. Conclusions Our findings provide important insights into the Antp interactome with the direct interaction of Antp with TBP and the two new trimeric complexes with TFIIEβ and Exd. These novel interactions open the possibility to analyze promoter function and gene expression to measure transcription factor binding dynamics at target sites throughout the genome. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00239-8.
Collapse
|
5
|
Structural basis of SNAPc-dependent snRNA transcription initiation by RNA polymerase II. Nat Struct Mol Biol 2022; 29:1159-1169. [PMID: 36424526 PMCID: PMC9758055 DOI: 10.1038/s41594-022-00857-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
RNA polymerase II (Pol II) carries out transcription of both protein-coding and non-coding genes. Whereas Pol II initiation at protein-coding genes has been studied in detail, Pol II initiation at non-coding genes, such as small nuclear RNA (snRNA) genes, is less well understood at the structural level. Here, we study Pol II initiation at snRNA gene promoters and show that the snRNA-activating protein complex (SNAPc) enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro. We then resolve cryo-EM structures of the SNAPc-containing Pol IIpre-initiation complex (PIC) assembled on U1 and U5 snRNA promoters. The core of SNAPc binds two turns of DNA and recognizes the snRNA promoter-specific proximal sequence element (PSE), located upstream of the TATA box-binding protein TBP. Two extensions of SNAPc, called wing-1 and wing-2, bind TFIIA and TFIIB, respectively, explaining how SNAPc directs Pol II to snRNA promoters. Comparison of structures of closed and open promoter complexes elucidates TFIIH-independent DNA opening. These results provide the structural basis of Pol II initiation at non-coding RNA gene promoters.
Collapse
|
6
|
Fajkus P, Kilar A, Nelson ADL, Holá M, Peška V, Goffová I, Fojtová M, Zachová D, Fulnečková J, Fajkus J. Evolution of plant telomerase RNAs: farther to the past, deeper to the roots. Nucleic Acids Res 2021; 49:7680-7694. [PMID: 34181710 PMCID: PMC8287931 DOI: 10.1093/nar/gkab545] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.
Collapse
Affiliation(s)
- Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | | | - Marcela Holá
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague CZ-16000, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Ivana Goffová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Fulnečková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| |
Collapse
|
7
|
Thiedig K, Weisshaar B, Stracke R. Functional and evolutionary analysis of the Arabidopsis 4R-MYB protein SNAPc4 as part of the SNAP complex. PLANT PHYSIOLOGY 2021; 185:1002-1020. [PMID: 33693812 PMCID: PMC8133616 DOI: 10.1093/plphys/kiaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Transcription initiation of the genes coding for small nuclear RNA (snRNA) has been extensively analyzed in humans and fruit fly, but only a single ortholog of a snRNA-activating protein complex (SNAPc) subunit has so far been characterized in plants. The genome of the model plant Arabidopsis thaliana encodes orthologs of all three core SNAPc subunits, including A. thaliana SNAP complex 4 (AtSNAPc4)-a 4R-MYB-type protein with four-and-a-half adjacent MYB repeat units. We report the conserved role of AtSNAPc4 as subunit of a protein complex involved in snRNA gene transcription and present genetic evidence that AtSNAPc4 is an essential gene in gametophyte and zygote development. We present experimental evidence that the three A. thaliana SNAPc subunits assemble into a SNAP complex and demonstrate the binding of AtSNAPc4 to snRNA promoters. In addition, co-localization studies show a link between AtSNAPc4 accumulation and Cajal bodies, known to aggregate at snRNA gene loci in humans. Moreover, we show the strong evolutionary conservation of single-copy 4R-MYB/SNAPc4 genes in a broad range of eukaryotes and present additional shared protein features besides the MYB domain, suggesting a conservation of the snRNA transcription initiation machinery along the course of the eukaryotic evolution.
Collapse
Affiliation(s)
- Katharina Thiedig
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| |
Collapse
|
8
|
Choi CP, Tay RJ, Starostik MR, Feng S, Moresco JJ, Montgomery BE, Xu E, Hammonds MA, Schatz MC, Montgomery TA, Yates JR, Jacobsen SE, Kim JK. SNPC-1.3 is a sex-specific transcription factor that drives male piRNA expression in C. elegans. eLife 2021; 10:e60681. [PMID: 33587037 PMCID: PMC7884074 DOI: 10.7554/elife.60681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific regulation are unknown. Here we identify SNPC-1.3, a male germline-enriched variant of a conserved subunit of the small nuclear RNA-activating protein complex, as a male-specific piRNA transcription factor in Caenorhabditis elegans. SNPC-1.3 colocalizes with the core piRNA transcription factor, SNPC-4, in nuclear foci of the male germline. Binding of SNPC-1.3 at male piRNA loci drives spermatogenic piRNA transcription and requires SNPC-4. Loss of snpc-1.3 leads to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during oogenesis. Thus, sexually dimorphic regulation of snpc-1.3 expression coordinates male and female piRNA expression during germline development.
Collapse
Affiliation(s)
- Charlotte P Choi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Rebecca J Tay
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| | - James J Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical CenterDallasUnited States
| | | | - Emily Xu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Maya A Hammonds
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Michael C Schatz
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | | | - John R Yates
- Department of Molecular Medicine, The Scripps Research InstituteLa JollaUnited States
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - John K Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
9
|
Dergai O, Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes. Trends Genet 2019; 35:457-469. [PMID: 31040056 DOI: 10.1016/j.tig.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023]
Abstract
Nuclear eukaryotic genomes are transcribed by three related RNA polymerases (Pol), which transcribe distinct gene sets. Specific Pol recruitment is achieved through selective core promoter recognition by basal transcription factors (TFs). Transcription by an inappropriate Pol appears to be rare and to generate mostly unstable products. A collection of short noncoding RNA genes [for example, small nuclear RNA (snRNA) or 7SK RNA genes], which play essential roles in processes such as maturation of RNA molecules or control of Pol II transcription elongation, possess highly similar core promoters, and yet are transcribed for some by Pol II and for others by Pol III as a result of small promoter differences. Here we discuss the mechanisms of selective Pol recruitment to such promoters.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Ohtani M. Transcriptional regulation of snRNAs and its significance for plant development. JOURNAL OF PLANT RESEARCH 2017; 130:57-66. [PMID: 27900551 DOI: 10.1007/s10265-016-0883-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Small nuclear RNA (snRNA) represents a distinct class of non-coding RNA molecules. As these molecules have fundamental roles in RNA metabolism, including pre-mRNA splicing and ribosomal RNA processing, it is essential that their transcription be tightly regulated in eukaryotic cells. The genome of each organism contains hundreds of snRNA genes. Although the structures of these genes are highly diverse among organisms, the trans-acting factors that regulate snRNA transcription are evolutionarily conserved. Recent studies of the Arabidopsis thaliana srd2-1 mutant, which is defective in the snRNA transcription factor, provide insight into the physiological significance of snRNA regulation in plant development. Here, I review the current understanding of the molecular mechanisms underlying snRNA transcription.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
11
|
Fairoozy RH, White J, Palmen J, Kalea AZ, Humphries SE. Identification of the Functional Variant(s) that Explain the Low-Density Lipoprotein Receptor (LDLR) GWAS SNP rs6511720 Association with Lower LDL-C and Risk of CHD. PLoS One 2016; 11:e0167676. [PMID: 27973560 PMCID: PMC5156384 DOI: 10.1371/journal.pone.0167676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 11/20/2016] [Indexed: 12/02/2022] Open
Abstract
Background The Low-Density Lipoprotein Receptor (LDLR) SNP rs6511720 (G>T), located in intron-1 of the gene, has been identified in genome-wide association studies (GWAS) as being associated with lower plasma levels of LDL-C and a lower risk of coronary heart disease (CHD). Whether or not rs6511720 is itself functional or a marker for a functional variant elsewhere in the gene is not known. Methods The association of LDLR SNP rs6511720 with incidence of CHD and levels of LDL-C was determined by reference to CARDIoGRAM, C4D and Global lipids genetics consortium (GLGC) data. SNP annotation databases were used to identify possible SNP function and prioritization. Luciferase reporter assays in the liver cell line Huh7 were used to measure the effect of variant genotype on gene expression. Electrophoretic Mobility Shift Assays (EMSAs) were used to identify the Transcription Factors (TFs) involved in gene expression regulation. Results The phenotype-genotype analysis showed that the rs6511720 minor allele is associated with lower level of LDL-C [beta = -0.2209, p = 3.85 x10-262], and lower risk of CHD [log (OR) = 0.1155, p = 1.04 x10-7]. Rs6511720 is in complete linkage. Rs6511720 is in complete linkage disequilibrium (LD) with three intron-1 SNPs (rs141787760, rs60173709, rs57217136). Luciferase reporter assays in Huh7 cells showed that the rare alleles of both rs6511720 and rs57217136 caused a significant increase in LDLR expression compared to the common alleles (+29% and +24%, respectively). Multiplex Competitor-EMSAs (MC-EMSA) identified that the transcription factor serum response element (SRE) binds to rs6511720, while retinoic acid receptor (RAR) and signal transducer and activator of transcription 1 (STAT1) bind to rs57217136. Conclusion Both LDLR rs6511720 and rs57217136 are functional variants. Both these minor alleles create enhancer-binding protein sites for TFs and may contribute to increased LDLR expression, which is consequently associated with reduced LDL-C levels and 12% lower CHD risk.
Collapse
Affiliation(s)
- Roaa Hani Fairoozy
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University College London, London, United Kingdom
- * E-mail:
| | - Jon White
- University College London Genetics Institute, Department of Genetics, Environment and Evolution, London, United Kingdom
| | - Jutta Palmen
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Anastasia Z. Kalea
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
12
|
Ohtani M, Takebayashi A, Hiroyama R, Xu B, Kudo T, Sakakibara H, Sugiyama M, Demura T. Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2015; 128:371-80. [PMID: 25740809 DOI: 10.1007/s10265-015-0704-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
R. Lambert J, K. Nordeen S. A role for the non-conserved N-terminal domain of the TATA-binding protein in the crosstalk between cell signaling pathways and steroid receptors. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Tsukaya H, Byrne ME, Horiguchi G, Sugiyama M, Van Lijsebettens M, Lenhard M. How do 'housekeeping' genes control organogenesis?--Unexpected new findings on the role of housekeeping genes in cell and organ differentiation. JOURNAL OF PLANT RESEARCH 2013; 126:3-15. [PMID: 22922868 DOI: 10.1007/s10265-012-0518-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 05/08/2023]
Abstract
In recent years, an increasing number of mutations in what would appear to be 'housekeeping genes' have been identified as having unexpectedly specific defects in multicellular organogenesis. This is also the case for organogenesis in seed plants. Although it is not surprising that loss-of-function mutations in 'housekeeping' genes result in lethality or growth retardation, it is surprising when (1) the mutant phenotype results from the loss of function of a 'housekeeping' gene and (2) the mutant phenotype is specific. In this review, by defining housekeeping genes as those encoding proteins that work in basic metabolic and cellular functions, we discuss unexpected links between housekeeping genes and specific developmental processes. In a surprising number of cases housekeeping genes coding for enzymes or proteins with functions in basic cellular processes such as transcription, post-transcriptional modification, and translation affect plant development.
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
James Faresse N, Canella D, Praz V, Michaud J, Romascano D, Hernandez N. Genomic study of RNA polymerase II and III SNAPc-bound promoters reveals a gene transcribed by both enzymes and a broad use of common activators. PLoS Genet 2012; 8:e1003028. [PMID: 23166507 PMCID: PMC3499247 DOI: 10.1371/journal.pgen.1003028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/24/2012] [Indexed: 12/23/2022] Open
Abstract
SNAPc is one of a few basal transcription factors used by both RNA polymerase (pol) II and pol III. To define the set of active SNAPc-dependent promoters in human cells, we have localized genome-wide four SNAPc subunits, GTF2B (TFIIB), BRF2, pol II, and pol III. Among some seventy loci occupied by SNAPc and other factors, including pol II snRNA genes, pol III genes with type 3 promoters, and a few un-annotated loci, most are primarily occupied by either pol II and GTF2B, or pol III and BRF2. A notable exception is the RPPH1 gene, which is occupied by significant amounts of both polymerases. We show that the large majority of SNAPc-dependent promoters recruit POU2F1 and/or ZNF143 on their enhancer region, and a subset also recruits GABP, a factor newly implicated in SNAPc-dependent transcription. These activators associate with pol II and III promoters in G1 slightly before the polymerase, and ZNF143 is required for efficient transcription initiation complex assembly. The results characterize a set of genes with unique properties and establish that polymerase specificity is not absolute in vivo. SNAPc-dependent promoters are unique among cellular promoters in being very similar to each other, even though some of them recruit RNA polymerase II and others RNA polymerase III. We have examined all SNAPc-bound promoters present in the human genome. We find a surprisingly small number of them, some 70 promoters. Among these, the large majority is bound by either RNA polymerase II or RNA polymerase III, as expected, but one gene hitherto considered an RNA polymerase III gene is also occupied by significant levels of RNA polymerase II. Both RNA polymerase II and RNA polymerase III SNAPc-dependent promoters use a largely overlapping set of a few transcription activators, including GABP, a novel factor implicated in snRNA gene transcription.
Collapse
Affiliation(s)
- Nicole James Faresse
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joëlle Michaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Romascano
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals. Mol Cell Biol 2012; 32:4642-50. [PMID: 22966203 DOI: 10.1128/mcb.00906-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of transcription of RNA polymerase II (RNAPII)-dependent genes requires the participation of a host of basal transcription factors. Among genes requiring RNAPII for transcription, small nuclear RNAs (snRNAs) display a further requirement for a factor known as snRNA-activating protein complex (SNAPc). The scope of the biological function of SNAPc and its requirement for transcription of protein-coding genes has not been elucidated. To determine the genome-wide occupancy of SNAPc, we performed chromatin immunoprecipitation followed by high-throughput sequencing using antibodies against SNAPC4 and SNAPC1 subunits. Interestingly, while SNAPC4 occupancy was limited to snRNA genes, SNAPC1 chromatin residence extended beyond snRNA genes to include a large number of transcriptionally active protein-coding genes. Notably, SNAPC1 occupancy on highly active genes mirrored that of elongating RNAPII extending through the bodies and 3' ends of protein-coding genes. Inhibition of transcriptional elongation resulted in the loss of SNAPC1 from the 3' ends of genes, reflecting a functional association between SNAPC1 and elongating RNAPII. Importantly, while depletion of SNAPC1 had a small effect on basal transcription, it diminished the transcriptional responsiveness of a large number of genes to two distinct extracellular stimuli, epidermal growth factor (EGF) and retinoic acid (RA). These results highlight a role for SNAPC1 as a general transcriptional coactivator that functions through elongating RNAPII.
Collapse
|
17
|
Voz ML, Coppieters W, Manfroid I, Baudhuin A, Von Berg V, Charlier C, Meyer D, Driever W, Martial JA, Peers B. Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing. PLoS One 2012; 7:e34671. [PMID: 22496837 PMCID: PMC3319596 DOI: 10.1371/journal.pone.0034671] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/06/2012] [Indexed: 02/03/2023] Open
Abstract
Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish.
Collapse
Affiliation(s)
- Marianne L Voz
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Sart Tilman, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mutation of zebrafish Snapc4 is associated with loss of the intrahepatic biliary network. Dev Biol 2011; 363:128-37. [PMID: 22222761 DOI: 10.1016/j.ydbio.2011.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
Biliary epithelial cells line the intrahepatic biliary network, a complex three-dimensional network of conduits. The loss of differentiated biliary epithelial cells is the primary cause of many congenital liver diseases. We identified a zebrafish snapc4 (small nuclear RNA-activating complex polypeptide 4) mutant in which biliary epithelial cells initially differentiate but subsequently disappear. In these snapc4 mutant larvae, biliary epithelial cells undergo apoptosis, leading to degeneration of the intrahepatic biliary network. Consequently, in snapc4 mutant larvae, biliary transport of ingested fluorescent lipids to the gallbladder is blocked. Snapc4 is the largest subunit of a protein complex that regulates small nuclear RNA (snRNA) transcription. The snapc4(s445) mutation causes a truncation of the C-terminus, thereby deleting the domain responsible for a specific interaction with Snapc2, a vertebrate specific subunit of the SNAP complex. This mutation leads to a hypomorphic phenotype, as only a subset of snRNA transcripts are quantitatively altered in snapc4(s445) mutant larvae. snapc2 knockdown also disrupts the intrahepatic biliary network in a similar fashion as in snapc4(s445) mutant larvae. These data indicate that the physical interaction between Snapc2 and Snapc4 is important for the expression of a subset of snRNAs and biliary epithelial cell survival in zebrafish.
Collapse
|
19
|
Lunyak VV, Atallah M. Genomic relationship between SINE retrotransposons, Pol III-Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol 2011; 89:495-504. [PMID: 21916613 DOI: 10.1139/o11-046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A typical eukaryotic genome harbors a rich variety of repetitive elements. The most abundant are retrotransposons, mobile retroelements that utilize reverse transcriptase and an RNA intermediate to relocate to a new location within the cellular genomes. A vast majority of the repetitive mammalian genome content has originated from the retrotransposition of SINE (100-300 bp short interspersed nuclear elements that are derived from the structural 7SL RNA or tRNA), LINE (7kb long interspersed nuclear element), and LTR (2-3 kb long terminal repeats) transposable element superfamilies. Broadly labeled as "evolutionary junkyard" or "fossils", this enigmatic "dark matter" of the genome possesses many yet to be discovered properties.
Collapse
|
20
|
Hung KH, Stumph WE. Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc). Crit Rev Biochem Mol Biol 2010; 46:11-26. [PMID: 20925482 DOI: 10.3109/10409238.2010.518136] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The small nuclear RNAs (snRNAs) are an essential class of non-coding RNAs first identified over 30 years ago. Many of the well-characterized snRNAs are involved in RNA processing events. However, it is now evident that other small RNAs, synthesized using similar mechanisms, play important roles at many stages of gene expression. The accurate and efficient control of the expression of snRNA (and related) genes is thus critical for cell survival. All snRNA genes share a very similar promoter structure, and their transcription is dependent upon the same multi-subunit transcription factor, termed the snRNA activating protein complex (SNAPc). Despite those similarities, some snRNA genes are transcribed by RNA polymerase II (Pol II), but others are transcribed by RNA polymerase III (Pol III). Thus snRNA genes provide a unique opportunity to understand how RNA polymerase specificity is determined and how distinct transcription machineries can interact with a common factor. This review will describe efforts taken toward solving those questions by using the fruit fly as a model organism. Drosophila melanogaster SNAPc (DmSNAPc) binds to a proximal sequence element (PSEA) present in both Pol II and Pol III snRNA promoters. Just a few differences in nucleotide sequence in the Pol II and Pol III PSEAs play a major role in determining RNA polymerase specificity. Furthermore, these same nucleotide differences result in alternative conformations of DmSNAPc on Pol II and Pol III snRNA gene promoters. It seems likely that these DNA-induced alternative DmSNAPc conformations are responsible for the differential recruitment of the distinct transcriptional machineries.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, USA
| | | |
Collapse
|
21
|
Goodrich JA, Kugel JF. Dampening DNA binding: a common mechanism of transcriptional repression for both ncRNAs and protein domains. RNA Biol 2010; 7:305-9. [PMID: 20436282 DOI: 10.4161/rna.7.3.11910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
With eukaryotic non-coding RNAs (ncRNAs) now established as critical regulators of cellular transcription, the true diversity with which they can elicit biological effects is beginning to be appreciated. Two ncRNAs, mouse B2 RNA and human Alu RNA, have been found to repress mRNA transcription in response to heat shock. They do so by binding directly to RNA polymerase II, assembling into complexes on promoter DNA, and disrupting contacts between the polymerase and the DNA. Such a mechanism of repression had not previously been observed for a eukaryotic ncRNA; however, there are examples of eukaryotic protein domains that repress transcription by blocking essential protein-DNA interactions. Comparing the mechanism of transcriptional repression utilized by these protein domains to that used by B2 and Alu RNAs raises intriguing questions regarding transcriptional control, and how B2 and Alu RNAs might themselves be regulated.
Collapse
Affiliation(s)
- James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
22
|
Kim MK, Kang YS, Lai HT, Barakat NH, Magante D, Stumph WE. Identification of SNAPc subunit domains that interact with specific nucleotide positions in the U1 and U6 gene promoters. Mol Cell Biol 2010; 30:2411-23. [PMID: 20212087 PMCID: PMC2863707 DOI: 10.1128/mcb.01508-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/15/2009] [Accepted: 02/25/2010] [Indexed: 11/20/2022] Open
Abstract
The small nuclear RNA (snRNA)-activating protein complex (SNAPc) is essential for transcription of genes coding for the snRNAs (U1, U2, etc.). In Drosophila melanogaster, the heterotrimeric DmSNAPc recognizes a 21-bp DNA sequence, the proximal sequence element A (PSEA), located approximately 40 to 60 bp upstream of the transcription start site. Upon binding the PSEA, DmSNAPc establishes RNA polymerase II preinitiation complexes on U1 to U5 promoters but RNA polymerase III preinitiation complexes on U6 promoters. Minor differences in nucleotide sequence of the U1 and U6 PSEAs determine RNA polymerase specificity; moreover, DmSNAPc adopts different conformations on these different PSEAs. We have proposed that such conformational differences in DmSNAPc play a key role in determining the different polymerase specificities of the U1 and U6 promoters. To better understand the structure of DmSNAPc-PSEA complexes, we have developed a novel protocol that combines site-specific protein-DNA photo-cross-linking with site-specific chemical cleavage of the protein. This protocol has allowed us to map regions within each of the three DmSNAPc subunits that contact specific nucleotide positions within the U1 and U6 PSEAs. These data help to establish the orientation of each DmSNAPc subunit on the DNA and have revealed cases in which different domains of the subunits differentially contact the U1 versus U6 PSEAs.
Collapse
Affiliation(s)
- Mun Kyoung Kim
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Yoon Soon Kang
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Hsien-Tsung Lai
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Nermeen H. Barakat
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Deodato Magante
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - William E. Stumph
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| |
Collapse
|
23
|
Hung KH, Titus M, Chiang SC, Stumph WE. A map of Drosophila melanogaster small nuclear RNA-activating protein complex (DmSNAPc) domains involved in subunit assembly and DNA binding. J Biol Chem 2009; 284:22568-79. [PMID: 19556241 DOI: 10.1074/jbc.m109.027961] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of genes coding for the small nuclear RNAs (snRNAs) is dependent upon a unique transcription factor known as the small nuclear RNA-activating protein complex (SNAPc). SNAPc binds to an essential proximal sequence element located about 40-65 base pairs upstream of the snRNA transcription start site. In the fruit fly Drosophila melanogaster, DmSNAPc contains three distinct polypeptides (DmSNAP190, DmSNAP50, and DmSNAP43) that are stably associated with each other and bind to the DNA as a complex. We have used mutational analysis to identify domains within each subunit that are involved in complex formation with the other two subunits in vivo. We have also identified domains in each subunit required for sequence-specific DNA binding. With one exception, domains required for subunit-subunit interactions lie in the most evolutionarily conserved regions of the proteins. However, DNA binding by DmSNAPc is dependent not only upon the conserved regions but is also highly dependent upon domains outside the conserved regions. Comparison with functional domains identified in human SNAPc indicates many parallels but also reveals significant differences in this ancient yet rapidly evolving system.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Molecular Biology Institute, Department of Biology, San Diego State University, San Diego, California 92182-1030, USA
| | | | | | | |
Collapse
|
24
|
Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:295-305. [PMID: 18442490 PMCID: PMC2684849 DOI: 10.1016/j.bbagrm.2008.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/06/2023]
Abstract
The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated.
Collapse
Affiliation(s)
- Gauri W. Jawdekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
25
|
Shanmugam M, Hernandez N. Mitotic functions for SNAP45, a subunit of the small nuclear RNA-activating protein complex SNAPc. J Biol Chem 2008; 283:14845-56. [PMID: 18356157 PMCID: PMC2386947 DOI: 10.1074/jbc.m800833200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The small nuclear RNA-activating protein complex SNAPc is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAPc contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF δ, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G2/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAPc subunit, leads to an accumulation of cells with a G0/G1 DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAPc and another as a factor required for proper mitotic progression.
Collapse
|
26
|
Ohtani M, Demura T, Sugiyama M. Differential requirement for the function of SRD2, an snRNA transcription activator, in various stages of plant development. PLANT MOLECULAR BIOLOGY 2008; 66:303-314. [PMID: 18064403 DOI: 10.1007/s11103-007-9271-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 11/25/2007] [Indexed: 05/25/2023]
Abstract
Small nuclear RNA (snRNA) is a class of eukaryotic noncoding RNAs, which have essential roles in pre-mRNA splicing and rRNA processing. As these functions are fundamental to cell activities, the regulation of snRNA transcription should be a vital issue for all eukaryotes. Here we address developmental control of snRNA transcription and its significance through the analysis of the SRD2 gene of Arabidopsis (Arabidopsis thaliana), which encodes an activator of snRNA transcription. In young seedlings, a high level of SRD2 expression was observed in shoot and root apical meristems, leaf primordia, and root stele tissues, where a large amount of snRNA accumulated. In mature plants, SRD2 was highly expressed in developing leaves and flowers as well as apical meristems. Mutations in the SRD2 gene interfered with many, but not all, aspects of development in the regions that showed strong expression of SRD2. Of note, establishment of the fully active state of apical meristems in the seedling stage was very sensitive to the srd2-1 mutation, while maintenance of the established meristems was substantially insensitive. These results demonstrated differential requirement for the SRD2 function in various stages of plant development.
Collapse
Affiliation(s)
- Misato Ohtani
- Plant Science Center, RIKEN, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
27
|
Gu L, Husain-Ponnampalam R, Hoffmann-Benning S, Henry RW. The protein kinase CK2 phosphorylates SNAP190 to negatively regulate SNAPC DNA binding and human U6 transcription by RNA polymerase III. J Biol Chem 2007; 282:27887-96. [PMID: 17670747 DOI: 10.1074/jbc.m702269200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human U6 small nuclear RNA gene transcription by RNA polymerase III requires the general transcription factor SNAP(C), which binds to human small nuclear RNA core promoter elements and nucleates pre-initiation complex assembly with the Brf2-TFIIIB complex. Multiple components in this pathway are phosphorylated by the protein kinase CK2, including the Bdp1 subunit of the Brf2-TFIIIB complex, and RNA polymerase III, with negative and positive outcomes for U6 transcription, respectively. However, a role for CK2 phosphorylation of SNAP(C) in U6 transcription has not been defined. In this report, we investigated the role of CK2 in modulating the transcriptional properties of SNAP(C) and demonstrate that within SNAP(C), CK2 phosphorylates the N-terminal half of the SNAP190 subunit at two regions (amino acids 20-63 and 514-545) that each contain multiple CK2 consensus sites. SNAP190 phosphorylation by CK2 inhibits both SNAP(C) DNA binding and U6 transcription activity. Mutational analyses of SNAP190 support a model wherein CK2 phosphorylation triggers an allosteric inhibition of the SNAP190 Myb DNA binding domain.
Collapse
Affiliation(s)
- Liping Gu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
28
|
Characterization of an Oct1 orthologue in the channel catfish, Ictalurus punctatus: a negative regulator of immunoglobulin gene transcription? BMC Mol Biol 2007; 8:8. [PMID: 17266766 PMCID: PMC1800861 DOI: 10.1186/1471-2199-8-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enhancer (Emu3') of the immunoglobulin heavy chain locus (IGH) of the channel catfish (Ictalurus punctatus) has been well characterized. The functional core region consists of two variant Oct transcription factor binding octamer motifs and one E-protein binding muE5 site. An orthologue to the Oct2 transcription factor has previously been cloned in catfish and is a functionally active transcription factor. This study was undertaken to clone and characterize the Oct1 transcription factor, which has also been shown to be important in driving immunoglobulin gene transcription in mammals. RESULTS An orthologue of Oct1, a POU family transcription factor, was cloned from a catfish macrophage cDNA library. The inferred amino acid sequence of the catfish Oct1, when aligned with other vertebrate Oct1 sequences, revealed clear conservation of structure, with the POU specific subdomain of catfish Oct1 showing 96% identity to that of mouse Oct1. Expression of Oct1 was observed in clonal T and B cell lines and in all tissues examined. Catfish Oct1, when transfected into both mammalian (mouse) and catfish B cell lines, unexpectedly failed to drive transcription from three different octamer-containing reporter constructs. These contained a trimer of octamer motifs, a fish VH promoter, and the core region of the catfish Emu3' IGH enhancer, respectively. This failure of catfish Oct1 to drive transcription was not rescued by human BOB.1, a co-activator of Oct transcription factors that stimulates transcription driven by catfish Oct2. When co-transfected with catfish Oct2, Oct1 reduced Oct2 driven transcriptional activation. Electrophoretic mobility shift assays showed that catfish Oct1 (native or expressed in vitro) bound both consensus and variant octamer motifs. Putative N- and C-terminal activation domains of Oct1, when fused to a Gal4 DNA binding domain and co-transfected with Gal4-dependent reporter constructs were transcriptionally inactive, which may be due in part to a lack of residues associated with activation domain function. CONCLUSION An orthologue to mammalian Oct1 has been found in the catfish. It is similar to mammalian Oct1 in structure and expression. However, these results indicate that the physiological functions of catfish Oct1 differ from those of mammalian Oct1 and include negative regulation of transcription.
Collapse
|
29
|
Jawdekar GW, Hanzlowsky A, Hovde SL, Jelencic B, Feig M, Geiger JH, Henry RW. The unorthodox SNAP50 zinc finger domain contributes to cooperative promoter recognition by human SNAPC. J Biol Chem 2006; 281:31050-60. [PMID: 16901896 DOI: 10.1074/jbc.m603810200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human small nuclear RNA gene transcription by RNA polymerases II and III depends upon promoter recognition by the SNAPC general transcription factor. DNA binding by SNAPC involves direct DNA contacts by the SNAP190 subunit in cooperation with SNAP50 and SNAP43. The data presented herein shows that SNAP50 plays an important role in DNA binding by SNAPC through its zinc finger domain. The SNAP50 zinc finger domain contains 15 cysteine and histidine residues configured in two potential zinc coordination arrangements. Individual alanine substitution of each cysteine and histidine residue demonstrated that eight sites are important for DNA binding by SNAPC. However, metal binding studies revealed that SNAPC contains a single zinc atom indicating that only one coordination site functions as a zinc finger. Of the eight residues critical for DNA binding, four cysteine residues were also essential for both U1 and U6 transcription by RNA polymerase II and III, respectively. Surprisingly, the remaining four residues, although critical for U1 transcription could support partial U6 transcription. DNA binding studies showed that defects in DNA binding by SNAPC alone could be suppressed through cooperative DNA binding with another member of the RNA polymerase III general transcription machinery, TFIIIB. These results suggest that these eight cysteine and histidine residues perform different functions during DNA binding with those residues involved in zinc coordination likely performing a dominant role in domain stabilization and the others involved in DNA binding. These data further define the unorthodox SNAP50 zinc finger region as an evolutionarily conserved DNA binding domain.
Collapse
Affiliation(s)
- Gauri W Jawdekar
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Emran F, Florens L, Ma B, Swanson SK, Washburn MP, Hernandez N. A role for Yin Yang-1 (YY1) in the assembly of snRNA transcription complexes. Gene 2006; 377:96-108. [PMID: 16769183 DOI: 10.1016/j.gene.2006.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/17/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The RNA polymerase (pol) II and III human small nuclear RNA (snRNA) genes have very similar promoters and recruit a number of common factors. In particular, both types of promoters utilize the small nuclear RNA activating protein complex (SNAP(c)) and the TATA box binding protein (TBP) for basal transcription, and are activated by Oct-1. We find that SNAP(c) purified from cell lines expressing tagged SNAP(c) subunits is associated with Yin Yang-1 (YY1), a factor implicated in both activation and repression of transcription. Recombinant YY1 accelerates the binding of SNAP(c) to the proximal sequence element, its target within snRNA promoters. Moreover, it enhances the formation of a complex on the pol III U6 snRNA promoter containing all the factors (SNAP(c), TBP, TFIIB-related factor 2 (Brf2), and B double prime 1 (Bdp1)) that are sufficient to direct in vitro U6 transcription when complemented with purified pol III, as well as that of a subcomplex containing TBP, Brf2, and Bdp1. YY1 is found on both the RNA polymerase II U1 and the RNA polymerase III U6 promoters as determined by chromatin immunoprecipitations. Thus, YY1 represents a new factor that participates in transcription complexes formed on both pol II and III promoters.
Collapse
Affiliation(s)
- Farida Emran
- Stony Brook University, Graduate Program in Molecular and Cellular Pharmacology, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
31
|
Hanzlowsky A, Jelencic B, Jawdekar G, Hinkley CS, Geiger JH, Henry RW. Co-expression of multiple subunits enables recombinant SNAPC assembly and function for transcription by human RNA polymerases II and III. Protein Expr Purif 2006; 48:215-23. [PMID: 16603380 PMCID: PMC2714255 DOI: 10.1016/j.pep.2006.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/07/2006] [Accepted: 02/19/2006] [Indexed: 11/21/2022]
Abstract
Human small nuclear (sn) RNA genes are transcribed by either RNA polymerase II or III depending upon the arrangement of their core promoter elements. Regardless of polymerase specificity, these genes share a requirement for a general transcription factor called the snRNA activating protein complex or SNAP(C). This multi-subunit complex recognizes the proximal sequence element (PSE) commonly found in the upstream promoters of human snRNA genes. SNAP(C) consists of five subunits: SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. Previous studies have shown that a partial SNAP(C) composed of SNAP190 (1-514), SNAP50, and SNAP43 expressed in baculovirus is capable of PSE-specific DNA binding and transcription of human snRNA genes by RNA polymerases II and III. Expression in a baculovirus system yields active complex but the concentration of such material is insufficient for many bio-analytical methods. Herein, we describe the co-expression in Escherichia coli of a partial SNAP(C) containing SNAP190 (1-505), SNAP50, SNAP43, and SNAP19. The co-expressed complex binds DNA specifically and recruits TBP to U6 promoter DNA. Importantly, this partial complex functions in reconstituted transcription of both human U1 and U6 snRNA genes by RNA polymerases II and III, respectively. This co-expression system will facilitate the functional characterization of this unusual multi-protein transcription factor that plays an important early role for transcription by two different polymerases.
Collapse
Affiliation(s)
- Andrej Hanzlowsky
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Blanka Jelencic
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Gauri Jawdekar
- Department of Microbiology and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Craig S. Hinkley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Corresponding authors. Fax: +1 517 353 9334. E-mail addresses: (J.H. Geiger), (R.W. Henry)
| | - R. William Henry
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Corresponding authors. Fax: +1 517 353 9334. E-mail addresses: (J.H. Geiger), (R.W. Henry)
| |
Collapse
|
32
|
Ohtani M, Sugiyama M. Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:479-90. [PMID: 16098103 DOI: 10.1111/j.1365-313x.2005.02469.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transcription machinery of small nuclear RNA (snRNA) genes has been investigated extensively in human cell-free systems, but its physiological function in vivo has not been addressed. This paper demonstrates the physiological role of an activator of snRNA transcription using a temperature-sensitive mutant of Arabidopsis thaliana, srd2. Phenotypic characteristics of the srd2 mutant suggest that the SRD2 gene participates in the control of competence in cell proliferation. The SRD2 gene encodes a nuclear protein that shares sequence similarity with the human SNAP50 protein, which is a subunit of SNAPc and is required for snRNA transcription in vitro. Our results, obtained from analysis of snRNA expression in the srd2 mutant, indicate that the SRD2 protein functions in the upregulation of transcription of snRNA genes, the promoters of which contain the upstream sequence element, to elevate cell proliferation competence.
Collapse
Affiliation(s)
- Misato Ohtani
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
| | | |
Collapse
|
33
|
Gu L, Esselman WJ, Henry RW. Cooperation between small nuclear RNA-activating protein complex (SNAPC) and TATA-box-binding protein antagonizes protein kinase CK2 inhibition of DNA binding by SNAPC. J Biol Chem 2005; 280:27697-704. [PMID: 15955816 DOI: 10.1074/jbc.m503206200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase CK2 regulates RNA polymerase III transcription of human U6 small nuclear RNA (snRNA) genes both negatively and positively depending upon whether the general transcription machinery or RNA polymerase III is preferentially phosphorylated. Human U1 snRNA genes share similar promoter architectures as that of U6 genes but are transcribed by RNA polymerase II. Herein, we report that CK2 inhibits U1 snRNA gene transcription by RNA polymerase II. Decreased levels of endogenous CK2 correlates with increased U1 expression, whereas CK2 associates with U1 gene promoters, indicating that it plays a direct role in U1 gene regulation. CK2 phosphorylates the general transcription factor small nuclear RNA-activating protein complex (SNAP(C)) that is required for both RNA polymerase II and III transcription, and SNAP(C) phosphorylation inhibits binding to snRNA gene promoters. However, restricted promoter access by phosphorylated SNAP(C) can be overcome by cooperative interactions with TATA-box-binding protein at a U6 promoter but not at a U1 promoter. Thus, CK2 may have the capacity to differentially regulate U1 and U6 transcription even though SNAP(C) is universally utilized for human snRNA gene transcription.
Collapse
Affiliation(s)
- Liping Gu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
34
|
Németh A, Strohner R, Grummt I, Längst G. The chromatin remodeling complex NoRC and TTF-I cooperate in the regulation of the mammalian rRNA genes in vivo. Nucleic Acids Res 2004; 32:4091-9. [PMID: 15292447 PMCID: PMC514363 DOI: 10.1093/nar/gkh732] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transcription termination factor (TTF)-I is a multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. TTF-I plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. The N-terminal part of TTF-I contains a negative regulatory domain (NRD) that inhibits DNA binding. Here we show that interactions between the NRD and the C-terminal part of TTF-I mask the DNA-binding domain of TTF-I. However, interaction with TIP5, a subunit of the nucleolar chromatin remodeling complex, NoRC, recovers DNA-binding activity. We have mapped the protein domains that mediate the interaction between TTF-I and TIP5. The association of TIP5 with the NRD facilitates DNA binding of TTF-I and leads to the recruitment of NoRC to the rDNA promoter. Thus, TTF-I and NoRC act in concert to silence rDNA transcription.
Collapse
Affiliation(s)
- Attila Németh
- Adolf Butenandt Institut, Molekularbiologie, Ludwig-Maximilians-Universität München, Schillerstrasse 44, D-80336 München, Germany
| | | | | | | |
Collapse
|
35
|
Lively TN, Nguyen TN, Galasinski SK, Goodrich JA. The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N terminus of human TATA-binding protein-associated factor-1 (human TAF(II)250). J Biol Chem 2004; 279:26257-65. [PMID: 15087451 DOI: 10.1074/jbc.m400892200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that c-Jun binds directly to the N-terminal 163 amino acids of Homo sapiens TATA-binding protein-associated factor-1 (hsTAF1), causing a derepression of transcription factor IID (TFIID)-driven transcription (Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G., and Goodrich, J. A. (2001) J. Biol. Chem. 276, 25582-25588). This region of hsTAF1 binds TATA-binding protein to repress TFIID DNA binding and transcription. Here we show that the basic leucine zipper domain of c-Jun, which allows for DNA binding and homodimerization, is necessary and sufficient for interaction with hsTAF1. Interestingly, the isolated basic leucine zipper domain of c-Jun was able to derepress TFIID-directed basal transcription in vitro. Moreover, when the N-terminal region of hsTAF1 was added to in vitro transcription reactions and overexpressed in cells, it blocked c-Jun activation. c-Fos, another basic leucine zipper protein, did not interact with hsTAF1, but c-Fos/c-Jun heterodimers did bind the N terminus of hsTAF1. Our studies show that, in addition to dimerization and DNA binding, the well characterized basic leucine zipper domain of c-Jun functions in transcriptional activation by binding to the N terminus of hsTAF1 to derepress transcription.
Collapse
Affiliation(s)
- Tricia N Lively
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
36
|
Li C, Harding GA, Parise J, McNamara-Schroeder KJ, Stumph WE. Architectural arrangement of cloned proximal sequence element-binding protein subunits on Drosophila U1 and U6 snRNA gene promoters. Mol Cell Biol 2004; 24:1897-906. [PMID: 14966271 PMCID: PMC350556 DOI: 10.1128/mcb.24.5.1897-1906.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of snRNA genes by either RNA polymerase II (U1 to U5) or RNA polymerase III (U6) is dependent upon a proximal sequence element (PSE) located approximately 40 to 60 bp upstream of the transcription start site. In Drosophila melanogaster, RNA polymerase specificity is determined by as few as three nucleotide differences within the otherwise well-conserved 21-bp PSE. Previous photo-cross-linking studies revealed that the D. melanogaster PSE-binding protein, DmPBP, contains three subunits (DmPBP45, DmPBP49, and DmPBP95) that associate with the DNA to form complexes that are conformationally distinct depending upon whether the protein is bound to a U1 or a U6 PSE. We have identified and cloned the genes that code for these subunits of DmPBP by virtue of their similarity to three of the five subunits of SNAP(c), the human PBP. When expressed in S2 cells, each of the three cloned gene products is incorporated into a protein complex that functionally binds to a PSE. We also find that the conformational difference referred to above is particularly pronounced for DmPBP45, herein identified as the ortholog of human SNAP43. DmPBP45 cross-linked strongly to DNA for two turns of the DNA helix downstream of the U1 PSE, but it cross-linked strongly for only a half turn of the helix downstream of a U6 PSE. These substantial differences in the cross-linking pattern are consistent with those of a model in which conformational differences in DmPBP-DNA complexes lead to selective RNA polymerase recruitment to U1 and U6 promoters.
Collapse
Affiliation(s)
- Cheng Li
- Department of Chemistry and Molecular Biology Institute, San Diego State University, San Diego, California 92182-1030, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- Stephen T Smale
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
38
|
Abstract
Autoinhibitory domains are regions of proteins that negatively regulate the function of other domains via intramolecular interactions. Autoinhibition is a potent regulatory mechanism that provides tight "on-site" repression. The discovery of autoinhibition generates valuable clues to how a protein is regulated within a biological context. Mechanisms that counteract the autoinhibition, including proteolysis, post-translational modifications, as well as addition of proteins or small molecules in trans, often represent central regulatory pathways. In this review, we document the diversity of instances in which autoinhibition acts in cell regulation. Seven well-characterized examples (e.g., sigma(70), Ets-1, ERM, SNARE and WASP proteins, SREBP, Src) are covered in detail. Over thirty additional examples are listed. We present experimental approaches to characterize autoinhibitory domains and discuss the implications of this widespread phenomenon for biological regulation in both the normal and diseased states.
Collapse
Affiliation(s)
- Miles A Pufall
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City 84112-5550, USA.
| | | |
Collapse
|
39
|
Hinkley CS, Hirsch HA, Gu L, LaMere B, Henry RW. The small nuclear RNA-activating protein 190 Myb DNA binding domain stimulates TATA box-binding protein-TATA box recognition. J Biol Chem 2003; 278:18649-57. [PMID: 12621023 DOI: 10.1074/jbc.m204247200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human U6 small nuclear RNA (snRNA) gene transcription by RNA polymerase III requires cooperative promoter binding involving the snRNA-activating protein complex (SNAP(c)) and the TATA-box binding protein (TBP). To investigate the role of SNAP(c) for TBP function at U6 promoters, TBP recruitment assays were performed using full-length TBP and a mini-SNAP(c) containing SNAP43, SNAP50, and a truncated SNAP190. Mini-SNAP(c) efficiently recruits TBP to the U6 TATA box, and two SNAP(c) subunits, SNAP43 and SNAP190, directly interact with the TBP DNA binding domain. Truncated SNAP190 containing only the Myb DNA binding domain is sufficient for TBP recruitment to the TATA box. Therefore, the SNAP190 Myb domain functions both to specifically recognize the proximal sequence element present in the core promoters of human snRNA genes and to stimulate TBP recognition of the neighboring TATA box present in human U6 snRNA promoters. The SNAP190 Myb domain also stimulates complex assembly with TBP and Brf2, a subunit of a snRNA-specific TFIIIB complex. Thus, interactions between the DNA binding domains of SNAP190 and TBP at juxtaposed promoter elements define the assembly of a RNA polymerase III-specific preinitiation complex.
Collapse
Affiliation(s)
- Craig S Hinkley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
40
|
Schmidt EE, Bondareva AA, Radke JR, Capecchi MR. Fundamental cellular processes do not require vertebrate-specific sequences within the TATA-binding protein. J Biol Chem 2003; 278:6168-74. [PMID: 12471023 DOI: 10.1074/jbc.m211205200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 180-amino acid core of the TATA-binding protein (TBPcore) is conserved from Archae bacteria to man. Vertebrate TBPs contain, in addition, a large and highly conserved N-terminal region that is not found in other phyla. We have generated a line of mice in which the tbp allele is replaced with a version, tbp(Delta N), which lacks 111 of 135 N-terminal amino acid residues. Most tbp(Delta N/Delta N) fetuses die in midgestation. To test whether a disruption of general cellular processes contributed to this fetal loss, primary fibroblast cultures were established from +/+, Delta N/+, and Delta N/Delta N fetuses. The cultures exhibited no genotype-dependent differences in proliferation or in expression of the proliferative markers dihydrofolate reductase (DHFR) mRNA (S phase-specific) and cdc25B mRNA (G(2)-specific). The mutation had no effect on transcription initiation site fidelity by either RNA polymerase II (pol II) or pol III. Moreover, the mutation did not cause differences in levels of U6 RNA, a pol III-dependent component of the splicing machinery, in mRNA splicing efficiency, in expression of housekeeping genes from either TATA-containing or TATA-less promoters, or in global gene expression. Our results indicated that general eukaryotic cell functions are unaffected by deletion of these vertebrate-specific sequences from TBP. Thus, all activities of this polypeptide domain must either be compensated for by redundant activities or be restricted to situations that are not represented by primary fibroblasts.
Collapse
Affiliation(s)
- Edward E Schmidt
- Department of Veterinary Molecular Biology, Marsh Laboratories, Montana State University, Bozeman, Montana 59717, USA.
| | | | | | | |
Collapse
|
41
|
Ma B, Hernandez N. Redundant cooperative interactions for assembly of a human U6 transcription initiation complex. Mol Cell Biol 2002; 22:8067-78. [PMID: 12391172 PMCID: PMC134731 DOI: 10.1128/mcb.22.22.8067-8078.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core human U6 promoter consists of a proximal sequence element (PSE) located upstream of a TATA box. The PSE is recognized by the snRNA-activating protein complex (SNAP(c)), which consists of five types of subunits, SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. The TATA box is recognized by TATA box binding protein (TBP). In addition, basal U6 transcription requires the SANT domain protein Bdp1 and the transcription factor IIB-related factor Brf2. SNAP(c) and mini-SNAP(c), which consists of just SNAP43, SNAP50, and the N-terminal third of SNAP190, bind cooperatively with TBP to the core U6 promoter. By generating complexes smaller than mini-SNAP(c), we have identified a 50-amino-acid region within SNAP190 that is (i) required for cooperative binding with TBP in the context of mini-SNAP(c) and (ii) sufficient for cooperative binding with TBP when fused to a heterologous DNA binding domain. We show that derivatives of mini-SNAP(c) lacking this region are active for transcription and that with such complexes, TBP can still be recruited to the U6 promoter through cooperative interactions with Brf2. Our results identify complexes smaller than mini-SNAP(c) that are transcriptionally active and show that there are at least two redundant mechanisms to stably recruit TBP to the U6 transcription initiation complex.
Collapse
Affiliation(s)
- Beicong Ma
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
42
|
Hovde S, Hinkley CS, Strong K, Brooks A, Gu L, Henry RW, Geiger J. Activator recruitment by the general transcription machinery: X-ray structural analysis of the Oct-1 POU domain/human U1 octamer/SNAP190 peptide ternary complex. Genes Dev 2002; 16:2772-7. [PMID: 12414730 PMCID: PMC187474 DOI: 10.1101/gad.1021002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcriptional activation of the human U1 snRNA genes is dependent on a noncanonical octamer element contained within an upstream enhancer. The U1 octamer only weakly recruits the Oct-1 POU domain, although recruitment is stimulated by a peptide containing the Oct-1-binding domain of SNAP190. Structural analysis of the Oct-1 POU domain/U1 octamer/SNAP190 peptide complex revealed that SNAP190 makes extensive protein contacts with the Oct-1 POU-specific domain and with the DNA phosphate backbone within the enhancer. Although SNAP190 and OCA-B both interact with the Oct-1 POU domain through the same Oct-1 interface, a single nucleotide within the U1 octamer ablates OCA-B recruitment without compromising activator recruitment by SNAP190.
Collapse
Affiliation(s)
- Stacy Hovde
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
44
|
Banik U, Beechem JM, Klebanow E, Schroeder S, Weil PA. Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA. J Biol Chem 2001; 276:49100-9. [PMID: 11677244 DOI: 10.1074/jbc.m109246200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a combination of fluorescence anisotropy spectroscopy and fluorescence-based native gel electrophoresis methods to examine the effects of the transcription factor IID-specific subunit TAF130p (TAF145p) upon the TATA box DNA binding properties of TATA box-binding protein (TBP). Purified full-length recombinant TAF130p decreases TBP-TATA DNA complex formation at equilibrium by competing directly with DNA for binding to TBP. Interestingly, we have found that full-length TAF130p is capable of binding multiple molecules of TBP with nanomolar binding affinity. The biological implications of these findings are discussed.
Collapse
Affiliation(s)
- U Banik
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
45
|
Hernandez N. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 2001; 276:26733-6. [PMID: 11390411 DOI: 10.1074/jbc.r100032200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- N Hernandez
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
46
|
Lively TN, Ferguson HA, Galasinski SK, Seto AG, Goodrich JA. c-Jun binds the N terminus of human TAF(II)250 to derepress RNA polymerase II transcription in vitro. J Biol Chem 2001; 276:25582-8. [PMID: 11316804 DOI: 10.1074/jbc.m100278200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.
Collapse
Affiliation(s)
- T N Lively
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | | | | | |
Collapse
|
47
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
48
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
49
|
Ma B, Hernandez N. A map of protein-protein contacts within the small nuclear RNA-activating protein complex SNAPc. J Biol Chem 2001; 276:5027-35. [PMID: 11056176 DOI: 10.1074/jbc.m009301200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleation of RNA polymerases I-III transcription complexes is usually directed by distinct multisubunit factors. In the case of the human RNA polymerase II and III small nuclear RNA (snRNA) genes, whose core promoters consist of a proximal sequence element (PSE) and a PSE combined with a TATA box, respectively, the same multisubunit complex is involved in the establishment of RNA polymerase II and III initiation complexes. This factor, the snRNA-activating protein complex or SNAP(c), binds to the PSE of both types of promoters and contains five types of subunits, SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. SNAP(c) binds cooperatively with both Oct-1, an activator of snRNA promoters, and in the RNA polymerase III snRNA promoters, with TATA-binding protein, which binds to the TATA box located downstream of the PSE. Here we have defined subunit domains required for SNAP(c) subunit-subunit association, and we show that complexes containing little more than the domains mapped here as required for subunit-subunit contacts bind specifically to the PSE. These data provide a detailed map of the subunit-subunit interactions within a multifunctional basal transcription complex.
Collapse
Affiliation(s)
- B Ma
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
50
|
Andersen B, Rosenfeld MG. POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease. Endocr Rev 2001; 22:2-35. [PMID: 11159814 DOI: 10.1210/edrv.22.1.0421] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
POU domain factors are transcriptional regulators characterized by a highly conserved DNA-binding domain referred to as the POU domain. The structure of the POU domain has been solved, facilitating the understanding of how these proteins bind to DNA and regulate transcription via complex protein-protein interactions. Several members of the POU domain family have been implicated in the control of development and function of the neuroendocrine system. Such roles have been most clearly established for Pit-1, which is required for formation of somatotropes, lactotropes, and thyrotropes in the anterior pituitary gland, and for Brn-2, which is critical for formation of magnocellular and parvocellular neurons in the paraventricular and supraoptic nuclei of the hypothalamus. While genetic evidence is lacking, molecular biology experiments have implicated several other POU factors in the regulation of gene expression in the hypothalamus and pituitary gland. Pit-1 mutations in humans cause combined pituitary hormone deficiency similar to that found in mice deleted for the Pit-1 gene, providing a striking example of how basic developmental biology studies have provided important insights into human disease.
Collapse
Affiliation(s)
- B Andersen
- Department of Medicine, University of California, San Diego, La Jolla, 92093-0648, USA.
| | | |
Collapse
|