1
|
Shakya A, Kang J, Chumley J, Williams MA, Tantin D. Oct1 is a switchable, bipotential stabilizer of repressed and inducible transcriptional states. J Biol Chem 2010; 286:450-9. [PMID: 21051540 DOI: 10.1074/jbc.m110.174045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Little is known regarding how the Oct1 transcription factor regulates target gene expression. Using murine fibroblasts and two target genes, Polr2a and Ahcy, we show that Oct1 recruits the Jmjd1a/KDM3A lysine demethylase to catalyze the removal of the inhibitory histone H3K9 dimethyl mark and block repression. Using purified murine T cells and the Il2 target locus, and a colon cancer cell line and the Cdx2 target locus, we show that Oct1 recruits the NuRD chromatin-remodeling complex to promote a repressed state, but in a regulated manner can switch to a different capacity and mediate Jmjd1a recruitment to block repression. These findings indicate that Oct1 maintains repression through a mechanism involving NuRD and maintains poised gene expression states through an antirepression mechanism involving Jmjd1a. We propose that, rather than acting as a primary trigger of gene activation or repression, Oct1 is a switchable stabilizer of repressed and inducible states.
Collapse
Affiliation(s)
- Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
2
|
A far-upstream Oct-1 motif regulates cytokine-induced transcription of the human inducible nitric oxide synthase gene. J Mol Biol 2009; 390:595-603. [PMID: 19467240 DOI: 10.1016/j.jmb.2009.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 11/22/2022]
Abstract
Transcriptional regulation of the human inducible nitric oxide synthase (hiNOS) gene is highly complex and requires an orchestrated flow of positive and negative transcription factors that bind to specific cis-acting upstream response elements. Very little specific information exists about the far-upstream region of the hiNOS gene. Oct-1 protein belongs to the Pit-Oct-Unc domain transcription factor family and is constitutively expressed in all dividing cells. It is essential for proliferation, differentiation, and other key cell processes. However, the role of Oct-1 in regulating hiNOS gene expression has not been reported. In this work, the octamer sequence 5'-ATGCAAAT-3' at -10.2 kb in the hiNOS promoter was identified as high-affinity Oct-1 binding by electrophoretic mobility shift assay in vitro and chromatin immunoprecipitation assay in vivo. Mutation of Oct-1 motif at -10.2 kb in the hiNOS promoter decreased cytokine-induced hiNOS promoter activity by 40%. Cytokine-induced hiNOS promoter activity was also significantly reduced by Oct-1 small interfering RNA targeting. Overexpression of Oct-1 increased cytokine-induced hiNOS protein expression in primary human hepatocytes. Furthermore, the Oct-1 motif at -10.2 kb of the hiNOS promoter conferred increased transcriptional activity to the heterologous thymidine kinase promoter irrespective of cytokine induction. Taken together, this work identifies a far-upstream functional Oct-1 enhancer motif at -10.2 kb in the hiNOS promoter that regulates cytokine-induced hiNOS gene transcription and further underscores tight control mechanisms regulating the expression of the hiNOS gene.
Collapse
|
3
|
Kang J, Gemberling M, Nakamura M, Whitby FG, Handa H, Fairbrother WG, Tantin D. A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev 2009; 23:208-22. [PMID: 19171782 DOI: 10.1101/gad.1750709] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oct1 and Oct4 are homologous transcription factors with similar DNA-binding specificities. Here we show that Oct1 is dynamically phosphorylated in vivo following exposure of cells to oxidative and genotoxic stress. We further show that stress regulates the selectivity of both proteins for specific DNA sequences. Mutation of conserved phosphorylation target DNA-binding domain residues in Oct1, and Oct4 confirms their role in regulating binding selectivity. Using chromatin immunoprecipitation, we show that association of Oct4 and Oct1 with a distinct group of in vivo targets is inducible by stress, and that Oct1 is essential for a normal post-stress transcriptional response. Finally, using an unbiased Oct1 target screen we identify a large number of genes targeted by Oct1 specifically under conditions of stress, and show that several of these inducible Oct1 targets are also inducibly bound by Oct4 in embryonic stem cells following stress exposure.
Collapse
Affiliation(s)
- Jinsuk Kang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Lin D, Ippolito GC, Zong RT, Bryant J, Koslovsky J, Tucker P. Bright/ARID3A contributes to chromatin accessibility of the immunoglobulin heavy chain enhancer. Mol Cancer 2007; 6:23. [PMID: 17386101 PMCID: PMC1852116 DOI: 10.1186/1476-4598-6-23] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/26/2007] [Indexed: 01/27/2023] Open
Abstract
Bright/ARID3A is a nuclear matrix-associated transcription factor that stimulates immunoglobulin heavy chain (IgH) expression and Cyclin E1/E2F-dependent cell cycle progression. Bright positively activates IgH transcriptional initiation by binding to ATC-rich P sites within nuclear matrix attachment regions (MARs) flanking the IgH intronic enhancer (Eμ). Over-expression of Bright in cultured B cells was shown to correlate with DNase hypersensitivity of Eμ. We report here further efforts to analyze Bright-mediated Eμ enhancer activation within the physiological constraints of chromatin. A system was established in which VH promoter-driven in vitro transcription on chromatin- reconstituted templates was responsive to Eμ. Bright assisted in blocking the general repression caused by nucleosome assembly but was incapable of stimulating transcription from prebound nucleosome arrays. In vitro transcriptional derepression by Bright was enhanced on templates in which Eμ is flanked by MARs and was inhibited by competition with high affinity Bright binding (P2) sites. DNase hypersensitivity of chromatin-reconstituted Eμ was increased when prepackaged with B cell nuclear extract supplemented with Bright. These results identify Bright as a contributor to accessibility of the IgH enhancer.
Collapse
Affiliation(s)
- Danjuan Lin
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gregory C Ippolito
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Rui-Ting Zong
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - James Bryant
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Janet Koslovsky
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Philip Tucker
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Characterization of an Oct1 orthologue in the channel catfish, Ictalurus punctatus: a negative regulator of immunoglobulin gene transcription? BMC Mol Biol 2007; 8:8. [PMID: 17266766 PMCID: PMC1800861 DOI: 10.1186/1471-2199-8-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enhancer (Emu3') of the immunoglobulin heavy chain locus (IGH) of the channel catfish (Ictalurus punctatus) has been well characterized. The functional core region consists of two variant Oct transcription factor binding octamer motifs and one E-protein binding muE5 site. An orthologue to the Oct2 transcription factor has previously been cloned in catfish and is a functionally active transcription factor. This study was undertaken to clone and characterize the Oct1 transcription factor, which has also been shown to be important in driving immunoglobulin gene transcription in mammals. RESULTS An orthologue of Oct1, a POU family transcription factor, was cloned from a catfish macrophage cDNA library. The inferred amino acid sequence of the catfish Oct1, when aligned with other vertebrate Oct1 sequences, revealed clear conservation of structure, with the POU specific subdomain of catfish Oct1 showing 96% identity to that of mouse Oct1. Expression of Oct1 was observed in clonal T and B cell lines and in all tissues examined. Catfish Oct1, when transfected into both mammalian (mouse) and catfish B cell lines, unexpectedly failed to drive transcription from three different octamer-containing reporter constructs. These contained a trimer of octamer motifs, a fish VH promoter, and the core region of the catfish Emu3' IGH enhancer, respectively. This failure of catfish Oct1 to drive transcription was not rescued by human BOB.1, a co-activator of Oct transcription factors that stimulates transcription driven by catfish Oct2. When co-transfected with catfish Oct2, Oct1 reduced Oct2 driven transcriptional activation. Electrophoretic mobility shift assays showed that catfish Oct1 (native or expressed in vitro) bound both consensus and variant octamer motifs. Putative N- and C-terminal activation domains of Oct1, when fused to a Gal4 DNA binding domain and co-transfected with Gal4-dependent reporter constructs were transcriptionally inactive, which may be due in part to a lack of residues associated with activation domain function. CONCLUSION An orthologue to mammalian Oct1 has been found in the catfish. It is similar to mammalian Oct1 in structure and expression. However, these results indicate that the physiological functions of catfish Oct1 differ from those of mammalian Oct1 and include negative regulation of transcription.
Collapse
|
6
|
Wang VEH, Schmidt T, Chen J, Sharp PA, Tantin D. Embryonic lethality, decreased erythropoiesis, and defective octamer-dependent promoter activation in Oct-1-deficient mice. Mol Cell Biol 2004; 24:1022-32. [PMID: 14729950 PMCID: PMC321444 DOI: 10.1128/mcb.24.3.1022-1032.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oct-1 is a sequence-specific DNA binding transcription factor that is believed to regulate a large group of tissue-specific and ubiquitous genes. Both Oct-1 and the related but tissue-restricted Oct-2 protein bind to a DNA sequence termed the octamer motif (5'-ATGCAAAT-3') with equal affinity in vitro. To address the role of Oct-1 in vivo, an Oct-1-deficient mouse strain was generated by gene targeting. Oct-1-deficient embryos died during gestation, frequently appeared anemic, and suffered from a lack of Ter-119-positive erythroid precursor cells. This defect was cell intrinsic. Fibroblasts derived from these embryos displayed a dramatic decrease in Oct-1 DNA binding activity and a lack of octamer-dependent promoter activity in transient transfection assays. Interestingly, several endogenous genes thought to be regulated by Oct-1 showed no change in expression. When crossed to Oct-2(+/-) animals, transheterozygotes were recovered at a very low frequency. These findings suggest a critical role for Oct-1 during development and a stringent gene dosage effect with Oct-2 in mediating postnatal survival.
Collapse
Affiliation(s)
- Victoria E H Wang
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | |
Collapse
|
7
|
Wang VEH, Tantin D, Chen J, Sharp PA. B cell development and immunoglobulin transcription in Oct-1-deficient mice. Proc Natl Acad Sci U S A 2004; 101:2005-10. [PMID: 14762167 PMCID: PMC357042 DOI: 10.1073/pnas.0307304101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The POU domain transcription factors Oct-1 and Oct-2 interact with the octamer element, a motif conserved within Ig promoters and enhancers, and mediate transcription from the Ig loci. Inactivation of Oct-2 by gene targeting results in normal B cell development and Ig transcription. To study the role of Oct-1 in these processes, the lymphoid compartment of RAG-1(-/-) animals was reconstituted with Oct-1-deficient fetal liver hematopoietic cells. Recipient mice develop B cells with levels of surface Ig expression comparable with wild type, although at slightly reduced numbers. These B cells transcribe Ig normally, respond to antigenic stimulation, undergo class switching, and use a normal repertoire of light chain variable segments. However, recipient mice show slight reductions in serum IgM and IgA. Thus, the Oct-1 protein is dispensable for B cell development and Ig transcription.
Collapse
Affiliation(s)
- Victoria E H Wang
- Department of Biology and Center for Cancer Research and McGovern Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | | | | | | |
Collapse
|
8
|
Sharif MN, Radomska HS, Miller DM, Eckhardt LA. Unique function for carboxyl-terminal domain of Oct-2 in Ig-secreting cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4421-9. [PMID: 11591767 DOI: 10.4049/jimmunol.167.8.4421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity of Ig gene promoters and enhancers is regulated by two related transcription factors, Oct-1 (ubiquitous) and Oct-2 (B lineage specific), which bind the octamer motif (ATTTGCAT) present in these elements. As Ig promoter-binding factors, Oct-1 and Oct-2 each work together with a B lymphocyte-specific cofactor OCA-B/OBF-1/Bob-1 that interacts with them through their POU (DNA-binding) domains. Because both can mediate Ig promoter activity in B cells, there has been some question as to whether these two octamer-binding factors serve distinct functions in lymphocytes. We have shown previously that the silencing of B lymphocyte-specific genes in plasmacytoma x T lymphoma hybrids can be prevented by preserving Oct-2 expression. The pronounced effect of this transcription factor on the phenotype of plasmacytoma x T lymphoma hybrids established a critical role for Oct-2 not only in maintaining Ig gene expression, but in maintaining the overall genetic program of Ig-secreting cells. In the present study, we have explored the functional differences between Oct-1 and Oct-2 using chimeric Oct-1/Oct-2 proteins in cell fusion assays. Our results provide further evidence for an essential role for Oct-2 in Ig-secreting cells and identify the C-terminal domain of Oct-2 as responsible for its unique function in these cells.
Collapse
Affiliation(s)
- M N Sharif
- Department of Biological Sciences, Hunter College, Graduate School of City University of New York, New York, NY 10021, USA
| | | | | | | |
Collapse
|
9
|
Mortuza FY, Moreira IM, Papaioannou M, Gameiro P, Coyle LA, Gricks CS, Amlot P, Prentice HG, Madrigal A, Hoffbrand AV, Foroni L. Immunoglobulin heavy-chain gene rearrangement in adult acute lymphoblastic leukemia reveals preferential usage of J(H)-proximal variable gene segments. Blood 2001; 97:2716-26. [PMID: 11313263 DOI: 10.1182/blood.v97.9.2716] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to characterize individual-segment and overall patterns of V(H) gene usage in adult B-lineage acute lymphoblastic leukemia (ALL). Theoretical values of V(H) segment usage were calculated with the assumption that all V(H) segments capable of undergoing rearrangement have an equal probability of selection for recombination. Leukemic clones from 127 patients with adult B-lineage acute leukemias were studied by fingerprinting by means of primers for the framework 1 and joining segments. Clones from early preimmune B cells (245 alleles identified) show a predominance of V(H)6 family rearrangements and, consequently, do not conform to this hypothesis. However, profiles of V(H) gene family usage in mature B cells, as investigated in peripheral blood (6 samples), B-cell lymphomas (36 clones) and chronic lymphocytic leukemia (56 clones), are in agreement with this theoretical profile. Sequence analyses of 64 V(H) clones in adult ALL revealed that the rate of V(H) usage is proportional to the proximity of the V(H) gene to the J(H) locus and that the relationship can be mathematically defined. Except for V(H)6, no other V(H) gene is excessively used in adult ALL. V(H) pseudogenes are rarely used (n = 2), which implies the existence of early mechanisms in the pathway to B-cell maturation to reduce wasteful V(H)-(D(H))-J(H) recombination. Finally, similar to early immunoglobulin-H rearrangement patterns in the mouse, B cells of ALL derive from a pool of cells more immature than the cells in chronic lymphoid B-cell malignancies.
Collapse
Affiliation(s)
- F Y Mortuza
- Department of Haematology and Immunology, Royal Free and University College of London (Royal Free Campus), London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schubart K, Massa S, Schubart D, Corcoran LM, Rolink AG, Matthias P. B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1. Nat Immunol 2001; 2:69-74. [PMID: 11135581 DOI: 10.1038/83190] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct-2 and OBF-1 (also called OCA-B or Bob-1) are B cell-specific transcription factors that bind to the conserved octamer site of immunoglobulin promoters, yet their role in immunoglobulin transcription has remained unclear. We generated mice in which the lymphoid compartment was reconstituted with cells that lack both Oct-2 and OBF-1. Even in the absence of these two transcription factors, B cells develop normally to the membrane immunoglobulin M-positive (IgM+) stage and immunoglobulin gene transcription is essentially unaffected. These observations imply that the ubiquitous factor Oct-1 plays a previously unrecognized role in the control of immunoglobulin gene transcription and suggest the existence of another, as yet unidentified, cofactor. In addition, both factors are essential for germinal center formation, although OBF-1 is more important than Oct-2 for IgG production after immunization.
Collapse
Affiliation(s)
- K Schubart
- Friedrich Miescher Institute, Maulbeerstr. 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Massa S, Junker S, Matthias P. Molecular mechanisms of extinction: old findings and new ideas. Int J Biochem Cell Biol 2000; 32:23-40. [PMID: 10661892 DOI: 10.1016/s1357-2725(99)00102-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fusion experiments between somatic cells have been used for a long time as a means to understand the regulation of gene expression. In hybrids between differentiated cells such as hepatocytes or lymphocytes and undifferentiated cells such as fibroblasts a phenomenon called extinction has been described. In such hybrids expression of cell-specific genes derived from the more differentiated parental cell is selectively turned off (extinguished), whereas genes expressed from both cells like housekeeping genes remain active after fusion. Study of the molecular basis of extinction of the liver-specifically expressed tyrosine aminotransferase gene and of the B-cell-specifically expressed immunoglobulin genes has revealed that in hybrids the transcriptional program of the differentiated cells is reset. This is accompanied by a loss of expression or activity of many of the regulatory molecules that were operating in the differentiated cells. In the light of new insights in eukaryotic gene regulation we speculate that molecular mechanisms such as chromatin remodelling, recruitment to heterochromatin or subnuclear localization could underly the extinction process.
Collapse
Affiliation(s)
- S Massa
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
12
|
Kustikova O, Kramerov D, Grigorian M, Berezin V, Bock E, Lukanidin E, Tulchinsky E. Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol Cell Biol 1998; 18:7095-105. [PMID: 9819396 PMCID: PMC109291 DOI: 10.1128/mcb.18.12.7095] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Two cell lines originating from a common ancestral tumor, CSML0 and CSML100, were used as a model to study AP-1 transcription factors at different steps of tumor progression. CSML0 cells have an epithelial morphology; they express epithelial but not mesenchymal markers and are invasive neither in vitro nor in vivo. CSML100 possesses all characteristics of a highly progressive carcinoma. These cells do not form tight contacts, are highly invasive in vitro, and are metastatic in vivo. AP-1 activity was considerably higher in CSML100 cells than in CSML0 cells. There was a common predominant Jun component, namely, JunD, detected in both cell lines. We found that the enhanced level of AP-1 in CSML100 cells was due to high expression of Fra-1 and Fra-2 proteins, which were undetectable in CSML0 nuclear extracts. Analysis of the transcription of different AP-1 members in various cell lines derived from tumors of epithelial origin revealed a correlation of fra-1 expression with mesenchymal characteristics of carcinoma cells. Moreover, we show here for the first time that the expression of exogenous Fra-1 in epithelioid cells results in morphological changes that resemble fibroblastoid conversion. Cells acquire an elongated shape and become more motile and invasive in vitro. Morphological alterations were accompanied by transcriptional activation of certain genes whose expression is often induced at late stages of tumor progression. These data suggest a critical role of the Fra-1 protein in the development of epithelial tumors.
Collapse
Affiliation(s)
- O Kustikova
- Department of Molecular Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen O, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Information is increasingly available concerning the molecular events that occur during primary and antigen-dependent stages of B cell development. In this review the roles of transcription factors and coactivators are discussed with respect to changes in expression patterns of various genes during B cell development. Transcriptional regulation is also discussed in the context of developmentally regulated immunoglobulin gene V(D)J recombination, somatic hypermutation, and isotype switch recombination.
Collapse
Affiliation(s)
- A Henderson
- Department of Veterinary Science, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
14
|
Yalamanchili P, Weidman K, Dasgupta A. Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 1997; 239:176-85. [PMID: 9426457 DOI: 10.1006/viro.1997.8862] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In HeLa cells, RNA polymerase II mediated transcription is severely inhibited by poliovirus infection. Both basal and activated transcription are affected to bring about a complete shutoff of host cell transcription. We demonstrate here that the octamer binding transcription factor, Oct-1, is cleaved in HeLa cells infected with poliovirus. Incubation of Oct-1 with the purified, recombinant 3Cpro results in the generation of the cleaved Oct-1 product seen in virus infected cells. Poliovirus infection leads to the formation of altered Oct-1 DNA complexes that can also be generated by incubation of Oct-1 with purified 3Cpro. We also show that Oct-1 cleaved by 3Cpro loses its ability to inhibit transcriptional activation by the SV40 B enhancer. These results suggest that cleavage of Oct-1 in poliovirus infected cells leads to the loss of its activity.
Collapse
Affiliation(s)
- P Yalamanchili
- Department of Microbiology and Immunology, UCLA School of Medicine 90095-1747, USA
| | | | | |
Collapse
|
15
|
Tulchinsky E, Prokhortchouk E, Georgiev G, Lukanidin E. A kappaB-related binding site is an integral part of the mts1 gene composite enhancer element located in the first intron of the gene. J Biol Chem 1997; 272:4828-35. [PMID: 9030539 DOI: 10.1074/jbc.272.8.4828] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The transcription of the mts1 gene correlates with the metastatic potential of mouse adenocarcinomas. Here we describe strong enhancer whose location coincides with the DNase I hypersensitivity area in the first intron of the mts1 gene. The investigation of the transcriptional activity of a series of plasmids bearing deletions in the first intron sequences revealed that the observed enhancer has a composite structure. The enhancer activity is partially formed by the kappaB-related element: GGGGTTTTTCCAC. This sequence element was able to form several sequence-specific complexes with nuclear proteins extracted from both Mts1-expressing CSML100 and Mts1-non-expressing CSML0 adenocarcinoma cells. Two of these complexes were identified as NF-kappaB/Rel-specific p50.p50 homo- and p50.p65 heterodimers. The third complex was formed by the 200-kDa protein. Even though the synthetic kappaB-responsible promoter was active in mouse adenocarcinoma cells, a mutation preventing NF-kappaB binding had no effect on the mts1 natural enhancer activity. On the contrary, the mutation in the kappaB-related element, which abolished the binding of the 200-kDa protein, led to the functional inactivation of this site in the mts1 first intron. The mts1 kappaB-like element activated transcription from its own mts1 gene promoter, as well as from the heterologous promoter in both CSML0 and CSML100 cells. However, in vivo occupancy of this site was observed only in Mts1-expressing CSML100 cells, suggesting the involvement of the described element in positive control of mts1 transcription.
Collapse
Affiliation(s)
- E Tulchinsky
- Danish Cancer Society, Department of Molecular Cancer Biology, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Fyodorov D, Deneris E. The POU domain of SCIP/Tst-1/Oct-6 is sufficient for activation of an acetylcholine receptor promoter. Mol Cell Biol 1996; 16:5004-14. [PMID: 8756659 PMCID: PMC231502 DOI: 10.1128/mcb.16.9.5004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the PC12 neuroendocrine line, the neuronal nicotinic acetylcholine receptor alpha3 gene promoter is activated by SCIP/Tst-1/Oct-6, a POU domain transcription factor proposed to be important for regulating the development of specific neural cell populations. In this study, we have investigated the SCIP polypeptide domains involved in alpha3 promoter activation. The characteristics of activation by a chimeric effector in which the GAL4 DNA binding domain was substituted for the SCIP POU domain were dramatically different from those of wild-type SCIP. At low effector masses, the chimeric polypeptide weakly activated alpha3 in a GAL4 binding-site-dependent manner but then squelched transcription at higher masses. In contrast, wild-type SCIP activation was not modulated by the presence of multimerized SCIP binding sites, and squelching was not observed. Analysis of wild-type SCIP truncations revealed that deletion of the previously characterized SCIP amino-terminal activation domain did not destroy activity of the factor. Surprisingly, a truncation expressing nothing more than the POU domain was nearly as active as wild-type SCIP. Moreover, cotransfection of a GAL4-VP16 effector with an effector expressing just the SCIP POU domain resulted in synergistic activation of the promoter. Synergistic activation did not depend on an Sp1 motif that is the only functional alpha3 cis element outside the transcription start site region. Our results show that the DNA binding domain of a POU factor is capable of transcriptional activation probably through protein-protein interactions with components of the basal transcription complex.
Collapse
Affiliation(s)
- D Fyodorov
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
17
|
Cepek KL, Chasman DI, Sharp PA. Sequence-specific DNA binding of the B-cell-specific coactivator OCA-B. Genes Dev 1996; 10:2079-88. [PMID: 8769650 DOI: 10.1101/gad.10.16.2079] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
B-cell-specific transcription of immunoglobulin genes is mediated by the interaction of a POU domain containing transcription factor Oct-1 or Oct-2, with the B-cell-specific coactivator OCA-B (Bob-1, OBF-1) and a prototype octamer element. We find that OCA-B binds DNA directly in the major groove between the two subdomains of the POU domain, requiring both an A at the fifth position of the octamer element and contact with the POU domain. An amino-terminal fragment of OCA-B binds the octamer site in the absence of a POU domain with the same sequence specificity. Coactivator OCA-B may undergo a POU-dependent conformational change that exposes its amino terminus, allowing it to recognize specific DNA sequences in the major groove within the binding site for Oct-1 or Oct-2. The recognition of both the POU domain and the octamer sequence by OCA-B provides a mechanism for differential regulation of octamer sites containing genes by the ubiquitous factor Oct-1.
Collapse
Affiliation(s)
- K L Cepek
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
18
|
Schubart DB, Sauter P, Massa S, Friedl EM, Schwarzenbach H, Matthias P. Gene structure and characterization of the murine homologue of the B cell-specific transcriptional coactivator OBF-1. Nucleic Acids Res 1996; 24:1913-20. [PMID: 8657574 PMCID: PMC145881 DOI: 10.1093/nar/24.10.1913] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The B cell-specific activity of immunoglobulin (Ig) gene promoters is to a large extent mediated by the conserved octamer motif ATTTGCAT. This requires the DNA binding octamer factors Oct-1 and/or Oct-2, as well as an additional B cell-restricted non-DNA binding cofactor. We recently cloned such a coactivator specific for Oct-1 or Oct-2 from human B cells and called it OBF-1. Here we report the isolation and characterization of the murine homologue. Full-length cDNA clones as well as genomic clones were isolated and the gene structure was determined. The deduced protein sequence shows that the mouse protein has an identical length, is likewise proline rich and shows 89% overall identity to the human protein. The OBF-1 gene is expressed in a very highly B cell-specific manner and is transcribed in cells representative of all stages of B cell differentiation, including the earliest ones. We show that OBF-1 interacts in the absence of DNA with the POU domain of Oct-1 or Oct-2 and also with the general transcription factors TBP and TFIIB. Furthermore, we demonstrate that although OBF-1 efficiently activates promoter octamer sites, it does not activate enhancer octamer sites.
Collapse
Affiliation(s)
- D B Schubart
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Nakshatri H, Nakshatri P, Currie RA. Interaction of Oct-1 with TFIIB. Implications for a novel response elicited through the proximal octamer site of the lipoprotein lipase promoter. J Biol Chem 1995; 270:19613-23. [PMID: 7642649 DOI: 10.1074/jbc.270.33.19613] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ubiquitous human POU domain protein, Oct-1, and the related B-cell protein, Oct-2, regulate transcription from a variety of eukaryotic genes by binding to a common cis-acting octamer element, 5'-ATTTGCAT-3'. The binding of Oct-1 and Oct-2 to the functionally important lipoprotein lipase (LPL) promoter octamer site was stimulated by the general transcription factor, TFIIB. Comparative analysis of the LPL, histone H2B (H2B), and herpes simplex virus ICPO gene promoter octamer sites revealed that nucleotide sequences within and flanking the octamer sequence determined the degree of TFIIB-mediated stimulation of Oct-1 DNA binding. TFIIB was found to decrease the rate of dissociation of Oct-1 from the LPL octamer site, whereas it increased the rate of association, as well as decreased the rate of dissociation, of Oct-1 from the H2B octamer site. A monoclonal antibody against TFIIB immunoprecipitated a ternary complex containing TFIIB, Oct-1, and the LPL and H2B octamer binding sites. TFIIB did not alter the DNase I footprints generated by Oct-1 on the LPL and H2B promoters. However, Oct-1 on the TATA-binding protein and TFIIB from footprinting the perfect TATA box sequence located 5' of the LPL, NF-Y binding site. In transfection experiments, transcription from the reporters containing the LPL octamer, and either the SV40 or the yeast transcription factor GAL4-dependent enhancers, initiated at a precise position within the octamer sequence. Transcription from reporters containing the H2B octamer and the SV40 enhancer initiated at several positions within and flanking the octamer site, whereas transcription initiated at a precise position within the octamer from reporters with both the H2B octamer and the GAL4-dependent enhancer. These results suggest that octamers and their flanking sequences play an important role in positioning the site of transcription initiation, and that this could be a function of the interaction of Oct-1 with TFIIB.
Collapse
Affiliation(s)
- H Nakshatri
- Laboratory of Gene Regulation, Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | |
Collapse
|
20
|
König H, Pfisterer P, Corcoran LM, Wirth T. Identification of CD36 as the first gene dependent on the B-cell differentiation factor Oct-2. Genes Dev 1995; 9:1598-607. [PMID: 7543064 DOI: 10.1101/gad.9.13.1598] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Oct-2 transcription factor is expressed predominantly in B lymphocytes and has been shown previously to be important for the terminal phase of B-cell differentiation in mice. A number of genes specifically expressed in B cells contain Oct-2-binding sites in their regulatory regions. However, the analysis of expression levels of these genes in Oct-2-deficient B cells revealed that they were unaffected. Hence, there were no genes known that critically depend on Oct-2 for their expression. To understand the molecular basis for the Oct-2 effect on B-cell development, we searched for Oct-2 target genes by subtractive cDNA cloning. We show here that expression of the murine CD36 gene in B cells and macrophages requires a functional Oct-2 protein. Nuclear run-on experiments demonstrate that this gene is regulated transcriptionally by Oct-2. Moreover, CD36 levels correlated with the levels of Oct-2 expression in several mouse B-cell and macrophage cell lines. Finally, compared to wild-type and heterozygous mice, CD36 mRNA levels were markedly reduced in spleens and B-cell-enriched splenocyte fractions from oct-2-/- mice. The data identify CD36 as the first target gene critically dependent on Oct-2 for its expression. Because CD36 expression is also dependent on Oct-2 in vivo, it is a candidate gene through which Oct-2 could affect B-cell differentiation.
Collapse
Affiliation(s)
- H König
- Zentrum für Molekulare Biologie Heidelberg, Germany
| | | | | | | |
Collapse
|
21
|
Ernst P, Smale ST. Combinatorial regulation of transcription II: The immunoglobulin mu heavy chain gene. Immunity 1995; 2:427-38. [PMID: 7749979 DOI: 10.1016/1074-7613(95)90024-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Ernst
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, Los Angeles School of Medicine 90095-1662, USA
| | | |
Collapse
|
22
|
Jaffe J, Hochberg M, Riss J, Hasin T, Reich L, Laskov R. Cloning, sequencing and expression of two isoforms of the murine oct-1 transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:201-9. [PMID: 7711063 DOI: 10.1016/0167-4781(94)00246-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oct-1 is a ubiquitously expressed regulatory gene of the POU domain family. The Oct-1 protein binds to the octamer motif present in the control regions of a variety of genes such as the immunoglobulins, histone H2B and snRNAs. To learn about Oct-1 and its possible role in B-cell maturation, we have used oct-2 cDNA to screen a murine pre-B cell, cDNA library. Two cDNA clones were identical in their POU-homeo box DNA binding domain, but differed in their 3'-region. Whereas one clone (oct-1a) was very similar to its human oct-1 homologue, the other (oct-1b), contained an additional 72 bp sequence (designated E1) at the serine threonine rich coding region (position 1485 of the human oct-1), and a deletion of another 72 bp sequence (designated E2) downstream (position 1920). These changes preserve the protein reading frame. DNA blot analysis indicates that murine oct-1 is a single copy gene and that the two oct-1 isoforms oct-1 is expressed as a large approximately 10 kb transcript in all the cell are generated by alternative RNA splicing. RNA blots showed that oct-1 is expressed as a large approximately 10 kb transcript in all the cell lines tested. PCR analysis of the E1 and E2 72 bp regions, indicated the presence of a third isoform containing both E1 and E2 (Oct-1c). Oct-1a and Oct-1b were present in all cell types examined, but the level of expression was lower in liver and spleen as compared to testis, thymus and kidney. The ratio of Oct-1b to Oct-1a ranged between 0.2 to 0.5, for all tissues examined except for testis which expressed higher amounts of oct-1b and/or oct-1c. Our findings thus show that the pattern of expression of the oct-1 gene is more complex than hitherto thought.
Collapse
Affiliation(s)
- J Jaffe
- Hubert Humphrey Center for Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Kristie TM, Pomerantz JL, Twomey TC, Parent SA, Sharp PA. The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides. J Biol Chem 1995; 270:4387-94. [PMID: 7876203 DOI: 10.1074/jbc.270.9.4387] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The alpha/immediate early genes of herpes simplex virus are regulated by the specific assembly of a multiprotein enhancer complex containing the Oct-1 POU domain protein, the viral alpha-transinduction factor alpha TIF, (VP16, ICP25), and the C1 cellular factor. The C1 factor from mammalian cells is a heterogeneous but related set of polypeptides that interact directly with the alpha-transinduction factor to form a heteromeric protein complex. The isolation of cDNAs encoding the polypeptides of the C1 factor suggests that these proteins are proteolytic products of a novel precursor. The sequence of the amino termini of these polypeptide products indicate that the proteins are generated by site-specific cleavages within a reiterated 20-amino acid sequence. Although the C1 factor appears to be ubiquitously expressed, it is localized to subnuclear structures in specific cell types.
Collapse
Affiliation(s)
- T M Kristie
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
24
|
Strubin M, Newell JW, Matthias P. OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 1995; 80:497-506. [PMID: 7859290 DOI: 10.1016/0092-8674(95)90500-6] [Citation(s) in RCA: 306] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent biochemical and genetic studies indicate that in addition to the octamer-binding proteins Oct-1 and Oct-2, other B cell components are required for lymphoid-restricted, octamer site-mediated immunoglobulin gene promoter activity. Using a genetic screen in yeast, we have isolated B cell-derived cDNAs encoding Oct-binding factor 1 (OBF-1), a novel protein that specifically associates with Oct-1 and Oct-2. Biochemical studies demonstrate that OBF-1 has no intrinsic DNA-binding activity and recognizes the POU domains of Oct-1 and Oct-2, but not those of Oct-4 and Oct-6. The OBF-1 mRNA is expressed in a highly cell-specific manner, being most abundant in B cells and essentially absent in most of the other cells or tissues tested. Furthermore, expression of OBF-1 in HeLa cells selectively stimulates the activity of a natural immunoglobulin promoter in an octamer site-dependent manner. Thus, OBF-1 has all the properties expected for a B cell-specific transcriptional coactivator protein.
Collapse
Affiliation(s)
- M Strubin
- Department of Genetics and Microbiology, University Medical Centre, Geneva, Switzerland
| | | | | |
Collapse
|
25
|
Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer. Mol Cell Biol 1994. [PMID: 7969117 DOI: 10.1128/mcb.14.12.7758] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding how diverse transcription patterns are achieved through common factor binding elements is a fundamental question that underlies much of developmental and cellular biology. One example is provided by the fibroblast growth factor 4 (FGF-4) gene, whose expression is restricted to specific embryonic tissues during development and to undifferentiated embryonal carcinoma cells in tissue culture. Analysis of the cis- and trans-acting elements required for the activity of the previously identified FGF-4 enhancer in F9 embryonal carcinoma cells showed that enhancer function depends on sequences that bind Sp1 and ubiquitous as well as F9-specific octamer-binding proteins. However, sequences immediately upstream of the octamer motif, which conform to a binding site for the high-mobility group (HMG) domain factor family, were also critical to enhancer function. We have identified a novel F9-specific factor, Fx, which specifically recognizes this motif. Fx formed complexes with either Oct-1 or Oct-3 in a template-dependent manner. The ability of different enhancer variants to form the Oct-Fx complexes correlated with enhancer activity, indicating that these complexes play an essential role in transcriptional activation of the FGF-4 gene. Thus, while FGF-4 enhancer function is octamer site dependent, its developmentally restricted activity is determined by the interaction of octamer-binding proteins with the tissue-specific factor Fx.
Collapse
|
26
|
Dailey L, Yuan H, Basilico C. Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer. Mol Cell Biol 1994; 14:7758-69. [PMID: 7969117 PMCID: PMC359316 DOI: 10.1128/mcb.14.12.7758-7769.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Understanding how diverse transcription patterns are achieved through common factor binding elements is a fundamental question that underlies much of developmental and cellular biology. One example is provided by the fibroblast growth factor 4 (FGF-4) gene, whose expression is restricted to specific embryonic tissues during development and to undifferentiated embryonal carcinoma cells in tissue culture. Analysis of the cis- and trans-acting elements required for the activity of the previously identified FGF-4 enhancer in F9 embryonal carcinoma cells showed that enhancer function depends on sequences that bind Sp1 and ubiquitous as well as F9-specific octamer-binding proteins. However, sequences immediately upstream of the octamer motif, which conform to a binding site for the high-mobility group (HMG) domain factor family, were also critical to enhancer function. We have identified a novel F9-specific factor, Fx, which specifically recognizes this motif. Fx formed complexes with either Oct-1 or Oct-3 in a template-dependent manner. The ability of different enhancer variants to form the Oct-Fx complexes correlated with enhancer activity, indicating that these complexes play an essential role in transcriptional activation of the FGF-4 gene. Thus, while FGF-4 enhancer function is octamer site dependent, its developmentally restricted activity is determined by the interaction of octamer-binding proteins with the tissue-specific factor Fx.
Collapse
Affiliation(s)
- L Dailey
- Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
27
|
Abstract
The transcription factors Oct-2, NF-kappa B and PU.1 have been implicated in regulating the development of B lymphocytes. Genetic approaches have been used to analyze the developmental functions of these regulatory proteins. Using gene targeting in murine embryonic stem cells, PU.1 is shown to be required for the development of progenitor B cells. Strikingly, PU.1 is also essential for the development of T lymphoid, granulocytic and monocytic progenitors. Transcription factors of the NF-kappa B/Rel family, which appear to regulate immunoglobulin kappa gene expression, are shown to be a target of the viral transforming protein (v-abl) which arrests B lineage development at the precursor B stage. This suggests a mechanism by which v-abl blocks precursor B cell differentiation. The Oct-2 transcription factor was considered to represent a development regulator of immunoglobulin gene expression. Using gene targeting in a murine B cell, Oct-2 is shown to be dispensable for immunoglobulin gene expression. This suggests the existence of an alternate pathway, involving the ubiquitous related protein, Oct-1, in immunoglobulin gene regulation.
Collapse
Affiliation(s)
- H Singh
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, IL 60637 USA
| |
Collapse
|
28
|
Franke S, Scholz G, Scheidereit C. Identification of novel ubiquitous and cell type-specific factors that specifically recognize immunoglobulin heavy chain and kappa light chain promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32129-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Botfield MC, Jancso A, Weiss MA. An invariant asparagine in the POU-specific homeodomain regulates the specificity of the Oct-2 POU motif. Biochemistry 1994; 33:8113-21. [PMID: 7912957 DOI: 10.1021/bi00192a016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The homeodomain defines a family of transcription factors broadly involved in the regulation of gene expression. DNA recognition, as observed in three representative complexes (Engrailed, Antennapedia, and MAT alpha 2), is mediated in the major groove by a helix-turn-helix (HTH) element and in the minor groove by an N-terminal arm. The three complexes share similar overall features, but they also exhibit significant differences in DNA interactions. Because these differences may distinguish the biological activities of different classes of homeodomains, we have investigated the contribution of the Oct-2 POU-specific homeodomain (POUHD) to the specificity of the bipartite POU motif. Comparative studies of variant protein-DNA complexes demonstrate the following. (i) Mutations in an invariant residue in the POUHD HTH (N347; residue 10 of the putative recognition alpha-helix) reduce octamer binding with the relaxation of specificity at one position (5'-ATGCAAAT). The inferred HTH side chain-base interaction, although not observed in the solution structure of the Antennapedia complex, is in accord with homologous contacts in the Engrailed and MAT alpha 2 cocrystal structures. (ii) Comparison of the DNA-binding properties of POU and POUHD demonstrates that POUs and POUHD independently regulate specificity at opposite ends of the DNA site (5'-TATGCAAAT). Both domains contact the two central bases (5'-TATGCAAAT) where coordinate binding of POUS in the major groove overrides the intrinsic specificity of POUHD in the minor groove. (iii) The differential sensitivity of POU and POUHD to 2'-deoxyinosine substitutions (a minor-groove modification) suggests that POUS binding repositions the POUHD N-terminal "arm".(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Botfield
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
30
|
Botfield MC, Jancso A, Weiss MA. Mapping critical residues in eukaryotic DNA-binding proteins: a plasmid-based genetic selection strategy with application to the Oct-2 POU motif. Biochemistry 1994; 33:6177-85. [PMID: 8193131 DOI: 10.1021/bi00186a017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Discrimination between allowed and disallowed amino acid substitutions provides a powerful method for analysis of protein structure and function. Site-directed mutagenesis allows specific hypotheses to be tested, but its systematic application to entire structural motifs is inefficient. This limitation may be overcome by genetic selection, which allows rapid scoring of thousands of randomly (or pseudorandomly) generated mutants. To facilitate structural dissection of DNA-binding proteins, we have designed two generally applicable bacterial selection systems: pPLUS selects for the ability of a protein to bind to a user-defined DNA sequence, whereas pMINUS selects against such binding. Complementary positive and negative selections allow rapid mapping of critical residues. To test and calibrate the systems, we have investigated the bipartite POU domain of the human B-cell-specific transcription factor Oct-2. (i) An invariant residue (Asn347) in the DNA-recognition helix of the POU-specific homeodomain (POUHD) was substituted by each of the 19 other possible amino acids. The mutant proteins each exhibited decreased specific DNA binding as defined in vivo by genetic selection and in vitro by gel retardation; relative affinities correlate with phenotypes in the positive and negative selection systems. An essential role for Asn347 in wild-type POUHD-DNA recognition is consistent with homologous Asn-adenine interactions in cocrystal structures of canonical homeodomains. (ii) Extension of pPLUS/pMINUS selection to the POU-specific subdomain (POUs) is demonstrated by analysis of mutations in its putative helix-turn-helix (HTH) element.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Botfield
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
31
|
Jancso A, Botfield MC, Sowers LC, Weiss MA. An altered-specificity mutation in a human POU domain demonstrates functional analogy between the POU-specific subdomain and phage lambda repressor. Proc Natl Acad Sci U S A 1994; 91:3887-91. [PMID: 8171007 PMCID: PMC43687 DOI: 10.1073/pnas.91.9.3887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The POU motif, conserved among a family of eukaryotic transcription factors, contains two DNA-binding domains: an N-terminal POU-specific domain (POUS) and a C-terminal homeodomain (POUHD). Surprisingly, POUS is similar in structure to the helix-turn-helix domains of bacteriophage repressor and Cro proteins. Such similarity predicts a common mechanism of DNA recognition. To test this prediction, we have studied the DNA-binding properties of the human Oct-2 POU domain by combined application of chemical synthesis and site-directed mutagenesis. The POUS footprint of DNA contacts, identified by use of modified bases, is analogous to those of bacteriophage repressor-operator complexes. Moreover, a loss-of-contact substitution in the putative POUS recognition alpha-helix leads to relaxed specificity at one position in the DNA target site. The implied side chain-base contact is identical to that of bacteriophage repressor and Cro proteins. These results establish a functional analogy between the POUS and prokaryotic helix-turn-helix elements and suggest that their DNA specificities may be governed by a shared set of rules.
Collapse
Affiliation(s)
- A Jancso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
32
|
Sun Z, Kitchingman GR. Analysis of the imperfect octamer-containing human immunoglobulin VH6 gene promoter. Nucleic Acids Res 1994; 22:850-60. [PMID: 8139927 PMCID: PMC307892 DOI: 10.1093/nar/22.5.850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The octamer sequence ATGCAAAT is highly conserved in the promoter of immunoglobulin heavy and light chain genes and is one of the sequence motifs involved in the control of transcription of these genes. The promoter region of an human immunoglobulin heavy chain variable gene, the sole member of the VH6 gene family, was found to differ from other VH gene promoters: it contains neither the conserved octamer motif nor a heptamer sequence, and generally bears little resemblance to other VH gene transcriptional control regions. An imperfect octamer sequence with a single nucleotide substitution (AgGCAAAT) is located 108 bp upstream of the ATG translation start site, and 81 bp upstream of the transcription initiation site. We sought to determine which sequence elements within the VH6 promoter were responsible for transcription initiation by creating progressive deletions of a 1 kb fragment from this region and testing their ability to function as promoter elements in B and non-B cells (HeLa). The minimum fragment required for full promoter function was 110 bp, but a fragment with only 65 bp retained 30-50% activity in B cells. Similar levels of transcription were seen when the -146 bp promoter containing two point mutations in the imperfect octamer was tested. Mutation of a possible pyrimidine box sequence located downstream of the TATA box was shown to have only a minor effect (10-30%) on transcription when three nucleotides were changed. Surprisingly, CAT activity was not B cell-specific, as all constructs had virtually the same activity in several B cell lines and in HeLa cells. Removal of the TATA box led to a 50% reduction in CAT activity, and the region upstream of the TATA box functioned as a promoter in both orientations. The transcriptional activity of the VH6 promoter was virtually enhancer independent: only a minor increase was observed when the immunoglobulin or SV40 enhancer was added to the promoter construct. Electrophoretic mobility shift assays of transcription factor binding to the region around the imperfect octamer indicated that binding was weak when nuclear extracts from either B cells or HeLa cells were used. The amount of complex shifted was increased by mutating the imperfect octamer to a perfect one. Chimeras produced between the VH6 promoter and a B cell-specific promoter from a member of the human VH2 gene family demonstrated that the lack of tissue specificity was due to the absence of a repressor of non-B cell transcription in the VH6 promoter. These results indicate that the VH6 promoter is relatively simple, requiring little more than the TATA element and the imperfect octamer, and transcription from this promoter lacks B cell specificity and is not dependent on the enhancer element.
Collapse
Affiliation(s)
- Z Sun
- Department of Virology and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38101-0318
| | | |
Collapse
|
33
|
Omori SA, Wall R. Multiple motifs regulate the B-cell-specific promoter of the B29 gene. Proc Natl Acad Sci U S A 1993; 90:11723-7. [PMID: 8265616 PMCID: PMC48056 DOI: 10.1073/pnas.90.24.11723] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The B-cell-specific B29 and mb1 genes code for covalently linked proteins (B29 or Ig beta and mb1 or Ig alpha, respectively) associated with membrane immunoglobulins in the antigen receptor complex on B cells. We have functionally analyzed the upstream region of the B29 gene and have identified a 164-bp region which comprises the minimal promoter responsible for B-cell-specific transcription. Linker scanning mutagenesis of this minimal promoter has established that both the previously identified octamer motif and a DNA motif that binds an unknown protein factor are critical for B29 gene expression in a pre-B-cell and B-cell line. Further mutations showed that binding motifs for Ets, microB/LyF1, and Sp1 also significantly contributed to the overall activity of the minimal B29 promoter. However, the relative contribution of certain motifs to promoter activity was different in a pre-B versus a B-cell line. The microB/LyF1 motif was necessary for full promoter activity in the pre-B cells but was not required in the B cells.
Collapse
Affiliation(s)
- S A Omori
- Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles 90024
| | | |
Collapse
|
34
|
Bendall AJ, Sturm RA, Danoy PA, Molloy PL. Broad binding-site specificity and affinity properties of octamer 1 and brain octamer-binding proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:799-811. [PMID: 8223636 DOI: 10.1111/j.1432-1033.1993.tb18308.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ubiquitous Pit-1-Oct-1-Unc-1 (POU)-domain protein octamer 1 (Oct-1) has been observed to bind specifically to a number of degenerate and dissimilar sequences. We have used antibodies directed against a C-terminal Oct-1 peptide to immunoselect binding sequences for HeLa cell Oct-1 from random-sequence oligonucleotides and we describe the isolation of binding sequences of considerable heterogeneity. Although our consensus alignment indicated a 9-bp TATGCAAAT motif with AT-rich flanking sequences, this binding motif is not immediately obvious in the population of sequences and no clone actually contained this sequence. Screening these Oct-1-binding sequences with a mouse whole-brain extract demonstrated that the neuronal octamer-binding proteins exhibit similar but distinct DNA sequence specificities. Unlike the reported selection of binding sequences for other transcription factors, the dependence of Oct-1-binding affinity upon sequence did not correspond tightly to the degree of conservation at particular positions of the consensus sequence. Our results suggest that either base-specific hydrogen bonding is not the only major determinant of binding affinity and specificity, or that Oct-1 binding to some sequences is mechanistically different from its binding to an octamer. These results exemplify the potential to overlook binding sites for some factors by searching gene sequences with a consensus nucleotide sequence.
Collapse
Affiliation(s)
- A J Bendall
- Commonwealth Scientific and Industrial Research Organisation, Division of Biomolecular Engineering, Sydney Laboratory, North Ryde, New South Wales, Australia
| | | | | | | |
Collapse
|
35
|
Verrijzer CP, Van der Vliet PC. POU domain transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:1-21. [PMID: 8485147 DOI: 10.1016/0167-4781(93)90237-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C P Verrijzer
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| | | |
Collapse
|
36
|
Cell type- and stage-specific expression of the CD20/B1 antigen correlates with the activity of a diverged octamer DNA motif present in its promoter. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53411-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Kristie T, Sharp P. Purification of the cellular C1 factor required for the stable recognition of the Oct-1 homeodomain by the herpes simplex virus alpha-trans-induction factor (VP16). J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53282-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Iguchi-Ariga SM, Ogawa N, Ariga H. Identification of the initiation region of DNA replication in the murine immunoglobulin heavy chain gene and possible function of the octamer motif as a putative DNA replication origin in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1172:73-81. [PMID: 8439574 DOI: 10.1016/0167-4781(93)90271-e] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An origin region of DNA replication in the murine immunoglobulin heavy chain (IgH) gene was identified by BrdU pulse labeling and PCR amplification methods. The origin region spans about 1000 base pairs and contains the region of transcriptional enhancer in which the octamer sequence is present. The octamer sequence, TNATTTGCAT, is a well-conserved promoter/enhancer element responsible for B cell-specific transcription and is also found in the regulatory sequences for histone genes and others. Its activity as an autonomously replicating sequence was further examined. The murine IgH enhancer region containing the octamer motif was cloned in pUC18 and transfected to HeLa cells. After 60-65 h, the low molecular weight DNA was extracted and the degree to which the plasmid DNA had been replicated in the cells was measured by back-transformation of competent bacteria. Five to ten copies of the plasmid were detected per cell. The replicated plasmid-form DNA could be detected by this assay for at least 7 days after transfection. Synthetic oligonucleotides corresponding to the octamer and the Ephrussi box in the IgH enhancer were also cloned into pUC18 and examined for replicating activity. These plasmids replicated provided that the octamer sequence remained intact, irrespective of the Ephrussi box sequence and of the sites of insertion. These results suggest that the octamer transcriptional element may also serve as a putative origin for cellular DNA replication.
Collapse
Affiliation(s)
- S M Iguchi-Ariga
- College of Medical Technology, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
39
|
|
40
|
Abstract
Homeo domain proteins exhibit distinct biological functions with specificities that cannot be predicted by their sequence specificities for binding DNA. Recognition of the surface of the Oct-1 POU homeo domain provides a general model for the contribution of selective protein-protein interactions to the functional specificity of the homeo domain family of factors. The assembly of Oct-1 into a multiprotein complex on the herpes simplex virus alpha/IE enhancer is specified by the interactions of its homeo domain with ancillary factors. This complex (C1 complex) is composed of the viral alpha TIF protein (VP16), Oct-1, and one additional cellular component, the C1 factor. Variants of the Oct-1 POU homeo domain were generated by site-directed mutagenesis, which altered the residues predicted to form the exposed surface of the domain-DNA complex. Proteins with single amino acid substitutions on the surface of either helix 1 or 2 of the Oct-1 POU homeo domain had decreased abilities to form the C1 complex. The behavior of these mutants in a cooperative DNA-binding assay with alpha TIF suggested that the Oct-1 POU homeo domain is principally recognized by alpha TIF in the C1 complex. The preferential recognition of Oct-1 over the closely related Oct-2 protein is critically influenced by a single residue on the surface of helix 1 because the introduction of this residue into the Oct-2 POU homeo domain significantly enhanced its ability to form a C1 complex.
Collapse
Affiliation(s)
- J L Pomerantz
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
41
|
Luo Y, Fujii H, Gerster T, Roeder RG. A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors. Cell 1992; 71:231-41. [PMID: 1423591 DOI: 10.1016/0092-8674(92)90352-d] [Citation(s) in RCA: 240] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel B cell-restricted activity, required for high levels of octamer/Oct-dependent transcription from an immunoglobulin heavy chain (IgH) promoter, was detected in an in vitro system consisting of HeLa cell-derived extracts complemented with fractionated B cell nuclear proteins. The factor responsible for this activity was designated Oct coactivator from B cells (OCA-B). OCA-B stimulates the transcription from an IgH promoter in conjunction with either Oct-1 or Oct-2 but shows no significant effect on the octamer/Oct-dependent transcription of the ubiquitously expressed histone H2B promoter and the transcription of USF- and Sp1-regulated promoters. Taken together, our results suggest that OCA-B is a tissue-, promoter-, and factor-specific coactivator and that OCA-B may be a major determinant for B cell-specific activation of immunoglobulin promoters. In light of the evidence showing physical and functional interactions between Oct factors and OCA-B, we propose a mechanism of action for OCA-B and discuss the implications of OCA-B for the transcriptional regulation of other tissue-specific promoters.
Collapse
Affiliation(s)
- Y Luo
- Laboratory of Biochemistry and Moelcular Biology, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
42
|
Overexpression of Mos, Ras, Src, and Fos inhibits mouse mammary epithelial cell differentiation. Mol Cell Biol 1992. [PMID: 1508191 DOI: 10.1128/mcb.12.9.3890] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammary epithelial cells terminally differentiate in response to lactogenic hormones. We present evidence that oncoprotein overexpression is incompatible with this hormone-inducible differentiation and results in striking cellular morphological changes. In mammary epithelial cells in culture, lactogenic hormones (glucocorticoid and prolactin) activated a transfected beta-casein promoter and endogenous beta-casein gene expression. This response to lactogenic hormone treatment was paralleled by a decrease in cellular AP-1 DNA-binding activity. Expression of the mos, ras, or src (but not myc) oncogene blocked the activation of the beta-casein promoter induced by the lactogenic hormones and was associated with the maintenance of high levels of AP-1. Mos expression also increased c-fos and c-jun mRNA levels. Overexpression of Fos and Jun from transiently transfected constructs resulted in a functional inhibition of the glucocorticoid receptor in these mouse mammary epithelial cells. This finding clearly suggests that glucocorticoid receptor inhibition arising from oncogene expression will contribute to the block in hormonally induced mammary epithelial cell differentiation. Expression of Src resulted in the loss of the normal organization and morphological phenotype of mammary epithelial cells in the epithelial/fibroblastic line IM-2. Activation of a conditional c-fos/estrogen receptor gene encoding an estrogen-dependent Fos/estrogen receptor fusion protein also morphologically transformed mammary epithelial cells and inhibited initiation of mammary epithelial differentiation-associated expression of the beta-casein and WDNM 1 genes. In response to estrogen treatment, the cells displayed a high level of AP-1 DNA-binding activity. Our results demonstrate that high cellular AP-1 levels contribute to blocking the ability of mammary epithelial cells in culture to respond to lactogenic hormones. This and other studies indicate that the oncogene products Mos, Ras, and Src exert their effects, at least in part, by stimulating cellular Fos and probably cellular Jun activity.
Collapse
|
43
|
Jehn B, Costello E, Marti A, Keon N, Deane R, Li F, Friis RR, Burri PH, Martin F, Jaggi R. Overexpression of Mos, Ras, Src, and Fos inhibits mouse mammary epithelial cell differentiation. Mol Cell Biol 1992; 12:3890-902. [PMID: 1508191 PMCID: PMC360266 DOI: 10.1128/mcb.12.9.3890-3902.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammary epithelial cells terminally differentiate in response to lactogenic hormones. We present evidence that oncoprotein overexpression is incompatible with this hormone-inducible differentiation and results in striking cellular morphological changes. In mammary epithelial cells in culture, lactogenic hormones (glucocorticoid and prolactin) activated a transfected beta-casein promoter and endogenous beta-casein gene expression. This response to lactogenic hormone treatment was paralleled by a decrease in cellular AP-1 DNA-binding activity. Expression of the mos, ras, or src (but not myc) oncogene blocked the activation of the beta-casein promoter induced by the lactogenic hormones and was associated with the maintenance of high levels of AP-1. Mos expression also increased c-fos and c-jun mRNA levels. Overexpression of Fos and Jun from transiently transfected constructs resulted in a functional inhibition of the glucocorticoid receptor in these mouse mammary epithelial cells. This finding clearly suggests that glucocorticoid receptor inhibition arising from oncogene expression will contribute to the block in hormonally induced mammary epithelial cell differentiation. Expression of Src resulted in the loss of the normal organization and morphological phenotype of mammary epithelial cells in the epithelial/fibroblastic line IM-2. Activation of a conditional c-fos/estrogen receptor gene encoding an estrogen-dependent Fos/estrogen receptor fusion protein also morphologically transformed mammary epithelial cells and inhibited initiation of mammary epithelial differentiation-associated expression of the beta-casein and WDNM 1 genes. In response to estrogen treatment, the cells displayed a high level of AP-1 DNA-binding activity. Our results demonstrate that high cellular AP-1 levels contribute to blocking the ability of mammary epithelial cells in culture to respond to lactogenic hormones. This and other studies indicate that the oncogene products Mos, Ras, and Src exert their effects, at least in part, by stimulating cellular Fos and probably cellular Jun activity.
Collapse
Affiliation(s)
- B Jehn
- Laboratory for Clinical and Experimental Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes. Mol Cell Biol 1992. [PMID: 1535687 DOI: 10.1128/mcb.12.7.3247] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The promoters of both RNA polymerase II- and RNA polymerase III-transcribed small nuclear RNA (snRNA) genes contain an essential and highly conserved proximal sequence element (PSE) approximately 55 bp upstream from the transcription start site. In addition, the upstream enhancers of all snRNA genes contain binding sites for octamer-binding transcription factors (Octs), and functional studies have indicated that the PSE and octamer elements work cooperatively. The present study has identified and characterized a novel transcription factor (designated PTF) which specifically binds to the PSE sequence of both RNA polymerase II- and RNA polymerase III-transcribed snRNA genes. PTF binding is markedly potentiated by Oct binding to an adjacent octamer site. This potentiation is effected by Oct-1, Oct-2, or the conserved POU domain of these factors. In agreement with these results and despite the independent binding of Octs to the promoter, PTF and Oct-1 enhance transcription from the 7SK promoter in an interdependent manner. Moreover, the POU domain of Oct-1 is sufficient for significant in vitro activity in the presence of PTF. These results suggest that essential activation domains reside in PTF and that the potentiation of PTF binding by Octs plays a key role in the function of octamer-containing snRNA gene enhancers.
Collapse
|
45
|
Murphy S, Yoon JB, Gerster T, Roeder RG. Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes. Mol Cell Biol 1992; 12:3247-61. [PMID: 1535687 PMCID: PMC364539 DOI: 10.1128/mcb.12.7.3247-3261.1992] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The promoters of both RNA polymerase II- and RNA polymerase III-transcribed small nuclear RNA (snRNA) genes contain an essential and highly conserved proximal sequence element (PSE) approximately 55 bp upstream from the transcription start site. In addition, the upstream enhancers of all snRNA genes contain binding sites for octamer-binding transcription factors (Octs), and functional studies have indicated that the PSE and octamer elements work cooperatively. The present study has identified and characterized a novel transcription factor (designated PTF) which specifically binds to the PSE sequence of both RNA polymerase II- and RNA polymerase III-transcribed snRNA genes. PTF binding is markedly potentiated by Oct binding to an adjacent octamer site. This potentiation is effected by Oct-1, Oct-2, or the conserved POU domain of these factors. In agreement with these results and despite the independent binding of Octs to the promoter, PTF and Oct-1 enhance transcription from the 7SK promoter in an interdependent manner. Moreover, the POU domain of Oct-1 is sufficient for significant in vitro activity in the presence of PTF. These results suggest that essential activation domains reside in PTF and that the potentiation of PTF binding by Octs plays a key role in the function of octamer-containing snRNA gene enhancers.
Collapse
Affiliation(s)
- S Murphy
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
46
|
Botfield MC, Jancso A, Weiss MA. Biochemical characterization of the Oct-2 POU domain with implications for bipartite DNA recognition. Biochemistry 1992; 31:5841-8. [PMID: 1610826 DOI: 10.1021/bi00140a020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
B-cell specific regulation of immunoglobulin gene expression provides a model for the interaction of promoter and enhancer elements with eukaryotic sequence-specific DNA binding proteins. A critical element of this system, the octamer site (5'-ATGCAAAT-3'), is recognized by the B-cell transcription factor Oct-2. Octamer recognition is mediated by the POU domain, a conserved structural motif which--like the zinc finger and leucine zipper--defines a family of related transcription factors. Homologies among POU sequences suggest a bipartite structure, consisting of an N-terminal POU-specific subdomain and C-terminal variant homeodomain connected by a linker of variable length and sequence. As a first step toward a molecular understanding of the Oct-2 POU domain and its mechanism of DNA recognition, we have overexpressed in Escherichia coli the intact POU domain and subdomains as thrombin-cleavable fusion proteins and have purified these fragments to homogeneity following digestion with thrombin. Biochemical and biophysical characterization yields the following results. (i) The intact POU domain (166 residues) is monomeric and exhibits high-affinity octamer-specific DNA-binding activity. (ii) Limited proteolytic digestion demonstrates that the POU domain contains two proteolytically stable subdomains (the POU-specific subdomain and the variant homeodomain) connected by a proteolytically sensitive linker. (iii) The isolated subdomains are each monomeric and do not interact to form noncovalent heterodimers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Botfield
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
47
|
Zeleznik-Le N, Itoh-Lindstrom Y, Clarke J, Moore T, Ting J. The B cell-specific nuclear factor OTF-2 positively regulates transcription of the human class II transplantation gene, DRA. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42568-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
48
|
Bell J, Char BR, Maxson R. An octamer element is required for the expression of the alpha H2B histone gene during the early development of the sea urchin. Dev Biol 1992; 150:363-71. [PMID: 1551480 DOI: 10.1016/0012-1606(92)90248-f] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Early (alpha) histone genes are one of several histone gene families in the sea urchin genome. They are expressed at high levels in blastula-stage embryos and are inactivated by the early gastrula stage. By microinjecting mutant early H2B genes into sea urchin zygotes and monitoring their transcriptional activity in blastula- and gastrula-stage embryos, we sought to identify the cis-regulatory elements responsible for this dramatic change in early H2B gene activity. We found that deletion of DNA 5' of -71 and 3' of +591 did not affect the timing or magnitude of early H2B gene expression. Neither was early H2B gene expression affected by the replacement of sequences downstream of -36 with the corresponding region of the L1 late H2B gene, expressed after the peak transcription of the early H2B gene. Further deletion of early H2B promoter sequences from -71 to -56, removing a conserved octamer element, resulted in near-complete inactivation of the early H2B gene in both blastula- and gastrula-stage embryos. Also inactivating early H2B gene expression were an internal deletion of the octamer element and a base substitution mutation that altered its sequence. This base substitution mutation also caused a parallel reduction in the ability of the octamer element to bind a factor present in nuclear extracts of sea urchin blastulae. These data strongly suggest that the proper expression of the early H2B gene in cleavage- and blastula-stage embryos depends on the octamer element and a factor with which it interacts.
Collapse
Affiliation(s)
- J Bell
- Department of Biochemistry, University of Southern California, School of Medicine, Los Angeles 90033
| | | | | |
Collapse
|
49
|
Stoykova AS, Sterrer S, Erselius JR, Hatzopoulos AK, Gruss P. Mini-Oct and Oct-2c: two novel, functionally diverse murine Oct-2 gene products are differentially expressed in the CNS. Neuron 1992; 8:541-58. [PMID: 1550677 DOI: 10.1016/0896-6273(92)90282-i] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report that two novel alternatively spliced products of the murine Oct-2 gene encode Mini-Oct (Oct-2d), a protein consisting of almost only the POU domain, and Oct-2c, a protein lacking the last 12 amino acids of Oct-2a. Ectopic expression in HeLa cells shows that Oct-2c is a transactivator, whereas Mini-Oct fails to transactivate if the octamer motif is in a promoter position next to TATA box. Mini-Oct can repress the transcriptional signal generated by endogenous octamer factors in F9 cells. It seems that Mini-Oct has the potential to serve as a transcriptional modulator for genes regulated by different octamer-binding factors. In situ hybridization reveals that Mini-Oct expression follows the general pattern of other known Oct-2 transcripts. However, it is absent from the Purkinje cell layer in the cerebellum of adult mice, and strong expression is observed in the developing nasal neuroepithelium and primary spermatids. Differential expression patterns of the Oct-2 transcripts with different transactivation/repression capacities of the encoded proteins may have a specific role in gene expression in the developing nervous system and in adult brain.
Collapse
Affiliation(s)
- A S Stoykova
- Department of Molecular Cell Biology, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
50
|
Abstract
The POU domain is the conserved DNA binding domain of a family of gene regulatory proteins. It consists of a POU-specific domain and a POU homeodomain, connected by a variable linker region. Oct-1 is a ubiquitously expressed POU domain transcription factor. It binds to the canonical octamer sequence (ATGCAAAT) as a monomer. Here we show by chemical cross-linking and protein affinity chromatography that the Oct-1 POU domain monomers can interact in solution. This association requires both the POU homeodomain and the POU-specific domain. The interaction is transient in solution and can be stabilized by binding to the heptamer-octamer sequence in the immunoglobulin heavy-chain promoter. This correlates with cooperative DNA binding to this site. POU proteins from different subclasses, including Oct-1, Oct-2A, Oct-6, and a chimeric Oct-1 protein containing the Pit-1 POU domain, can bind cooperatively to a double binding site and form a heteromeric complex.
Collapse
|