1
|
Zheng K, Li Z, Ding X, Li H. Nutlin-3 suppresses tumorigenesis and progression of oral squamous cell carcinoma and enhances chemosensitivity to cisplatin. Cytotechnology 2023; 75:17-25. [PMID: 36713063 PMCID: PMC9880094 DOI: 10.1007/s10616-022-00556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/20/2022] [Indexed: 02/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an epithelial malignant tumor with great challenges of tumor metastasis and drug resistance. Nutlin-3 is a MDM2 inhibitor that can potently activate tumor suppressor gene p53. However, the exact role of Nutlin-3 in OSCC has not been identified yet. SCC-9 cells were treated with 0, 2.5, 5, 10, 20 μM Nutlin3. MDM2 and p53 protein levels were assessed using western blot analysis. Then, CCK8 assay, clone formation assay, TUNEL staining, wound healing and transwell assays were conducted to analyze the influences of Nutlin3 on the proliferation, apoptosis, migration, and invasion in SCC-9 cells. Moreover, SCC-9 cells were co-treated with 0, 0.5, 1, 2.5, 5 μM cisplatin and Nutlin3 to determine the effect of Nutlin3 on cisplatin chemosensitivity in OSCC. As expected, Nutlin-3 inhibited MDM2 but restored p53 in OSCC in a concentration-dependent manner. Meanwhile, Nutlin-3 suppressed the proliferation, clone formation, migration, invasion and epithelial-mesenchymal transition of SCC-9 cells and both boosted the apoptosis. In addition, Nutlin-3 caused a reduced cell viability and an elevated cell apoptosis rate in cisplatin-treated SCC-9 cells, indicating that Nutlin-3 enhanced cisplatin chemosensitivity in OSCC cells. Taken together, Nutlin-3 may suppress tumorigenesis and progression of OSCC and enhance chemosensitivity to cisplatin in OSCC.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000 Jiangsu China
| | - Zexi Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000 Jiangsu China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, NO.136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Huaiqi Li
- Department of Oral and Maxillofacial Surgery, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, NO.136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|
2
|
Kong QW, Yang J, Li D, Ding YW, Hu YJ, Xue XC, Shi MZ, Jiang B, Zhou YY, Zhang M, Hu JD, Guo C, Chen JJ, Han YL. Tongguanteng injection reverses paclitaxel resistance via upregulation of TAB1 expression in ovarian cancer in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115728. [PMID: 36126783 DOI: 10.1016/j.jep.2022.115728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongguanteng injection (TGT), the water extract from the stem of the Traditional Chinese hebal medicine of Marsdenia tenacissima (Roxb.) Wight et Arn. has been used as anticancer remedy for decades. TGT was not only used in the treatment of many malignant cancers extensively, but also an adjuvant anticancer drug with chemotherapeutics clinically. AIM OF THE STUDY To evaluate the effects of TGT on reversing paclitaxel (PTX) resistance and investigate the potential mechanism related to TAB1 in ovarian cancer (OC) in vitro and in vivo. MATERIALS AND METHODS The synergistic effect and reversal ratio were determined by CCK8 assay and median-effect principle after the combination of TGT and PTX in OC A2780 and its PTX-resistant (A2780/T) cells. The biological functions in cell apoptosis, migration and invasion of A2780/T cells treated by PTX 4 μM with TGT 20, 40, 80 mg⋅mL-1 for 24 h were evaluated by colony formation, flow cytometry, wound healing and transwell assays. Proteomics technique and bioinformatic analysis were used to indentify the change of TAB1 expression in A2780/T cells induced by TGT. The association between TAB1 expression and human OC was analyzed by gene expression databases. In A2780/T cells, western blotting and colony formation assays were used to investigate the relationship between TAB1 expression and PTX resistance after TAB1 overexpression by TAB1 plasmids. The mechanism of TGT and PTX regulating TAB1 and its related proteins were explored by western blotting and flow cytometry assays after TAB1 knock-down using siTAB1. Moreover, TUNEL staining, immunohistochemistry (IHC) and histopathology were used to observe the antitumor effects, TAB1 and p-p38 expression and the tissues impairments in nude mice xenograft model established by A2780/T cells after the co-treatment with TGT and PTX by in vivo. RESULTS TGT combined with PTX showed the synergistic effect (CI<1), which could reverse the IC50 values of PTX in OC A2780 and A2780/T cells about 23.50 and 6.44 times, respectively. Besides, TGT combined with PTX could significantly inhibit the migration, invasion and promote apoptosis of A2780/T cells. We identified that TGT could induce TAB1 expression in A2780/T cells by proteomics analysis. TAB1 downregulation was significantly associated with tumorigenesis and poor prognosis in OC patients and PTX resistance in A2780/T cells. Furthermore, TGT could activate TAB1/TAK1/p38 MAPK signaling pathway targeting TAB1 and regulate the expression of Bax, Bcl-2 proteins to improve the sensitivity of A2780/T cells to PTX. TGT combined with PTX also showed a greater inhibition in tumor growth than PTX monotherapy in vivo. These promising results show the efficacy of TGT in reversing PTX resistance and provide a potential strategy that targeting TAB1/TAK1/p38 MAPK signaling pathway may improve the chemotherapy sensitivity in OC. CONCLUSIONS Our results revealed that Tongguanteng injection could reverse paclitaxel resistance and the potential mechanism might be associated with the activation of TAB1/TAK1/p38 MAPK signaling pathway in OC in vitro and in vivo. TAB1 might be a pivotal target for reversing PTX resistance. This study will provide a theoretical basis for the combination of Tongguanteng injection and paclitaxel in clinic.
Collapse
Affiliation(s)
- Qian-Wen Kong
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jiao Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Ya-Wei Ding
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yu-Jie Hu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Xiao-Chuan Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mei-Zhi Shi
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Bo Jiang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yang-Yun Zhou
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Min Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jiu-Dong Hu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| |
Collapse
|
3
|
Pseudophosphatases as Regulators of MAPK Signaling. Int J Mol Sci 2021; 22:ijms222212595. [PMID: 34830476 PMCID: PMC8622459 DOI: 10.3390/ijms222212595] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general.
Collapse
|
4
|
Pulzová LB, Roška J, Kalman M, Kliment J, Slávik P, Smolková B, Goffa E, Jurkovičová D, Kulcsár Ľ, Lešková K, Bujdák P, Mego M, Bhide MR, Plank L, Chovanec M. Screening for the Key Proteins Associated with Rete Testis Invasion in Clinical Stage I Seminoma via Label-Free Quantitative Mass Spectrometry. Cancers (Basel) 2021; 13:cancers13215573. [PMID: 34771736 PMCID: PMC8583098 DOI: 10.3390/cancers13215573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rete testis invasion (RTI) is an unfavourable prognostic factor for the risk of relapse in clinical stage I (CS I) seminoma patients. Notably, no evidence of difference in the proteome of RTI-positive vs. -negative CS I seminomas has been reported yet. Here, a quantitative proteomic approach was used to investigate RTI-associated proteins. 64 proteins were differentially expressed in RTI-positive compared to -negative CS I seminomas. Of them, 14-3-3γ, ezrin, filamin A, Parkinsonism-associated deglycase 7 (PARK7), vimentin and vinculin, were validated in CS I seminoma patient cohort. As shown by multivariate analysis controlling for clinical confounders, PARK7 and filamin A expression lowered the risk of RTI, while 14-3-3γ expression increased it. Therefore, we suggest that in real clinical biopsy specimens, the expression level of these proteins may reflect prognosis in CS I seminoma patients.
Collapse
Affiliation(s)
- Lucia Borszéková Pulzová
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Jan Roška
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia; (M.K.); (P.S.); (K.L.); (L.P.)
| | - Ján Kliment
- Clinic of Urology, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia;
| | - Pavol Slávik
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia; (M.K.); (P.S.); (K.L.); (L.P.)
| | - Božena Smolková
- Biomedical Research Center, Department of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Eduard Goffa
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Dana Jurkovičová
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Ľudovít Kulcsár
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Katarína Lešková
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia; (M.K.); (P.S.); (K.L.); (L.P.)
| | - Peter Bujdák
- Department of Urology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia;
| | - Michal Mego
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenová 1, 833 10 Bratislava, Slovakia
| | - Mangesh R. Bhide
- Department of Microbiology and Immunology, University of Veterinary Medicine, Komenského 73, 041 81 Košice, Slovakia;
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Lukáš Plank
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia; (M.K.); (P.S.); (K.L.); (L.P.)
| | - Miroslav Chovanec
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
- Correspondence:
| |
Collapse
|
5
|
Kunisky AK, Anyaeche VI, Herron RS, Park CY, Hwang HW. Shift in MSL1 alternative polyadenylation in response to DNA damage protects cancer cells from chemotherapeutic agent-induced apoptosis. Cell Rep 2021; 37:109815. [PMID: 34644577 PMCID: PMC8580136 DOI: 10.1016/j.celrep.2021.109815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
DNA damage reshapes the cellular transcriptome by modulating RNA transcription and processing. In cancer cells, these changes can alter the expression of genes in the immune surveillance and cell death pathways. Here, we investigate how DNA damage impacts alternative polyadenylation (APA) using the PAPERCLIP technique. We find that APA shifts are a coordinated response for hundreds of genes to DNA damage, and we identify PCF11 as an important contributor of DNA damage-induced APA shifts. One of these APA shifts results in upregulation of the full-length MSL1 mRNA isoform, which protects cells from DNA damage-induced apoptosis and promotes cell survival from DNA-damaging agents. Importantly, blocking MSL1 upregulation enhances cytotoxicity of chemotherapeutic agents even in the absence of p53 and overcomes chemoresistance. Our study demonstrates that characterizing adaptive APA shifts to DNA damage has therapeutic implications and reveals a link between PCF11, the MSL complex, and DNA damage-induced apoptosis. Kunisky et al. use PAPERCLIP profiling to identify a DNA damage-induced shift in mRNA alternative polyadenylation in the MSL1 gene. Blocking this response promotes apoptosis and amplifies the cytotoxic effects of DNA-damaging chemotherapeutic agents in cancer cells.
Collapse
Affiliation(s)
- Alexander K Kunisky
- Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Vivian I Anyaeche
- Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - R Samuel Herron
- Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Christopher Y Park
- Flatiron Institute, Simons Foundation, 162 Fifth Avenue, New York, NY 10010, USA
| | - Hun-Way Hwang
- Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Mattei AM, Smailys JD, Hepworth EMW, Hinton SD. The Roles of Pseudophosphatases in Disease. Int J Mol Sci 2021; 22:ijms22136924. [PMID: 34203203 PMCID: PMC8269279 DOI: 10.3390/ijms22136924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets.
Collapse
|
7
|
Inhibition of the mTOR pathway and reprogramming of protein synthesis by MDM4 reduce ovarian cancer metastatic properties. Cell Death Dis 2021; 12:558. [PMID: 34052831 PMCID: PMC8164635 DOI: 10.1038/s41419-021-03828-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/26/2023]
Abstract
Epithelial ovarian cancer (EOC) is a highly heterogeneous disease with a high death rate mainly due to the metastatic spread. The expression of MDM4, a well-known p53-inhibitor, is positively associated with chemotherapy response and overall survival (OS) in EOC. However, the basis of this association remains elusive. We show that in vivo MDM4 reduces intraperitoneal dissemination of EOC cells, independently of p53 and an immune-competent background. By 2D and 3D assays, MDM4 impairs the early steps of the metastatic process. A 3D-bioprinting system, ad hoc developed by co-culturing EOC spheroids and endothelial cells, showed reduced dissemination and intravasation into vessel-like structures of MDM4-expressing cells. Consistent with these data, high MDM4 levels protect mice from ovarian cancer-related death and, importantly, correlate with increased 15 y OS probability in large data set analysis of 1656 patients. Proteomic analysis of EOC 3D-spheroids revealed decreased protein synthesis and mTOR signaling, upon MDM4 expression. Accordingly, MDM4 does not further inhibit cell migration when its activity towards mTOR is blocked by genetic or pharmacological approaches. Importantly, high levels of MDM4 reduced the efficacy of mTOR inhibitors in constraining cell migration. Overall, these data demonstrate that MDM4 impairs EOC metastatic process by inhibiting mTOR activity and suggest the usefulness of MDM4 assessment for the tailored application of mTOR-targeted therapy.
Collapse
|
8
|
Liu S, Wang H, Li J, Zhang J, Wu J, Li Y, Piao Y, Pan L, Xiang R, Yue S. FZR1 as a novel biomarker for breast cancer neoadjuvant chemotherapy prediction. Cell Death Dis 2020; 11:804. [PMID: 32978372 PMCID: PMC7519164 DOI: 10.1038/s41419-020-03004-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022]
Abstract
The concept of breast-conserving surgery is a remarkable achievement of breast cancer therapy. Neoadjuvant chemotherapy is being used increasingly to shrink the tumor prior to surgery. Neoadjuvant chemotherapy is reducing the tumor size to make the surgery with less damaging to surrounding tissue and downstage locally inoperable disease to operable. However, non-effective neoadjuvant chemotherapy could increase the risks of delaying surgery, develop unresectable disease and metastatic tumor spread. The biomarkers for predicting the neoadjuvant chemotherapy effect are scarce in breast cancer treatment. In this study, we identified that FZR1 can be a novel biomarker for breast cancer neoadjuvant chemotherapy according to clinical patient cohort evaluation and molecular mechanism investigation. Transcriptomic data analysis indicated that the expression of FZR1 is correlated with the effect of neoadjuvant chemotherapy. Mechanistically, we demonstrate that FZR1 is pivotal to the chemotherapy drugs induced apoptosis and cell cycle arrest. FZR1 is involved in the stability of p53 by impairing the phosphorylation at ser15 site. We demonstrate that the expression of FZR1 detected by quantification of IHC can be an effective predictor of neoadjuvant chemotherapy in animal experiment and clinical patient cohort. To obtain more benefit for breast cancer patient, we propose that the FZR1 IHC score using at the clinical to predict the effect of neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Shuo Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Haobin Wang
- Department of Breast & Thyroid Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, China
| | - Jun Li
- School of Medicine, Nankai University, Tianjin, China
| | - Jianhui Zhang
- Sichuan hospital & Institute, Sichuan cancer center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jian Wu
- Department of Breast & Thyroid Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Radiology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, China
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China. .,2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin, China.
| | - Shijing Yue
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol 2020; 10:1389. [PMID: 32850448 PMCID: PMC7419686 DOI: 10.3389/fonc.2020.01389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The oncogene MDMX, also known as MDM4 is a critical negative regulator of the tumor suppressor p53 and has been implicated in the initiation and progression of human cancers. Increasing evidence indicates that MDMX is often amplified and highly expressed in human cancers, promotes cancer cell growth, and inhibits apoptosis by dampening p53-mediated transcription of its target genes. Inhibiting MDMX-p53 interaction has been found to be effective for restoring the tumor suppressor activity of p53. Therefore, MDMX is becoming one of the most promising molecular targets for developing anticancer therapeutics. In the present review, we mainly focus on the current MDMX-targeting strategies and known MDMX inhibitors, as well as their mechanisms of action and in vitro and in vivo anticancer activities. We also propose other potential targeting strategies for developing more specific and effective MDMX inhibitors for cancer therapy.
Collapse
Affiliation(s)
- De-Hua Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shaowei Mo
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
10
|
Yeh LY, Yang CC, Wu HL, Kao SY, Liu CJ, Chen YF, Lin SC, Chang KW. The miR-372-ZBTB7A Oncogenic Axis Suppresses TRAIL-R2 Associated Drug Sensitivity in Oral Carcinoma. Front Oncol 2020; 10:47. [PMID: 32083004 PMCID: PMC7005910 DOI: 10.3389/fonc.2020.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/10/2020] [Indexed: 01/31/2023] Open
Abstract
miR-372 has been shown a potent oncogenic miRNA in the pathogenesis of oral squamous cell carcinoma (OSCC). The zinc finger and BTB domain containing 7A protein (ZBTB7A) is a transcriptional regulator that is involved in a great diversity of physiological and oncogenic regulation. However, the modulation of ZBTB7A in OSCC remains unclear. Tissue analysis identifies a reverse correlation in expression between miR-372 and ZBTB7A in OSCC tumors. When OSCC cells have stable knockdown of ZBTB7A, their oncogenic potential and drug resistance is increased. By way of contrast, such an increase is attenuated by expression of ZBTB7A. Screening and validation confirms that ZBTB7A is able to modulate expression of the death receptors TRAIL-R1, TRAIL-R2, Fas and p53 phosphorylated at serine-15. In addition, ZBTB7A transactivates TRAIL-R2, which sensitizes cells to cisplatin-induced apoptosis. The ZBTB7A-TRAIL-R2 cascade is involved in both the extrinsic and intrinsic cisplatin-induced pathways of apoptosis. Database analysis indicates that the expression level of and the copy status of ZBTB7A and TRAIL-R2 are important survival predictors for head and neck cancers. Collectively, this study indicates the importance of the miR-372-ZBTB7A-TRAIL-R2 axis in mediating OSCC pathogenesis and in controlling OSCC drug resistance. Therefore, silencing miR-372 and/or upregulating ZBTB7A would seem to be promising strategies for enhancing the sensitivity of OSCC to cisplatin therapy.
Collapse
Affiliation(s)
- Li-Yin Yeh
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiao-Li Wu
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Fen Chen
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Fan Y, Ma K, Jing J, Wang C, Hu Y, Shi Y, Li E, Geng Q. Recombinant Dual-target MDM2/MDMX Inhibitor Reverses Doxorubicin Resistance through Activation of the TAB1/TAK1/p38 MAPK Pathway in Wild-type p53 Multidrug-resistant Breast Cancer Cells. J Cancer 2020; 11:25-40. [PMID: 31892970 PMCID: PMC6930415 DOI: 10.7150/jca.32765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy resistance represents a major obstacle for the treatment of patients with breast cancer (BC) and greatly restricts the therapeutic effect of the first-line chemotherapeutic agent doxorubicin (DOX). The present study aimed to investigate the feasibility of the recombinant dual-target murine double minute 2 (MDM2) and murine double minute X (MDMX) inhibitor in reversing the DOX resistance of BC. Both DOX-resistant human breast carcinoma cell lines exhibited a multidrug resistance (MDR) phenotype. The ability of the dual-target MDM2/MDMX inhibitor in reversing doxorubicin resistance was subsequently verified, (9.15 and 13.92 - fold reversal indexes) respectively. We observed that the MDM2/MDMX inhibitor in combination with DOX could suppress proliferation, promote cell cycle arrest and induce apoptosis. In addition, it was capable of reducing rhodamine123 efflux in DOX-resistance BC cell lines and further played a key role in BC nude mice model. The groups that were treated with the combination of the drugs had decreased P-glycoprotein/multidrug resistance-associated protein/cdc 2/Bcl-2 expression and increased CyclinB1/Bax expression. These effects were caused due to activation of the transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1)/TAK1/p38 mitogen-activated protein kinase (MAPK) signaling pathway, as shown by small interfering RNA (siRNA) silencing and immumohistochemical staining of BC tissue sections. Furthermore, high MDM2/MDMX expression was positively associated with weak TAB1 expression in BC patients. Therefore, the recombinant dual-target MDM2/MDMX inhibitor could reverse doxorubicin resistance via the activation of the TAB1/TAK1/p38 MAPK pathway in wild-type p53 multidrug-resistant BC.
Collapse
Affiliation(s)
- Yangwei Fan
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Ke Ma
- Department of Medical Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| | - Jiayu Jing
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Chuying Wang
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Yuan Hu
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Yu Shi
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Enxiao Li
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Qianqian Geng
- Department of Nuclear Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| |
Collapse
|
12
|
Estrogens Counteract Platinum-Chemosensitivity by Modifying the Subcellular Localization of MDM4. Cancers (Basel) 2019; 11:cancers11091349. [PMID: 31547268 PMCID: PMC6770881 DOI: 10.3390/cancers11091349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022] Open
Abstract
Estrogen activity towards cancer-related pathways can impact therapeutic intervention. Recent omics data suggest possible crosstalk between estrogens/gender and MDM4, a key regulator of p53. Since MDM4 can either promote cell transformation or enhance DNA damage-sensitivity, we analysed in vivo impact of estrogens on both MDM4 activities. In Mdm4 transgenic mouse, Mdm4 accelerates the formation of fibrosarcoma and increases tumor sensitivity to cisplatin as well, thus confirming in vivo Mdm4 dual mode of action. Noteworthy, Mdm4 enhances chemo- and radio-sensitivity in male but not in female animals, whereas its tumor-promoting activity is not affected by mouse gender. Combination therapy of transgenic females with cisplatin and fulvestrant, a selective estrogen receptor degrader, was able to recover tumor cisplatin-sensitivity, demonstrating the relevance of estrogens in the observed sexual dimorphism. Molecularly, estrogen receptor-α alters intracellular localization of MDM4 by increasing its nuclear fraction correlated to decreased cell death, in a p53-independent manner. Importantly, MDM4 nuclear localization and intra-tumor estrogen availability correlate with decreased platinum-sensitivity and apoptosis and predicts poor disease-free survival in high-grade serous ovarian carcinoma. These data demonstrate estrogen ability to modulate chemo-sensitivity of MDM4-expressing tumors and to impinge on intracellular trafficking. They support potential usefulness of combination therapy involving anti-estrogenic drugs.
Collapse
|
13
|
p53 sensitizes chemoresistant non-small cell lung cancer via elevation of reactive oxygen species and suppression of EGFR/PI3K/AKT signaling. Cancer Cell Int 2019; 19:188. [PMID: 31360122 PMCID: PMC6642601 DOI: 10.1186/s12935-019-0910-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths primarily due to chemoresistance. Somatic mutation of TP53 (36%) and epidermal growth factor receptor (EGFR; > 30%) are major contributors to cisplatin (CDDP) resistance. Substantial evidence suggests the elevated levels of reactive oxygen species (ROS) is a key determinant in cancer. The elevated ROS can affect the cellular responses to chemotherapeutic treatments. Although the role of EGFR in PI3K/Akt signaling cascade in NSCLC is extensively studied, the molecular link between EGFR and p53 and the role of ROS in pathogenesis of NSCLC are limitedly addressed. In this study, we investigated the role of p53 in regulation of ROS production and EGFR signaling, and the chemosensitivity of NSCLC. Methods In multiple NSCLC cell lines with varied p53 and EGFR status, we compared and examined the protein contents involved in EGFR-Akt-P53 signaling loop (EGFR, P-EGFR, Akt, P-Akt, p53, P-p53) by Western blot. Apoptosis was determined based on nuclear morphological assessment using Hoechst 33258 staining. Cellular ROS levels were measured by dichlorofluorescin diacetate (DCFDA) staining followed by flow cytometry analysis. Results We have demonstrated for the first time that activation of p53 sensitizes chemoresistant NSCLC cells to CDDP by down-regulating EGFR signaling pathway and promoting intracellular ROS production. Likewise, blocking EGFR/PI3K/AKT signaling with PI3K inhibitor elicited a similar response. Our findings suggest that CDDP-induced apoptosis in chemosensitive NSCLC cells involves p53 activation, leading to suppressed EGFR signaling and ROS production. In contrast, in chemoresistant NSCLC, activated Akt promotes EGFR signaling by the positive feedback loop and suppresses CDDP-induced ROS production and apoptosis. Conclusion Collectively, our study reveals that the interaction of the p53 and Akt feedback loops determine the fate of NSCLC cells and their CDDP sensitivity. Electronic supplementary material The online version of this article (10.1186/s12935-019-0910-2) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Fan Y, Li M, Ma K, Hu Y, Jing J, Shi Y, Li E, Dong D. Dual-target MDM2/MDMX inhibitor increases the sensitization of doxorubicin and inhibits migration and invasion abilities of triple-negative breast cancer cells through activation of TAB1/TAK1/p38 MAPK pathway. Cancer Biol Ther 2018; 20:617-632. [PMID: 30462562 DOI: 10.1080/15384047.2018.1539290] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis mainly due to insensitivity or resistance to standard anthracycline- and taxane-based chemotherapy, urgently calling for new adjuvants to reverse drug resistance. Dual-target murine double minute 2 (MDM2) and murine double minute X (MDMX) inhibitor has been proved to play a critical part against cancer, particularly focusing on the tremendous potential to enhance the efficacy of doxorubicin (DOX), however little was reported in TNBC. In the present study, we investigated the synergistic antitumor effect of the MDM2/MDMX inhibitor with DOX using three TNBC cell lines, two in situ transplantation tumor models and 214 clinical samples. We observed that the MDM2/MDMX inhibitor combined with DOX could not only inhibit cell vitality and migration and invasion abilities, but also highly inhibit tumor growth in TNBC nude mice. Besides, co-treatment of MDM2/MDMX inhibitor and DOX suppressed epithelial to mesenchymal transition (EMT) through increasing the TAK1-binding protein 1 (TAB1), transforming growth factor β-activated kinase 1 (TAK1) and p38 mitogen-activated protein kinase (MAPK) expression. Small interfering RNA-mediated TAB1 knockdown induced the EMT, desensitized cells to DOX and enhanced the migration and invasion abilities. High MDM2/MDMX expression was positively associated with weak TAB1 expression in 214 TNBC tumor tissues confirmed by immumohistochemical staining and MDM2/MDMX/TAB1 expression was significantly related to TNBC patient survival. These findings indicate that dual-target MDM2/MDMX inhibitor could increase the sensitization of doxorubicin and inhibit migration and invasion abilities in TNBC cells through p38 MAPK pathway activation caused EMT suppression and hence could be useful in TNBC treatments in future.
Collapse
Affiliation(s)
- Yangwei Fan
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Mengya Li
- b Department of Medical Oncology , the First Affiliated Hospital of Henan University , Kaifeng , China
| | - Ke Ma
- c Department of Medical Oncology , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yuan Hu
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Jiayu Jing
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Yu Shi
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Enxiao Li
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Danfeng Dong
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
15
|
Barnoud T, Budina-Kolomets A, Basu S, Leu JIJ, Good M, Kung CP, Liu J, Liu Q, Villanueva J, Zhang R, George DL, Murphy ME. Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 2018; 78:5694-5705. [PMID: 30115697 DOI: 10.1158/0008-5472.can-18-1327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in human cancer and serves to restrict tumor initiation and progression. Single-nucleotide polymorphisms (SNP) in TP53 and p53 pathway genes can have a marked impact on p53 tumor suppressor function, and some have been associated with increased cancer risk and impaired response to therapy. Approximately 6% of Africans and 1% of African Americans express a p53 allele with a serine instead of proline at position 47 (Pro47Ser). This SNP impairs p53-mediated apoptosis in response to radiation and genotoxic agents and is associated with increased cancer risk in humans and in a mouse model. In this study, we compared the ability of wild-type (WT) and S47 p53 to suppress tumor development and respond to therapy. Our goal was to find therapeutic compounds that are more, not less, efficacious in S47 tumors. We identified the superior efficacy of two agents, cisplatin and BET inhibitors, on S47 tumors compared with WT. Cisplatin caused dramatic decreases in the progression of S47 tumors by activating the p53/PIN1 axis to drive the mitochondrial cell death program. These findings serve as important proof of principle that chemotherapy can be tailored to p53 genotype.Significance: A rare African-derived radioresistant p53 SNP provides proof of principle that chemotherapy can be tailored to TP53 genotype. Cancer Res; 78(19); 5694-705. ©2018 AACR.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Che-Pei Kung
- ICCE Institute and Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Jingjing Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jessie Villanueva
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Donna L George
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Sharma K, Vu TT, Cook W, Naseri M, Zhan K, Nakajima W, Harada H. p53-independent Noxa induction by cisplatin is regulated by ATF3/ATF4 in head and neck squamous cell carcinoma cells. Mol Oncol 2018; 12:788-798. [PMID: 29352505 PMCID: PMC5983129 DOI: 10.1002/1878-0261.12172] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 02/04/2023] Open
Abstract
The platinum‐based DNA damaging agent cisplatin is used as a standard therapy for locally advanced head and neck squamous cell carcinoma (HNSCC). However, the mechanisms underpinning the cytotoxic effects of this compound are not entirely elucidated. Cisplatin produces anticancer effects primarily via activation of the DNA damage response, followed by inducing BCL‐2 family dependent mitochondrial apoptosis. We have previously demonstrated that cisplatin induces the expression of proapoptotic BCL‐2 family protein, Noxa, that can bind to the prosurvival BCL‐2 family protein, MCL‐1, to inactivate its function and induce cell death. Here, we show that the upregulation of Noxa is critical for cisplatin‐induced apoptosis in p53‐null HNSCC cells. This induction is regulated at the transcriptional level. With a series of Noxa promoter‐luciferase reporter assays, we find that the CRE (cAMP response element) in the promoter is critical for the Noxa induction by cisplatin treatment. Among the CREB/ATF transcription factors, ATF3 and ATF4 are induced by cisplatin, and downregulation of ATF3 or ATF4 reduced cisplatin‐induced Noxa. ATF3 and ATF4 bind to and cooperatively activate the Noxa promoter. Furthermore, ERK1 is involved in cisplatin‐induced ATF4 and Noxa induction. In conclusion, ATF3 and ATF4 are important regulators that induce Noxa by cisplatin treatment in a p53‐independent manner.
Collapse
Affiliation(s)
- Kanika Sharma
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Thien-Trang Vu
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Wade Cook
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Mitra Naseri
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Kevin Zhan
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
17
|
Liu X, Hayano S, Pan H, Inagaki M, Ninomiya-Tsuji J, Sun H, Mishina Y. Compound mutations in Bmpr1a and Tak1 synergize facial deformities via increased cell death. Genesis 2018; 56:e23093. [PMID: 29411501 DOI: 10.1002/dvg.23093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 01/17/2018] [Accepted: 02/02/2018] [Indexed: 11/10/2022]
Abstract
BMP signaling plays a critical role in craniofacial development. Augmentation of BMPR1A signaling through neural crest-specific expression of constitutively active Bmpr1a (caBmpr1a) results in craniofacial deformities in mice. To investigate whether deletion of Tak1 may rescue the craniofacial deformities caused by enhanced Smad-dependent signaling through caBMPR1A, we generated embryos to activate transcription of caBmpr1a transgene and ablate Tak1 in neural crest derivatives at the same time. We found that deformities of the double mutant mice showed more severe than those with each single mutation, including median facial cleft and cleft palate. We found higher levels of cell death in the medial nasal and the lateral nasal processes at E10.5 in association with higher levels of p53 in the double mutant embryos. We also found higher levels of pSmad1/5/9 in the lateral nasal processes at E10.5 in the double mutant embryos. Western analyses revealed that double mutant embryos showed similar degrees of upregulation of pSmad1/5/9 with caBmpr1a or Tak1-cKO embryos while the double mutant embryos showed higher levels of phospho-p38 than caBmpr1a or Tak1-cKO embryos at E17.5, but not at E10.5. It suggested that deletion of Tak1 aggravates the craniofacial deformities of the caBmpr1a mutants by increasing p53 and phospho-p38 at different stage of embryogenesis.
Collapse
Affiliation(s)
- Xia Liu
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, Ann Arbor, Michigan.,Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Satoru Hayano
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, Ann Arbor, Michigan.,Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haichun Pan
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, Ann Arbor, Michigan
| | - Maiko Inagaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina.,Facilities for Animal Experiments, Radiation Research Center for Frontier Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, China.,Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, Ann Arbor, Michigan
| |
Collapse
|
18
|
Nakajima W, Sharma K, Lee JY, Maxim NT, Hicks MA, Vu TT, Luu A, Yeudall WA, Tanaka N, Harada H. DNA damaging agent-induced apoptosis is regulated by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex. Oncotarget 2017; 7:36353-36365. [PMID: 27166195 PMCID: PMC5095005 DOI: 10.18632/oncotarget.9217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/24/2016] [Indexed: 02/04/2023] Open
Abstract
Noxa, a BH3-only pro-apoptotic BCL-2 family protein, causes apoptosis by specifically interacting with the anti-apoptotic protein MCL-1 to induce its proteasome-mediated degradation. We show here that the DNA damaging agents cisplatin and etoposide upregulate Noxa expression, which is required for the phosphorylation of MCL-1 at Ser64/Thr70 sites, proteasome-dependent degradation, and apoptosis. Noxa-induced MCL-1 phosphorylation at these sites occurs at the mitochondria and is primarily regulated by CDK2. MCL-1 and CDK2 form a stable complex and Noxa binds to this complex to facilitate the phosphorylation of MCL-1. When Ser64 and Thr70 of MCL-1 are substituted with alanine, the mutated MCL-1 is neither phosphorylated nor ubiquitinated, and becomes more stable than the wild-type protein. As a consequence, this mutant can inhibit apoptosis induced by Noxa overexpression or cisplatin treatment. These results indicate that Noxa-mediated MCL-1 phosphorylation followed by MCL-1 degradation is critical for apoptosis induced by DNA damaging agents through regulation of the Noxa/MCL-1/CDK2 complex.
Collapse
Affiliation(s)
- Wataru Nakajima
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Kanika Sharma
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - June Young Lee
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nicolas T Maxim
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark A Hicks
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Thien-Trang Vu
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Angela Luu
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - W Andrew Yeudall
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Hisashi Harada
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
19
|
Chen Y, Wang YG, Li Y, Sun XX, Dai MS. Otub1 stabilizes MDMX and promotes its proapoptotic function at the mitochondria. Oncotarget 2017; 8:11053-11062. [PMID: 28035068 PMCID: PMC5355245 DOI: 10.18632/oncotarget.14278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/20/2016] [Indexed: 11/25/2022] Open
Abstract
Otub1 regulates p53 stability and activity via non-canonical inhibition of UbcH5, the MDM2 cognate ubiquitin-conjugating enzyme (E2). However, whether Otub1 regulates MDMX stability and activity is not clear. Here we report that Otub1 also suppresses MDM2-mediated MDMX ubiquitination in cells and in vitro, independently of its deubiquitinating enzyme activity. Consequently, overexpression of Otub1 markedly stabilized MDMX and increased its levels, whereas knockdown of Otub1 reduced the levels of MDMX. Interestingly, MDMX induced by Otub1 can localize to mitochondria in addition to the cytosol, enhance p53 phosphorylation at S46 (p53S46P) and promote mitochondria-mediated apoptotic pathway. Knockdown of MDMX reduced Otub1-induced p53S46P, which was shown to be critical for p53's mitochondrial function and apoptotic activity. Furthermore, Otub1 promotes UV-irradiation-induced p53S46P and apoptosis, which can be significantly inhibited by MDMX depletion. Together, these results suggest that Otub1 stabilizes MDMX and promotes p53S46P and mitochondria-mediated apoptosis, providing an alternative mechanism of Otub1's role in apoptosis.
Collapse
Affiliation(s)
- Yingxiao Chen
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yue-Gang Wang
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yuhuang Li
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
20
|
Wang L, Pang XC, Yu ZR, Yang SQ, Liu AL, Wang JH, Du GH. Actinomycin D synergistically enhances the cytotoxicity of CDDP on KB cells by activating P53 via decreasing P53-MDM2 complex. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:630-643. [PMID: 28440085 DOI: 10.1080/10286020.2017.1318853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study is to investigate the synergism of low dose of actinomycin D (LDActD) to the cytotoxicity of cisplatin (CDDP) on KB cells. The role of P53 reactivation by LDActD in the synergism and its mechanism were further studied. Cell viability was determined by MTT assay. Apoptosis was determined by AnnexinV-FITC/PI staining. Mitochondrial membrane potential (MMP) was detected by JC-1 staining. Expression of proteins was detected by Western blotting (WB) and/or immunofluorescence (IF). Molecular docking of actinomycin D (ACTD) to Mouse double minute 2 homolog (MDM2) and Mouse double minute 2 homolog X (MDMX). MDMX was analyzed by Discovery Studio. The content of P53-MDM2 complex was detected by ELISA assay. The cytotoxicity of CDDP was increased by the combination of LDActD in kinds of cancer cells. Molecular docking showed strong interaction between ACTD and MDM2/MDMX. Meanwhile, LDActD significantly decreased P53-MDM2 complex. Significant increase of the apoptotic activity by the combination therapy in KB cells is P53 upregulated modulator of apoptosis (PUMA) dependent. In addition to the decrease in MMP, LDActD increased P53 regulated protein and decreased BCL-XL in KB cells. LDActD efficiently enhanced the cytotoxicity of CDDP in cancer cells and induced P53-PUMA-dependent and mitochondria-mediated apoptosis in KB cells. The reactivation of P53 was probably achieved by disturbing the interaction of P53 and MDM2/MDMX.
Collapse
Affiliation(s)
- Lin Wang
- a Beijing Key Laboratory of Drug Targets Research and New Drug Screening , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Xiao-Cong Pang
- a Beijing Key Laboratory of Drug Targets Research and New Drug Screening , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Zi-Ru Yu
- a Beijing Key Laboratory of Drug Targets Research and New Drug Screening , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Sheng-Qian Yang
- a Beijing Key Laboratory of Drug Targets Research and New Drug Screening , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ai-Lin Liu
- a Beijing Key Laboratory of Drug Targets Research and New Drug Screening , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Jin-Hua Wang
- a Beijing Key Laboratory of Drug Targets Research and New Drug Screening , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Guan-Hua Du
- a Beijing Key Laboratory of Drug Targets Research and New Drug Screening , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
21
|
Mancini F, Teveroni E, Di Conza G, Monteleone V, Arisi I, Pellegrino M, Buttarelli M, Pieroni L, D'Onofrio M, Urbani A, Pontecorvi A, Mazzone M, Moretti F. MDM4 actively restrains cytoplasmic mTORC1 by sensing nutrient availability. Mol Cancer 2017; 16:55. [PMID: 28270148 PMCID: PMC5341177 DOI: 10.1186/s12943-017-0626-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many tumor-related factors have shown the ability to affect metabolic pathways by paving the way for cancer-specific metabolic features. Here, we investigate the regulation of mTORC1 by MDM4, a p53-inhibitor with oncogenic or anti-survival activities depending on cell growth conditions. METHOD MDM4-mTOR relationship was analysed through experiments of overexpression or silencing of endogenous proteins in cell culture and using purified proteins in vitro. Data were further confirmed in vivo using a transgenic mouse model overexpressing MDM4. Additionally, the Cancer Genome Atlas (TCGA) database (N = 356) was adopted to analyze the correlation between MDM4 and mTOR levels and 3D cultures were used to analyse the p53-independent activity of MDM4. RESULTS Following nutrient deprivation, MDM4 impairs mTORC1 activity by binding and inhibiting the kinase mTOR, and contributing to maintain the cytosolic inactive pool of mTORC1. This function is independent of p53. Inhibition of mTORC1 by MDM4 results in reduced phosphorylation of the mTOR downstream target p70S6K1 both in vitro and in vivo in a MDM4-transgenic mouse. Consistently, MDM4 reduces cell size and proliferation, two features controlled by p70S6K1, and, importantly, inhibits mTORC1-mediated mammosphere formation. Noteworthy, MDM4 transcript levels are significantly reduced in breast tumors characterized by high mTOR levels. CONCLUSION Overall, these data identify MDM4 as a nutrient-sensor able to inhibit mTORC1 and highlight its metabolism-related tumor-suppressing function.
Collapse
Affiliation(s)
- Francesca Mancini
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy. .,PostGraduate School of Endocrinology and Metabolic Diseases, Institute of Pathology, Catholic University of Rome, 00168, Rome, Italy.
| | - Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy
| | - Giusy Di Conza
- Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, 3000, Leuven, Belgium.,Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000, Leuven, Belgium
| | - Valentina Monteleone
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00143, Rome, Italy
| | - Marsha Pellegrino
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy
| | - Marianna Buttarelli
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy
| | - Luisa Pieroni
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, 00143, Rome, Italy
| | - Mara D'Onofrio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00143, Rome, Italy
| | - Andrea Urbani
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, 00143, Rome, Italy.,Institute of Biochemistry and Biochemical Clinic, Catholic University of Rome, 00168, Rome, Italy
| | - Alfredo Pontecorvi
- PostGraduate School of Endocrinology and Metabolic Diseases, Institute of Pathology, Catholic University of Rome, 00168, Rome, Italy
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, 3000, Leuven, Belgium.,Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000, Leuven, Belgium
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy.
| |
Collapse
|
22
|
Moscetti I, Teveroni E, Moretti F, Bizzarri AR, Cannistraro S. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance. Int J Nanomedicine 2016; 11:4221-9. [PMID: 27621617 PMCID: PMC5012629 DOI: 10.2147/ijn.s114705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.
Collapse
Affiliation(s)
- Ilaria Moscetti
- Biophysics and Nanoscience Centre, Department DEB, Università della Tuscia, Viterbo, Italy
| | - Emanuela Teveroni
- Department of Endocrinology and Metabolism, Università Cattolica di Roma, Roma, Italy; Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, Department DEB, Università della Tuscia, Viterbo, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, Department DEB, Università della Tuscia, Viterbo, Italy
| |
Collapse
|
23
|
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun 2016; 7:12436. [PMID: 27526785 PMCID: PMC4990699 DOI: 10.1038/ncomms12436] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/01/2016] [Indexed: 12/14/2022] Open
Abstract
Oxaliplatin resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Herein, we show that miR-625-3p functionally induces oxaliplatin resistance in CRC cells, and identify the signalling networks affected by miR-625-3p. We show that the p38 MAPK activator MAP2K6 is a direct target of miR-625-3p, and, accordingly, is downregulated in non-responder patients of oxaliplatin therapy. miR-625-3p-mediated resistance is reversed by anti-miR-625-3p treatment and ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, reduction of p38 signalling by using siRNAs, chemical inhibitors or expression of a dominant-negative MAP2K6 protein induces resistance to oxaliplatin. Transcriptome, proteome and phosphoproteome profiles confirm inactivation of MAP2K6-p38 signalling as one likely mechanism of oxaliplatin resistance. Our study shows that miR-625-3p induces oxaliplatin resistance by abrogating MAP2K6-p38-regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p.
Collapse
|
24
|
Shen J, Lu X, Du W, Zhou J, Qiu H, Chen J, Shen X, Zhong M. Lobetyol activate MAPK pathways associated with G 1 /S cell cycle arrest and apoptosis in MKN45 cells in vitro and in vivo. Biomed Pharmacother 2016; 81:120-127. [DOI: 10.1016/j.biopha.2016.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
|
25
|
He J, Liang X, Luo F, Chen X, Xu X, Wang F, Zhang Z. P53 Is Involved in a Three-Dimensional Architecture-Mediated Decrease in Chemosensitivity in Colon Cancer. J Cancer 2016; 7:900-9. [PMID: 27313779 PMCID: PMC4910581 DOI: 10.7150/jca.14506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Three-dimensional (3D) culture models represent a better approximation of solid tumor tissue architecture, especially cell adhesion, in vivo than two-dimensional (2D) cultures do. Here, we explored the role of architecture in chemosensitivity to platinum in colon cancer. Under the 3D culture condition, colon cancer cells formed multicellular spheroids, consisting of layers of cells. 3D cultures displayed significantly decreased sensitivity to platinum compared with 2D cultures. Platinum increased p53 in a dose-dependent and time-dependent manner. There was no detectable difference in basal p53 levels between 3D cultures and 2D cultures but cisplatin induced less p53 in both HCT116 3D cultures and LoVo 3D cultures. It was not due to cisplatin concentration because cisplatin induced similar γ-H2AX in 3D vs 2D. Knockdown of p53 significantly decreased sensitivity to platinum in 3D cultures. Knockdown of p53 decreased cleaved caspase 3 and apoptosis induced by cisplatin. These findings indicate that 3D architecture confers decreased chemosensitivity to platinum and p53 is involved in the mechanism. Knockdown of p53 decreased cisplatin's induction of c-Jun N-terminal kinase 1/2 (JNK1/2) activation, whereas inhibition of JNK1/2 activation increased chemosensitivity. Inhibition of p38 activation decreased cisplatin's induction of p53, but no difference in p38 activation by cisplatin was observed between 2D cultures and 3D cultures. Taken together, our results suggest that p53 is involved in a 3D architecture-mediated decrease in chemosensitivity to platinum in colon cancer. Mitogen-activated protein kinases (JNK1/2 and p38) do not play a dominant role in the mechanism.
Collapse
Affiliation(s)
- Jianming He
- 1. Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Xi Liang
- 1. Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China;; 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Fen Luo
- 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Xuedan Chen
- 3. Department Of Medical Genetics, Third Military Medical University, Chongqing, 400038 China
| | - Xueqing Xu
- 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Fengchao Wang
- 4. Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Zhenping Zhang
- 5. Department Of Oncology, First Hospital of Shijiazhuang City, Shijiazhuang, Hebei Province, 050011 China
| |
Collapse
|
26
|
Paek AL, Liu JC, Loewer A, Forrester WC, Lahav G. Cell-to-Cell Variation in p53 Dynamics Leads to Fractional Killing. Cell 2016; 165:631-42. [PMID: 27062928 DOI: 10.1016/j.cell.2016.03.025] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 11/25/2015] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
Many chemotherapeutic drugs kill only a fraction of cancer cells, limiting their efficacy. We used live-cell imaging to investigate the role of p53 dynamics in fractional killing of colon cancer cells in response to chemotherapy. We found that both surviving and dying cells reach similar levels of p53, indicating that cell death is not determined by a fixed p53 threshold. Instead, a cell's probability of death depends on the time and levels of p53. Cells must reach a threshold level of p53 to execute apoptosis, and this threshold increases with time. The increase in p53 apoptotic threshold is due to drug-dependent induction of anti-apoptotic genes, predominantly in the inhibitors of apoptosis (IAP) family. Our study underlines the importance of measuring the dynamics of key players in response to chemotherapy to determine mechanisms of resistance and optimize the timing of combination therapy.
Collapse
Affiliation(s)
- Andrew L Paek
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Julia C Liu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Loewer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - William C Forrester
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JIJ, Khaku S, Scott JP, Cai KQ, Campbell MR, Porter DK, Wang X, Bell DA, Li X, Garlick DS, Liu Q, Hollstein M, George DL, Murphy ME. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 2016; 30:918-30. [PMID: 27034505 PMCID: PMC4840298 DOI: 10.1101/gad.275891.115] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/15/2016] [Indexed: 12/20/2022]
Abstract
In this study, Jennis et al. characterize the first mouse model of an African-specific naturally occurring coding region variant at codon 47 of the p53 tumor suppressor gene (S47). They show that homozygous S47 mice are markedly tumor-prone and that the S47 variant impairs not only p53-mediated cell death but also the ability of p53 to transactivate a subset of genes involved in metabolism and ferroptosis. A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism: Gls2 (glutaminase 2) and Sco2. We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.
Collapse
Affiliation(s)
- Matthew Jennis
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA; Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Che-Pei Kung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sakina Khaku
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy P Scott
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Michelle R Campbell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Devin K Porter
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Xuting Wang
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Douglas A Bell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - David S Garlick
- The Wistar Institute Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | - Donna L George
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
Swetzig WM, Wang J, Das GM. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget 2016; 7:16049-69. [PMID: 26909605 PMCID: PMC4941297 DOI: 10.18632/oncotarget.7533] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
MDM2 and MDM4 are heterodimeric, non-redundant oncoproteins that potently inhibit the p53 tumor suppressor protein. MDM2 and MDM4 also enhance the tumorigenicity of breast cancer cells in in vitro and in vivo models and are overexpressed in primary human breast cancers. Prior studies have characterized Estrogen Receptor Alpha (ERα/ESR1) as a regulator of MDM2 expression and an MDM2- and p53-interacting protein. However, similar crosstalk between ERα and MDM4 has not been investigated. Moreover, signaling pathways that mediate the overexpression of MDM4 in human breast cancer remain to be elucidated. Using the Cancer Genome Atlas (TCGA) breast invasive carcinoma patient cohort, we have analyzed correlations between ERα status and MDM4 and MDM2 expression in primary, treatment-naïve, invasive breast carcinoma samples. We report that the expression of MDM4 and MDM2 is elevated in primary human breast cancers of luminal A/B subtypes and associates with ERα-positive disease, independently of p53 mutation status. Furthermore, in cell culture models, ERα positively regulates MDM4 and MDM2 expression via p53-independent mechanisms, and these effects can be blocked by the clinically-relevant endocrine therapies fulvestrant and tamoxifen. Additionally, ERα also positively regulates p53 expression. Lastly, we report that endogenous MDM4 negatively regulates ERα expression and forms a protein complex with ERα in breast cancer cell lines and primary human breast tumor tissue. This suggests direct signaling crosstalk and negative feedback loops between ERα and MDM4 expression in breast cancer cells. Collectively, these novel findings implicate ERα as a central component of the p53-MDM2-MDM4 signaling axis in human breast cancer.
Collapse
Affiliation(s)
- Wendy M. Swetzig
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Molecular Pharmacology and Cancer Therapeutics, The University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gokul M. Das
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Molecular Pharmacology and Cancer Therapeutics, The University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
29
|
Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:617-44. [PMID: 27022975 DOI: 10.1146/annurev-pathol-012414-040349] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For more than 25 years, MDM2 and its homolog MDMX (also known as MDM4) have been shown to exert oncogenic activity. These two proteins are best understood as negative regulators of the p53 tumor suppressor, although they may have additional p53-independent roles. Understanding the dysregulation of MDM2 and MDMX in human cancers and how they function either together or separately in tumorigenesis may improve methods of diagnosis and for assessing prognosis. Targeting the proteins themselves, or their regulators, may be a promising therapeutic approach to treating some forms of cancer.
Collapse
Affiliation(s)
- Orit Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Maria Lokshin
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| |
Collapse
|
30
|
Pellegrino M, Mancini F, Lucà R, Coletti A, Giacchè N, Manni I, Arisi I, Florenzano F, Teveroni E, Buttarelli M, Fici L, Brandi R, Bruno T, Fanciulli M, D'Onofrio M, Piaggio G, Pellicciari R, Pontecorvi A, Marine JC, Macchiarulo A, Moretti F. Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy. Cancer Res 2015; 75:4560-72. [PMID: 26359458 DOI: 10.1158/0008-5472.can-15-0439] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
Abstract
Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function.
Collapse
Affiliation(s)
| | - Francesca Mancini
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy. Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Rossella Lucà
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Nicola Giacchè
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Ivan Arisi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Roma, Italy
| | - Fulvio Florenzano
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Roma, Italy
| | - Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy. Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | | | - Laura Fici
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| | - Rossella Brandi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Roma, Italy
| | | | | | - Mara D'Onofrio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Roma, Italy
| | | | - Roberto Pellicciari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Alfredo Pontecorvi
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Jean Christophe Marine
- Center for Human Genetics, KU-Leuven, Leuven, Belgium. Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy.
| |
Collapse
|
31
|
Song X, Dilly AK, Choudry HA, Bartlett DL, Kwon YT, Lee YJ. Hypoxia Promotes Synergy between Mitomycin C and Bortezomib through a Coordinated Process of Bcl-xL Phosphorylation and Mitochondrial Translocation of p53. Mol Cancer Res 2015; 13:1533-43. [PMID: 26354682 DOI: 10.1158/1541-7786.mcr-15-0237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Colorectal peritoneal carcinomatosis (CPC) exhibits severe tumor hypoxia, leading to drug resistance and disease aggressiveness. This study demonstrates that the combination of the chemotherapeutic agent mitomycin C with the proteasome inhibitor bortezomib induced synergistic cytotoxicity and apoptosis, which was even more effective under hypoxia in colorectal cancer cells. The combination of mitomycin C and bortezomib at sublethal doses induced activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase and resulted in Bcl-xL phosphorylation at Serine 62, leading to dissociation of Bcl-xL from proapoptotic Bak. Interestingly, the intracellular level of p53 became elevated and p53 translocated to the mitochondria during the combinatorial treatment, in particular under hypoxia. The coordinated action of Bcl-xL phosphorylation and p53 translocation to the mitochondria resulted in conformational activation of Bak oligomerization, facilitating cytochrome c release and apoptosis induction. In addition, the combinatorial treatment with mitomycin C and bortezomib significantly inhibited intraperitoneal tumor growth in LS174T cells and increased apoptosis, especially under hypoxic conditions in vivo. This study provides a preclinical rationale for the use of combination therapies for CPC patients. IMPLICATIONS The combination of a chemotherapy agent and proteasome inhibitor at sublethal doses induced synergistic apoptosis, in particular under hypoxia, in vitro and in vivo through coordinated action of Bcl-xL and p53 on Bak activation.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashok-Kumar Dilly
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haroon Asif Choudry
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
| | - Yong J Lee
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
32
|
Mancini F, Pieroni L, Monteleone V, Lucà R, Fici L, Luca E, Urbani A, Xiong S, Soddu S, Masetti R, Lozano G, Pontecorvi A, Moretti F. MDM4/HIPK2/p53 cytoplasmic assembly uncovers coordinated repression of molecules with anti-apoptotic activity during early DNA damage response. Oncogene 2015; 35:228-40. [PMID: 25961923 PMCID: PMC4717155 DOI: 10.1038/onc.2015.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
The p53 inhibitor, MDM4 (MDMX) is a cytoplasmic protein with p53-activating function under DNA damage conditions. Particularly, MDM4 promotes phosphorylation of p53 at Ser46, a modification that precedes different p53 activities. We investigated the mechanism by which MDM4 promotes this p53 modification and its consequences in untransformed mammary epithelial cells and tissues. In response to severe DNA damage, MDM4 stimulates p53Ser46P by binding and stabilizing serine–threonine kinase HIPK2. Under these conditions, the p53-inhibitory complex, MDM4/MDM2, dissociates and this allows MDM4 to promote p53/HIPK2 functional interaction. Comparative proteomic analysis of DNA damage-treated cells versus -untreated cells evidenced a diffuse downregulation of proteins with anti-apoptotic activity, some of which were targets of p53Ser46P/HIPK2 repressive activity. Importantly, MDM4 depletion abolishes the downregulation of these proteins indicating the requirement of MDM4 to promote p53-mediated transcriptional repression. Consistently, MDM4-mediated HIPK2/p53 activation precedes HIPK2/p53 nuclear translocation and activity. Noteworthy, repression of these proteins was evident also in mammary glands of mice subjected to γ-irradiation and was significantly enhanced in transgenic mice overexpressing MDM4. This study evidences the flexibility of MDM2/MDM4 heterodimer, which allows the development of a positive activity of cytoplasmic MDM4 towards p53-mediated transcriptional function. Noteworthy, this activity uncovers coordinated repression of molecules with shared anti-apoptotic function which precedes active cell apoptosis and that are frequently overexpressed and/or markers of tumour phenotype in human cancer.
Collapse
Affiliation(s)
- F Mancini
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - L Pieroni
- Proteomic and Metabolomic Laboratory, Fondazione Santa Lucia, Roma, Italy.,Department of Experimental Medicine and Surgery, University of Roma 'Tor Vergata', Roma, Italy
| | - V Monteleone
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| | - R Lucà
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| | - L Fici
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Obstetrics and Gynaecology, Catholic University of Roma, Roma, Italy
| | - E Luca
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - A Urbani
- Proteomic and Metabolomic Laboratory, Fondazione Santa Lucia, Roma, Italy.,Department of Experimental Medicine and Surgery, University of Roma 'Tor Vergata', Roma, Italy
| | - S Xiong
- Department of Genetics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - S Soddu
- Regina Elena National Cancer Institute, Roma, Italy
| | - R Masetti
- Department of Obstetrics and Gynaecology, Catholic University of Roma, Roma, Italy
| | - G Lozano
- Department of Genetics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - A Pontecorvi
- Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - F Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| |
Collapse
|
33
|
Reiterer V, Eyers PA, Farhan H. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Trends Cell Biol 2014; 24:489-505. [PMID: 24818526 DOI: 10.1016/j.tcb.2014.03.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
Abstract
Pseudophosphatases and pseudokinases are increasingly viewed as integral elements of signaling pathways, and there is mounting evidence that they have frequently retained the ability to interact with cellular 'substrates', and can exert important roles in different diseases. However, these pseudoenzymes have traditionally received scant attention compared to classical kinases and phosphatases. In this review we explore new findings in the emerging pseudokinase and pseudophosphatase fields, and discuss their different modes of action which include exciting new roles as scaffolds, anchors, spatial modulators, traps, and ligand-driven regulators of canonical kinases and phosphatases. Thus, it is now apparent that pseudokinases and pseudophosphatases both support and drive a panoply of signaling networks. Finally, we highlight recent evidence on their involvement in human pathologies, marking them as potential novel drug targets.
Collapse
Affiliation(s)
- Veronika Reiterer
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Hesso Farhan
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland; Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
34
|
McCarthy N. Signalling: Keeping TABs on p53. Nat Rev Cancer 2013; 13:682. [PMID: 23989730 DOI: 10.1038/nrc3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|