1
|
Rouan A, Pousse M, Djerbi N, Porro B, Bourdin G, Carradec Q, Hume BC, Poulain J, Lê-Hoang J, Armstrong E, Agostini S, Salazar G, Ruscheweyh HJ, Aury JM, Paz-García DA, McMinds R, Giraud-Panis MJ, Deshuraud R, Ottaviani A, Morini LD, Leone C, Wurzer L, Tran J, Zoccola D, Pey A, Moulin C, Boissin E, Iwankow G, Romac S, de Vargas C, Banaigs B, Boss E, Bowler C, Douville E, Flores M, Reynaud S, Thomas OP, Troublé R, Thurber RV, Planes S, Allemand D, Pesant S, Galand PE, Wincker P, Sunagawa S, Röttinger E, Furla P, Voolstra CR, Forcioli D, Lombard F, Gilson E. Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals. Nat Commun 2023; 14:3038. [PMID: 37263999 DOI: 10.1038/s41467-023-38499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.
Collapse
Affiliation(s)
- Alice Rouan
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France.
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France.
| | - Melanie Pousse
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Nadir Djerbi
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Barbara Porro
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | | | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Benjamin Cc Hume
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Eric Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur, 23096, La Paz, México
| | - Ryan McMinds
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- University of South Florida Center for Global Health and Infectious Diseases Research, Tampa, FL, USA
- Maison de la Modélisation, de la Simulation et des Interactions (MSI),, Université Côte d'Azur, Nice, France
| | - Marie-Josèphe Giraud-Panis
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Romane Deshuraud
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Alexandre Ottaviani
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Lycia Die Morini
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Camille Leone
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Lia Wurzer
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Jessica Tran
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Didier Zoccola
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Alexis Pey
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Clémentine Moulin
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Tara Ocean Foundation, 8 rue de Prague, 75012, Paris, France
| | - Emilie Boissin
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Guillaume Iwankow
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Bernard Banaigs
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth, and Planetary Sciences, 76100, Rehovot, Israel
| | - Stéphanie Reynaud
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91TK33, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Tara Ocean Foundation, 8 rue de Prague, 75012, Paris, France
| | - Rebecca Vega Thurber
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR, 97331, USA
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Denis Allemand
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Stephane Pesant
- European Bioinformatics Institute, Wellcome Genome Campus, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge CB10 1SD, UK, UK
| | - Pierre E Galand
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Eric Röttinger
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Paola Furla
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | | | - Didier Forcioli
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institut Universitaire de France, Ministère chargé de l'enseignement supérieur, Paris, France
| | - Eric Gilson
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France.
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France.
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France.
- Department of Medical Genetics, CHU, Nice, France.
| |
Collapse
|
2
|
Sun Q, Wang H, Tao S, Xi X. Large-Scale Detection of Telomeric Motif Sequences in Genomic Data Using TelFinder. Microbiol Spectr 2023; 11:e0392822. [PMID: 36847562 PMCID: PMC10100673 DOI: 10.1128/spectrum.03928-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
Telomeres are regions of tandem repeated sequences at the ends of linear chromosomes that protect against DNA damage and chromosome fusion. Telomeres are associated with senescence and cancers and have attracted the attention of an increasing number of researchers. However, few telomeric motif sequences are known. Given the mounting interest in telomeres, an efficient computational tool for the de novo detection of the telomeric motif sequence of new species is needed since experimental-based methods are costly in terms of time and effort. Here, we report the development of TelFinder, an easy-to-use and freely available tool for the de novo detection of telomeric motif sequences from genomic data. The vast quantity of readily available genomic data makes it possible to apply this tool to any species of interest, which will undoubtedly inspire studies requiring telomeric repeat information and improve the utilization of these genomic data sets. We have tested TelFinder on telomeric sequences available in the Telomerase Database, and the detection accuracy reaches 90%. In addition, variation analyses in telomere sequences can be performed by TelFinder for the first time. The telomere variation preference of different chromosomes and even at the ends of the chromosome can provide clues regarding the underlying mechanisms of telomeres. Overall, these results shed new light on the divergent evolution of telomeres. IMPORTANCE Telomeres are reported to be highly correlated with the cell cycle and aging. As a result, research on telomere composition and evolution has become more and more urgent. However, using experimental methods to detect telomeric motif sequences is slow and costly. To combat this challenge, we developed TelFinder, a computational tool for the de novo detection of the telomere composition only using genomic data. In this study, we showed that a lot of complicated telomeric motifs could be identified by TelFinder only using genomic data. In addition, TelFinder can be used to check variation analyses in telomere sequences, which could lead to a deeper understanding of telomere sequences.
Collapse
Affiliation(s)
- Qing Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiheng Tao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuguang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Geiller HEB, Harvey A, Jones RE, Grimstead JW, Cleal K, Hendrickson EA, Baird DM. ATRX modulates the escape from a telomere crisis. PLoS Genet 2022; 18:e1010485. [PMID: 36350851 PMCID: PMC9678338 DOI: 10.1371/journal.pgen.1010485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/21/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Telomerase activity is the principal telomere maintenance mechanism in human cancers, however 15% of cancers utilise a recombination-based mechanism referred to as alternative lengthening of telomeres (ALT) that leads to long and heterogenous telomere length distributions. Loss-of-function mutations in the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) gene are frequently found in ALT cancers. Here, we demonstrate that the loss of ATRX, coupled with telomere dysfunction during crisis, is sufficient to initiate activation of the ALT pathway and that it confers replicative immortality in human fibroblasts. Additionally, loss of ATRX combined with a telomere-driven crisis in HCT116 epithelial cancer cells led to the initiation of an ALT-like pathway. In these cells, a rapid and precise telomeric elongation and the induction of C-circles was observed; however, this process was transient and the telomeres ultimately continued to erode such that the cells either died or the escape from crisis was associated with telomerase activation. In both of these instances, telomere sequencing revealed that all alleles, irrespective of whether they were elongated, were enriched in variant repeat types, that appeared to be cell-line specific. Thus, our data show that the loss of ATRX combined with telomere dysfunction during crisis induces the ALT pathway in fibroblasts and enables a transient activation of ALT in epithelial cells.
Collapse
Affiliation(s)
- Helene E. B. Geiller
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Adam Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Rhiannon E. Jones
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Julia W. Grimstead
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Duncan M. Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
4
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
5
|
Rosas Bringas FR, Stinus S, de Zoeten P, Cohn M, Chang M. Rif2 protects Rap1-depleted telomeres from MRX-mediated degradation in Saccharomyces cerevisiae. eLife 2022; 11:74090. [PMID: 35044907 PMCID: PMC8791636 DOI: 10.7554/elife.74090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Rap1 is the main protein that binds double-stranded telomeric DNA in Saccharomyces cerevisiae. Examination of the telomere functions of Rap1 is complicated by the fact that it also acts as a transcriptional regulator of hundreds of genes and is encoded by an essential gene. In this study, we disrupt Rap1 telomere association by expressing a mutant telomerase RNA subunit (tlc1-tm) that introduces mutant telomeric repeats. tlc1-tm cells grow similar to wild-type cells, although depletion of Rap1 at telomeres causes defects in telomere length regulation and telomere capping. Rif2 is a protein normally recruited to telomeres by Rap1, but we show that Rif2 can still associate with Rap1-depleted tlc1-tm telomeres, and that this association is required to inhibit telomere degradation by the MRX complex. Rif2 and the Ku complex work in parallel to prevent tlc1-tm telomere degradation; tlc1-tm cells lacking Rif2 and the Ku complex are inviable. The partially redundant mechanisms may explain the rapid evolution of telomere components in budding yeast species.
Collapse
Affiliation(s)
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | - Pien de Zoeten
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| |
Collapse
|
6
|
Abstract
The gene encoding the Pif1 helicase was first discovered in a Saccharomyces cerevisiae genetic screen as a mutant that reduces recombination between mitochondrial respiratory mutants and was subsequently rediscovered in a screen for genes affecting the telomere length in the nucleus. It is now known that Pif1 is involved in numerous aspects of DNA metabolism. All known functions of Pif1 rely on binding to DNA substrates followed by ATP hydrolysis, coupling the energy released to translocation along DNA to unwind duplex DNA or alternative DNA secondary structures. The interaction of Pif1 with higher-order DNA structures, like G-quadruplex DNA, as well as the length of single-stranded (ss)DNA necessary for Pif1 loading have been widely studied. Here, to test the effects of ssDNA length, sequence, and structure on Pif1's biochemical activities in vitro, we used a suite of oligonucleotide-based substrates to perform a basic characterization of Pif1 ssDNA binding, ATPase activity, and helicase activity. Using recombinant, untagged S. cerevisiae Pif1, we found that Pif1 preferentially binds to structured G-rich ssDNA, but the preferred binding substrates failed to maximally stimulate ATPase activity. In helicase assays, significant DNA unwinding activity was detected at Pif1 concentrations as low as 250 pM. Helicase assays also demonstrated that Pif1 most efficiently unwinds DNA fork substrates with unstructured ssDNA tails. As the chemical step size of Pif1 has been determined to be 1 ATP per translocation or unwinding event, this implies that the highly structured DNA inhibits conformational changes in Pif1 that couple ATP hydrolysis to DNA translocation and unwinding.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Pobiega S, Alibert O, Marcand S. A new assay capturing chromosome fusions shows a protection trade-off at telomeres and NHEJ vulnerability to low-density ionizing radiation. Nucleic Acids Res 2021; 49:6817-6831. [PMID: 34125900 PMCID: PMC8266670 DOI: 10.1093/nar/gkab502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 11/14/2022] Open
Abstract
Chromosome fusions threaten genome integrity and promote cancer by engaging catastrophic mutational processes, namely chromosome breakage-fusion-bridge cycles and chromothripsis. Chromosome fusions are frequent in cells incurring telomere dysfunctions or those exposed to DNA breakage. Their occurrence and therefore their contribution to genome instability in unchallenged cells is unknown. To address this issue, we constructed a genetic assay able to capture and quantify rare chromosome fusions in budding yeast. This chromosome fusion capture (CFC) assay relies on the controlled inactivation of one centromere to rescue unstable dicentric chromosome fusions. It is sensitive enough to quantify the basal rate of end-to-end chromosome fusions occurring in wild-type cells. These fusions depend on canonical nonhomologous end joining (NHEJ). Our results show that chromosome end protection results from a trade-off at telomeres between positive effectors (Rif2, Sir4, telomerase) and a negative effector partially antagonizing them (Rif1). The CFC assay also captures NHEJ-dependent chromosome fusions induced by ionizing radiation. It provides evidence for chromosomal rearrangements stemming from a single photon-matter interaction.
Collapse
Affiliation(s)
- Sabrina Pobiega
- Université de Paris and Université Paris-Saclay, Inserm, CEA IBFJ/iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-au-Roses, France
| | | | - Stéphane Marcand
- To whom correspondence should be addressed. Tel: +33 1 46 54 82 33;
| |
Collapse
|
8
|
The Power of Stress: The Telo-Hormesis Hypothesis. Cells 2021; 10:cells10051156. [PMID: 34064566 PMCID: PMC8151059 DOI: 10.3390/cells10051156] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptative response to stress is a strategy conserved across evolution to promote survival. In this context, the groundbreaking findings of Miroslav Radman on the adaptative value of changing mutation rates opened new avenues in our understanding of stress response. Inspired by this work, we explore here the putative beneficial effects of changing the ends of eukaryotic chromosomes, the telomeres, in response to stress. We first summarize basic principles in telomere biology and then describe how various types of stress can alter telomere structure and functions. Finally, we discuss the hypothesis of stress-induced telomere signaling with hormetic effects.
Collapse
|
9
|
Kockler ZW, Comeron JM, Malkova A. A unified alternative telomere-lengthening pathway in yeast survivor cells. Mol Cell 2021; 81:1816-1829.e5. [PMID: 33639094 DOI: 10.1016/j.molcel.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/28/2020] [Accepted: 02/01/2021] [Indexed: 10/24/2022]
Abstract
Alternative lengthening of telomeres (ALT) is a recombination process that maintains telomeres in the absence of telomerase and helps cancer cells to survive. Yeast has been used as a robust model of ALT; however, the inability to determine the frequency and structure of ALT survivors hinders understanding of the ALT mechanism. Here, using population and molecular genetics approaches, we overcome these problems and demonstrate that contrary to the current view, both RAD51-dependent and RAD51-independent mechanisms are required for a unified ALT survivor pathway. This conclusion is based on the calculation of ALT frequencies, as well as on ultra-long sequencing of ALT products that revealed hybrid sequences containing features attributed to both recombination pathways. Sequencing of ALT intermediates demonstrates that recombination begins with Rad51-mediated strand invasion to form DNA substrates that are matured by a Rad51-independent ssDNA annealing pathway. A similar unified ALT pathway may operate in other organisms, including humans.
Collapse
Affiliation(s)
- Zachary W Kockler
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52245, USA
| | - Josep M Comeron
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52245, USA.
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52245, USA.
| |
Collapse
|
10
|
Lototska L, Yue J, Li J, Giraud‐Panis M, Songyang Z, Royle NJ, Liti G, Ye J, Gilson E, Mendez‐Bermudez A. Human RAP1 specifically protects telomeres of senescent cells from DNA damage. EMBO Rep 2020; 21:e49076. [PMID: 32096305 PMCID: PMC7132343 DOI: 10.15252/embr.201949076] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Repressor/activator protein 1 (RAP1) is a highly evolutionarily conserved protein found at telomeres. Although yeast Rap1 is a key telomere capping protein preventing non-homologous end joining (NHEJ) and consequently telomere fusions, its role at mammalian telomeres in vivo is still controversial. Here, we demonstrate that RAP1 is required to protect telomeres in replicative senescent human cells. Downregulation of RAP1 in these cells, but not in young or dividing pre-senescent cells, leads to telomere uncapping and fusions. The anti-fusion effect of RAP1 was further explored in a HeLa cell line where RAP1 expression was depleted through an inducible CRISPR/Cas9 strategy. Depletion of RAP1 in these cells gives rise to telomere fusions only when telomerase is inhibited. We further show that the fusions triggered by RAP1 loss are dependent upon DNA ligase IV. We conclude that human RAP1 is specifically involved in protecting critically short telomeres. This has important implications for the functions of telomeres in senescent cells.
Collapse
Affiliation(s)
- Liudmyla Lototska
- Shanghai Ruijin HospitalShanghai Ruijin Hospital NorthShanghai Jiao Tong University School of MedicineUniversité Côte d'Azur, CNRSInsermInternational Research Laboratory in HematologyCancer and AgingState Key Laboratory of Medical GenomicsShanghaiChina
- Université Côte d'AzurCNRSINSERMIRCANMedical School of NiceNiceFrance
- Present address:
Institute of Molecular Biology gGmbH (IMB)MainzGermany
| | - Jia‐Xing Yue
- Université Côte d'AzurCNRSINSERMIRCANMedical School of NiceNiceFrance
- Present address:
State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Li
- Université Côte d'AzurCNRSINSERMIRCANMedical School of NiceNiceFrance
- Present address:
State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | | | - Zhou Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Nicola J Royle
- Department of GeneticsUniversity of LeicesterLeicesterUK
| | - Gianni Liti
- Université Côte d'AzurCNRSINSERMIRCANMedical School of NiceNiceFrance
| | - Jing Ye
- Shanghai Ruijin HospitalShanghai Ruijin Hospital NorthShanghai Jiao Tong University School of MedicineUniversité Côte d'Azur, CNRSInsermInternational Research Laboratory in HematologyCancer and AgingState Key Laboratory of Medical GenomicsShanghaiChina
| | - Eric Gilson
- Shanghai Ruijin HospitalShanghai Ruijin Hospital NorthShanghai Jiao Tong University School of MedicineUniversité Côte d'Azur, CNRSInsermInternational Research Laboratory in HematologyCancer and AgingState Key Laboratory of Medical GenomicsShanghaiChina
- Université Côte d'AzurCNRSINSERMIRCANMedical School of NiceNiceFrance
- Department of GeneticsCHUNiceFrance
| | - Aaron Mendez‐Bermudez
- Shanghai Ruijin HospitalShanghai Ruijin Hospital NorthShanghai Jiao Tong University School of MedicineUniversité Côte d'Azur, CNRSInsermInternational Research Laboratory in HematologyCancer and AgingState Key Laboratory of Medical GenomicsShanghaiChina
- Université Côte d'AzurCNRSINSERMIRCANMedical School of NiceNiceFrance
- Present address:
Lead author
| |
Collapse
|
11
|
Lalonde M, Chartrand P. TERRA, a Multifaceted Regulator of Telomerase Activity at Telomeres. J Mol Biol 2020; 432:4232-4243. [PMID: 32084415 DOI: 10.1016/j.jmb.2020.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
In eukaryotes, telomeres are repetitive sequences at the end of chromosomes, which are maintained in a constitutive heterochromatin state. It is now known that telomeres can be actively transcribed, leading to the production of a telomeric repeat-containing noncoding RNA called TERRA. Due to its sequence complementarity to the telomerase template, it was suggested early on that TERRA could be an inhibitor of telomerase. Since then, TERRA has been shown to be involved in heterochromatin formation at telomeres, to invade telomeric dsDNA and form R-loops, and even to promote telomerase recruitment at short telomeres. All these functions depend on the diverse capacities of this lncRNA to bind various cofactors, act as a scaffold, and promote higher-order complexes in cells. In this review, it will be highlighted as to how these properties of TERRA work together to regulate telomerase activity at telomeres.
Collapse
Affiliation(s)
- Maxime Lalonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Quebec, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Quebec, Canada.
| |
Collapse
|
12
|
Abstract
Stress exposure can leave long-term footprints within the organism, like in telomeres (TLs), protective chromosome caps that shorten during cell replication and following exposure to stressors. Short TLs are considered to indicate lower fitness prospects, but why TLs shorten under stressful conditions is not understood. Glucocorticoid hormones (GCs) increase upon stress exposure and are thought to promote TL shortening by increasing oxidative damage. However, evidence that GCs are pro-oxidants and oxidative stress is causally linked to TL attrition is mixed . Based on new biochemical findings, we propose the metabolic telomere attrition hypothesis: during times of substantially increased energy demands, TLs are shortened as part of the transition into an organismal 'emergency state', which prioritizes immediate survival functions over processes with longer-term benefits. TL attrition during energy shortages could serve multiple roles including amplified signalling of cellular energy debt to re-direct critical resources to immediately important processes. This new view of TL shortening as a strategy to resolve major energetic trade-offs can improve our understanding of TL dynamics. We suggest that TLs are master regulators of cell homeostasis and propose future research avenues to understand the interactions between energy homeostasis, metabolic regulators and TL.
Collapse
Affiliation(s)
- Stefania Casagrande
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany
| | - Michaela Hau
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany.,2 Department of Biology, University of Konstanz , D-78457 Konstanz , Germany
| |
Collapse
|
13
|
Xu Z, Teixeira MT. The many types of heterogeneity in replicative senescence. Yeast 2019; 36:637-648. [PMID: 31306505 PMCID: PMC6900063 DOI: 10.1002/yea.3433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/10/2022] Open
Abstract
Replicative senescence, which is induced by telomere shortening, underlies the loss of regeneration capacity of organs and is ultimately detrimental to the organism. At the same time, it is required to protect organisms from unlimited cell proliferation that may arise from numerous stimuli or deregulations. One important feature of replicative senescence is its high level of heterogeneity and asynchrony, which promote genome instability and senescence escape. Characterizing this heterogeneity and investigating its sources are thus critical to understanding the robustness of replicative senescence. Here we review the different aspects of senescence driven by telomere attrition that are subject to variation in Saccharomyces cerevisiae, the current understanding of the molecular processes at play, and the consequences of heterogeneity in replicative senescence.
Collapse
Affiliation(s)
- Zhou Xu
- CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative BiologySorbonne UniversitéParisFrance
| | - Maria Teresa Teixeira
- CNRS, UMR8226, Institut de Biologie Physico‐Chimique, Laboratory of Molecular and Cell Biology of EukaryotesSorbonne Université, PSL Research UniversityParisFrance
| |
Collapse
|
14
|
Hailemariam S, De Bona P, Galletto R, Hohl M, Petrini JH, Burgers PM. The telomere-binding protein Rif2 and ATP-bound Rad50 have opposing roles in the activation of yeast Tel1 ATM kinase. J Biol Chem 2019; 294:18846-18852. [PMID: 31640985 DOI: 10.1074/jbc.ra119.011077] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/11/2019] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Tel1 is the ortholog of human ATM kinase and initiates a cell cycle checkpoint in response to dsDNA breaks (DSBs). Tel1ATM kinase is activated synergistically by naked dsDNA and the Mre11-Rad50-Xrs2NBS1 complex (MRX). A multisubunit protein complex, which is related to human shelterin, protects telomeres from being recognized as DSBs, thereby preventing a Tel1ATM checkpoint response. However, at very short telomeres, Tel1ATM can be recruited and activated by the MRX complex, resulting in telomere elongation. Conversely, at long telomeres, Rap1-interacting-factor 2 (Rif2) is instrumental in suppressing Tel1 activity. Here, using an in vitro reconstituted Tel1 kinase activation assay, we show that Rif2 inhibits MRX-dependent Tel1 kinase activity. Rif2 discharges the ATP-bound form of Rad50, which is essential for all MRX-dependent activities. This conclusion is further strengthened by experiments with a Rad50 allosteric ATPase mutant that maps outside the conserved ATP binding pocket. We propose a model in which Rif2 attenuates Tel1 activity at telomeres by acting directly on Rad50 and discharging its activated ATP-bound state, thereby rendering the MRX complex incompetent for Tel1 activation. These findings expand our understanding of the mechanism by which Rif2 controls telomere length.
Collapse
Affiliation(s)
- Sarem Hailemariam
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Paolo De Bona
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110.
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - John H Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110.
| |
Collapse
|
15
|
Červenák F, Juríková K, Devillers H, Kaffe B, Khatib A, Bonnell E, Sopkovičová M, Wellinger RJ, Nosek J, Tzfati Y, Neuvéglise C, Tomáška Ľ. Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Sci Rep 2019; 9:13365. [PMID: 31527614 PMCID: PMC6746865 DOI: 10.1038/s41598-019-49628-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
Telomeric repeats in fungi of the subphylum Saccharomycotina exhibit great inter- and intra-species variability in length and sequence. Such variations challenged telomeric DNA-binding proteins that co-evolved to maintain their functions at telomeres. Here, we compare the extent of co-variations in telomeric repeats, encoded in the telomerase RNAs (TERs), and the repeat-binding proteins from 13 species belonging to the Yarrowia clade. We identified putative TER loci, analyzed their sequence and secondary structure conservation, and predicted functional elements. Moreover, in vivo complementation assays with mutant TERs showed the functional importance of four novel TER substructures. The TER-derived telomeric repeat unit of all species, except for one, is 10 bp long and can be represented as 5′-TTNNNNAGGG-3′, with repeat sequence variations occuring primarily outside the vertebrate telomeric motif 5′-TTAGGG-3′. All species possess a homologue of the Yarrowia lipolytica Tay1 protein, YlTay1p. In vitro, YlTay1p displays comparable DNA-binding affinity to all repeat variants, suggesting a conserved role among these species. Taken together, these results add significant insights into the co-evolution of TERs, telomeric repeats and telomere-binding proteins in yeasts.
Collapse
Affiliation(s)
- Filip Červenák
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Katarína Juríková
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Binyamin Kaffe
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | - Areej Khatib
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | - Erin Bonnell
- Department of Microbiology and Infectiology, RNA Group, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Martina Sopkovičová
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, RNA Group, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jozef Nosek
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel.
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Ľubomír Tomáška
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia.
| |
Collapse
|
16
|
Harari Y, Gershon L, Alonso-Perez E, Klein S, Berneman Y, Choudhari K, Singh P, Sau S, Liefshitz B, Kupiec M. Telomeres and stress in yeast cells: When genes and environment interact. Fungal Biol 2019; 124:311-315. [PMID: 32389293 DOI: 10.1016/j.funbio.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
Telomeres are structures composed of simple DNA repeats and specific proteins that protect the eukaryotic chromosomal ends from degradation, and facilitate the replication of the genome. They are central to the maintenance of the genome integrity, and play important roles in the development of cancer and in the process of aging in humans. The yeast Saccharomyces cerevisiae has greatly contributed to our understanding of basic telomere biology. Our laboratory has carried out systematic screen for mutants that affect telomere length, and identified ∼500 genes that, when mutated, affect telomere length. Remarkably, all ∼500 TLM (Telomere Length Maintenance) genes participate in a very tight homeostatic process, and it is enough to mutate one of them to change the steady-state telomere length. Despite this complex network of balances, it is also possible to change telomere length in yeast by applying several types of external stresses. We summarize our insights about the molecular mechanisms by which genes and environment interact to affect telomere length.
Collapse
Affiliation(s)
- Yaniv Harari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Lihi Gershon
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Elisa Alonso-Perez
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Shir Klein
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Yael Berneman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Karan Choudhari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Pragyan Singh
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
17
|
Ribosomal RNA gene repeats associate with the nuclear pore complex for maintenance after DNA damage. PLoS Genet 2019; 15:e1008103. [PMID: 30998688 PMCID: PMC6490929 DOI: 10.1371/journal.pgen.1008103] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2019] [Accepted: 03/20/2019] [Indexed: 12/04/2022] Open
Abstract
The ribosomal RNA genes (rDNA) comprise a highly repetitive gene cluster. The copy number of genes at this locus can readily change and is therefore one of the most unstable regions of the genome. DNA damage in rDNA occurs after binding of the replication fork blocking protein Fob1 in S phase, which triggers unequal sister chromatid recombination. However, the precise mechanisms by which such DNA double-strand breaks (DSBs) are repaired is not well understood. Here, we demonstrate that the conserved protein kinase Tel1 maintains rDNA stability after replication fork arrest. We show that rDNA associates with nuclear pores, which is dependent on DNA damage checkpoint kinases Mec1/Tel1 and replisome component Tof1. These findings suggest that rDNA-nuclear pore association is due to a replication fork block and subsequent DSB. Indeed, quantitative microscopy revealed that rDNA is relocated to the nuclear periphery upon induction of a DSB. Finally, rDNA stability was reduced in strains where this association with the nuclear envelope was prevented, which suggests its importance for avoiding improper recombination repair that could induce repeat instability. Ribosomal RNA genes (rDNA) comprise an unstable region of the genome due to their highly repetitive structure and elevated levels of transcription. Collision between transcription and replication machineries of rDNA, which may lead to DNA damage in the form of a double-stranded break, is avoided by the replication fork barrier. When such a break is repaired by homologous recombination with a repeat on the sister chromatid, the abundance of homologous sequences may lead to a change in copy number. In most organisms, however, only small variations in copy number are observed, indicating that the rDNA is stably maintained. Our results suggest that some parts of rDNA become localized to the nuclear pore complex in a DNA double-strand break-dependent manner. This localization requires the protein kinase Tel1, which is involved in the DNA damage response pathway, and factors that recruit condensin, which facilitates condensation and segregation of rDNA during mitosis. We found that the rDNA becomes unstable when association with the nuclear envelope was prevented. Thus, the localization represents a unique strategy for maintaining repeat integrity after DNA damage.
Collapse
|
18
|
Okamoto K, Seimiya H. Revisiting Telomere Shortening in Cancer. Cells 2019; 8:cells8020107. [PMID: 30709063 PMCID: PMC6406355 DOI: 10.3390/cells8020107] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Telomeres, the protective structures of chromosome ends are gradually shortened by each cell division, eventually leading to senescence or apoptosis. Cancer cells maintain the telomere length for unlimited growth by telomerase reactivation or a recombination-based mechanism. Recent genome-wide analyses have unveiled genetic and epigenetic alterations of the telomere maintenance machinery in cancer. While telomerase inhibition reveals that longer telomeres are more advantageous for cell survival, cancer cells often have paradoxically shorter telomeres compared with those found in the normal tissues. In this review, we summarize the latest knowledge about telomere length alterations in cancer and revisit its rationality. Finally, we discuss the potential utility of telomere length as a prognostic biomarker.
Collapse
Affiliation(s)
- Keiji Okamoto
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
19
|
Majerska J, Feretzaki M, Glousker G, Lingner J. Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Sci Alliance 2018; 1:e201800121. [PMID: 30456372 PMCID: PMC6238619 DOI: 10.26508/lsa.201800121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The authors apply telomeric chromatin analysis to identify factors that accumulate at telomeres during cellular transformation, promoting telomere replication and repair and counteracting oncogene-borne telomere replication stress. Telomeres play crucial roles during tumorigenesis, inducing cellular senescence upon telomere shortening and extensive chromosome instability during telomere crisis. However, it has not been investigated if and how cellular transformation and oncogenic stress alter telomeric chromatin composition and function. Here, we transform human fibroblasts by consecutive transduction with vectors expressing hTERT, the SV40 early region, and activated H-RasV12. Pairwise comparisons of the telomeric proteome during different stages of transformation reveal up-regulation of proteins involved in chromatin remodeling, DNA repair, and replication at chromosome ends. Depletion of several of these proteins induces telomere fragility, indicating their roles in replication of telomeric DNA. Depletion of SAMHD1, which has reported roles in DNA resection and homology-directed repair, leads to telomere breakage events in cells deprived of the shelterin component TRF1. Thus, our analysis identifies factors, which accumulate at telomeres during cellular transformation to promote telomere replication and repair, resisting oncogene-borne telomere replication stress.
Collapse
Affiliation(s)
- Jana Majerska
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marianna Feretzaki
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Glousker
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Lingner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Mersaoui SY, Wellinger RJ. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Curr Genet 2018; 65:109-118. [PMID: 30066139 DOI: 10.1007/s00294-018-0871-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Chromosome stability relies on an adequate length and complete replication of telomeres, the physical ends of chromosomes. Telomeres are composed of short direct repeat DNA and the associated nucleoprotein complex is essential for providing end-stability. In addition, the so-called end-replication problem of the conventional replication requires that telomeres be elongated by a special mechanism which, in virtually all organisms, is based by a reverse transcriptase, called telomerase. Although, at the conceptual level, telomere functions are highly similar in most organisms, the telomeric nucleoprotein composition appears to diverge significantly, in particular if it is compared between mammalian and budding yeast cells. However, over the last years, the CST complex has emerged as a central hub for telomere replication in most systems. Composed of three proteins, it is related to the highly conserved replication protein A complex, and in all systems studied, it coordinates telomerase-based telomere elongation with lagging-strand DNA synthesis. In budding yeast, the Cdc13 protein of this complex also is essential for telomerase recruitment and this specialisation is accompanied by additional regulatory adaptations. Based on recent results obtained in yeast, here, we review these issues and present an updated telomere replication hypothesis. We speculate that the similarities between systems far outweigh the differences, once we detach ourselves from the historic descriptions of the mechanisms in the various organisms.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
21
|
Kedziora S, Gali VK, Wilson RHC, Clark KRM, Nieduszynski CA, Hiraga SI, Donaldson AD. Rif1 acts through Protein Phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast. Nucleic Acids Res 2018; 46:3993-4003. [PMID: 29529242 PMCID: PMC5934629 DOI: 10.1093/nar/gky132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.
Collapse
Affiliation(s)
- Sylwia Kedziora
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Vamsi K Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Rosemary HC Wilson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kate RM Clark
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
22
|
Simoneau A, Ricard É, Wurtele H. An interplay between multiple sirtuins promotes completion of DNA replication in cells with short telomeres. PLoS Genet 2018; 14:e1007356. [PMID: 29659581 PMCID: PMC5919697 DOI: 10.1371/journal.pgen.1007356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/26/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily-conserved sirtuin family of histone deacetylases regulates a multitude of DNA-associated processes. A recent genome-wide screen conducted in the yeast Saccharomyces cerevisiae identified Yku70/80, which regulate nonhomologous end-joining (NHEJ) and telomere structure, as being essential for cell proliferation in the presence of the pan-sirtuin inhibitor nicotinamide (NAM). Here, we show that sirtuin-dependent deacetylation of both histone H3 lysine 56 and H4 lysine 16 promotes growth of yku70Δ and yku80Δ cells, and that the NAM sensitivity of these mutants is not caused by defects in DNA double-strand break repair by NHEJ, but rather by their inability to maintain normal telomere length. Indeed, our results indicate that in the absence of sirtuin activity, cells with abnormally short telomeres, e.g., yku70/80Δ or est1/2Δ mutants, present striking defects in S phase progression. Our data further suggest that early firing of replication origins at short telomeres compromises the cellular response to NAM- and genotoxin-induced replicative stress. Finally, we show that reducing H4K16ac in yku70Δ cells limits activation of the DNA damage checkpoint kinase Rad53 in response to replicative stress, which promotes usage of translesion synthesis and S phase progression. Our results reveal a novel interplay between sirtuin-mediated regulation of chromatin structure and telomere-regulating factors in promoting timely completion of S phase upon replicative stress.
Collapse
Affiliation(s)
- Antoine Simoneau
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, boulevard de l’Assomption, Montréal, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Canada
| | - Étienne Ricard
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, boulevard de l’Assomption, Montréal, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Canada
| | - Hugo Wurtele
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, boulevard de l’Assomption, Montréal, Canada
- Département de Médecine, Université de Montréal, Montréal, Canada
| |
Collapse
|
23
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
24
|
Yang CW, Tseng SF, Yu CJ, Chung CY, Chang CY, Pobiega S, Teng SC. Telomere shortening triggers a feedback loop to enhance end protection. Nucleic Acids Res 2017; 45:8314-8328. [PMID: 28575419 PMCID: PMC5737367 DOI: 10.1093/nar/gkx503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1–Rif1 association impairs telomere length regulation and increases telomere–telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1–Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shun-Fu Tseng
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 100, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 333, Taiwan
| | - Chia-Yu Chung
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Cheng-Yen Chang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sabrina Pobiega
- INSERM UMR 967, Institut de Biologie François Jacob, CEA Paris-Saclay, 92265 Fontenay-aux-roses, France
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
25
|
Telomerase regulation by the Pif1 helicase: a length-dependent effect? Curr Genet 2017; 64:509-513. [PMID: 29052759 PMCID: PMC5851688 DOI: 10.1007/s00294-017-0768-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/04/2023]
Abstract
Dysfunctional telomere length regulation is detrimental to human health, and both activation and inhibition of telomerase have been proposed in potential therapies to treat human diseases. The Saccharomyces cerevisiae Pif1 protein is an evolutionarily conserved helicase that inhibits telomerase activity at DNA ends. Recent studies have indicated that Pif1 is specifically important for inhibiting telomerase at DNA ends with very little or no telomeric sequence and at long telomeres. At the former, Pif1 prevents the inappropriate addition of a telomere at DNA double-strand breaks. For the latter, Pif1 has been shown to bind long telomeres to presumably promote the extension of the short ones. These observations leave the impression that Pif1 does not act at DNA ends with telomeric sequence of intermediate length. Here, we provide in vivo evidence that Pif1 inhibits telomerase activity at DNA ends regardless of telomere sequence length.
Collapse
|
26
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
27
|
Harari Y, Kupiec M. Mec1 ATR is needed for extensive telomere elongation in response to ethanol in yeast. Curr Genet 2017; 64:223-234. [PMID: 28780613 DOI: 10.1007/s00294-017-0728-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
Abstract
Telomere length homeostasis is essential for cell survival. In humans, telomeres shorten as a function of age. Short telomeres are known determinants of cell senescence and longevity. The yeast Saccharomyces cerevisiae expresses telomerase and maintains a strict telomere length homeostasis during vegetative growth. We have previously reported that different environmental signals promote changes in telomere length in S. cerevisiae. In particular, exposure to ethanol induces an extensive telomere elongation response due to a reduction in RAP1 mRNA and protein levels. Here we show that the reduction in Rap1 protein levels disrupts the physical interaction between Rap1 and Rif1, which in turn reduces the recruitment of these two proteins to telomeres during G2-phase. Although elongation of the shortest telomeres has been shown to depend on the Rif2 telomeric protein and on the Tel1(ATM) protein kinase, we show here that the extensive telomere elongation in response to ethanol exposure is Rif1 and Mec1 (ATR)-dependent. Our results fit a model in which Rif1 and Rap1 form a complex that is loaded onto telomeres at the end of S-phase. Reduced levels of the Rap1-Rif1 complex in ethanol lead to continuous telomere elongation in a Mec1-dependent process.
Collapse
Affiliation(s)
- Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
28
|
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife 2017; 6:23783. [PMID: 28826474 PMCID: PMC5595431 DOI: 10.7554/elife.23783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
Collapse
Affiliation(s)
- Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Pliego Caballero
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Wu RA, Tam J, Collins K. DNA-binding determinants and cellular thresholds for human telomerase repeat addition processivity. EMBO J 2017; 36:1908-1927. [PMID: 28495680 PMCID: PMC5494469 DOI: 10.15252/embj.201796887] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022] Open
Abstract
The reverse transcriptase telomerase adds telomeric repeats to chromosome ends. Purified human telomerase catalyzes processive repeat synthesis, which could restore the full ~100 nucleotides of (T2AG3)n lost from replicated chromosome ends as a single elongation event. Processivity inhibition is proposed to be a basis of human disease, but the impacts of different levels of processivity on telomere maintenance have not been examined. Here, we delineate side chains in the telomerase active-site cavity important for repeat addition processivity, determine how they contribute to duplex and single-stranded DNA handling, and test the cellular consequences of partial or complete loss of repeat addition processivity for telomere maintenance. Biochemical findings oblige a new model for DNA and RNA handling dynamics in processive repeat synthesis. Biological analyses implicate repeat addition processivity as essential for telomerase function. However, telomeres can be maintained by telomerases with lower than wild-type processivity. Furthermore, telomerases with low processivity dramatically elongate telomeres when overexpressed. These studies reveal distinct consequences of changes in telomerase repeat addition processivity and expression level on telomere elongation and length maintenance.
Collapse
Affiliation(s)
- Robert Alexander Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jane Tam
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
30
|
Cesena D, Cassani C, Rizzo E, Lisby M, Bonetti D, Longhese MP. Regulation of telomere metabolism by the RNA processing protein Xrn1. Nucleic Acids Res 2017; 45:3860-3874. [PMID: 28160602 PMCID: PMC5397203 DOI: 10.1093/nar/gkx072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Telomeric DNA consists of repetitive G-rich sequences that terminate with a 3΄-ended single stranded overhang (G-tail), which is important for telomere extension by telomerase. Several proteins, including the CST complex, are necessary to maintain telomere structure and length in both yeast and mammals. Emerging evidence indicates that RNA processing factors play critical, yet poorly understood, roles in telomere metabolism. Here, we show that the lack of the RNA processing proteins Xrn1 or Rrp6 partially bypasses the requirement for the CST component Cdc13 in telomere protection by attenuating the activation of the DNA damage checkpoint. Xrn1 is necessary for checkpoint activation upon telomere uncapping because it promotes the generation of single-stranded DNA. Moreover, Xrn1 maintains telomere length by promoting the association of Cdc13 to telomeres independently of ssDNA generation and exerts this function by downregulating the transcript encoding the telomerase inhibitor Rif1. These findings reveal novel roles for RNA processing proteins in the regulation of telomere metabolism with implications for genome stability in eukaryotes.
Collapse
Affiliation(s)
- Daniele Cesena
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Emanuela Rizzo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
31
|
Abstract
Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Jacob M Vogan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| |
Collapse
|
32
|
Vasianovich Y, Wellinger RJ. Life and Death of Yeast Telomerase RNA. J Mol Biol 2017; 429:3242-3254. [PMID: 28115201 DOI: 10.1016/j.jmb.2017.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 12/20/2022]
Abstract
Telomerase reverse transcriptase elongates telomeres to overcome their natural attrition and allow unlimited cellular proliferation, a characteristic shared by stem cells and the majority of malignant cancerous cells. The telomerase holoenzyme comprises a core RNA molecule, a catalytic protein subunit, and other accessory proteins. Malfunction of certain telomerase components can cause serious genetic disorders including dyskeratosis congenita and aplastic anaemia. A hierarchy of tightly regulated steps constitutes the process of telomerase biogenesis, which, if interrupted or misregulated, can impede the production of a functional enzyme and severely affect telomere maintenance. Here, we take a closer look at the budding yeast telomerase RNA component, TLC1, in its long lifetime journey around the cell. We review the extensive knowledge on TLC1 transcription and processing. We focus on exciting recent studies on telomerase assembly, trafficking, and nuclear dynamics, which for the first time unveil striking similarities between the yeast and human telomerase ribonucleoproteins. Finally, we identify questions yet to be answered and new directions to be followed, which, in the future, might improve our knowledge of telomerase biology and trigger the development of new therapies against cancer and other telomerase-related diseases.
Collapse
Affiliation(s)
- Yulia Vasianovich
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavillion, 3201 rue Jean-Mignault, Sherbrooke, Quebec, J1E 4K8, Canada.
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavillion, 3201 rue Jean-Mignault, Sherbrooke, Quebec, J1E 4K8, Canada.
| |
Collapse
|
33
|
Ujvari B, Biro PA, Charters JE, Brown G, Heasman K, Beckmann C, Madsen T. Curvilinear telomere length dynamics in a squamate reptile. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Beata Ujvari
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
| | - Peter A. Biro
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
| | - Jordan E. Charters
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
- School of Biological Sciences University of Queensland Brisbane Queensland4072 Australia
| | - Gregory Brown
- School of Biological Sciences University of Sydney Sydney New South Wales2006 Australia
| | - Kim Heasman
- Faculty of Veterinary Science University of Sydney Sydney New South Wales2006 Australia
| | - Christa Beckmann
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
| | - Thomas Madsen
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
- School of Molecular Biosciences University of Sydney Sydney New South Wales2006 Australia
- School of Biological Sciences University of Wollongong Wollongong New South Wales2522 Australia
| |
Collapse
|
34
|
Zubko EI, Shackleton JL, Zubko MK. ATLAS: An advanced PCR-method for routine visualization of telomere length in Saccharomyces cerevisiae. Int J Biol Macromol 2016; 93:1285-1294. [PMID: 27645931 DOI: 10.1016/j.ijbiomac.2016.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/20/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Measuring telomere length is essential in telomere biology. Southern blot hybridization is the predominant method for measuring telomere length in the genetic model Saccharomyces cerevisiae. We have further developed and refined a telomere PCR approach, which was rarely used previously (mainly in specific telomeric projects), into a robust method allowing direct visualisation of telomere length differences in routine experiments with S. cerevisiae, and showing a strong correlation of results with data obtained by Southern blot hybridization. In this expanded method denoted as ATLAS (A-dvanced T-elomere L-ength A-nalysis in S. cerevisiae), we have introduced: 1) set of new primers annealing with high specificity to telomeric regions on five different chromosomes; 2) new approach for designing reverse telomere primers that is based on the ligation of an adaptor of a fixed size to telomeric ends. ATLAS can be used at the scale of individual assays and high-throughput approaches. This simple, time/cost-effective and reproducible methodology will complement Southern blot hybridization and facilitate further progress in telomere research.
Collapse
Affiliation(s)
- Elena I Zubko
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom
| | - Jennifer L Shackleton
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom
| | - Mikhajlo K Zubko
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom.
| |
Collapse
|
35
|
Multiple Rad52-Mediated Homology-Directed Repair Mechanisms Are Required to Prevent Telomere Attrition-Induced Senescence in Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1006176. [PMID: 27428329 PMCID: PMC4948829 DOI: 10.1371/journal.pgen.1006176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
Most human somatic cells express insufficient levels of telomerase, which can result in telomere shortening and eventually senescence, both of which are hallmarks of ageing. Homology-directed repair (HDR) is important for maintaining proper telomere function in yeast and mammals. In Saccharomyces cerevisiae, Rad52 is required for almost all HDR mechanisms, and telomerase-null cells senesce faster in the absence of Rad52. However, its role in preventing accelerated senescence has been unclear. In this study, we make use of rad52 separation-of-function mutants to find that multiple Rad52-mediated HDR mechanisms are required to delay senescence, including break-induced replication and sister chromatid recombination. In addition, we show that misregulation of histone 3 lysine 56 acetylation, which is known to be defective in sister chromatid recombination, also causes accelerated senescence. We propose a model where Rad52 is needed to repair telomere attrition-induced replication stress. Telomeres are essential structures located at the ends of chromosomes. The canonical DNA replication machinery is unable to fully replicate DNA at chromosome ends, causing telomeres to shorten with every round of cell division. This shortening can be counteracted by an enzyme called telomerase, but in most human somatic cells, there is insufficient expression of telomerase to prevent telomere shortening. Cells with critically short telomeres can enter an arrested state known as senescence. Telomere attrition has been identified as a hallmark of human ageing. Homologous recombination proteins are important for proper telomere function in yeast and mammals. Yeast lacking both telomerase and Rad52, required for almost all recombination, exhibits accelerated senescence, yet no apparent increase in the rate of telomere shortening. In this study, we explore the role of Rad52 during senescence by taking advantage of rad52 separation-of-function mutants. We find that Rad52 acts in multiple ways to overcome DNA replication problems at telomeres. Impediments to telomere replication can be dealt with by post-replication repair mechanisms, which use a newly synthesized sister chromatid as a template to replicate past the impediment, while telomere truncations, likely caused by the collapse of replication forks, can be extended by break-induced replication.
Collapse
|
36
|
Lemieux B, Laterreur N, Perederina A, Noël JF, Dubois ML, Krasilnikov AS, Wellinger RJ. Active Yeast Telomerase Shares Subunits with Ribonucleoproteins RNase P and RNase MRP. Cell 2016; 165:1171-1181. [PMID: 27156450 DOI: 10.1016/j.cell.2016.04.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/20/2016] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.
Collapse
Affiliation(s)
- Bruno Lemieux
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Nancy Laterreur
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-François Noël
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Marie-Line Dubois
- Department of Anatomy and Cellular Biology,Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
37
|
Runge KW, Lustig AJ. Editorial: The Evolving Telomeres. Front Genet 2016; 7:50. [PMID: 27092174 PMCID: PMC4821857 DOI: 10.3389/fgene.2016.00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/21/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kurt W Runge
- Department of Immunology, The Lerner Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Arthur J Lustig
- Department of Biochemistry and Molecular Biology, The Tulane Medical School and Tulane Cancer Center New Orleans, LA, USA
| |
Collapse
|
38
|
van Mourik PM, de Jong J, Agpalo D, Claussin C, Rothstein R, Chang M. Recombination-Mediated Telomere Maintenance in Saccharomyces cerevisiae Is Not Dependent on the Shu Complex. PLoS One 2016; 11:e0151314. [PMID: 26974669 PMCID: PMC4790948 DOI: 10.1371/journal.pone.0151314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022] Open
Abstract
In cells lacking telomerase, telomeres shorten progressively during each cell division due to incomplete end-replication. When the telomeres become very short, cells enter a state that blocks cell division, termed senescence. A subset of these cells can overcome senescence and maintain their telomeres using telomerase-independent mechanisms. In Saccharomyces cerevisiae, these cells are called ‘survivors’ and are dependent on Rad52-dependent homologous recombination and Pol32-dependent break-induced replication. There are two main types of survivors: type I and type II. The type I survivors require Rad51 and maintain telomeres by amplification of subtelomeric elements, while the type II survivors are Rad51-independent, but require the MRX complex and Sgs1 to amplify the C1–3A/TG1–3 telomeric sequences. Rad52, Pol32, Rad51, and Sgs1 are also important to prevent accelerated senescence, indicating that recombination processes are important at telomeres even before the formation of survivors. The Shu complex, which consists of Shu1, Shu2, Psy3, and Csm2, promotes Rad51-dependent homologous recombination and has been suggested to be important for break-induced replication. It also promotes the formation of recombination intermediates that are processed by the Sgs1-Top3-Rmi1 complex, as mutations in the SHU genes can suppress various sgs1, top3, and rmi1 mutant phenotypes. Given the importance of recombination processes during senescence and survivor formation, and the involvement of the Shu complex in many of the same processes during DNA repair, we hypothesized that the Shu complex may also have functions at telomeres. Surprisingly, we find that this is not the case: the Shu complex does not affect the rate of senescence, does not influence survivor formation, and deletion of SHU1 does not suppress the rapid senescence and type II survivor formation defect of a telomerase-negative sgs1 mutant. Altogether, our data suggest that the Shu complex is not important for recombination processes at telomeres.
Collapse
Affiliation(s)
- Paula M. van Mourik
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jannie de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Danielle Agpalo
- Department of Genetics and Development, Columbia University Medical Center, New York, United States of America
| | - Clémence Claussin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University Medical Center, New York, United States of America
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Lustig AJ. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins. Front Genet 2016; 7:10. [PMID: 26904098 PMCID: PMC4748036 DOI: 10.3389/fgene.2016.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.
Collapse
Affiliation(s)
- Arthur J Lustig
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans LA, USA
| |
Collapse
|
40
|
Goto GH, Zencir S, Hirano Y, Ogi H, Ivessa A, Sugimoto K. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication. PLoS Genet 2015; 11:e1005283. [PMID: 26263073 PMCID: PMC4532487 DOI: 10.1371/journal.pgen.1005283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB) induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage. Telomere length is maintained primarily through equilibrium between telomerase-mediated lengthening and the loss of telomeric sequence through the end-replication problem. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomerase recruitment in a dosage-dependent manner. In this paper we provide evidence suggesting an alternative Rap1-dependent telomere shortening mechanism in which binding of multiple Rap1 proteins mediates DNA break induction during DNA replication. This process does not involve recombination events; therefore, it is distinct from loop-mediated telomere trimming.
Collapse
Affiliation(s)
- Greicy H. Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Sevil Zencir
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Hiroo Ogi
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ogi H, Goto GH, Ghosh A, Zencir S, Henry E, Sugimoto K. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition. Mol Biol Cell 2015; 26:3480-8. [PMID: 26246601 PMCID: PMC4591692 DOI: 10.1091/mbc.e15-05-0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/29/2015] [Indexed: 02/04/2023] Open
Abstract
Two large phosphatidylinositol 3-kinase-related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins.
Collapse
Affiliation(s)
- Hiroo Ogi
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Greicy H Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Avik Ghosh
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Sevil Zencir
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Everett Henry
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103 )
| |
Collapse
|
42
|
Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages. Nat Commun 2015; 6:7680. [PMID: 26158780 PMCID: PMC4503340 DOI: 10.1038/ncomms8680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/31/2015] [Indexed: 01/15/2023] Open
Abstract
In eukaryotes, telomeres cap chromosome ends to maintain genomic stability. Failure to maintain telomeres leads to their progressive erosion and eventually triggers replicative senescence, a pathway that protects against unrestricted cell proliferation. However, the mechanisms underlying the variability and dynamics of this pathway are still elusive. Here we use a microfluidics-based live-cell imaging assay to investigate replicative senescence in individual Saccharomyces cerevisiae cell lineages following telomerase inactivation. We characterize two mechanistically distinct routes to senescence. Most lineages undergo an abrupt and irreversible switch from a replicative to an arrested state, consistent with telomeres reaching a critically short length. In contrast, other lineages experience frequent and stochastic reversible arrests, consistent with the repair of accidental telomere damage by Pol32, a subunit of polymerase δ required for break-induced replication and for post-senescence survival. Thus, at the single-cell level, replicative senescence comprises both deterministic cell fates and chaotic cell division dynamics. Erosion of telomeres eventually causes replicative senescence, but mechanisms underlying the variability and dynamics of the pathway are not known. Here, the authors examine senescence in single yeast cells with inactivated telomerase to reveal two mechanistically distinct routes to senescence.
Collapse
|
43
|
Bajon E, Laterreur N, Wellinger RJ. A Single Templating RNA in Yeast Telomerase. Cell Rep 2015; 12:441-8. [PMID: 26166570 DOI: 10.1016/j.celrep.2015.06.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
The number of essential telomerase components in the active ribonucleoprotein (RNP) has important implications for its mechanism of action yet is by and large unknown. We report that two differentially tagged TLC1 RNAs endogenously expressed in a heterozygous diploid and simultaneously detected via multi-color fluorescence in situ hybridization (FISH) experiments do not co-localize. Probabilistic calculations combined with direct quantification of FISH signals demonstrate that the TLC1 RNA indeed occurs as a single molecule in these RNPs. In addition, two differentially tagged reverse-transcriptase subunits could not be co-immunoprecipitated. These results therefore show that, in yeast cells, telomerase is assembled and matured and occurs as a monomer when not on telomeres. Finally, combining these findings with previous evidence leads us to propose that the enzyme also acts as a monomer when elongating telomeres.
Collapse
Affiliation(s)
- Emmanuel Bajon
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Nancy Laterreur
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
44
|
PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nat Commun 2014; 5:5312. [PMID: 25387524 DOI: 10.1038/ncomms6312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
In yeast, the initiation of telomere replication at the late S phase involves in combined actions of kinases on Cdc13, the telomere binding protein. Cdc13 recruits telomerase to telomeres through its interaction with Est1, a component of telomerase. However, how cells terminate the function of telomerase at G2/M is still elusive. Here we show that the protein phosphatase 2A (PP2A) subunit Pph22 and the yeast Aurora kinase homologue Ipl1 coordinately inhibit telomerase at G2/M by dephosphorylating and phosphorylating the telomerase recruitment domain of Cdc13, respectively. While Pph22 removes Tel1/Mec1-mediated Cdc13 phosphorylation to reduce Cdc13-Est1 interaction, Ipl1-dependent Cdc13 phosphorylation elicits dissociation of Est1-TLC1, the template RNA component of telomerase. Failure of these regulations prevents telomerase from departing telomeres, causing perturbed telomere lengthening and prolonged M phase. Together our results demonstrate that differential and additive actions of PP2A and Aurora on Cdc13 limit telomerase action by removing active telomerase from telomeres at G2/M phase.
Collapse
|
45
|
Lisby M, Teixeira T, Gilson E, Géli V. The fate of irreparable DNA double-strand breaks and eroded telomeres at the nuclear periphery. Nucleus 2014. [DOI: 10.4161/nucl.11173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Vasianovich Y, Harrington LA, Makovets S. Break-induced replication requires DNA damage-induced phosphorylation of Pif1 and leads to telomere lengthening. PLoS Genet 2014; 10:e1004679. [PMID: 25329304 PMCID: PMC4199488 DOI: 10.1371/journal.pgen.1004679] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
Broken replication forks result in DNA breaks that are normally repaired via homologous recombination or break induced replication (BIR). Mild insufficiency in the replicative ligase Cdc9 in budding yeast Saccharomyces cerevisiae resulted in a population of cells with persistent DNA damage, most likely due to broken replication forks, constitutive activation of the DNA damage checkpoint and longer telomeres. This telomere lengthening required functional telomerase, the core DNA damage signaling cascade Mec1-Rad9-Rad53, and the components of the BIR repair pathway - Rad51, Rad52, Pol32, and Pif1. The Mec1-Rad53 induced phosphorylation of Pif1, previously found necessary for inhibition of telomerase at double strand breaks, was also important for the role of Pif1 in BIR and telomere elongation in cdc9-1 cells. Two other mutants with impaired DNA replication, cdc44-5 and rrm3Δ, were similar to cdc9-1: their long telomere phenotype was dependent on the Pif1 phosphorylation locus. We propose a model whereby the passage of BIR forks through telomeres promotes telomerase activity and leads to telomere lengthening.
Collapse
Affiliation(s)
- Yulia Vasianovich
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lea A. Harrington
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada
| | - Svetlana Makovets
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Wu RA, Collins K. Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex. EMBO J 2014; 33:921-35. [PMID: 24619002 DOI: 10.1002/embj.201387205] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
With eukaryotic genome replication, incomplete telomere synthesis results in chromosome shortening and eventual compromise of genome stability. Telomerase counteracts this terminal sequence loss by synthesizing telomeric repeats through repeated cycles of reverse transcription of its internal RNA template. Using human telomerase domain-complementation assays for telomerase reverse transcriptase protein (TERT) and RNA in combination with the first direct footprinting assay for telomerase association with bound DNA, we resolve mechanisms by which TERT domains and RNA motifs direct repeat synthesis. Surprisingly, we find that product-template hybrid is sensed in a length- and sequence-dependent manner to set the template 5' boundary. We demonstrate that the TERT N-terminal (TEN) domain determines active-site use of the atypically short primer-template hybrid necessary for telomeric-repeat synthesis. Also against expectation, we show that the remainder of TERT (the TERT ring) supports functional recognition and physical protection of single-stranded DNA adjacent to the template hybrid. These findings establish unprecedented polymerase recognition specificities for DNA-RNA hybrid and single-stranded DNA and suggest a new perspective on the mechanisms of telomerase specialization for telomeric-repeat synthesis.
Collapse
Affiliation(s)
- Robert Alexander Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
48
|
|
49
|
Harari Y, Kupiec M. Genome-wide studies of telomere biology in budding yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:70-80. [PMID: 28357225 PMCID: PMC5349225 DOI: 10.15698/mic2014.01.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/16/2014] [Indexed: 11/13/2022]
Abstract
Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the "end-replication problem", in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.
Collapse
Affiliation(s)
- Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
50
|
Abstract
Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.
Collapse
|