1
|
Wu Y, Kong W, Van Stappen J, Kong L, Huang Z, Yang Z, Kuo YA, Chen YI, He Y, Yeh HC, Lu T, Lu Y. Genetically Encoded Fluorogenic DNA Aptamers for Imaging Metabolite in Living Cells. J Am Chem Soc 2025; 147:1529-1541. [PMID: 39739942 DOI: 10.1021/jacs.4c09855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Genetically encoded fluorescent protein and fluorogenic RNA sensors are indispensable tools for imaging biomolecules in cells. To expand the toolboxes and improve the generalizability and stability of this type of sensor, we report herein a genetically encoded fluorogenic DNA aptamer (GEFDA) sensor by linking a fluorogenic DNA aptamer for dimethylindole red with an ATP aptamer. The design enhances red fluorescence by 4-fold at 650 nm in the presence of ATP. Additionally, upon dimerization, it improves the signal-to-noise ratio by 2-3 folds. We further integrated the design into a plasmid to create a GEFDA sensor for sensing ATP in live bacterial and mammalian cells. This work expanded genetically encoded sensors by employing fluorogenic DNA aptamers, which offer enhanced stability over fluorogenic proteins and RNAs, providing a novel tool for real-time monitoring of an even broader range of small molecular metabolites in biological systems.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jacqueline Van Stappen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhimei Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Chen YN, Cui YZ, Chen XR, Wang JY, Li BZ, Yuan YJ. Direct cloning strategies for large genomic fragments: A review. Biotechnol Adv 2024; 79:108494. [PMID: 39637950 DOI: 10.1016/j.biotechadv.2024.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms. As synthetic biologists engineer greater and broader genetic pathways and expand their research into new organisms, efficient tools capable of manipulating large-scale DNA will offer momentum to the ability to design, modify, and construct engineering life. In this review, we discuss the recent advances in the field of direct cloning of large genomic fragments, particularly of 50-150 kb genomic fragments. We specifically introduce the technological advances in the targeted release and capture steps of these cloning strategies. Additionally, the applications of large fragment cloning in functional genomics and natural product mining are also summarized. Finally, we further discuss the challenges and prospects for these technologies in the future.
Collapse
Affiliation(s)
- Ya-Nan Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| |
Collapse
|
3
|
Zheng W, Wang Y, Cui J, Guo G, Li Y, Hou J, Tu Q, Yin Y, Stewart F, Zhang Y, Bian X, Wang X. ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism. Nat Commun 2024; 15:9790. [PMID: 39532871 PMCID: PMC11557832 DOI: 10.1038/s41467-024-54191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.
Collapse
Affiliation(s)
- Wentao Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
- Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Guangdong, P. R. China
| | - Yuxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jie Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Guangyao Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yufeng Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | | | - Francis Stewart
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
4
|
Zakharova K, Liu M, Greenwald JR, Caldwell BC, Qi Z, Wysocki VH, Bell CE. Structural Basis for the Interaction of Redβ Single-Strand Annealing Protein with Escherichia coli Single-Stranded DNA-Binding Protein. J Mol Biol 2024; 436:168590. [PMID: 38663547 DOI: 10.1016/j.jmb.2024.168590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Redβ is a protein from bacteriophage λ that binds to single-stranded DNA (ssDNA) to promote the annealing of complementary strands. Together with λ-exonuclease (λ-exo), Redβ is part of a two-component DNA recombination system involved in multiple aspects of genome maintenance. The proteins have been exploited in powerful methods for bacterial genome engineering in which Redβ can anneal an electroporated oligonucleotide to a complementary target site at the lagging strand of a replication fork. Successful annealing in vivo requires the interaction of Redβ with E. coli single-stranded DNA-binding protein (SSB), which coats the ssDNA at the lagging strand to coordinate access of numerous replication proteins. Previous mutational analysis revealed that the interaction between Redβ and SSB involves the C-terminal domain (CTD) of Redβ and the C-terminal tail of SSB (SSB-Ct), the site for binding of numerous host proteins. Here, we have determined the x-ray crystal structure of Redβ CTD in complex with a peptide corresponding to the last nine residues of SSB (MDFDDDIPF). Formation of the complex is predominantly mediated by hydrophobic interactions between two phenylalanine side chains of SSB (Phe-171 and Phe-177) and an apolar groove on the CTD, combined with electrostatic interactions between the C-terminal carboxylate of SSB and Lys-214 of the CTD. Mutation of any of these residues to alanine significantly disrupts the interaction of full-length Redβ and SSB proteins. Structural knowledge of this interaction will help to expand the utility of Redβ-mediated recombination to a wider range of bacterial hosts for applications in synthetic biology.
Collapse
Affiliation(s)
- Katerina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Mengqi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jacelyn R Greenwald
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Brian C Caldwell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zihao Qi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Charles E Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Zhang C, Yang S, Quansah E, Zhang Z, Da W, Wang B. The dCas9-based genome editing in Plasmodium yoelii. mSphere 2024; 9:e0009524. [PMID: 38411120 DOI: 10.1128/msphere.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Genetic editing is a powerful tool for functional characterization of genes in various organisms. With its simplicity and specificity, the CRISPR-Cas9 technology has become a popular editing tool, which introduces site-specific DNA double-strand breaks (DSBs), and then leverages the endogenous repair pathway for DSB repair via homology-directed repair (HDR) or the more error-prone non-homologous end joining (NHEJ) pathways. However, in the Plasmodium parasites, the lack of a typical NHEJ pathway selects for DSB repair through the HDR pathway when a homologous DNA template is available. The AT-rich nature of the Plasmodium genome exacerbates this drawback by making it difficult to clone longer homologous repair DNA templates. To circumvent these challenges, we adopted the hybrid catalytically inactive Cas9 (dCas9)-microbial single-stranded annealing proteins (SSAP) editor to the Plasmodium genome. In Plasmodium yoelii, we demonstrated the use of the dCas9-SSAP, as the cleavage-free gene editor, by targeted gene deletion and gene tagging, even using shorter homologous DNA templates. This dCas9-SSAP method with a shorter DNA template, which did not require DSBs, independent of HDR and NHEJ, would be a great addition to the existing genetic toolbox and could be deployed for the functional characterization of genes in Plasmodium, contributing to improving the ability of the malaria research community in characterizing more than half of genes with unknown functions.IMPORTANCEMalaria caused by Plasmodium parasites infection remains a serious threat to human health, with an estimated 249 million malaria cases and 608,000 deaths worldwide in 2022, according to the latest report from the World Health Organization (WHO). Here, we demonstrated the use of dCas9-single-stranded annealing protein, as the cleavage-free gene editor in Plasmodium yoelii, by targeted deletion and gene tagging, even using shorter homologous DNA templates. This method with a shorter DNA template, which did not require DSBs, independent of HDR and NHEJ, showing the potential significance in greatly improving our ability to elucidate gene functions, would contribute to assisting the malaria research community in deciphering more than half of genes with unknown functions to identify new drug and vaccine targets.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Elvis Quansah
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ziyu Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Weiran Da
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Bingjie Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Fitschen LJ, Newing TP, Johnston NP, Bell CE, Tolun G. Half a century after their discovery: Structural insights into exonuclease and annealase proteins catalyzing recombineering. ENGINEERING MICROBIOLOGY 2024; 4:100120. [PMID: 39628787 PMCID: PMC11611040 DOI: 10.1016/j.engmic.2023.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2024]
Abstract
Recombineering is an essential tool for molecular biologists, allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations involving restriction enzymes. The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing (SSA) homologous recombination pathway to repair double-stranded DNA breaks. While there have been several reviews examining recombineering methods and applications, comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway: a 5'→3' exonuclease and a single-strand annealing protein (SSAP or "annealase"). This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in E. coli: the RecET system from E. coli Rac prophage and the λRed system from bacteriophage λ. By comparing the structures of the RecT and Redβ annealases, and the RecE and λExo exonucleases, we provide new insights into how the structures of these proteins dictate their function. Examining the sequence conservation of the λExo and RecE exonucleases gives more profound insights into their critical functional features. Ultimately, as recombineering accelerates and evolves in the laboratory, a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future.
Collapse
Affiliation(s)
- Lucy J. Fitschen
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Timothy P. Newing
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Nikolas P. Johnston
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Charles E. Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Gökhan Tolun
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Li F, Wang CY, Wu YC, Zhang MY, Wang YJ, Zhou XY, Zhang YX. Enhancing the biosynthesis of 2-keto-L-gulonic acid through multi-strategy metabolic engineering in Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2024; 392:130014. [PMID: 37956951 DOI: 10.1016/j.biortech.2023.130014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
2-KGA, a precursor for the synthesis of Vitamin C, is currently produced in China utilizing the "two-step fermentation" technique. Nevertheless, this method exhibits many inherent constraints. This study presents a comprehensive metabolic engineering strategy to establish and optimize a one-step 2-KGA fermentation process from D-sorbitol in Pseudomonas putida KT2440. In general, the endogenous promoters were screened to identify promoter P1 for subsequent heterologous gene expression in KT2440. Following the screening and confirmation of suitable heterologous gene elements such as sldh, sdh, cytc551, pqqAB, and irrE, genetic recombination was performed in KT2440. In comparison to the initial achievement of expressing only sldh and sdh in KT2440, a yield of merely 0.42 g/L was obtained. However, by implementing four metabolic engineering strategies, the recombinant strain KT20 exhibited a significant enhancement in its ability to produce 2-KGA with a remarkable yield of up to 6.5 g/L - representing an impressive 15.48-fold improvement.
Collapse
Affiliation(s)
- Fan Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying-Cai Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi-Jin Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xun-Yong Zhou
- Sinobiotech (Shenzhen) Limited Company, Shenzhen 518001, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
8
|
Li R, Li A, Zhang Y, Fu J. The emerging role of recombineering in microbiology. ENGINEERING MICROBIOLOGY 2023; 3:100097. [PMID: 39628926 PMCID: PMC11610958 DOI: 10.1016/j.engmic.2023.100097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 12/06/2024]
Abstract
Recombineering is a valuable technique for generating recombinant DNA in vivo, primarily in bacterial cells, and is based on homologous recombination using phage-encoded homologous recombinases, such as Redαβγ from the lambda phage and RecET from the Rac prophage. The recombineering technique can efficiently mediate homologous recombination using short homologous arms (∼50 bp) and is unlimited by the size of the DNA molecules or positions of restriction sites. In this review, we summarize characteristics of recombinases, mechanism of recombineering, and advances in recombineering for DNA manipulation in Escherichia coli and other bacteria. Furthermore, the broad applications of recombineering for mining new bioactive microbial natural products, and for viral mutagenesis, phage genome engineering, and understanding bacterial metabolism are also reviewed.
Collapse
Affiliation(s)
- Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Xiong X, Lu Z, Ma L, Zhai C. Applications of Programmable Endonucleases in Sequence- and Ligation-Independent Seamless DNA Assembly. Biomolecules 2023; 13:1022. [PMID: 37509059 PMCID: PMC10377497 DOI: 10.3390/biom13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Programmable endonucleases, such as Cas (Clustered Regularly-Interspaced Short Repeats-associated proteins) and prokaryotic Argonaute (pAgo), depend on base pairing of the target DNA with the guide RNA or DNA to cleave DNA strands. Therefore, they are capable of recognizing and cleaving DNA sequences at virtually any arbitrary site. The present review focuses on the commonly used in vivo and in vitro recombination-based gene cloning methods and the application of programmable endonucleases in these sequence- and ligation-independent DNA assembly methods. The advantages and shortcomings of the programmable endonucleases utilized as tools for gene cloning are also discussed in this review.
Collapse
Affiliation(s)
- Xingchen Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiwen Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
10
|
Li J, Zhang C, He Y, Li S, Yan L, Li Y, Zhu Z, Xia L. Plant base editing and prime editing: The current status and future perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:444-467. [PMID: 36479615 DOI: 10.1111/jipb.13425] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement. Base editing and prime editing are two newly developed precision gene editing systems which can introduce the substitution of a single base and install the desired short indels to the target loci in the absence of double-strand breaks and donor repair templates, respectively. Since their discoveries, various strategies have been attempted to optimize both base editor (BE) and prime editor (PE) in order to improve the precise editing efficacy, specificity, and expand the targeting scopes. Here, we summarize the latest development of various BEs and PEs, as well as their applications in plants. Based on these progresses, we recommend the appropriate BEs and PEs for both basic plant research and crop improvement. Moreover, we propose the perspectives for further optimization of these two editors. We envision that both BEs and PEs will become the routine and customized precise gene editing tools for both plant biological research and crop improvement in the near future.
Collapse
Affiliation(s)
- Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yubing He
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yucai Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ziwei Zhu
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| |
Collapse
|
11
|
Caldwell BJ, Norris AS, Karbowski CF, Wiegand AM, Wysocki VH, Bell CE. Structure of a RecT/Redβ family recombinase in complex with a duplex intermediate of DNA annealing. Nat Commun 2022; 13:7855. [PMID: 36543802 PMCID: PMC9772228 DOI: 10.1038/s41467-022-35572-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Some bacteriophage encode a recombinase that catalyzes single-stranded DNA annealing (SSA). These proteins are apparently related to RAD52, the primary human SSA protein. The best studied protein, Redβ from bacteriophage λ, binds weakly to ssDNA, not at all to dsDNA, but tightly to a duplex intermediate of annealing formed when two complementary DNA strands are added to the protein sequentially. We used single particle cryo-electron microscopy (cryo-EM) to determine a 3.4 Å structure of a Redβ homolog from a prophage of Listeria innocua in complex with two complementary 83mer oligonucleotides. The structure reveals a helical protein filament bound to a DNA duplex that is highly extended and unwound. Native mass spectrometry confirms that the complex seen by cryo-EM is the predominant species in solution. The protein shares a common core fold with RAD52 and a similar mode of ssDNA-binding. These data provide insights into the mechanism of protein-catalyzed SSA.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew S Norris
- Department of Chemistry and Biochemistry and Resource for Native MS-Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Caroline F Karbowski
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Alyssa M Wiegand
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Chemistry and Biochemistry and Resource for Native MS-Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Chemistry and Biochemistry and Resource for Native MS-Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Abstract
The technology of recombineering, in vivo genetic engineering, was initially developed in Escherichia coli and uses bacteriophage-encoded homologous recombination proteins to efficiently recombine DNA at short homologies (35 to 50 nt). Because the technology is homology driven, genomic DNA can be modified precisely and independently of restriction site location. Recombineering uses linear DNA substrates that are introduced into the cell by electroporation; these can be PCR products, synthetic double-strand DNA (dsDNA), or single-strand DNA (ssDNA). Here we describe the applications, challenges, and factors affecting ssDNA and dsDNA recombineering in a variety of non-model bacteria, both Gram-negative and -positive, and recent breakthroughs in the field. We list different microbes in which the widely used phage λ Red and Rac RecET recombination systems have been used for in vivo genetic engineering. New homologous ssDNA and dsDNA recombineering systems isolated from non-model bacteria are also described. The Basic Protocol outlines a method for ssDNA recombineering in the non-model species of Shewanella. The Alternate Protocol describes the use of CRISPR/Cas as a counter-selection system in conjunction with recombineering to enhance recovery of recombinants. We provide additional background information, pertinent considerations for experimental design, and parameters critical for success. The design of ssDNA oligonucleotides (oligos) and various internet-based tools for oligo selection from genome sequences are also described, as is the use of oligo-mediated recombination. This simple form of genome editing uses only ssDNA oligo(s) and does not require an exogenous recombination system. The information presented here should help researchers identify a recombineering system suitable for their microbe(s) of interest. If no system has been characterized for a specific microbe, researchers can find guidance in developing a recombineering system from scratch. We provide a flowchart of decision-making paths for strategically applying annealase-dependent or oligo-mediated recombination in non-model and undomesticated bacteria. © 2022 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. Basic Protocol: ssDNA recombineering in Shewanella species Alternate Protocol: ssDNA recombineering coupled to CRISPR/Cas9 in Shewanella species.
Collapse
Affiliation(s)
- Anna Corts
- Cultivarium, 490 Arsenal Way, Ste 110, Watertown, Massachusetts 02472
| | - Lynn C. Thomason
- Molecular Control and Genetics Section, RNA Biology Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Nina Costantino
- Molecular Control and Genetics Section, RNA Biology Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Donald L. Court
- Emeritus, Molecular Control and Genetics Section, RNA Biology Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
13
|
Peng L, Dumevi RM, Chitto M, Haarmann N, Berger P, Koudelka G, Schmidt H, Mellmann A, Dobrindt U, Berger M. A Robust One-Step Recombineering System for Enterohemorrhagic Escherichia coli. Microorganisms 2022; 10:microorganisms10091689. [PMID: 36144292 PMCID: PMC9504302 DOI: 10.3390/microorganisms10091689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) can cause severe diarrheic in humans. To improve therapy options, a better understanding of EHEC pathogenicity is essential. The genetic manipulation of EHEC with classical one-step methods, such as the transient overexpression of the phage lambda (λ) Red functions, is not very efficient. Here, we provide a robust and reliable method for increasing recombineering efficiency in EHEC based on the transient coexpression of recX together with gam, beta, and exo. We demonstrate that the genetic manipulation is 3–4 times more efficient in EHEC O157:H7 EDL933 Δstx1/2 with our method when compared to the overexpression of the λ Red functions alone. Both recombineering systems demonstrated similar efficiencies in Escherichia coli K-12 MG1655. Coexpression of recX did not enhance the Gam-mediated inhibition of sparfloxacin-mediated SOS response. Therefore, the additional inhibition of the RecFOR pathway rather than a stronger inhibition of the RecBCD pathway of SOS response induction might have resulted in the increased recombineering efficiency by indirectly blocking phage induction. Even though additional experiments are required to unravel the precise mechanistic details of the improved recombineering efficiency, we recommend the use of our method for the robust genetic manipulation of EHEC and other prophage-carrying E. coli isolates.
Collapse
Affiliation(s)
- Lang Peng
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | | | - Marco Chitto
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Nadja Haarmann
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
- National Consulting Laboratory for Hemolytic Uremic Syndrome (HUS), 48149 Münster, Germany
| | - Gerald Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
- National Consulting Laboratory for Hemolytic Uremic Syndrome (HUS), 48149 Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-35403
| |
Collapse
|
14
|
Genome engineering of the Corynebacterium glutamicum chromosome by the Extended Dual-In/Out strategy. METHODS IN MICROBIOLOGY 2022; 200:106555. [DOI: 10.1016/j.mimet.2022.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
|
15
|
Evolution of plasmid-construction. Int J Biol Macromol 2022; 209:1319-1326. [PMID: 35452702 DOI: 10.1016/j.ijbiomac.2022.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
Developing for almost half a century, plasmid-construction has explored more than 37 methods. Some methods have evolved into new versions. From a global and evolutionary viewpoint, a review will make a clear understand and an easy practice for plasmid-construction. The 37 methods employ three principles as creating single-strand overhang, recombining homology arms, or serving amplified insert as mega-primer, and are classified into three groups as single strand overhang cloning, homologous recombination cloning, and mega-primer cloning. The methods evolve along a route for easy, efficient, or/and seamless cloning. Mechanism of plasmid-construction is primer annealing or/and primer invasion. Scar junction is a must-be faced scientific problem in plasmid-construction.
Collapse
|
16
|
Ye Y, Zhong M, Zhang Z, Chen T, Shen Y, Lin Z, Wang Y. Genomic Iterative Replacements of Large Synthetic DNA Fragments in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:1588-1599. [PMID: 35290032 DOI: 10.1021/acssynbio.1c00644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic genomics will advance our understanding of life and allow us to rebuild the genomes of industrial microorganisms for enhancing performances. Corynebacterium glutamicum, a Gram-positive bacterium, is an important industrial workhorse. However, its genome synthesis is impeded by the low efficiencies in DNA delivery and in genomic recombination/replacement. In the present study, we describe a genomic iterative replacement system based on RecET recombination for C. glutamicum, involving the successive integration of up to 10 kb DNA fragments obtained in vitro, and the transformants are selected by the alternative use of kanR and speR selectable markers. As a proof of concept, we systematically redesigned and replaced a 54.3 kb wild-type sequence of C. glutamicumATCC13032 with its 55.1 kb synthetic counterpart with several novel features, including decoupled genes, the standard PCRTags, and 20 loxPsym sites, which was for the first time incorporated into a bacterial genome. The resulting strain semi-synCG-A1 had a phenotype and fitness similar to the wild-type strain under various stress conditions. The stability of the synthetic genome region faithfully maintained over 100 generations of nonselective growth. Genomic deletions, inversions, and translocations occurred in the synthetic genome region upon induction of synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE), revealing potential genetic flexibility for C. glutamicum. This strategy can be used for the synthesis of a larger region of the genome and facilitate the endeavors for metabolic engineering and synthetic biology of C. glutamicum.
Collapse
Affiliation(s)
- Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Minmin Zhong
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Zhanhua Zhang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Tai Chen
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
17
|
Rangarajan AA, Yilmaz C, Schnetz K. Deletion of FRT-sites by no-SCAR recombineering in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35411846 DOI: 10.1099/mic.0.001173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lambda-Red recombineering is the most commonly used method to create point mutations, insertions or deletions in Escherichia coli and other bacteria, but usually an Flp recognition target (FRT) scar-site is retained in the genome. Alternative scarless recombineering methods, including CRISPR/Cas9-assisted methods, generally require cloning steps and/or complex PCR schemes for specific targeting of the genome. Here we describe the deletion of FRT scar-sites by the scarless Cas9-assisted recombineering method no-SCAR using an FRT-specific guide RNA, sgRNAFRT, and locus-specific ssDNA oligonucleotides. We applied this method to construct a scarless E. coli strain suitable for gradual induction by l-arabinose. Genome sequencing of the resulting strain and its parent strains demonstrated that no additional mutations were introduced along with the simultaneous deletion of two FRT scar-sites. The FRT-specific no-SCAR selection by sgRNAFRT/Cas9 may be generally applicable to cure FRT scar-sites of E. coli strains constructed by classical λ-Red recombineering.
Collapse
Affiliation(s)
- Aathmaja Anandhi Rangarajan
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany.,Present address: Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Cihan Yilmaz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
18
|
dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nat Cell Biol 2022; 24:268-278. [PMID: 35145221 PMCID: PMC8843813 DOI: 10.1038/s41556-021-00836-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Gene editing is a powerful tool for genome and cell engineering. Exemplified by CRISPR–Cas, gene editing could cause DNA damage and trigger DNA repair processes that are often error-prone. Such unwanted mutations and safety concerns can be exacerbated when altering long sequences. Here we couple microbial single-strand annealing proteins (SSAPs) with catalytically inactive dCas9 for gene editing. This cleavage-free gene editor, dCas9–SSAP, promotes the knock-in of long sequences in mammalian cells. The dCas9–SSAP editor has low on-target errors and minimal off-target effects, showing higher accuracy than canonical Cas9 methods. It is effective for inserting kilobase-scale sequences, with an efficiency of up to approximately 20% and robust performance across donor designs and cell types, including human stem cells. We show that dCas9–SSAP is less sensitive to inhibition of DNA repair enzymes than Cas9 references. We further performed truncation and aptamer engineering to minimize its size to fit into a single adeno-associated-virus vector for future application. Together, this tool opens opportunities towards safer long-sequence genome engineering. Wang, Qu et al. developed a genome-editing system, utilizing catalytically inactive Cas9 fused to microbial single-strand annealing proteins, for kilobase-scale insertion in human cells without introducing DNA nicks or breaks.
Collapse
|
19
|
Development of a new recombineering system for Agrobacterium species. Appl Environ Microbiol 2022; 88:e0249921. [PMID: 35044833 DOI: 10.1128/aem.02499-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovery of new and efficient genetic engineering technologies for Agrobacterium will broaden the capacity for fundamental research on this genus and for its utilization as a transgenic vehicle. In this study, we aim to develop an efficient recombineering system for Agrobacterium species. We examined isolates of Agrobacterium and the closely related genus Rhizobium to identify pairs of ET-like recombinases that would aid in the recombineering of Agrobacterium species. Four pairs of ET-like recombinases, named RecETh1h2h3h4AGROB6, RecETh1h2P3RHI597, RecETRHI145, and RecEThRHI483, were identified in Agrobacterium tumefaciens str. B6, Rhizobium leguminosarum bv. trifolii WSM597, Rhizobium sp. LC145, and Rhizobium sp. Root483D2, respectively. Eight more candidate recombineering systems were generated by combining the new ET-like recombinases with Redγ or Pluγ. The PluγETRHI145 system, RecETh1h2h3h4AGROB6 system, and PluγEThRHI483 system were determined to be the most efficient recombineering system for the type strains A. tumefaciens C58, A. tumefaciens EHA105, and R. rhizogenes NBCR13257, respectively. The utility of these systems was demonstrated by knocking out the istB and istA fusion gene in C58, the celI gene in EHA105, and the 3'-5' exonuclease gene and endoglucanase gene in NBCR13257. Our work provides an effective genetic manipulation strategy for Agrobacterium species. IMPORTANCE Agrobacterium is a powerful transgenic vehicle for the genetic manipulation of numerous plant and fungal species and even animal cells. In addition to improving the utility of Agrobacterium as a transgenic vehicle, genetic engineering tools are important for revealing crucial components that are functionally involved in T-DNA translocation events. This work developed an efficient and versatile recombineering system for Agrobacterium. Successful genome modification of Agrobacterium strains revealed that this new recombineering system could be used for the genetic engineering of Agrobacterium.
Collapse
|
20
|
Flores-Valdez MA, Aceves-Sánchez MDJ. Construction of Novel Live Genetically Modified BCG Vaccine Candidates Using Recombineering Tools. Methods Mol Biol 2022; 2410:367-385. [PMID: 34914058 DOI: 10.1007/978-1-0716-1884-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the strategies for the construction of live vaccine candidates is through the generation of genetically defined isogenic strains, containing single or multiple mutations in target-specific genes generated by allelic exchange. This approach allows to produce rational attenuation of or, alternatively, sequence-specific modifications to produce variants of antigenic molecules or change their expression levels. Genetic tools amenable for their use in mycobacterial strains have allowed the identification and validation of potential targets for the diagnosis, prevention, and treatment of tuberculosis. However, the genetic manipulation of Mycobacterium tuberculosis and other slow-growing strains such as Mycobacterium bovis BCG has been delayed by various factors related to their physiology and cell wall characteristics. Notwithstanding the foregoing, the high frequency of illegitimate recombination and the availability of few antibiotic selection markers limit the feasibility of genetic manipulation of mycobacterial strains. This chapter describes a protocol for the generation of defined mutants using recombination tools in an inducible recombination system driven by mycobacterial Che9c phage RecET proteins, originally developed in Dr. Graham Hatfull's group, combined with linearized recombination substrates containing flanking sequences of a locus of interest and an antibiotic resistance gene. These recombination substrates contain sites for removal of antibiotics selection markers. This system allows to make marked and unmarked mutations by homologous recombination in a single step as a result of a double crossover between the homologous regions on the genome and the allelic exchange substrate. In addition, this genetic tool used for engineering mycobacterial genomes performs with lower rates of illegitimate recombination and take on average less time to create knock-out (KO) mutant compared with other techniques.
Collapse
Affiliation(s)
- Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C. Biotecnología Médica y Farmacéutica. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco, Mexico.
| | - Michel de Jesús Aceves-Sánchez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C. Biotecnología Médica y Farmacéutica. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco, Mexico
| |
Collapse
|
21
|
Wang X, Zheng W, Zhou H, Tu Q, Tang YJ, Stewart AF, Zhang Y, Bian X. Improved dsDNA recombineering enables versatile multiplex genome engineering of kilobase-scale sequences in diverse bacteria. Nucleic Acids Res 2021; 50:e15. [PMID: 34792175 PMCID: PMC8860599 DOI: 10.1093/nar/gkab1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
Recombineering assisted multiplex genome editing generally uses single-stranded oligonucleotides for site directed mutational changes. It has proven highly efficient for functional screens and to optimize microbial cell factories. However, this approach is limited to relatively small mutational changes. Here, we addressed the challenges involved in the use of double-stranded DNA substrates for multiplex genome engineering. Recombineering is mediated by phage single-strand annealing proteins annealing ssDNAs into the replication fork. We apply this insight to facilitate the generation of ssDNA from the dsDNA substrate and to alter the speed of replication by elevating the available deoxynucleoside triphosphate (dNTP) levels. Intracellular dNTP concentration was elevated by ribonucleotide reductase overexpression or dNTP addition to establish double-stranded DNA Recombineering-assisted Multiplex Genome Engineering (dReaMGE), which enables rapid and flexible insertional and deletional mutagenesis at multiple sites on kilobase scales in diverse bacteria without the generation of double-strand breaks or disturbance of the mismatch repair system. dReaMGE can achieve combinatorial genome engineering works, for example, alterations to multiple biosynthetic pathways, multiple promoter or gene insertions, variations of transcriptional regulator combinations, within a few days. dReaMGE adds to the repertoire of bacterial genome engineering to facilitate discovery, functional genomics, strain optimization and directed evolution of microbial cell factories.
Collapse
Affiliation(s)
- Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Wentao Zheng
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Qiang Tu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ya-Jie Tang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
22
|
Chen V, Griffin ME, Maguin P, Varble A, Hang HC. RecT Recombinase Expression Enables Efficient Gene Editing in Enterococcus spp. Appl Environ Microbiol 2021; 87:e0084421. [PMID: 34232061 PMCID: PMC8388837 DOI: 10.1128/aem.00844-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecium is a ubiquitous Gram-positive bacterium that has been recovered from the environment, food, and microbiota of mammals. Commensal strains of E. faecium can confer beneficial effects on host physiology and immunity, but antibiotic usage has afforded antibiotic-resistant and pathogenic isolates from livestock and humans. However, the dissection of E. faecium functions and mechanisms has been restricted by inefficient gene-editing methods. To address these limitations, here, we report that the expression of E. faecium RecT recombinase significantly improves the efficiency of recombineering technologies in both commensal and antibiotic-resistant strains of E. faecium and other Enterococcus species such as E. durans and E. hirae. Notably, the expression of RecT in combination with clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 and guide RNAs (gRNAs) enabled highly efficient scarless single-stranded DNA recombineering to generate specific gene-editing mutants in E. faecium. Moreover, we demonstrate that E. faecium RecT expression facilitated chromosomal insertions of double-stranded DNA templates encoding antibiotic-selectable markers to generate gene deletion mutants. As a further proof of principle, we use CRISPR-Cas9-mediated recombineering to knock out both sortase A genes in E. faecium for downstream functional characterization. The general RecT-mediated recombineering methods described here should significantly enhance genetic studies of E. faecium and other closely related species for functional and mechanistic studies. IMPORTANCE Enterococcus faecium is widely recognized as an emerging public health threat with the rise of drug resistance and nosocomial infections. Nevertheless, commensal Enterococcus strains possess beneficial health functions in mammals to upregulate host immunity and prevent microbial infections. This functional dichotomy of Enterococcus species and strains highlights the need for in-depth studies to discover and characterize the genetic components underlying its diverse activities. However, current genetic engineering methods in E. faecium still require passive homologous recombination from plasmid DNA. This involves the successful cloning of multiple homologous fragments into a plasmid, introducing the plasmid into E. faecium, and screening for double-crossover events that can collectively take up to multiple weeks to perform. To alleviate these challenges, we show that RecT recombinase enables the rapid and efficient integration of mutagenic DNA templates to generate substitutions, deletions, and insertions in the genomic DNA of E. faecium. These improved recombineering methods should facilitate functional and mechanistic studies of Enterococcus.
Collapse
Affiliation(s)
- Victor Chen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Matthew E. Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA
| | - Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Department of Chemistry, Scripps Research, La Jolla, California, USA
| |
Collapse
|
23
|
Chang Y, Wang Q, Su T, Qi Q. Identification of phage recombinase function unit in genus Corynebacterium. Appl Microbiol Biotechnol 2021; 105:5067-5075. [PMID: 34131780 DOI: 10.1007/s00253-021-11384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
Phage recombinase function unit (PRFU) plays a key role in the life cycle of phage. Repurposing this system such as lambda-Redαβ or Rac-RecET for recombineering has gained success in Escherichia coli. Previous studies have showed that most PRFUs only worked well in its native hosts but poorly in the distant species. Thus, identification of new PRFUs in specific species is necessary for the development of its corresponding genetic engineering tools. Here, we present a thorough study of PRFUs in the genomes of genus Corynebacterium. We first used a database to database searching method to facilitate accurate prediction of novel PRFUs in 423 genomes. A total number of 60 sets of unique PRFUs were identified and divided into 8 types based on evolution affinities. Recombineering ability of the 8 representative PRFUs was experimentally verified in the Corynebacterium glutamicum ATCC 13032 strain. In particular, PRFU from C. aurimucosum achieved highest efficiency in both ssDNA and dsDNA mediated recombineering, which is expected to greatly facilitate genome engineering in genus Corynebacterium. These results will provide new insights for the study and application of PRFUs. KEY POINTS: • First report of bioinformatic mining and systematic analysis of Phage recombinase function unit (PRFU) in Corynebacterium genomes. • Recombineering ability of the representative PRFUs was experimentally verified in Corynebacterium glutamicum ATCC 13032 strain. • PRFU with the highest recombineering efficiency at 10-2 magnitude was identified from Corynebacterium aurimucosum.
Collapse
Affiliation(s)
- Yizhao Chang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qian Wang
- National Glycoengineering Center, Shandong University, Qingdao, Shandong, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
| |
Collapse
|
24
|
Steczkiewicz K, Prestel E, Bidnenko E, Szczepankowska AK. Expanding Diversity of Firmicutes Single-Strand Annealing Proteins: A Putative Role of Bacteriophage-Host Arms Race. Front Microbiol 2021; 12:644622. [PMID: 33959107 PMCID: PMC8093625 DOI: 10.3389/fmicb.2021.644622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-encoded single strand annealing proteins (SSAPs) are recombinases which can substitute the classical, bacterial RecA and manage the DNA metabolism at different steps of phage propagation. SSAPs have been shown to efficiently promote recombination between short and rather divergent DNA sequences and were exploited for in vivo genetic engineering mainly in Gram-negative bacteria. In opposition to the conserved and almost universal bacterial RecA protein, SSAPs display great sequence diversity. The importance for SSAPs in phage biology and phage-bacteria evolution is underlined by their role as key players in events of horizontal gene transfer (HGT). All of the above provoke a constant interest for the identification and study of new phage recombinase proteins in vivo, in vitro as well as in silico. Despite this, a huge body of putative ssap genes escapes conventional classification, as they are not properly annotated. In this work, we performed a wide-scale identification, classification and analysis of SSAPs encoded by the Firmicutes bacteria and their phages. By using sequence similarity network and gene context analyses, we created a new high quality dataset of phage-related SSAPs, substantially increasing the number of annotated SSAPs. We classified the identified SSAPs into seven distinct families, namely RecA, Gp2.5, RecT/Redβ, Erf, Rad52/22, Sak3, and Sak4, organized into three superfamilies. Analysis of the relationships between the revealed protein clusters led us to recognize Sak3-like proteins as a new distinct SSAP family. Our analysis showed an irregular phylogenetic distribution of ssap genes among different bacterial phyla and specific phages, which can be explained by the high rates of ssap HGT. We propose that the evolution of phage recombinases could be tightly linked to the dissemination of bacterial phage-resistance mechanisms (e.g., abortive infection and CRISPR/Cas systems) targeting ssap genes and be a part of the constant phage-bacteria arms race.
Collapse
Affiliation(s)
| | - Eric Prestel
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elena Bidnenko
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
25
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
26
|
Liu H, Hou G, Wang P, Guo G, Wang Y, Yang N, Rehman MNU, Li C, Li Q, Zheng J, Zeng J, Li S. A double-locus scarless genome editing system in Escherichia coli. Biotechnol Lett 2020; 42:1457-1465. [PMID: 32130564 DOI: 10.1007/s10529-020-02856-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To develop a convenient double-locus scarless genome editing system in Escherichia coli, based on the type II Streptococcus pyogenes CRISPR/Cas9 and λ Red recombination cassette. RESULTS A two-plasmid genome editing system was constructed. The large-sized plasmid harbors the cas9 and λ Red recombination genes (gam, bet, and exo), while the small-molecular plasmid can simultaneously express two different gRNAs (targeting genome RNAs). The recombination efficiency was tested by targeting the galK, lacZ, and dbpA genes in E. coli with ssDNA or dsDNA. Resulting concurrent double-locus recombination efficiencies were 88 ± 5.5% (point mutation), 39.7 ± 4.3% (deletion/insertion), and 57.8 ± 3.4%-58.5 ± 4.1% (mixed point and deletion/insertion mutation), depending on 30 (ssDNA) or 40 bp (dsDNA) homologous side arms employed. In addition, the curing efficiency of the guide plasmid expressing gRNAs for negative selection was higher (96 ± 3% in 4 h) than the help plasmid carrying cas9 and λ Red (92 ± 2% in 9 h). CONCLUSIONS The new editing system is convenient and efficient for simultaneous double-locus recombination in the genome and should be favorable for high-throughput multiplex genome editing in synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Haiqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China
| | - Guofeng Hou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China
| | - Peng Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Guiying Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China
| | - Yu Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China
| | - Nuo Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China
| | - Muhammad Nafees Ur Rehman
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China
| | - Changlong Li
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Qian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China
| | - Jiping Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China.
| | - Jifeng Zeng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China.
| | - Shanhu Li
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
27
|
Wang H, Li Z, Jia R, Yin J, Li A, Xia L, Yin Y, Müller R, Fu J, Stewart AF, Zhang Y. ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Res 2019; 46:e28. [PMID: 29240926 PMCID: PMC5861427 DOI: 10.1093/nar/gkx1249] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/02/2017] [Indexed: 12/29/2022] Open
Abstract
The exponentially increasing volumes of DNA sequence data highlight the need for new DNA cloning methods to explore the new information. Here, we describe ‘ExoCET’ (Exonuclease Combined with RecET recombination) to directly clone any chosen region from bacterial and mammalian genomes with nucleotide precision into operational plasmids. ExoCET combines in vitro exonuclease and annealing with the remarkable capacity of full length RecET homologous recombination (HR) to retrieve specified regions from genomic DNA preparations. Using T4 polymerase (T4pol) as the in vitro exonuclease for ExoCET, we directly cloned large regions (>50 kb) from bacterial and mammalian genomes, including DNA isolated from blood. Employing RecET HR or Cas9 cleavage in vitro, the directly cloned region can be chosen with nucleotide precision to position, for example, a gene into an expression vector without the need for further subcloning. In addition to its utility for bioprospecting in bacterial genomes, ExoCET presents straightforward access to mammalian genomes for various applications such as region-specific DNA sequencing that retains haplotype phasing, the rapid construction of optimal, haplotypic, isogenic targeting constructs or a new way to genotype that presents advantages over Southern blotting or polymerase chain reaction. The direct cloning capacities of ExoCET present new freedoms in recombinant DNA technology.
Collapse
Affiliation(s)
- Hailong Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Zhen Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Ruonan Jia
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Jia Yin
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Aiying Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China
| | - Yulong Yin
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China.,Key Laboratory of Subtropical Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan Province 410125, People's Republic of China
| | - Rolf Müller
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.,Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
28
|
Huang H, Song X, Yang S. Development of a RecE/T-Assisted CRISPR-Cas9 Toolbox for Lactobacillus. Biotechnol J 2019; 14:e1800690. [PMID: 30927506 DOI: 10.1002/biot.201800690] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Indexed: 12/29/2022]
Abstract
Lactobacilli are members of a large family involved in industrial food fermentation, therapeutics, and health promotion. However, the development of genetic manipulation tools for this genus lags behind its relative industrial and medical significance. The development of clustered regularly interspaced short palindromic repeat (CRISPR)-based genome engineering for Lactobacillus is now underway. However, some Lactobacillus species are sensitive to CRISPR-Cas9 induced double strand breaks (DSBs) due to a deficiency in homology-directed repair (HDR), which allows chromosomal genetic editing. Here, phage-derived RecE/T is coupled with CRISPR-Cas9 and the transcriptional activity of broad-spectrum host promoters is assessed to set up a versatile toolbox containing a recombination helper plasmid and a broad host CRISPR-Cas9 editing plasmid, which enables efficient genome editing in Lactobacillus plantarum (L. plantarum) WCFS1 and Lactobacillus brevis (L. brevis) ATCC367. The RecE/T-assisted CRISPR-Cas9 toolbox realizes single gene deletions at an efficiency of 50-100% in seven days. Furthermore, the chromosomal gene replacement of Lp_0537 using a P23 -pyruvate decarboxylase (pdc) expression cassette is accomplished with an efficiency of 35.7%. This study establises a RecE/T-assisted CRISPR genome editing toolbox for L. plantarum WCFS1 and L. brevis ATCC367 and also demonstrate that RecE/T-assisted CRISPR-Cas9 is an effective genome editing system, which can be readily implemented in Lactobacilli.
Collapse
Affiliation(s)
- He Huang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | - Xin Song
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, 516 Jungong Road, 200093, Shanghai, China
| | - Sheng Yang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, 200 North Zhongshan Road, Nanjing, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, China
| |
Collapse
|
29
|
Caldwell BJ, Bell CE. Structure and mechanism of the Red recombination system of bacteriophage λ. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:33-46. [PMID: 30904699 DOI: 10.1016/j.pbiomolbio.2019.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Abstract
While much of this volume focuses on mammalian DNA repair systems that are directly involved in genome stability and cancer, it is important to still be mindful of model systems from prokaryotes. Herein we review the Red recombination system of bacteriophage λ, which consists of an exonuclease for resecting dsDNA ends, and a single-strand annealing protein (SSAP) for binding the resulting 3'-overhang and annealing it to a complementary strand. The genetics and biochemistry of Red have been studied for over 50 years, in work that has laid much of the foundation for understanding DNA recombination in higher eukaryotes. In fact, the Red exonuclease (λ exo) is homologous to Dna2, a nuclease involved in DNA end-resection in eukaryotes, and the Red annealing protein (Redβ) is homologous to Rad52, the primary SSAP in eukaryotes. While eukaryotic recombination involves an elaborate network of proteins that is still being unraveled, the phage systems are comparatively simple and streamlined, yet still encompass the fundamental features of recombination, namely DNA end-resection, homologous pairing (annealing), and a coupling between them. Moreover, the Red system has been exploited in powerful methods for bacterial genome engineering that are important for functional genomics and systems biology. However, several mechanistic aspects of Red, particularly the action of the annealing protein, remain poorly understood. This review will focus on the proteins of the Red recombination system, with particular attention to structural and mechanistic aspects, and how the lessons learned can be applied to eukaryotic systems.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA; Department of Chemistry and Biochemistry, 484 West 12th Avenue, 1060 Carmack Road, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
31
|
Caldwell BJ, Zakharova E, Filsinger GT, Wannier TM, Hempfling JP, Chun-Der L, Pei D, Church GM, Bell CE. Crystal structure of the Redβ C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein. Nucleic Acids Res 2019; 47:1950-1963. [PMID: 30624736 PMCID: PMC6393309 DOI: 10.1093/nar/gky1309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Bacteriophage λ encodes a DNA recombination system that includes a 5'-3' exonuclease (λ Exo) and a single strand annealing protein (Redβ). The two proteins form a complex that is thought to mediate loading of Redβ directly onto the single-stranded 3'-overhang generated by λ Exo. Here, we present a 2.3 Å crystal structure of the λ Exo trimer bound to three copies of the Redβ C-terminal domain (CTD). Mutation of residues at the hydrophobic core of the interface disrupts complex formation in vitro and impairs recombination in vivo. The Redβ CTD forms a three-helix bundle with unexpected structural homology to phage λ Orf, a protein that binds to E. coli single-stranded DNA binding protein (SSB) to function as a recombination mediator. Based on this relationship, we found that Redβ binds to full-length SSB, and to a peptide corresponding to its nine C-terminal residues, in an interaction that requires the CTD. These results suggest a dual role of the CTD, first in binding to λ Exo to facilitate loading of Redβ directly onto the initial single-stranded DNA (ssDNA) at a 3'-overhang, and second in binding to SSB to facilitate annealing of the overhang to SSB-coated ssDNA at the replication fork.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Ekaterina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Gabriel T Filsinger
- Department of Systems Biology, Harvard Medical School, Cambridge, MA 02138, USA
| | - Timothy M Wannier
- Department of Genetics, Harvard Medical School, Cambridge, MA 02138, USA
| | - Jordan P Hempfling
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Lee Chun-Der
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Corts AD, Thomason LC, Gill RT, Gralnick JA. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides. Sci Rep 2019; 9:39. [PMID: 30631105 PMCID: PMC6328582 DOI: 10.1038/s41598-018-37025-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
Shewanella oneidensis MR-1 is an invaluable host for the discovery and engineering of pathways important for bioremediation of toxic and radioactive metals and understanding extracellular electron transfer. However, genetic manipulation is challenging due to the lack of genetic tools. Previously, the only reliable method used for introducing DNA into Shewanella spp. at high efficiency was bacterial conjugation, enabling transposon mutagenesis and targeted knockouts using suicide vectors for gene disruptions. Here, we describe development of a robust and simple electroporation method in S. oneidensis that allows an efficiency of ~4.0 x 106 transformants/µg DNA. High transformation efficiency is maintained when cells are frozen for long term storage. In addition, we report a new prophage-mediated genome engineering (recombineering) system using a λ Red Beta homolog from Shewanella sp. W3-18-1. By targeting two different chromosomal alleles, we demonstrate its application for precise genome editing using single strand DNA oligonucleotides and show that an efficiency of ~5% recombinants among total cells can be obtained. This is the first effective and simple strategy for recombination with markerless mutations in S. oneidensis. Continued development of this recombinant technology will advance high-throughput and genome modification efforts to engineer and investigate S. oneidensis and other environmental bacteria.
Collapse
Affiliation(s)
- Anna D Corts
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Lynn C Thomason
- RNA Biology Laboratory, Basic Science Program, Leidos Biomedical Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ryan T Gill
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80303, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
33
|
Heterologous expression-facilitated natural products' discovery in actinomycetes. J Ind Microbiol Biotechnol 2018; 46:415-431. [PMID: 30446891 DOI: 10.1007/s10295-018-2097-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 12/22/2022]
Abstract
Actinomycetes produce many of the drugs essential for human and animal health as well as crop protection. Genome sequencing projects launched over the past two decades reveal dozens of cryptic natural product biosynthetic gene clusters in each actinomycete genome that are not expressed under regular laboratory conditions. This so-called 'chemical dark matter' represents a potentially rich untapped resource for drug discovery in the genomic era. Through improved understanding of natural product biosynthetic logic coupled with the development of bioinformatic and genetic tools, we are increasingly able to access this 'dark matter' using a wide variety of strategies with downstream potential application in drug development. In this review, we discuss recent research progress in the field of cloning of natural product biosynthetic gene clusters and their heterologous expression in validating the potential of this methodology to drive next-generation drug discovery.
Collapse
|
34
|
Balikó G, Vernyik V, Karcagi I, Györfy Z, Draskovits G, Fehér T, Pósfai G. Rational Efforts to Streamline the Escherichia coliGenome. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gabriella Balikó
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Viktor Vernyik
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Ildikó Karcagi
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Zsuzsanna Györfy
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Gábor Draskovits
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Tamás Fehér
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - György Pósfai
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| |
Collapse
|
35
|
DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630. ACS Synth Biol 2018; 7:727-738. [PMID: 29366319 DOI: 10.1021/acssynbio.7b00416] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rhodococcus opacus PD630 is a non-model Gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized because of a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ∼45-fold in output was constructed. To improve the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Austin G. Rottinghaus
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - William R. Henson
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
36
|
Huang Y, Li L, Xie S, Zhao N, Han S, Lin Y, Zheng S. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette. Sci Rep 2017; 7:7916. [PMID: 28801604 PMCID: PMC5554157 DOI: 10.1038/s41598-017-08352-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Gene manipulation is essential for metabolic engineering and synthetic biology, but the current general gene manipulation methods are not applicable to the non-model strain Corynebacterium glutamicum (C. glutamicum) ATCC14067, which is used for amino acid production. Here, we report an effective and sequential deletion method for C. glutamicum ATCC14067 using the exonuclease-recombinase pair RecE + RecT (RecET) for recombineering via a designed self-excisable linear double-strand DNA (dsDNA) cassette, which contains the Cre/loxP system, to accomplish markerless deletion. To the best of our knowledge, this is the first effective and simple strategy for recombination with markerless deletion in C. glutamicum ATCC14067. This strategy provides a simple markerless deletion strategy for C. glutamicum and builds a solid basis for producer construction.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Lu Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shan Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
37
|
OEPR Cloning: an Efficient and Seamless Cloning Strategy for Large- and Multi-Fragments. Sci Rep 2017; 7:44648. [PMID: 28300166 PMCID: PMC5353728 DOI: 10.1038/srep44648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/09/2017] [Indexed: 12/27/2022] Open
Abstract
Here, an efficient cloning strategy for large DNA fragments and for simultaneous assembly of multiple DNA fragments assembly is presented. This strategy is named OEPR (based on Overlap Extension PCR and Recombination in vivo). OEPR cloning is a seamless, restriction- and ligation-independent method. The method takes advantage of both homologous recombination enzymes in E. coli and overlap PCR. Using OEPR cloning, a long fragment (1–6 kb) or multiple fragments (2–4 fragments) can be easily constructed and simultaneously assembled into a target vector.
Collapse
|
38
|
Motohashi K. Seamless Ligation Cloning Extract (SLiCE) Method Using Cell Lysates from Laboratory Escherichia coli Strains and its Application to SLiP Site-Directed Mutagenesis. Methods Mol Biol 2017; 1498:349-357. [PMID: 27709587 DOI: 10.1007/978-1-4939-6472-7_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell lysates from laboratory Escherichia coli strains endogenously exhibit homologous recombination activity, which can be utilized for seamless DNA cloning in vitro. This method, termed Seamless Ligation Cloning Extract (SLiCE) cloning, enables high cloning efficiency with simultaneous integration of two unpurified DNA fragments into a vector. In addition, the SLiCE method is highly cost-effective, as several laboratory E. coli strains may be utilized as sources of SLiCE. Previously, the SLiCE technique has been applied to site-directed mutagenesis to develop a novel technique termed SLiCE-mediated polymerase chain reaction (PCR)-based site-directed mutagenesis (SLiP site-directed mutagenesis). Two DNA fragments containing a mutation site can be simultaneously integrated into a vector while avoiding the introduction of undesirable mutations in the vector. Therefore, SLiP site-directed mutagenesis simplifies multiple procedures involved in PCR-based site-directed mutagenesis such as overlap extension method PCR or the Megaprimer method.
Collapse
Affiliation(s)
- Ken Motohashi
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
39
|
Direct cloning and transplanting of large DNA fragments from Escherichia coli chromosome. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1034-1041. [DOI: 10.1007/s11427-016-5100-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/26/2016] [Indexed: 10/20/2022]
Abstract
Abstract
We applied a resistance split-fusion strategy to increase the in vivo direct cloning efficiency mediated by Red recombination. The cat cassette was divided into two parts: cma (which has a homologous sequence with cmb) and cmb, each of which has no resistance separately unless the two parts are fused together. The cmb sequence was integrated into one flank of a target cloning region in the chromosome, and a linear vector containing the cma sequence was electroporated into the cells to directly capture the target region. Based on this strategy, we successfully cloned an approximately 48 kb DNA fragment from the E. coli DH1-Z chromosome with a positive frequency of approximately 80%. Combined with double-strand breakage-stimulated homologous recombination, we applied this strategy to successfully replace the corresponding region of the E. coli DH36 chromosome and knock out four non-essential genomic regions in one step. This strategy could provide a powerful tool for the heterologous expression of microbial natural product biosynthetic pathways for genome assembly and for the functional study of DNA sequences dozens of kilobases in length.
Collapse
|
40
|
Subramaniam S, Erler A, Fu J, Kranz A, Tang J, Gopalswamy M, Ramakrishnan S, Keller A, Grundmeier G, Müller D, Sattler M, Stewart AF. DNA annealing by Redβ is insufficient for homologous recombination and the additional requirements involve intra- and inter-molecular interactions. Sci Rep 2016; 6:34525. [PMID: 27708411 PMCID: PMC5052646 DOI: 10.1038/srep34525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023] Open
Abstract
Single strand annealing proteins (SSAPs) like Redβ initiate homologous recombination by annealing complementary DNA strands. We show that C-terminally truncated Redβ, whilst still able to promote annealing and nucleoprotein filament formation, is unable to mediate homologous recombination. Mutations of the C-terminal domain were evaluated using both single- and double stranded (ss and ds) substrates in recombination assays. Mutations of critical amino acids affected either dsDNA recombination or both ssDNA and dsDNA recombination indicating two separable functions, one of which is critical for dsDNA recombination and the second for recombination per se. As evaluated by co-immunoprecipitation experiments, the dsDNA recombination function relates to the Redα-Redβ protein-protein interaction, which requires not only contacts in the C-terminal domain but also a region near the N-terminus. Because the nucleoprotein filament formed with C-terminally truncated Redβ has altered properties, the second C-terminal function could be due to an interaction required for functional filaments. Alternatively the second C-terminal function could indicate a requirement for a Redβ-host factor interaction. These data further advance the model for Red recombination and the proposition that Redβ and RAD52 SSAPs share ancestral and mechanistic roots.
Collapse
Affiliation(s)
| | - Axel Erler
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany.,Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Andrea Kranz
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Jing Tang
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Mohanraj Gopalswamy
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747 Garching, Germany
| | - Saminathan Ramakrishnan
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100 33098 Paderborn, Germany
| | - Daniel Müller
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstraße 26, 4058 Basel, Switzerland
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstr.4, 85747 Garching, Germany
| | - A Francis Stewart
- Genomics, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
41
|
Delattre H, Souiai O, Fagoonee K, Guerois R, Petit MA. Phagonaute: A web-based interface for phage synteny browsing and protein function prediction. Virology 2016; 496:42-50. [PMID: 27254594 DOI: 10.1016/j.virol.2016.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships.
Collapse
Affiliation(s)
- Hadrien Delattre
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Oussema Souiai
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Khema Fagoonee
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Raphaël Guerois
- I2BC, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
42
|
Abstract
The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
43
|
Smith CE, Bell CE. Domain Structure of the Redβ Single-Strand Annealing Protein: the C-terminal Domain is Required for Fine-Tuning DNA-binding Properties, Interaction with the Exonuclease Partner, and Recombination in vivo. J Mol Biol 2016; 428:561-578. [PMID: 26780547 DOI: 10.1016/j.jmb.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/19/2015] [Accepted: 01/12/2016] [Indexed: 11/28/2022]
Abstract
Redβ is a component of the Red recombination system of bacteriophage λ that promotes a single strand annealing (SSA) reaction to generate end-to-end concatemers of the phage genome for packaging. Redβ interacts with λ exonuclease (λexo), the other component of the Red system, to form a "synaptosome" complex that somehow integrates the end resection and annealing steps of the reaction. Previous work using limited proteolysis and chemical modification revealed that Redβ consists of an N-terminal DNA binding domain, residues 1-177, and a flexible C-terminal "tail", residues 178-261. Here, we quantitatively compare the binding of the full-length protein (Redβ(FL)) and the N-terminal domain (Redβ(177)) to different lengths of ssDNA substrate and annealed duplex product. We find that in general, Redβ(FL) binds more tightly to annealed duplex product than to ssDNA substrate, while Redβ(177) binds more tightly to ssDNA. In addition, the C-terminal region of Redβ corresponding to residues 182-261 was purified and found to fold into an α-helical domain that is required for the interaction with λexo to form the synaptosome complex. Deletion analysis of Redβ revealed that removal of just eleven residues from the C-terminus disrupts the interaction with λexo as well as ssDNA and dsDNA recombination in vivo. By contrast, the determinants for self-oligomerization of Redβ appear to reside solely within the N-terminal domain. The subtle but significant differences in the relative binding of Redβ(FL) and Redβ(177) to ssDNA substrate and annealed duplex product may be important for Redβ to function as a SSA protein in vivo.
Collapse
Affiliation(s)
- Christopher E Smith
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
44
|
Pan X, Smith CE, Zhang J, McCabe KA, Fu J, Bell CE. A Structure-Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers. Biochemistry 2016; 54:6139-48. [PMID: 26361255 DOI: 10.1021/acs.biochem.5b00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
λ exonuclease (λexo) is an ATP-independent 5'-to-3' exonuclease that binds to double-stranded DNA (dsDNA) ends and processively digests the 5'-strand into mononucleotides. The crystal structure of λexo revealed that the enzyme forms a ring-shaped homotrimer with a central funnel-shaped channel for tracking along the DNA. On the basis of this structure, it was proposed that dsDNA enters the open end of the channel, the 5'-strand is digested at one of the three active sites, and the 3'-strand passes through the narrow end of the channel to emerge out the back. This model was largely confirmed by the structure of the λexo-DNA complex, which further revealed that the enzyme unwinds the DNA by 2 bp prior to cleavage, to thread the 5'-end of the DNA into the active site. On the basis of this structure, an "electrostatic ratchet" model was proposed, in which the enzyme uses a hydrophobic wedge to insert into the base pairs to unwind the DNA, a two-metal mechanism for nucleotide hydrolysis, a positively charged pocket to bind to the terminal 5'-phosphate generated after each round of cleavage, and an arginine residue (Arg-45) to bind to the minor groove of the downstream end of the DNA. To test this model, in this study we have determined the effects of 11 structure-based mutations in λexo on DNA binding and exonuclease activities in vitro, and on DNA recombination in vivo. The results are largely consistent with the model for the mechanism that was proposed on the basis of the structure and provide new insights into the roles of particular residues of the protein in promoting the reaction. In particular, a key role for Arg-45 in DNA binding is revealed.
Collapse
Affiliation(s)
| | | | | | | | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | | |
Collapse
|
45
|
Weninger A, Killinger M, Vogl T. Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
46
|
Pines G, Freed EF, Winkler JD, Gill RT. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination. ACS Synth Biol 2015; 4:1176-85. [PMID: 25856528 DOI: 10.1021/acssynbio.5b00009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing.
Collapse
Affiliation(s)
- Gur Pines
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Emily F. Freed
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - James D. Winkler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ryan T. Gill
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
47
|
Yoo J, Lee G. Allosteric ring assembly and chemo-mechanical melting by the interaction between 5'-phosphate and λ exonuclease. Nucleic Acids Res 2015; 43:10861-9. [PMID: 26527731 PMCID: PMC4678818 DOI: 10.1093/nar/gkv1150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Phosphates along the DNA function as chemical energy frequently used by nucleases to drive their enzymatic reactions. Exonuclease functions as a machine that converts chemical energy of the phosphodiester-chain into mechanical work. However, the roles of phosphates during exonuclease activities are unknown. We employed λ exonuclease as a model system and investigated the roles of phosphates during degradation via single-molecule fluorescence resonance energy transfer (FRET). We found that 5′ phosphates, generated at each cleavage step of the reaction, chemo-mechanically facilitate the subsequent post-cleavage melting of the terminal base pairs. Degradation of DNA with a nick requires backtracking and thermal fraying at the cleavage site for re-initiation via the formation of a catalytically active complex. Unexpectedly, we discovered that a phosphate of a 5′ recessed DNA acts as a hotspot for an allosteric trimeric-ring assembly without passing through the central channel. Our study provides new insight into the versatile roles of phosphates during the processive enzymatic reaction.
Collapse
Affiliation(s)
- Jungmin Yoo
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Gwangrog Lee
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| |
Collapse
|
48
|
Abstract
DNA exonucleases, enzymes that hydrolyze phosphodiester bonds in DNA from a free end, play important cellular roles in DNA repair, genetic recombination and mutation avoidance in all organisms. This article reviews the structure, biochemistry, and biological functions of the 17 exonucleases currently identified in the bacterium Escherichia coli. These include the exonucleases associated with DNA polymerases I (polA), II (polB), and III (dnaQ/mutD); Exonucleases I (xonA/sbcB), III (xthA), IV, VII (xseAB), IX (xni/xgdG), and X (exoX); the RecBCD, RecJ, and RecE exonucleases; SbcCD endo/exonucleases; the DNA exonuclease activities of RNase T (rnt) and Endonuclease IV (nfo); and TatD. These enzymes are diverse in terms of substrate specificity and biochemical properties and have specialized biological roles. Most of these enzymes fall into structural families with characteristic sequence motifs, and members of many of these families can be found in all domains of life.
Collapse
|
49
|
Yang P, Wang J, Qi Q. Prophage recombinases-mediated genome engineering in Lactobacillus plantarum. Microb Cell Fact 2015; 14:154. [PMID: 26438232 PMCID: PMC4595204 DOI: 10.1186/s12934-015-0344-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lactobacillus plantarum is a food-grade microorganism with industrial and medical relevance belonging to the group of lactic acid bacteria (LAB). Traditional strategies for obtaining gene deletion variants in this organism are mainly vector-based double-crossover methods, which are inefficient and laborious. A feasible possibility to solve this problem is the recombineering, which greatly expands the possibilities for engineering DNA molecules in vivo in various organisms. RESULTS In this work, a double-stranded DNA (dsDNA) recombineering system was established in L. plantarum. An exonuclease encoded by lp_0642 and a potential host-nuclease inhibitor encoded by lp_0640 involved in dsDNA recombination were identified from a prophage P1 locus in L. plantarum WCFS1. These two proteins, combined with the previously characterized single strand annealing protein encoded by lp_0641, can perform homologous recombination between a heterologous dsDNA substrate and host genomic DNA. Based on this, we developed a method for marker-free genetic manipulation of the chromosome in L. plantarum. CONCLUSIONS This Lp_0640-41-42-mediated recombination allowed easy screening of mutants and could serve as an alternative to other genetic manipulation methods. We expect that this method can help for understanding the probiotic functionality and physiology of LAB.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China.
| | - Jing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
50
|
Okegawa Y, Motohashi K. A simple and ultra-low cost homemade seamless ligation cloning extract (SLiCE) as an alternative to a commercially available seamless DNA cloning kit. Biochem Biophys Rep 2015; 4:148-151. [PMID: 29124198 PMCID: PMC5668909 DOI: 10.1016/j.bbrep.2015.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/27/2022] Open
Abstract
The seamless ligation cloning extract (SLiCE) method is a novel seamless DNA cloning tool that utilizes homologous recombination activities in Escherichia coli cell lysates to assemble DNA fragments into a vector. Several laboratory E. coli strains can be used as a source for the SLiCE extract; therefore, the SLiCE-method is highly cost-effective.The SLiCE has sufficient cloning ability to support conventional DNA cloning, and can simultaneously incorporate two unpurified DNA fragments into vector. Recently, many seamless DNA cloning kits have become commercially available; these are generally very convenient, but expensive. In this study, we evaluated the cloning efficiencies between a simple and highly cost-effective SLiCE-method and a commercial kit under various molar ratios of insert DNA fragments to vector DNA. This assessment identified that the SLiCE from a laboratory E. coli strain yielded 30−85% of the colony formation rate of a commercially available seamless DNA cloning kit. The cloning efficiencies of both methods were highly effective, exhibiting over 80% success rate under all conditions examined. These results suggest that SLiCE from a laboratory E. coli strain can efficiently function as an effective alternative to commercially available seamless DNA cloning kits.
Collapse
Affiliation(s)
- Yuki Okegawa
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Ken Motohashi
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|