1
|
Kiervel D, Boissinot S, Piccini C, Scheidecker D, Villeroy C, Gilmer D, Brault V, Ziegler-Graff V. Arabidopsis RNA-binding proteins interact with viral structural proteins and modify turnip yellows virus accumulation. PLANT PHYSIOLOGY 2024; 197:kiae590. [PMID: 39658301 DOI: 10.1093/plphys/kiae590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024]
Abstract
As obligate intracellular parasites, viruses depend on host proteins and pathways for their multiplication. Among these host factors, specific nuclear proteins are involved in the life cycle of some cytoplasmic replicating RNA viruses, although their role in the viral cycle remains largely unknown. The polerovirus turnip yellows virus (TuYV) encodes a major coat protein (CP) and a 74 kDa protein known as the readthrough (RT) protein. The icosahedral viral capsid is composed of the CP and a minor component RT*, arising from a C-terminal cleavage of the full-length RT. In this study, we identified Arabidopsis (Arabidopsis thaliana) ALY family proteins as interacting partners of TuYV structural proteins using yeast 2-hybrid assays and co-immunoprecipitations in planta. ALY proteins are adaptor proteins of the THO-TREX-1 complex essential to the nuclear export of mature messenger RNAs (mRNAs). Although all 4 ALY proteins colocalized with the CP and the RT protein in the nucleus upon co-expression in agro-infiltrated Nicotiana benthamiana leaves, only the CP remained nuclear and colocalized with ALY proteins in TuYV-infected cells, suggesting that the CP is an essential partner of ALY proteins. Importantly, TuYV-infected A. thaliana 4xaly knock-out mutants showed a significant increase in viral accumulation, indicating that TuYV infection is affected by an unknown ALY-mediated antiviral defense mechanism or impairs the cellular mRNA export pathway to favor viral RNA translation. This finding underpins the crucial role played by nuclear factors in the life cycle of cytoplasmic RNA viruses.
Collapse
Affiliation(s)
- Déborah Kiervel
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Sylvaine Boissinot
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
- INRAE, BFP UMR 1332, Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Céline Piccini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Danile Scheidecker
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Claire Villeroy
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Véronique Brault
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
2
|
Williams ZH, Imedio AD, Gaucherand L, Lee DC, Mostafa SM, Phelan JP, Coffin JM, Johnson WE. Recombinant origin and interspecies transmission of a HERV-K(HML-2)-related primate retrovirus with a novel RNA transport element. eLife 2024; 13:e80216. [PMID: 39037763 PMCID: PMC11379458 DOI: 10.7554/elife.80216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.
Collapse
Affiliation(s)
| | | | - Lea Gaucherand
- Molecular Microbiology Program, Tufts University Graduate School of Biomedical SciencesBostonUnited States
| | - Derek C Lee
- Department of Biology, Boston CollegeBostonUnited States
| | - Salwa Mohd Mostafa
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of MedicineBostonUnited States
| | - James P Phelan
- Molecular Microbiology Program, Tufts University Graduate School of Biomedical SciencesBostonUnited States
| | - John M Coffin
- Molecular Microbiology Program, Tufts University Graduate School of Biomedical SciencesBostonUnited States
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of MedicineBostonUnited States
| | | |
Collapse
|
3
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Sending the message: specialized RNA export mechanisms in trypanosomes. Trends Parasitol 2022; 38:854-867. [PMID: 36028415 PMCID: PMC9894534 DOI: 10.1016/j.pt.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Export of RNA from the nucleus is essential for all eukaryotic cells and has emerged as a major step in the control of gene expression. mRNA molecules are required to complete a complex series of processing events and pass a quality control system to protect the cytoplasm from the translation of aberrant proteins. Many of these events are highly conserved across eukaryotes, reflecting their ancient origin, but significant deviation from a canonical pathway as described from animals and fungi has emerged in the trypanosomatids. With significant implications for the mechanisms that control gene expression and hence differentiation, responses to altered environments and fitness as a parasite, these deviations may also reveal additional, previously unsuspected, mRNA export pathways.
Collapse
|
5
|
Nakano K, Watanabe T. Tuning Rex rules HTLV-1 pathogenesis. Front Immunol 2022; 13:959962. [PMID: 36189216 PMCID: PMC9523361 DOI: 10.3389/fimmu.2022.959962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
HTLV-1 is an oncovirus causing ATL and other inflammatory diseases such as HAM/TSP and HU in about 5% of infected individuals. It is also known that HTLV-1-infected cells maintain a disease-free, immortalized, latent state throughout the lifetimes of about 95% of infected individuals. We believe that the stable maintenance of disease-free infected cells in the carrier is an intrinsic characteristic of HTLV-1 that has been acquired during its evolution in the human life cycle. We speculate that the pathogenesis of the virus is ruled by the orchestrated functions of viral proteins. In particular, the regulation of Rex, the conductor of viral replication rate, is expected to be closely related to the viral program in the early active viral replication followed by the stable latency in HTLV-1 infected T cells. HTLV-1 and HIV-1 belong to the family Retroviridae and share the same tropism, e.g., human CD4+ T cells. These viruses show significant similarities in the viral genomic structure and the molecular mechanism of the replication cycle. However, HTLV-1 and HIV-1 infected T cells show different phenotypes, especially in the level of virion production. We speculate that how the activity of HTLV-1 Rex and its counterpart HIV-1 Rev are regulated may be closely related to the properties of respective infected T cells. In this review, we compare various pathological aspects of HTLV-1 and HIV-1. In particular, we investigated the presence or absence of a virally encoded "regulatory valve" for HTLV-1 Rex or HIV-1 Rev to explore its importance in the regulation of viral particle production in infected T cells. Finally, wereaffirm Rex as the key conductor for viral replication and viral pathogenesis based on our recent study on the novel functional aspects of Rex. Since the activity of Rex is closely related to the viral replication rate, we hypothesize that the "regulatory valve" on the Rex activity may have been selectively evolved to achieve the "scenario" with early viral particle production and the subsequent long, stable deep latency in HTLV-1 infected cells.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki, Japan
| |
Collapse
|
6
|
Kubina J, Geldreich A, Gales JP, Baumberger N, Bouton C, Ryabova LA, Grasser KD, Keller M, Dimitrova M. Nuclear export of plant pararetrovirus mRNAs involves the TREX complex, two viral proteins and the highly structured 5' leader region. Nucleic Acids Res 2021; 49:8900-8922. [PMID: 34370034 PMCID: PMC8421220 DOI: 10.1093/nar/gkab653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, the major nuclear export pathway for mature mRNAs uses the dimeric receptor TAP/p15, which is recruited to mRNAs via the multisubunit TREX complex, comprising the THO core and different export adaptors. Viruses that replicate in the nucleus adopt different strategies to hijack cellular export factors and achieve cytoplasmic translation of their mRNAs. No export receptors are known in plants, but Arabidopsis TREX resembles the mammalian complex, with a conserved hexameric THO core associated with ALY and UIEF proteins, as well as UAP56 and MOS11. The latter protein is an orthologue of mammalian CIP29. The nuclear export mechanism for viral mRNAs has not been described in plants. To understand this process, we investigated the export of mRNAs of the pararetrovirus CaMV in Arabidopsis and demonstrated that it is inhibited in plants deficient in ALY, MOS11 and/or TEX1. Deficiency for these factors renders plants partially resistant to CaMV infection. Two CaMV proteins, the coat protein P4 and reverse transcriptase P5, are important for nuclear export. P4 and P5 interact and co-localise in the nucleus with the cellular export factor MOS11. The highly structured 5′ leader region of 35S RNAs was identified as an export enhancing element that interacts with ALY1, ALY3 and MOS11 in vitro.
Collapse
Affiliation(s)
- Julie Kubina
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jón Pol Gales
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Nicolas Baumberger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Clément Bouton
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Mario Keller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Chemical genetic methodologies for identifying protein substrates of PARPs. Trends Biochem Sci 2021; 47:390-402. [PMID: 34366182 DOI: 10.1016/j.tibs.2021.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Poly-ADP-ribose-polymerases (PARPs) are a family of 17 enzymes that regulate a diverse range of cellular processes in mammalian cells. PARPs catalyze the transfer of ADP-ribose from NAD+ to target molecules, most prominently amino acids on protein substrates, in a process known as ADP-ribosylation. Identifying the direct protein substrates of individual PARP family members is an essential first step for elucidating the mechanism by which PARPs regulate a particular pathway in cells. Two distinct chemical genetic (CG) strategies have been developed for identifying the direct protein substrates of individual PARP family members. In this review, we discuss the design principles behind these two strategies and how target identification has provided novel insight into the cellular function of individual PARPs and PARP-mediated ADP-ribosylation.
Collapse
|
8
|
The Mammalian Ecdysoneless Protein Interacts with RNA Helicase DDX39A To Regulate Nuclear mRNA Export. Mol Cell Biol 2021; 41:e0010321. [PMID: 33941617 PMCID: PMC8224239 DOI: 10.1128/mcb.00103-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mammalian orthologue of ecdysoneless (ECD) protein is required for embryogenesis, cell cycle progression, and mitigation of endoplasmic reticulum stress. Here, we identified key components of the mRNA export complexes as binding partners of ECD and characterized the functional interaction of ECD with key mRNA export-related DEAD BOX protein helicase DDX39A. We find that ECD is involved in RNA export through its interaction with DDX39A. ECD knockdown (KD) blocks mRNA export from the nucleus to the cytoplasm, which is rescued by expression of full-length ECD but not an ECD mutant that is defective in interaction with DDX39A. We have previously shown that ECD protein is overexpressed in ErbB2+ breast cancers (BC). In this study, we extended the analyses to two publicly available BC mRNA The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data sets. In both data sets, ECD mRNA overexpression correlated with short patient survival, specifically ErbB2+ BC. In the METABRIC data set, ECD overexpression also correlated with poor patient survival in triple-negative breast cancer (TNBC). Furthermore, ECD KD in ErbB2+ BC cells led to a decrease in ErbB2 mRNA level due to a block in its nuclear export and was associated with impairment of oncogenic traits. These findings provide novel mechanistic insight into the physiological and pathological functions of ECD.
Collapse
|
9
|
Abstract
The DEAD-box helicase family member DDX3X (DBX, DDX3) functions in nearly all stages of RNA metabolism and participates in the progression of many diseases, including virus infection, inflammation, intellectual disabilities and cancer. Over two decades, many studies have gradually unveiled the role of DDX3X in tumorigenesis and tumour progression. In fact, DDX3X possesses numerous functions in cancer biology and is closely related to many well-known molecules. In this review, we describe the function of DDX3X in RNA metabolism, cellular stress response, innate immune response, metabolic stress response in pancreatic β cells and embryo development. Then, we focused on the role of DDX3X in cancer biology and systematically demonstrated its functions in various aspects of tumorigenesis and development. To provide a more intuitive understanding of the role of DDX3X in cancer, we summarized its functions and specific mechanisms in various types of cancer and presented its involvement in cancer-related signalling pathways.
Collapse
|
10
|
Ben-Yishay R, Mor A, Shraga A, Ashkenazy-Titelman A, Kinor N, Schwed-Gross A, Jacob A, Kozer N, Kumar P, Garini Y, Shav-Tal Y. Imaging within single NPCs reveals NXF1's role in mRNA export on the cytoplasmic side of the pore. J Cell Biol 2019; 218:2962-2981. [PMID: 31375530 PMCID: PMC6719458 DOI: 10.1083/jcb.201901127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Translocation of mRNA through the nuclear pore complex (NPC) requires interactions with different NPC regions. To determine the interactions that are crucial for effective mRNA export in living cells, we examined mRNA export within individual pores by applying various types of mRNA export blocks that stalled mRNPs at different stages of transition. Focusing on the major mRNA export factor NXF1, we found that initial mRNP binding to the NPC did not require NXF1 in the NPC, whereas release into the cytoplasm did. NXF1 localization in the NPC did not require RNA or RNA binding. Superresolution microscopy showed that NXF1 consistently occupied positions on the cytoplasmic side of the NPC. Interactions with specific nucleoporins were pinpointed using FLIM-FRET for measuring protein-protein interactions inside single NPCs, showing that Dbp5 helicase activity of mRNA release is conserved in yeast and humans. Altogether, we find that specific interactions on the cytoplasmic side of the NPC are fundamental for the directional flow of mRNA export.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amir Mor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amit Shraga
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Asaf Ashkenazy-Titelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Avital Schwed-Gross
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Noga Kozer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Pramod Kumar
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel .,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Anufrieva KS, Shender VO, Arapidi GP, Lagarkova MA, Govorun VM. The Diverse Roles of Spliceosomal Proteins in the Regulation of Cell Processes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Epstein-Barr Virus-Induced Nodules on Viral Replication Compartments Contain RNA Processing Proteins and a Viral Long Noncoding RNA. J Virol 2018; 92:JVI.01254-18. [PMID: 30068640 DOI: 10.1128/jvi.01254-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022] Open
Abstract
Profound alterations in host cell nuclear architecture accompany the lytic phase of Epstein-Barr virus (EBV) infection. Viral replication compartments assemble, host chromatin marginalizes to the nuclear periphery, cytoplasmic poly(A)-binding protein translocates to the nucleus, and polyadenylated mRNAs are sequestered within the nucleus. Virus-induced changes to nuclear architecture that contribute to viral host shutoff (VHS) must accommodate selective processing and export of viral mRNAs. Here we describe additional previously unrecognized nuclear alterations during EBV lytic infection in which viral and cellular factors that function in pre-mRNA processing and mRNA export are redistributed. Early during lytic infection, before formation of viral replication compartments, two cellular pre-mRNA splicing factors, SC35 and SON, were dispersed from interchromatin granule clusters, and three mRNA export factors, Y14, ALY, and NXF1, were depleted from the nucleus. During late lytic infection, virus-induced nodular structures (VINORCs) formed at the periphery of viral replication compartments. VINORCs were composed of viral (BMLF1 and BGLF5) and cellular (SC35, SON, SRp20, and NXF1) proteins that mediate pre-mRNA processing and mRNA export. BHLF1 long noncoding RNA was invariably found in VINORCs. VINORCs did not contain other nodular nuclear cellular proteins (PML or coilin), nor did they contain viral proteins (BRLF1 or BMRF1) found exclusively within replication compartments. VINORCs are novel EBV-induced nuclear structures. We propose that EBV-induced dispersal and depletion of pre-mRNA processing and mRNA export factors during early lytic infection contribute to VHS; subsequent relocalization of these pre-mRNA processing and mRNA export proteins to VINORCs and viral replication compartments facilitates selective processing and export of viral mRNAs.IMPORTANCE In order to make protein, mRNA transcribed from DNA in the nucleus must enter the cytoplasm. Nuclear export of mRNA requires correct processing of mRNAs by enzymes that function in splicing and nuclear export. During the Epstein-Barr virus (EBV) lytic cycle, nuclear export of cellular mRNAs is blocked, yet export of viral mRNAs is facilitated. Here we report the dispersal and dramatic reorganization of cellular (SC35, SON, SRp20, Y14, ALY, and NXF1) and viral (BMLF1 and BGLF5) proteins that play key roles in pre-mRNA processing and export of mRNA. These virus-induced nuclear changes culminate in formation of VINORCs, novel nodular structures composed of viral and cellular RNA splicing and export factors. VINORCs localize to the periphery of viral replication compartments, where viral mRNAs reside. These EBV-induced changes in nuclear organization may contribute to blockade of nuclear export of host mRNA, while enabling selective processing and export of viral mRNA.
Collapse
|
13
|
Li MW, Sletten AC, Lee J, Pyles KD, Matkovich SJ, Ory DS, Schaffer JE. Nuclear export factor 3 regulates localization of small nucleolar RNAs. J Biol Chem 2017; 292:20228-20239. [PMID: 29021253 PMCID: PMC5724009 DOI: 10.1074/jbc.m117.818146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/05/2017] [Indexed: 01/04/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) guide chemical modifications of ribosomal and small nuclear RNAs, functions that are carried out in the nucleus. Although most snoRNAs reside in the nucleolus, a growing body of evidence indicates that snoRNAs are also present in the cytoplasm and that snoRNAs move between the nucleus and cytoplasm by a mechanism that is regulated by lipotoxic and oxidative stress. Here, in a genome-wide shRNA-based screen, we identified nuclear export factor 3 (NXF3) as a transporter that alters the nucleocytoplasmic distribution of box C/D snoRNAs from the ribosomal protein L13a (Rpl13a) locus. Using RNA-sequencing analysis, we show that NXF3 associates not only with Rpl13a snoRNAs, but also with a broad range of box C/D and box H/ACA snoRNAs. Under homeostatic conditions, gain- or loss-of-function of NXF3, but not related family member NXF1, decreases or increases cytosolic Rpl13a snoRNAs, respectively. Furthermore, treatment with the adenylyl cyclase activator forskolin diminishes cytosolic localization of the Rpl13a snoRNAs through a mechanism that is dependent on NXF3 but not NXF1. Our results provide evidence of a new role for NXF3 in regulating the distribution of snoRNAs between the nuclear and cytoplasmic compartments.
Collapse
Affiliation(s)
- Melissa W Li
- Diabetes Research Center, Department of Medicine, St. Louis, Missouri 63110
| | - Arthur C Sletten
- Diabetes Research Center, Department of Medicine, St. Louis, Missouri 63110
| | - Jiyeon Lee
- Diabetes Research Center, Department of Medicine, St. Louis, Missouri 63110
| | - Kelly D Pyles
- Diabetes Research Center, Department of Medicine, St. Louis, Missouri 63110
| | - Scot J Matkovich
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Daniel S Ory
- Diabetes Research Center, Department of Medicine, St. Louis, Missouri 63110
| | - Jean E Schaffer
- Diabetes Research Center, Department of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
14
|
SDE5, a putative RNA export protein, participates in plant innate immunity through a flagellin-dependent signaling pathway in Arabidopsis. Sci Rep 2017; 7:9859. [PMID: 28851870 PMCID: PMC5574965 DOI: 10.1038/s41598-017-07918-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/15/2017] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes, RNA silencing, mediated by small interfering RNAs, is an evolutionarily widespread and versatile silencing mechanism that plays an important role in various biological processes. Increasing evidences suggest that various components of RNA silencing pathway are involved in plant defense machinery against microbial pathogens in Arabidopsis thaliana. Here, we show genetic and molecular evidence that Arabidopsis SDE5 is required to generate an effective resistance against the biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 and for susceptibility to the necrotrophic bacteria Erwinia caratovora pv. caratovora. SDE5, encodes a putative mRNA export factor that is indispensable for transgene silencing and the production of trans-acting siRNAs. SDE5 expression is rapidly induced by exogenous application of phytohormone salicylic acid (SA), methyl jasmonate (MeJA), phytopathogenic bacteria, and flagellin. We further report that SDE5 is involved in basal plant defense and mRNA export. Our genetic data suggests that SDE5 and Nonexpressor of PR Gene1 (NPR1) may contribute to the same SA-signaling pathway. However, SDE5 over-expressing transgenic plant exhibits reduced defense responsive phenotype after flagellin treatment. Taken together, these results support the conclusion that SDE5 contributes to plant innate immunity in Arabidopsis.
Collapse
|
15
|
Satoh R, Matsumura Y, Tanaka A, Takada M, Ito Y, Hagihara K, Inari M, Kita A, Fukao A, Fujiwara T, Hirai S, Tani T, Sugiura R. Spatial regulation of the KH domain RNA-binding protein Rnc1 mediated by a Crm1-independent nuclear export system in Schizosaccharomyces pombe. Mol Microbiol 2017; 104:428-448. [PMID: 28142187 DOI: 10.1111/mmi.13636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
RNA-binding proteins (RBPs) play important roles in the posttranscriptional regulation of gene expression, including mRNA stability, transport and translation. Fission yeast rnc1+ encodes a K Homology (KH)-type RBP, which binds and stabilizes the Pmp1 MAPK phosphatase mRNA thereby suppressing the Cl- hypersensitivity of calcineurin deletion and MAPK signaling mutants. Here, we analyzed the spatial regulation of Rnc1 and discovered a putative nuclear export signal (NES)Rnc1 , which dictates the cytoplasmic localization of Rnc1 in a Crm1-independent manner. Notably, mutations in the NESRnc1 altered nucleocytoplasmic distribution of Rnc1 and abolished its function to suppress calcineurin deletion, although the Rnc1 NES mutant maintains the ability to bind Pmp1 mRNA. Intriguingly, the Rnc1 NES mutant destabilized Pmp1 mRNA, suggesting the functional importance of the Rnc1 cytoplasmic localization. Mutation in Rae1, but not Mex67 deletion or overproduction, induced Rnc1 accumulation in the nucleus, suggesting that Rnc1 is exported from the nucleus to the cytoplasm via the mRNA export pathway involving Rae1. Importantly, mutations in the Rnc1 KH-domains abolished the mRNA-binding ability and induced nuclear localization, suggesting that Rnc1 may be exported from the nucleus together with its target mRNAs. Collectively, the functional Rae1-dependent mRNA export system may influence the cytoplasmic localization and function of Rnc1.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Yasuhiro Matsumura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Akitomo Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Makoto Takada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Yuna Ito
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Masahiro Inari
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Shinya Hirai
- Department of Biological Sciences Graduate School of Science and Technology, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Tokio Tani
- Department of Biological Sciences Graduate School of Science and Technology, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| |
Collapse
|
16
|
Jao LE, Akef A, Wente SR. A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies. Mol Biol Cell 2016; 28:120-127. [PMID: 28035044 PMCID: PMC5221616 DOI: 10.1091/mbc.e16-09-0675] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/11/2023] Open
Abstract
Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer's vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function.
Collapse
Affiliation(s)
- Li-En Jao
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Abdalla Akef
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
17
|
Interactome Mapping Reveals the Evolutionary History of the Nuclear Pore Complex. PLoS Biol 2016; 14:e1002365. [PMID: 26891179 PMCID: PMC4758718 DOI: 10.1371/journal.pbio.1002365] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/23/2015] [Indexed: 02/08/2023] Open
Abstract
The nuclear pore complex (NPC) is responsible for nucleocytoplasmic transport and constitutes a hub for control of gene expression. The components of NPCs from several eukaryotic lineages have been determined, but only the yeast and vertebrate NPCs have been extensively characterized at the quaternary level. Significantly, recent evidence indicates that compositional similarity does not necessarily correspond to homologous architecture between NPCs from different taxa. To address this, we describe the interactome of the trypanosome NPC, a representative, highly divergent eukaryote. We identify numerous new NPC components and report an exhaustive interactome, allowing assignment of trypanosome nucleoporins to discrete NPC substructures. Remarkably, despite retaining similar protein composition, there are exceptional architectural dissimilarities between opisthokont (yeast and vertebrates) and excavate (trypanosomes) NPCs. Whilst elements of the inner core are conserved, numerous peripheral structures are highly divergent, perhaps reflecting requirements to interface with divergent nuclear and cytoplasmic functions. Moreover, the trypanosome NPC has almost complete nucleocytoplasmic symmetry, in contrast to the opisthokont NPC; this may reflect divergence in RNA export processes at the NPC cytoplasmic face, as we find evidence supporting Ran-dependent mRNA export in trypanosomes, similar to protein transport. We propose a model of stepwise acquisition of nucleocytoplasmic mechanistic complexity and demonstrate that detailed dissection of macromolecular complexes provides fuller understanding of evolutionary processes. Dissection of the nuclear pore complex—an ancient eukaryotic molecular machine—exposes a fundamental divergence in structure and function between yeast and humans versus trypanosomes and provides insights into the evolution of the nucleus. Much of the core architecture of the eukaryotic cell was established over one billion years ago. Significantly, many cellular systems possess lineage-specific features, and architectural and compositional variation of complexes and pathways that are likely keyed to specific functional adaptations. The nuclear pore complex (NPC) contributes to many processes, including nucleocytoplasmic transport, interactions with the nuclear lamina, and mRNA processing. We exploited trypanosome parasites to investigate NPC evolution and conservation at the level of protein–protein interactions and composition. We unambiguously assigned NPC components to specific substructures and found that the NPC structural scaffold is generally conserved, albeit with lineage-specific elements. However, there is significant variation in pore membrane proteins and an absence of critical components involved in mRNA export in fungi and animals (opisthokonts). This is reflected by the completely symmetric localization of all trypanosome nucleoporins, with the exception of the nuclear basket. This architecture is highly distinct from opisthokonts. We also identify features that suggest a Ran-dependent system for mRNA export in trypanosomes, a system that may presage distinct mechanisms of protein and mRNA transport in animals and fungi. Our study highlights that shared composition of macromolecular assemblies does not necessarily equate to shared architecture. Identification of lineage-specific features within the trypanosome NPC significantly advances our understanding of mechanisms of nuclear transport, gene expression, and evolution of the nucleus.
Collapse
|
18
|
Carter-O'Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I, Cohen MS. Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach. Cell Rep 2016; 14:621-631. [PMID: 26774478 PMCID: PMC5423403 DOI: 10.1016/j.celrep.2015.12.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/10/2015] [Accepted: 12/04/2015] [Indexed: 02/07/2023] Open
Abstract
ADP-ribosyltransferases (ARTD1-16) have emerged as major downstream effectors of NAD(+) signaling in the cell. Most ARTDs (ARTD7 and 8, 10-12, and 14-17) catalyze the transfer of a single unit of ADP-ribose from NAD(+) to target proteins, a process known as mono-ADP-ribosylation (MARylation). Progress in understanding the cellular functions of MARylation has been limited by the inability to identify the direct targets for individual mono-ARTDs. Here, we engineered mono-ARTDs to use an NAD(+) analog that is orthogonal to wild-type ARTDs. We profiled the MARylomes of ARTD10 and ARTD11 in vitro, identifying isoform-specific targets and revealing a potential role for ARTD11 in nuclear pore complex biology. We found that ARTD11 targeting is dependent on both its regulatory and catalytic domains, which has important implications for how ARTDs recognize their targets. We anticipate that our chemical genetic strategy will be generalizable to all mono-ARTD family members based on the similarity of the mono-ARTD catalytic domains.
Collapse
Affiliation(s)
- Ian Carter-O'Connell
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA
| | - Haihong Jin
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA
| | - Rory K Morgan
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA
| | - Roko Zaja
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Larry L David
- Department of Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael S Cohen
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA.
| |
Collapse
|
19
|
Delaleau M, Borden KLB. Multiple Export Mechanisms for mRNAs. Cells 2015; 4:452-73. [PMID: 26343730 PMCID: PMC4588045 DOI: 10.3390/cells4030452] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed.
Collapse
Affiliation(s)
- Mildred Delaleau
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
20
|
Hu Y, O'Boyle K, Palmer D, Ng P, Sutton RE. High-level production of replication-defective human immunodeficiency type 1 virus vector particles using helper-dependent adenovirus vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15004. [PMID: 26029715 PMCID: PMC4444993 DOI: 10.1038/mtm.2015.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/09/2022]
Abstract
Gene transfer vectors based upon human immunodeficiency virus type 1 (HIV) are widely used in bench research applications and increasingly in clinical investigations, both to introduce novel genes but also to reduce expression of unwanted genes of the host and pathogen. At present, the vast majority of HIV-based vector supernatants are produced in 293T cells by cotransfection of up to five DNA plasmids, which is subject to variability and difficult to scale. Here we report the development of a HIV-based vector production system that utilizes helper-dependent adenovirus (HDAd). All necessary HIV vector components were inserted into one or more HDAds, which were then amplified to very high titers of ~1013 vp/ml. These were then used to transduce 293-based cells to produce HIV-based vector supernatants, and resultant VSV G-pseudotyped lentiviral vector (LV) titers and total IU were 10- to 30-fold higher, compared to plasmid transfection. Optimization of HIV-based vector production depended upon maximizing expression of all HIV vector components from HDAd. Supernatants contained trace amounts of HDAd but were free of replication-competent lentivirus. This production method should be applicable to other retroviral vector systems. Scalable production of HIV-based vectors using this two-step procedure should facilitate their clinical advancement.
Collapse
Affiliation(s)
- Yani Hu
- Division of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut, USA
| | - Kaitlin O'Boyle
- Division of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut, USA
| | - Donna Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, Texas, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, Texas, USA
| | - Richard E Sutton
- Division of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut, USA
| |
Collapse
|
21
|
Aditi, Folkmann AW, Wente SR. Cytoplasmic hGle1A regulates stress granules by modulation of translation. Mol Biol Cell 2015; 26:1476-90. [PMID: 25694449 PMCID: PMC4395128 DOI: 10.1091/mbc.e14-11-1523] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022] Open
Abstract
When eukaryotic cells respond to stress, gene expression pathways change to selectively export and translate subsets of mRNAs. Translationally repressed mRNAs accumulate in cytoplasmic foci known as stress granules (SGs). SGs are in dynamic equilibrium with the translational machinery, but mechanisms controlling this are unclear. Gle1 is required for DEAD-box protein function during mRNA export and translation. We document that human Gle1 (hGle1) is a critical regulator of translation during stress. hGle1 is recruited to SGs, and hGLE1 small interfering RNA-mediated knockdown perturbs SG assembly, resulting in increased numbers of smaller SGs. The rate of SG disassembly is also delayed. Furthermore, SG hGle1-depletion defects correlate with translation perturbations, and the hGle1 role in SGs is independent of mRNA export. Interestingly, we observe isoform-specific roles for hGle1 in which SG function requires hGle1A, whereas mRNA export requires hGle1B. We find that the SG defects in hGle1-depleted cells are rescued by puromycin or DDX3 expression. Together with recent links of hGLE1 mutations in amyotrophic lateral sclerosis patients, these results uncover a paradigm for hGle1A modulating the balance between translation and SGs during stress and disease.
Collapse
Affiliation(s)
- Aditi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Andrew W Folkmann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
22
|
Katahira J, Dimitrova L, Imai Y, Hurt E. NTF2-like domain of Tap plays a critical role in cargo mRNA recognition and export. Nucleic Acids Res 2015; 43:1894-904. [PMID: 25628355 PMCID: PMC4330393 DOI: 10.1093/nar/gkv039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metazoan Tap-p15 (also called Nxf1-Nxt1) and yeast Mex67-Mtr2 heterodimers are the general mRNA export receptors. The RNA binding activity of Tap-p15, which is essential for mRNA nuclear export, has been attributed to the amino-terminal RNA binding module of Tap consists of RNA recognition motif (RRM) and leucine-rich repeat. In this study, we identified a novel RNA interaction surface in the NTF2-like (NTF2L) domain of Tap, which is analogous to the rRNA binding platform of Mex67-Mtr2. Tap-p15 uses the three domains to tightly bind the retroviral constitutive transport element. The RNA binding through the NTF2L domain is functionally relevant as introduction of mutations in this region reduced CTE-containing mRNA export activity. In contrast, only when the RRM and NTF2L domains were mutated simultaneously, bulk poly (A)(+) RNA export and in vivo poly (A)(+) RNA binding activities of Tap-p15 were significantly attenuated. Moreover, an engineered human cell line harboring the NTF2L domain mutation in the NXF1 gene showed a synthetic growth phenotype and severe mRNA export defect under Aly/REF and Thoc5 depleted condition. These data suggest that Tap-p15 recognizes bulk mRNAs through combinatorial use of the distinct RNA binding domains.
Collapse
Affiliation(s)
- Jun Katahira
- Biomolecular Networks Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan Department of Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lyudmila Dimitrova
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | - Yumiko Imai
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| |
Collapse
|
23
|
Smith R, Rathod RJ, Rajkumar S, Kennedy D. Nervous translation, do you get the message? A review of mRNPs, mRNA-protein interactions and translational control within cells of the nervous system. Cell Mol Life Sci 2014; 71:3917-37. [PMID: 24952431 PMCID: PMC11113408 DOI: 10.1007/s00018-014-1660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
Abstract
In neurons, translation of a message RNA can occur metres away from its transcriptional origin and in normal cells this is orchestrated with perfection. The life of an mRNA will see it pass through multiple steps of processing in the nucleus and the cytoplasm before it reaches its final destination. Processing of mRNA is determined by a myriad of RNA-binding proteins in multi-protein complexes called messenger ribonucleoproteins; however, incorrect processing and delivery of mRNA can cause several human neurological disorders. This review takes us through the life of mRNA from the nucleus to its point of translation in the cytoplasm. The review looks at the various cis and trans factors that act on the mRNA and discusses their roles in different cells of the nervous system and human disorders.
Collapse
Affiliation(s)
- Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| | | | | | | |
Collapse
|
24
|
Larsen S, Bui S, Perez V, Mohammad A, Medina-Ramirez H, Newcomb LL. Influenza polymerase encoding mRNAs utilize atypical mRNA nuclear export. Virol J 2014; 11:154. [PMID: 25168591 PMCID: PMC4158059 DOI: 10.1186/1743-422x-11-154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/12/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. METHODS Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. RESULTS Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. CONCLUSIONS These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we conclude that in both A549 and 293 T cells, PA, PB1, and PB2 mRNA nuclear export is Nxf1 and Crm1 independent. Our data support the hypothesis that PA, PB1, and PB2 mRNAs, encoding the influenza RdRP, utilize atypical mRNA nuclear export.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Antibiotics, Antineoplastic/pharmacology
- Cell Line
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Nucleocytoplasmic Transport Proteins/antagonists & inhibitors
- Nucleocytoplasmic Transport Proteins/genetics
- Nucleocytoplasmic Transport Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Virus Replication
- Exportin 1 Protein
Collapse
Affiliation(s)
- Sean Larsen
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Steven Bui
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Veronica Perez
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Adeba Mohammad
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Hilario Medina-Ramirez
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Laura L Newcomb
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| |
Collapse
|
25
|
Zhabokritsky A, Mansouri S, Hudak KA. Pokeweed antiviral protein alters splicing of HIV-1 RNAs, resulting in reduced virus production. RNA (NEW YORK, N.Y.) 2014; 20:1238-1247. [PMID: 24951553 PMCID: PMC4105749 DOI: 10.1261/rna.043141.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Processing of HIV-1 transcripts results in three populations in the cytoplasm of infected cells: full-length RNA, singly spliced, and multiply spliced RNAs. Rev, regulator of virion expression, is an essential regulatory protein of HIV-1 required for transporting unspliced and singly spliced viral transcripts from the nucleus to the cytoplasm. Export allows these RNAs to be translated and the full-length RNA to be packaged into virus particles. In our study, we investigate the activity of pokeweed antiviral protein (PAP), a glycosidase isolated from the pokeweed plant Phytolacca americana, on the processing of viral RNAs. We show that coexpression of PAP with a proviral clone alters the splicing ratio of HIV-1 RNAs. Specifically, PAP causes the accumulation of multiply spliced 2-kb RNAs at the expense of full-length 9-kb and singly spliced 4-kb RNAs. The change in splicing ratio is due to a decrease in activity of Rev. We show that PAP depurinates the rev open reading frame and that this damage to the viral RNA inhibits its translation. By decreasing Rev expression, PAP indirectly reduces the availability of full-length 9-kb RNA for packaging and translation of the encoded structural proteins required for synthesis of viral particles. The decline we observe in virus protein expression is not due to cellular toxicity as PAP did not diminish translation rate. Our results describing the reduced activity of a regulatory protein of HIV-1, with resulting change in virus mRNA ratios, provides new insight into the antiviral mechanism of PAP.
Collapse
Affiliation(s)
- Alice Zhabokritsky
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sheila Mansouri
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Katalin A Hudak
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
26
|
Murine leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral transcripts. J Virol 2014; 88:4069-82. [PMID: 24478440 DOI: 10.1128/jvi.03584-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Intron-containing mRNAs are subject to restricted nuclear export in higher eukaryotes. Retroviral replication requires the nucleocytoplasmic transport of both spliced and unspliced RNA transcripts, and RNA export mechanisms of gammaretroviruses are poorly characterized. Here, we report the involvement of the nuclear export receptor NXF1/TAP in the nuclear export of gammaretroviral RNA transcripts. We identified a conserved cis-acting element in the pol gene of gammaretroviruses, including murine leukemia virus (MLV) and xenotropic murine leukemia virus (XMRV), named the CAE (cytoplasmic accumulation element). The CAE enhanced the cytoplasmic accumulation of viral RNA transcripts and the expression of viral proteins without significantly affecting the stability, splicing, or translation efficiency of the transcripts. Insertion of the CAE sequence also facilitated Rev-independent HIV Gag expression. We found that the CAE sequence interacted with NXF1, whereas disruption of NXF1 ablated CAE function. Thus, the CAE sequence mediates the cytoplasmic accumulation of gammaretroviral transcripts in an NXF1-dependent manner. Disruption of NXF1 expression impaired cytoplasmic accumulations of both spliced and unspliced RNA transcripts of XMRV and MLV, resulting in their nuclear retention or degradation. Thus, our results demonstrate that gammaretroviruses use NXF1 for the cytoplasmic accumulation of both spliced and nonspliced viral RNA transcripts. IMPORTANCE Murine leukemia virus (MLV) has been studied as one of the classic models of retrovirology. Although unspliced host messenger RNAs are rarely exported from the nucleus, MLV actively exports unspliced viral RNAs to the cytoplasm. Despite extensive studies, how MLV achieves this difficult task has remained a mystery. Here, we have studied the RNA export mechanism of MLV and found that (i) the genome contains a sequence which supports the efficient nuclear export of viral RNAs, (ii) the cellular factor NXF1 is involved in the nuclear export of both spliced and unspliced viral RNAs, and, finally, (iii) depletion of NXF1 results in nuclear retention or degradation of viral RNAs. Our study provides a novel insight into MLV nuclear export.
Collapse
|
27
|
Floch AG, Palancade B, Doye V. Fifty years of nuclear pores and nucleocytoplasmic transport studies: multiple tools revealing complex rules. Methods Cell Biol 2014; 122:1-40. [PMID: 24857723 DOI: 10.1016/b978-0-12-417160-2.00001-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPCs) are multiprotein assemblies embedded within the nuclear envelope and involved in the control of the bidirectional transport of proteins and ribonucleoparticles between the nucleus and the cytoplasm. Since their discovery more than 50 years ago, NPCs and nucleocytoplasmic transport have been the focus of intense research. Here, we review how the use of a multiplicity of structural, biochemical, genetic, and cell biology approaches have permitted the deciphering of the main features of this macromolecular complex, its mode of assembly as well as the rules governing nucleocytoplasmic exchanges. We first present the current knowledge of the ultrastructure of NPCs, which reveals that they are modular and repetitive assemblies of subunits referred to as nucleoporins, associated into stable subcomplexes and composed of a limited set of protein domains, including phenylalanine-glycine (FG) repeats and membrane-interacting domains. The outcome of investigations on nucleocytoplasmic trafficking will then be detailed, showing how it involves a limited number of molecular factors and common mechanisms, namely (i) indirect association of cargos with nuclear pores through receptors in the donor compartment, (ii) progression within the channel through dynamic hydrophobic interactions with FG-Nups, and (iii) NTPase-driven remodeling of transport complexes in the target compartment. Finally, we also discuss the outcome of more recent studies, which indicate that NPCs and the transport machinery are dynamic and versatile devices, whose biogenesis is tightly coordinated with the cell cycle, and which carry nonconventional duties, in particular, in mitosis, gene expression, and genetic stability.
Collapse
Affiliation(s)
- Aurélie G Floch
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud-11, Orsay, France
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Valérie Doye
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
28
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
29
|
Labokha AA, Fassati A. Viruses challenge selectivity barrier of nuclear pores. Viruses 2013; 5:2410-23. [PMID: 24084236 PMCID: PMC3814595 DOI: 10.3390/v5102410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 01/04/2023] Open
Abstract
Exchange between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs) embedded in the double membrane of the nuclear envelope. NPC permeability barrier restricts the entry of inert molecules larger than 5 nm in diameter but allows facilitated entry of selected cargos, whose size can reach up to 39 nm. The translocation of large molecules is facilitated by nuclear transport receptors (NTRs) that have affinity to proteins of NPC permeability barrier. Viruses that enter the nucleus replicate evolved strategies to overcome this barrier. In this review, we will discuss the functional principles of NPC barrier and nuclear transport machinery, as well as the various strategies viruses use to cross the selective barrier of NPCs.
Collapse
Affiliation(s)
- Aksana A. Labokha
- Authors to whom correspondence should be addressed; E-Mails: (A.A.L.); (A.F.); Tel.: (+44(0)2031082141); Fax: (+44(0)2031082123); Tel.: (+44(0)2031082138); Fax: (+44(0)2031082123)
| | - Ariberto Fassati
- Authors to whom correspondence should be addressed; E-Mails: (A.A.L.); (A.F.); Tel.: (+44(0)2031082141); Fax: (+44(0)2031082123); Tel.: (+44(0)2031082138); Fax: (+44(0)2031082123)
| |
Collapse
|
30
|
Balasubramaniam VRMT, Hong Wai T, Ario Tejo B, Omar AR, Syed Hassan S. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF. PLoS One 2013; 8:e72429. [PMID: 24073193 PMCID: PMC3779218 DOI: 10.1371/journal.pone.0072429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/08/2013] [Indexed: 12/04/2022] Open
Abstract
We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Vinod R M T Balasubramaniam
- Virus-Host Interaction Group, Infectious Disease Laboratory (MR3), School of Medicine and Health Sciences, Monash University Sunway Campus, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
32
|
Mamon LA, Kliver SF, Golubkova EV. Evolutionarily conserved features of the retained intron in alternative transcripts of the <i>nxf1</i> (nuclear export factor) genes in different organisms. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgen.2013.33018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Nakamura RL, Landt SG, Mai E, Nejim J, Chen L, Frankel AD. A cell-based method for screening RNA-protein interactions: identification of constitutive transport element-interacting proteins. PLoS One 2012; 7:e48194. [PMID: 23133567 PMCID: PMC3485056 DOI: 10.1371/journal.pone.0048194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022] Open
Abstract
We have developed a mammalian cell-based screening platform to identify proteins that assemble into RNA-protein complexes. Based on Tat-mediated activation of the HIV LTR, proteins that interact with an RNA target elicit expression of a GFP reporter and are captured by fluorescence activated cell sorting. This "Tat-hybrid" screening platform was used to identify proteins that interact with the Mason Pfizer monkey virus (MPMV) constitutive transport element (CTE), a structured RNA hairpin that mediates the transport of unspliced viral mRNAs from the nucleus to the cytoplasm. Several hnRNP-like proteins, including hnRNP A1, were identified and shown to interact with the CTE with selectivity in the reporter system comparable to Tap, a known CTE-binding protein. In vitro gel shift and pull-down assays showed that hnRNP A1 is able to form a complex with the CTE and Tap and that the RGG domain of hnRNP A1 mediates binding to Tap. These results suggest that hnRNP-like proteins may be part of larger export-competent RNA-protein complexes and that the RGG domains of these proteins play an important role in directing these binding events. The results also demonstrate the utility of the screening platform for identifying and characterizing new components of RNA-protein complexes.
Collapse
Affiliation(s)
- Robert L. Nakamura
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen G. Landt
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Emily Mai
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Jemiel Nejim
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Lily Chen
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing. Biochem Biophys Res Commun 2012; 424:1-6. [DOI: 10.1016/j.bbrc.2012.06.092] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022]
|
35
|
Abstract
Foamy viruses (FVs) are distinct members of the retrovirus (RV) family. In this chapter, the molecular regulation of foamy viral transcription, splicing, polyadenylation, and RNA export will be compared in detail to the orthoretroviruses. Foamy viral transcription is regulated in early and late phases, which are separated by the usage of two promoters. The viral transactivator protein Tas activates both promoters. The nature of this early-late switch and the molecular mechanism used by Tas are unique among RVs. RVs duplicate the long terminal repeats (LTRs) during reverse transcription. These LTRs carry both a promoter region and functional poly(A) sites. In order to express full-length transcripts, RVs have to silence the poly(A) signal in the 5' LTR and to activate it in the 3' LTR. FVs have a unique R-region within these LTRs with a major splice donor (MSD) at +51 followed by a poly(A) signal. FVs use a MSD-dependent mechanism to inactivate the polyadenylation. Most RVs express all their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used in complex RVs. The splicing pattern of FV is highly complex. In contrast to orthoretroviruses, FVs synthesize the Pol precursor protein from a specific and spliced transcript. The LTR and IP-derived primary transcripts are spliced into more than 15 different mRNA species. Since the RNA ratios have to be balanced, a tight regulation of splicing is required. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. In this review, I compare the RNA export pathways used by orthoretroviruses with the distinct RNA export pathway used by FV. All these steps are highly regulated by host and viral factors and set FVs apart from all other RVs.
Collapse
Affiliation(s)
- Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
Sandri-Goldin RM. The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol 2012; 6:1261-77. [PMID: 22082288 DOI: 10.2217/fmb.11.119] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human herpes viruses cause an array of illnesses ranging from cancers for Epstein?Barr virus and Kaposi?s sarcoma-associated herpes virus, to painful skin lesions, and more rarely, keratitis and encephalitis for HSV. All herpes viruses encode a multifunctional protein, typified by HSV ICP27, which plays essential roles in viral infection. ICP27 functions in all stages of mRNA biogenesis from transcription, RNA processing and export through to translation. ICP27 has also been implicated in nuclear protein quality control, cell cycle control, activation of stress signaling pathways and prevention of apoptosis. ICP27 interacts with many proteins and it binds RNA. This article focuses on how ICP27 performs its many roles and highlights similarities with its homologs, which could be targets for antiviral intervention.
Collapse
Affiliation(s)
- Rozanne M Sandri-Goldin
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
37
|
Schmid M, Gonzalez RA, Dobner T. CRM1-dependent transport supports cytoplasmic accumulation of adenoviral early transcripts. J Virol 2012; 86:2282-92. [PMID: 22171254 PMCID: PMC3302419 DOI: 10.1128/jvi.06275-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/30/2011] [Indexed: 02/08/2023] Open
Abstract
The life cycle of adenoviruses is divided by convention into early and late phases, separated by the onset of viral genome replication. Early events include virus adsorption, transport of the genome into the nucleus, and the expression of early genes. After the onset of viral DNA replication, transcription of the major late transcription unit (MLTU) and thereby synthesis of late proteins is induced. These steps are controlled by an orchestra of regulatory processes and require import of the genome and numerous viral proteins into the nucleus, as well as active transport of viral transcripts and proteins from the nucleus to the cytoplasm. The latter is achieved by exploiting the shuttling functions of cellular transport receptors, which normally stimulate the nuclear export of cellular mRNA and protein cargos. A set of adenoviral early and late proteins contains a leucine-rich nuclear export signal of the HIV-1 Rev type, known to be recognized by the cellular export receptor CRM1. However, a role for CRM1-dependent export in supporting adenoviral replication has not been established. To address this issue in detail, we investigated the impact of two different CRM1 inhibitors on several steps of the adenoviral life cycle. Inhibition of CRM1 led to a reduction in viral early and late gene expression, viral genome replication, and progeny virus production. For the first time, our findings indicate that CRM1-dependent shuttling is required for the efficient export of adenoviral early mRNA.
Collapse
Affiliation(s)
- Melanie Schmid
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
38
|
Zhang ZC, Satterly N, Fontoura BMA, Chook YM. Evolutionary development of redundant nuclear localization signals in the mRNA export factor NXF1. Mol Biol Cell 2011; 22:4657-68. [PMID: 21965294 PMCID: PMC3226482 DOI: 10.1091/mbc.e11-03-0222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Unexpected redundancy in the nuclear import pathways used by the essential mRNA export factor NXF1 increases progressively from fungi to nematodes and insects to chordates, potentially paralleling the increasing complexity in mRNA export regulation and the evolution of new nuclear functions for NXF1. In human cells, the mRNA export factor NXF1 resides in the nucleoplasm and at nuclear pore complexes. Karyopherin β2 or transportin recognizes a proline–tyrosine nuclear localization signal (PY-NLS) in the N-terminal tail of NXF1 and imports it into the nucleus. Here biochemical and cellular studies to understand the energetic organization of the NXF1 PY-NLS reveal unexpected redundancy in the nuclear import pathways used by NXF1. Human NXF1 can be imported via importin β, karyopherin β2, importin 4, importin 11, and importin α. Two NLS epitopes within the N-terminal tail, an N-terminal basic segment and a C-terminal R-X2-5-P-Y motif, provide the majority of binding energy for all five karyopherins. Mutation of both NLS epitopes abolishes binding to the karyopherins, mislocalized NXF1 to the cytoplasm, and significantly compromised its mRNA export function. The understanding of how different karyopherins recognize human NXF1, the examination of NXF1 sequences from divergent eukaryotes, and the interactions of NXF1 homologues with various karyopherins reveals the evolutionary development of redundant NLSs in NXF1 of higher eukaryotes. Redundancy of nuclear import pathways for NXF1 increases progressively from fungi to nematodes and insects to chordates, potentially paralleling the increasing complexity in mRNA export regulation and the evolution of new nuclear functions for NXF1.
Collapse
Affiliation(s)
- Zi Chao Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041, USA
| | | | | | | |
Collapse
|
39
|
Teplova M, Wohlbold L, Khin NW, Izaurralde E, Patel DJ. Structure-function studies of nucleocytoplasmic transport of retroviral genomic RNA by mRNA export factor TAP. Nat Struct Mol Biol 2011; 18:990-8. [PMID: 21822283 PMCID: PMC3167930 DOI: 10.1038/nsmb.2094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/01/2011] [Indexed: 11/09/2022]
Abstract
Messenger RNA export is mediated by the TAP-p15 heterodimer, which belongs to the family of NTF2-like export receptors. TAP-p15 heterodimers also bind to the constitutive transport element (CTE) present in simian type D retroviral RNAs, and mediate export of viral unspliced RNAs to the host cytoplasm. We have solved the crystal structure of the RNA recognition and leucine-rich repeat motifs of TAP bound to one symmetrical-half of CTE RNA. L-shaped conformations of protein and RNA are involved in a mutual molecular embrace on complex formation. We have monitored the impact of structure-guided mutations on binding affinities in vitro and transport assays in vivo. Our studies define the principles by which CTE RNA subverts the mRNA export receptor TAP, thereby facilitating nuclear export of viral genomic RNAs, and more generally, provide insights on cargo RNA recognition by mRNA export receptors.
Collapse
Affiliation(s)
- Marianna Teplova
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | |
Collapse
|
40
|
Bodem J, Schied T, Gabriel R, Rammling M, Rethwilm A. Foamy virus nuclear RNA export is distinct from that of other retroviruses. J Virol 2011; 85:2333-41. [PMID: 21159877 PMCID: PMC3067772 DOI: 10.1128/jvi.01518-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/07/2010] [Indexed: 01/09/2023] Open
Abstract
Most retroviruses express all of their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. Two pathways have been described that explain how retroviruses circumvent this nuclear export inhibition. One involves a constitutive transport element in the viral RNA that interacts with the cellular mRNA transporter proteins NXF1 and NXT1 to facilitate nuclear export. The other pathway relies on the recognition of a viral RNA element by a virus-encoded protein that interacts with the karyopherin CRM1. In this report, we analyze the protein factors required for the nuclear export of unspliced foamy virus (FV) mRNA. We show that this export is CRM1 dependent. In contrast to other complex retroviruses, FVs do not encode an export-mediating protein. Cross-linking experiments indicated that the cellular protein HuR binds to the FV RNA. Inhibition studies showed that both ANP32A and ANP32B, which are known to bridge HuR and CRM1, are essential for FV RNA export. By using this export pathway, FVs solve a central problem of viral replication.
Collapse
Affiliation(s)
- Jochen Bodem
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Tanja Schied
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Richard Gabriel
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Matthias Rammling
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| |
Collapse
|
41
|
Zhou J, Pan J, Eckardt S, Leu NA, McLaughlin KJ, Wang PJ. Nxf3 is expressed in Sertoli cells, but is dispensable for spermatogenesis. Mol Reprod Dev 2011; 78:241-9. [PMID: 21308854 DOI: 10.1002/mrd.21291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/17/2011] [Indexed: 02/03/2023]
Abstract
In eukaryotes, mRNA is actively exported to the cytoplasm by a family of nuclear RNA export factors (NXF). Four Nxf genes have been identified in the mouse: Nxf1, Nxf2, Nxf3, and Nxf7. Inactivation of Nxf2, a germ cell-specific gene, causes defects in spermatogenesis. Here we report that Nxf3 is expressed exclusively in Sertoli cells of the postnatal testis, in a developmentally regulated manner. Expression of Nxf3 coincides with the cessation of Sertoli cell proliferation and the beginning of their differentiation. Continued expression of Nxf3 in mature Sertoli cells of the adult is spermatogenesis stage-independent. Nxf3 is not essential for spermatogenesis, however, suggesting functional redundancy among Nxf family members. With its unique expression pattern in the testis, the promoter of Nxf3 can be used to drive postnatal Sertoli cell-specific expression of other proteins such as Cre recombinase.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Animal Biology, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Yatherajam G, Huang W, Flint SJ. Export of adenoviral late mRNA from the nucleus requires the Nxf1/Tap export receptor. J Virol 2011; 85:1429-38. [PMID: 21123381 PMCID: PMC3028892 DOI: 10.1128/jvi.02108-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/22/2010] [Indexed: 01/04/2023] Open
Abstract
One important function of the human adenovirus E1B 55-kDa protein is induction of selective nuclear export of viral late mRNAs. This protein interacts with the viral E4 Orf6 and four cellular proteins to form an infected-cell-specific E3 ubiquitin ligase. The assembly of this enzyme is required for efficient viral late mRNA export, but neither the relevant substrates nor the cellular pathway that exports viral late mRNAs has been identified. We therefore examined the effects on viral late gene expression of inhibition of the synthesis or activity of the mRNA export receptor Nxf1, which was observed to colocalize with the E1B 55-kDa protein in infected cells. When production of Nxf1 was impaired by using RNA interference, the efficiency of viral late mRNA export was reduced to a corresponding degree. Furthermore, synthesis of a dominant-negative derivative of Nxf1 during the late phase of infection interfered with production of a late structural protein. These observations indicate that the Nxf1 pathway is responsible for export of viral late mRNAs. As the infected-cell-specific E3 ubiquitin ligase targets its known substrates for proteasomal degradation, we compared the concentrations of several components of this pathway (Nxf1, Thox1, and Thoc4) in infected cells that did or did not contain this enzyme. Although the concentration of a well-established substrate, Mre11, decreased significantly in cells infected by adenovirus type 5 (Ad5), but not in those infected by the E1B 55-kDa protein-null mutant Hr6, no E1B 55-kDa protein-dependent degradation of the Nxf1 pathway proteins was observed.
Collapse
Affiliation(s)
- Gayatri Yatherajam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| | - Wenying Huang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| |
Collapse
|
43
|
Ivankova N, Tretyakova I, Lyozin GT, Avanesyan E, Zolotukhin A, Zatsepina OG, Evgen'ev MB, Mamon LA. Alternative transcripts expressed by small bristles, the Drosophila melanogaster nxf1 gene. Gene 2010; 458:11-9. [DOI: 10.1016/j.gene.2010.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 02/16/2010] [Accepted: 02/25/2010] [Indexed: 11/30/2022]
|
44
|
Escudero-Paunetto L, Li L, Hernandez FP, Sandri-Goldin RM. SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs. Virology 2010; 401:155-64. [PMID: 20227104 DOI: 10.1016/j.virol.2010.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/08/2010] [Accepted: 02/19/2010] [Indexed: 12/14/2022]
Abstract
Herpes simplex virus 1 (HSV-1) mRNAs are exported to the cytoplasm through the export receptor TAP/NFX1. HSV-1 multifunctional protein ICP27 interacts with TAP/NXF1, binds viral RNAs, and is required for efficient viral RNA export. In ICP27 mutant infections, viral RNA export is reduced but not ablated, indicating that other export adaptors can aid in viral RNA export. Export adaptor protein Aly/REF is recruited to viral replication compartments, however, Aly/REF knockdown has little effect on viral RNA export. SR proteins SRp20 and 9G8 interact with TAP/NXF1 and mediate export of some cellular RNAs. We report that siRNA knockdown of SRp20 or 9G8 resulted in about a 10 fold decrease in virus yields and in nuclear accumulation of polyA+ RNA. In infected cells depleted of SRp20, newly transcribed Bromouridine-labeled RNA also accumulated in the nucleus. We conclude that SRp20 and 9G8 contribute to HSV-1 RNA export.
Collapse
Affiliation(s)
- Laurimar Escudero-Paunetto
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Infertility is a worldwide reproductive health problem, affecting men and women about equally. Mouse genetic studies demonstrate that more than 200 genes specifically or predominantly regulate fertility. However, few genetic causes of infertility in humans have been identified. Here, we focus on the regulation of male fertility by X-linked, germ cell-specific genes. Previous genomic studies reveal that the mammalian X chromosome is enriched for genes expressed in early spermatogenesis. Recent genetic studies in mice show that X-linked, germ cell-specific genes, such as A-kinase anchor protein 4 (Akap4), nuclear RNA export factor 2 (Nxf2), TBP-associated factor 7l (Taf7l), and testis-expressed gene 11 (Tex11), indeed play important roles in the regulation of male fertility. Moreover, we find that the Taf7l Tex11 double-mutant males exhibit much more severe defects in meiosis than either single mutant, suggesting that these 2 X-linked genes regulate male meiosis synergistically. The X-linked, germ cell-specific genes are particularly attractive in the study of male infertility in humans. Because males are hemizygous for X-linked genes, loss-of-function mutations in the single-copy X-linked genes, unlike in autosomal genes, would not be masked by a normal allele. The genetic studies of X-linked, germ cell-specific genes in mice have laid a foundation for mutational analysis of their human orthologues in infertile men.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
46
|
Identification and mutational analysis of a Rej response element in Jaagsiekte sheep retrovirus RNA. J Virol 2009; 83:12499-511. [PMID: 19776134 DOI: 10.1128/jvi.01754-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is a simple betaretrovirus causing a contagious lung cancer of sheep. JSRV encodes unspliced and spliced viral RNAs, among which unspliced RNA encodes Gag and Pol proteins and a singly spliced mRNA encodes Env protein. In another study we found that JSRV encodes a regulatory protein, Rej, that is responsible for synthesis of Gag polyprotein from unspliced viral RNA. Rej is encoded in the 5' end of env, and it enhances nuclear export or accumulation of cytoplasmic unspliced viral RNA in 293T cells but not in most other cell lines (A. Hofacre, T. Nitta, and H. Fan, J. Virol. 83:12483-12498, 2009). In this study, we found that mutations in the 3' end of env in the context of a cytomegalovirus-driven full-length JSRV expression construct abolished Gag protein synthesis and released viruses in 293T cells. These mutants also showed deficits in accumulation of unspliced viral RNA in the cytoplasm. These mutants defined a Rej-responsive element (RejRE). Inhibition of CRM1 but not Tap function prevented nuclear export/accumulation of cytoplasmic unspliced RNA in 293T cells, similarly to other complex retroviruses that express analogous regulator proteins (e.g., human immunodeficiency virus Rev). Structural modeling of the RejRE with Zuker M-fold indicated a region with a predicted stable secondary structure. Mutational analysis in this region indicated the importance of both secondary structures and primary nucleotide sequences in a central stem-bulge-stem structure. In contrast to 293T cells, mutations in the RejRE did not affect the levels of cytoplasmic unspliced RNA in 293 cells, although the unspliced RNA showed partial degradation, perhaps due to lack of translation. RejRE-containing RNA relocalized Rej protein from the nucleus to the cytoplasm in 293 and rat 208F cells, suggesting binding of Rej to the RejRE.
Collapse
|
47
|
Pan J, Eckardt S, Leu NA, Buffone MG, Zhou J, Gerton GL, McLaughlin KJ, Wang PJ. Inactivation of Nxf2 causes defects in male meiosis and age-dependent depletion of spermatogonia. Dev Biol 2009; 330:167-74. [PMID: 19345203 PMCID: PMC2702087 DOI: 10.1016/j.ydbio.2009.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 11/19/2022]
Abstract
In eukaryotes, mRNA is actively transported from nucleus to cytoplasm by a family of nuclear RNA export factors (NXF). While yeast harbors only one such factor (Mex67p), higher eukaryotes encode multiple NXFs. In mouse, four Nxf genes have been identified: Nxf1, Nxf2, Nxf3, and Nxf7. To date, the function of mouse Nxf genes has not been studied by targeted gene deletion in vivo. Here we report the generation of Nxf2 null mutant mice by homologous recombination in embryonic stem cells. Nxf2-deficient male mice exhibit fertility defects that differ between mouse strains. One third of Nxf2-deficient males on a mixed (C57BL/6x129) genetic background exhibit meiotic arrest and thus are sterile, whereas the remaining males are fertile. Disruption of Nxf2 in inbred (C57BL/6J) males impairs spermatogenesis, resulting in male subfertility, but causes no meiotic arrest. Testis weight and sperm output in C57BL/6J Nxf2(-/Y) mice are sharply reduced. Mutant epididymal sperm exhibit diminished motility. Importantly, proliferation of spermatogonia in Nxf2(-/Y) mice is significantly decreased. As a result, inactivation of Nxf2 causes depletion of germ cells in a substantial fraction of seminiferous tubules in aged mice. These studies demonstrate that Nxf2 plays a dual function in spermatogenesis: regulation of meiosis and maintenance of spermatogonial stem cells.
Collapse
Affiliation(s)
- Jieyan Pan
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - N. Adrian Leu
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - Mariano G. Buffone
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Jian Zhou
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - George L Gerton
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - K. John McLaughlin
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - Peijing Jeremy Wang
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Caporale M, Arnaud F, Mura M, Golder M, Murgia C, Palmarini M. The signal peptide of a simple retrovirus envelope functions as a posttranscriptional regulator of viral gene expression. J Virol 2009; 83:4591-604. [PMID: 19244321 PMCID: PMC2668452 DOI: 10.1128/jvi.01833-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 02/17/2009] [Indexed: 12/22/2022] Open
Abstract
Retroviruses use different strategies to regulate transcription and translation and exploit the cellular machinery involved in these processes. This study shows that the signal peptide of the envelope glycoprotein (Env) of Jaagsiekte sheep retrovirus (JSRV) plays a major role in posttranscriptional viral gene expression. Expression of the JSRV Env in trans increases viral particle production by mechanisms dependent on (i) its leader sequence, (ii) an intact signal peptide cleavage site, (iii) a cis-acting RNA-responsive element located in the viral genome, (iv) Crm1, and (v) B23. The signal peptide of the JSRV Env (JSE-SP) is 80 amino acid residues in length and contains putative nuclear localization and export signals, in addition to an arginine-rich RNA binding motif. JSE-SP localizes both in the endoplasmic reticulum and in the nucleus, where it colocalizes with nucleolar markers. JSE-SP is a multifunctional protein, as it moderately enhances nuclear export of unspliced viral mRNA and considerably increases viral particle release by favoring a posttranslational step of the replication cycle.
Collapse
Affiliation(s)
- Marco Caporale
- Institute of Comparative Medicine, University of Glasgow Faculty of Veterinary Medicine, Glasgow, Scotland
| | | | | | | | | | | |
Collapse
|
49
|
The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol 2009; 83:6335-46. [PMID: 19369354 DOI: 10.1128/jvi.00375-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 has been shown to shuttle between the nucleus and cytoplasm and to bind viral RNA during infection. ICP27 was found to interact with the cellular RNA export adaptor protein Aly/REF, which is part of the TREX complex, and to relocalize Aly/REF to viral replication sites. ICP27 is exported to the cytoplasm through the export receptor TAP/NXF1, and ICP27 must be able to interact with TAP/NXF1 for efficient export of HSV-1 early and late transcripts. We examined the dynamics of ICP27 movement and its localization with respect to Aly/REF and TAP/NXF1 in living cells during viral infection. Recombinant viruses with a yellow fluorescent protein (YFP) tag on the N or C terminus of ICP27 were constructed. While the N-terminally tagged ICP27 virus behaved like wild-type HSV-1, the C-terminally tagged virus was defective in viral replication and gene expression, and ICP27 was confined to the nucleus, suggesting that the C-terminal YFP tag interfered with ICP27's C-terminal interactions, including the interaction with TAP/NXF1. To assess the role of Aly/REF and TAP/NXF1 in viral RNA export, these factors were knocked down using small interfering RNA. Knockdown of Aly/REF had little effect on the export of ICP27 or poly(A)(+) RNA during infection. In contrast, a decrease in TAP/NXF1 levels severely impaired export of ICP27 and poly(A)(+) RNA. We conclude that TAP/NXF1 is essential for ICP27-mediated export of RNA during HSV-1 infection, whereas Aly/REF may be dispensable.
Collapse
|
50
|
Mertz JA, Lozano MM, Dudley JP. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element. Retrovirology 2009; 6:10. [PMID: 19192308 PMCID: PMC2661877 DOI: 10.1186/1742-4690-6-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/03/2009] [Indexed: 11/11/2022] Open
Abstract
Background Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE). Results MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export. Conclusion These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|