1
|
Nakata Y, Nagasawa S, Sera Y, Yamasaki N, Kanai A, Kobatake K, Ueda T, Koizumi M, Manabe I, Kaminuma O, Honda H. PTIP epigenetically regulates DNA damage-induced cell cycle arrest by upregulating PRDM1. Sci Rep 2024; 14:17987. [PMID: 39097652 PMCID: PMC11297997 DOI: 10.1038/s41598-024-68295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
The genome is constantly exposed to DNA damage from endogenous and exogenous sources. Fine modulation of DNA repair, chromatin remodeling, and transcription factors is necessary for protecting genome integrity, but the precise mechanisms are still largely unclear. We found that after ionizing radiation (IR), global trimethylation of histone H3 at lysine 4 (H3K4me3) was decreased at an early (5 min) post-IR phase but increased at an intermediate (180 min) post-IR phase in both human and mouse hematopoietic cells. We demonstrated that PTIP, a component of the MLL histone methyltransferase complex, is required for H3K4me3 upregulation in the intermediate post-IR phase and promotes cell cycle arrest by epigenetically inducing a cell cycle inhibitor, PRDM1. In addition, we found that PTIP expression is specifically downregulated in acute myeloid leukemia patients. These findings collectively suggest that the PTIP-PRDM1 axis plays an essential role in proper DNA damage response and its deregulation contributes to leukemogenesis.
Collapse
Affiliation(s)
- Yuichiro Nakata
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan.
| | - Shion Nagasawa
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Yasuyuki Sera
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine,, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Norimasa Yamasaki
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kohei Kobatake
- Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama-Shi, Osaka, 589-8511, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine,, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Osamu Kaminuma
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine,, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
2
|
Petnicki-Ocwieja T, McCarthy JE, Powale U, Langston PK, Helble JD, Hu LT. Borrelia burgdorferi initiates early transcriptional re-programming in macrophages that supports long-term suppression of inflammation. PLoS Pathog 2023; 19:e1011886. [PMID: 38157387 PMCID: PMC10783791 DOI: 10.1371/journal.ppat.1011886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/11/2024] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Borrelia burgdorferi (Bb), the causative agent of Lyme disease, establishes a long-term infection and leads to disease manifestations that are the result of host immune responses to the pathogen. Inflammatory manifestations resolve spontaneously despite continued bacterial presence, suggesting inflammatory cells become less responsive over time. This is mimicked by in vitro repeated stimulations, resulting in tolerance, a phenotypic subset of innate immune memory. We performed comparative transcriptional analysis of macrophages in acute and memory states and identified sets of Tolerized, Hyper-Induced, Secondary-Induced and Hyper-Suppressed genes resulting from memory induction, revealing previously unexplored networks of genes affected by cellular re-programming. Tolerized gene families included inflammatory mediators and interferon related genes as would be predicted by the attenuation of inflammation over time. To better understand how cells mediate inflammatory hypo-responsiveness, we focused on genes that could mediate maintenance of suppression, such as Hyper-Induced genes which are up-regulated in memory states. These genes were notably enriched in stress pathways regulated by anti-inflammatory modulators. We examined one of the most highly expressed negative regulators of immune pathways during primary stimulation, Aconitate decarboxylase 1 (Acod1), and tested its effects during in vivo infection with Bb. As predicted by our in vitro model, we show its inflammation-suppressive downstream effects are sustained during in vivo long-term infection with Bb, with a specific role in Lyme carditis.
Collapse
Affiliation(s)
- Tanja Petnicki-Ocwieja
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Julie E. McCarthy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Urmila Powale
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, United States of America
| | - P. Kent Langston
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, Massachusetts, United States of America
| | - Jennifer D. Helble
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Mayayo-Peralta I, Gregoricchio S, Schuurman K, Yavuz S, Zaalberg A, Kojic A, Abbott N, Geverts B, Beerthuijzen S, Siefert J, Severson TM, van Baalen M, Hoekman L, Lieftink C, Altelaar M, Beijersbergen RL, Houtsmuller A, Prekovic S, Zwart W. PAXIP1 and STAG2 converge to maintain 3D genome architecture and facilitate promoter/enhancer contacts to enable stress hormone-dependent transcription. Nucleic Acids Res 2023; 51:9576-9593. [PMID: 37070193 PMCID: PMC10570044 DOI: 10.1093/nar/gkad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
How steroid hormone receptors (SHRs) regulate transcriptional activity remains partly understood. Upon activation, SHRs bind the genome together with a co-regulator repertoire, crucial to induce gene expression. However, it remains unknown which components of the SHR-recruited co-regulator complex are essential to drive transcription following hormonal stimuli. Through a FACS-based genome-wide CRISPR screen, we functionally dissected the Glucocorticoid Receptor (GR) complex. We describe a functional cross-talk between PAXIP1 and the cohesin subunit STAG2, critical for regulation of gene expression by GR. Without altering the GR cistrome, PAXIP1 and STAG2 depletion alter the GR transcriptome, by impairing the recruitment of 3D-genome organization proteins to the GR complex. Importantly, we demonstrate that PAXIP1 is required for stability of cohesin on chromatin, its localization to GR-occupied sites, and maintenance of enhancer-promoter interactions. In lung cancer, where GR acts as tumor suppressor, PAXIP1/STAG2 loss enhances GR-mediated tumor suppressor activity by modifying local chromatin interactions. All together, we introduce PAXIP1 and STAG2 as novel co-regulators of GR, required to maintain 3D-genome architecture and drive the GR transcriptional programme following hormonal stimuli.
Collapse
Affiliation(s)
- Isabel Mayayo-Peralta
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sebastian Gregoricchio
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Selçuk Yavuz
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherland
| | - Anniek Zaalberg
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aleksandar Kojic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nina Abbott
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bart Geverts
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherland
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Suzanne Beerthuijzen
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joseph Siefert
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martijn van Baalen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherland
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
van Schie JJM, de Lint K, Molenaar TM, Moronta Gines M, Balk J, Rooimans M, Roohollahi K, Pai G, Borghuis L, Ramadhin A, Corazza F, Dorsman J, Wendt K, Wolthuis RF, de Lange J. CRISPR screens in sister chromatid cohesion defective cells reveal PAXIP1-PAGR1 as regulator of chromatin association of cohesin. Nucleic Acids Res 2023; 51:9594-9609. [PMID: 37702151 PMCID: PMC10570055 DOI: 10.1093/nar/gkad756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
The cohesin complex regulates higher order chromosome architecture through maintaining sister chromatid cohesion and folding chromatin by DNA loop extrusion. Impaired cohesin function underlies a heterogeneous group of genetic syndromes and is associated with cancer. Here, we mapped the genetic dependencies of human cell lines defective of cohesion regulators DDX11 and ESCO2. The obtained synthetic lethality networks are strongly enriched for genes involved in DNA replication and mitosis and support the existence of parallel sister chromatid cohesion establishment pathways. Among the hits, we identify the chromatin binding, BRCT-domain containing protein PAXIP1 as a novel cohesin regulator. Depletion of PAXIP1 severely aggravates cohesion defects in ESCO2 mutant cells, leading to mitotic cell death. PAXIP1 promotes global chromatin association of cohesin, independent of DNA replication, a function that cannot be explained by indirect effects of PAXIP1 on transcription or DNA repair. Cohesin regulation by PAXIP1 requires its binding partner PAGR1 and a conserved FDF motif in PAGR1. PAXIP1 co-localizes with cohesin on multiple genomic loci, including active gene promoters and enhancers. Possibly, this newly identified role of PAXIP1-PAGR1 in regulating cohesin occupancy on chromatin is also relevant for previously described functions of PAXIP1 in transcription, immune cell maturation and DNA repair.
Collapse
Affiliation(s)
- Janne J M van Schie
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Klaas de Lint
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Thom M Molenaar
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Jesper A Balk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Khashayar Roohollahi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Govind M Pai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Lauri Borghuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Anisha R Ramadhin
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Francesco Corazza
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Josephine C Dorsman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kerstin S Wendt
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Job de Lange
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Corrigan RR, Labrador L, Grizzanti J, Mey M, Piontkivska H, Casadesús G. Neuroprotective Mechanisms of Amylin Receptor Activation, Not Antagonism, in the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:1495-1514. [PMID: 36641678 DOI: 10.3233/jad-221057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Amylin, a pancreatic amyloid peptide involved in energy homeostasis, is increasingly studied in the context of Alzheimer's disease (AD) etiology. To date, conflicting pathogenic and neuroprotective roles for this peptide and its analogs for AD pathogenesis have been described. OBJECTIVE Whether the benefits of amylin are associated with peripheral improvement of metabolic tone/function or directly through the activation of central amylin receptors is also unknown and downstream signaling mechanisms of amylin receptors are major objectives of this study. METHODS To address these questions more directly we delivered the amylin analog pramlintide systemically (IP), at previously identified therapeutic doses, while centrally (ICV) inhibiting the receptor using an amylin receptor antagonist (AC187), at doses known to impact CNS function. RESULTS Here we show that pramlintide improved cognitive function independently of CNS receptor activation and provide transcriptomic data that highlights potential mechanisms. Furthermore, we show than inhibition of the amylin receptor increased amyloid-beta pathology in female APP/PS1 mice, an effect than was mitigated by peripheral delivery of pramlintide. Through transcriptomic analysis of pramlintide therapy in AD-modeled mice we found sexual dimorphic modulation of neuroprotective mechanisms: oxidative stress protection in females and membrane stability and reduced neuronal excitability markers in males. CONCLUSION These data suggest an uncoupling of functional and pathology-related events and highlighting a more complex receptor system and pharmacological relationship that must be carefully studied to clarify the role of amylin in CNS function and AD.
Collapse
Affiliation(s)
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Megan Mey
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesús
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Wang W, Ou Z, Peng J, Wang N, Zhou Y. Bioinformatics-based analysis of potential candidates chromatin regulators for immune infiltration in osteoarthritis. BMC Musculoskelet Disord 2022; 23:1123. [PMID: 36550476 PMCID: PMC9783407 DOI: 10.1186/s12891-022-06098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Through the bioinformatics analysis to screen out the potential chromatin regulators (CRs) under the immune infiltration of osteoarthritis (OA), thus providing some theoretical support for future studies of epigenetic mechanisms under OA immune infiltration. METHODS By integrating CRs and the OA gene expression matrix, we performed weighted gene co-expression network analysis (WGCNA), differential analysis, and further screened Hub genes by protein-protein interaction (PPI) analysis. Using the OA gene expression matrix, immune infiltration extraction and quantification were performed to analyze the correlations and differences between immune infiltrating cells and their functions. By virtue of these Hub genes, Hub gene association analysis was completed and their upstream miRNAs were predicted by the FunRich software. Moreover, a risk model was established to analyze the risk probability of associated CRs in OA, and the confidence of the results was validated by the validation dataset. RESULTS This research acquired a total of 32 overlapping genes, and 10 Hub genes were further identified. The strongest positive correlation between dendritic cells and mast cells and the strongest negative correlation between parainflammation and Type I IFN reponse. In the OA group DCs, iDCs, macrophages, MCs, APC co-inhibition, and CCR were significantly increased, whereas B cells, NK cells, Th2 cells, TIL, and T cell co-stimulation were significantly decreased. The risk model results revealed that BRD1 might be an independent risk factor for OA, and the validation dataset results are consistent with it. 60 upstream miRNAs of OA-related CRs were predicted by the FunRich software. CONCLUSION This study identified certain potential CRs and miRNAs that could regulate OA immunity, thus providing certain theoretical supports for future epigenetic mechanism studies on the immune infiltration of OA.
Collapse
Affiliation(s)
- Weiwei Wang
- Guilin Hospital of Traditional Chinese Medicine, Guilin, 541002 Guangxi China
| | - Zhixue Ou
- Guilin Hospital of Traditional Chinese Medicine, Guilin, 541002 Guangxi China
| | - Jianlan Peng
- grid.256609.e0000 0001 2254 5798Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| | - Ning Wang
- grid.511973.8The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| | - Yi Zhou
- grid.256609.e0000 0001 2254 5798Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| |
Collapse
|
7
|
Liu B, Li Z. PTIP-Associated Protein 1: More Than a Component of the MLL3/4 Complex. Front Genet 2022; 13:889109. [PMID: 35754824 PMCID: PMC9219552 DOI: 10.3389/fgene.2022.889109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
PTIP-associated protein 1 (PA1) is a unique component of MLL3/4 complexes, which are important mammalian histone 3 lysine 4 (H3K4) methyltransferases. PA1 has generated research interest due to its involvement in many essential biological processes such as adipogenesis, B cell class switch recombination, spermatogenesis, and embryonic development. In addition to the classical role of PA1 in H3K4 methylation, non-classical functions have also been discovered in recent studies. In this review, we systematically summarize the expression pattern of PA1 protein in humans and sort the specific molecular mechanism of PA1 in various biological processes. Meanwhile, we provide some new perspectives on the role of PA1 for future studies. A comprehensive understanding of the biological functions and molecular mechanisms of PA1 will facilitate the investigation of its complicated roles in transcriptional regulation.
Collapse
Affiliation(s)
- Bo Liu
- Department of Human Anatomy, Histology and Embryology, the Fourth Military Medical University, Xi'an, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Acetyltransferases GCN5 and PCAF Are Required for B Lymphocyte Maturation in Mice. Biomolecules 2021; 12:biom12010061. [PMID: 35053209 PMCID: PMC8773862 DOI: 10.3390/biom12010061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
B lymphocyte development has two DNA recombination processes: V(D)J recombination of the immunoglobulin (Igh) gene variable region, and class switching of the Igh constant regions from IgM to IgG, IgA, or IgE. V(D)J recombination is required for the successful maturation of B cells from pro-B to pre-B to immature-B and then to mature B cells in the bone marrow. CSR occurs outside of the bone marrow when mature B cells migrate to peripheral lymphoid organs, such as spleen and lymph nodes. Both V(D)J recombination and CSR depend on an open chromatin state that makes DNA accessible to specific enzymes, recombination activating gene (RAG), and activation-induced cytidine deaminase (AID). Acetyltransferases GCN5 and PCAF possess redundant functions acetylating histone H3 lysine 9 (H3K9). Here, we generated a mouse model that lacked both GCN5 and PCAF in B cells. Double-deficient mice possessed low levels of mature B cells in the bone marrow and peripheral organs, an accumulation of pro-B cells in bone marrow, and reduced CSR levels. We concluded that both GCN5 and PCAF are required for B-cell development in vivo.
Collapse
|
9
|
Bailey ML, Tieu D, Habsid A, Tong AHY, Chan K, Moffat J, Hieter P. Paralogous synthetic lethality underlies genetic dependencies of the cancer-mutated gene STAG2. Life Sci Alliance 2021; 4:e202101083. [PMID: 34462321 PMCID: PMC8408347 DOI: 10.26508/lsa.202101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.
Collapse
Affiliation(s)
- Melanie L Bailey
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Andrea Habsid
- Donnelly Centre, University of Toronto, Toronto, Canada
| | | | | | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
The MLL3/4 H3K4 methyltransferase complex in establishing an active enhancer landscape. Biochem Soc Trans 2021; 49:1041-1054. [PMID: 34156443 PMCID: PMC8286814 DOI: 10.1042/bst20191164] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
Enhancers are cis-regulatory elements that play essential roles in tissue-specific gene expression during development. Enhancer function in the expression of developmental genes requires precise regulation, while deregulation of enhancer function could be the main cause of tissue-specific cancer development. MLL3/KMT2C and MLL4/KMT2D are two paralogous histone modifiers that belong to the SET1/MLL (also named COMPASS) family of lysine methyltransferases and play critical roles in enhancer-regulated gene activation. Importantly, large-scale DNA sequencing studies have revealed that they are amongst the most frequently mutated genes associated with human cancers. MLL3 and MLL4 form identical multi-protein complexes for modifying mono-methylation of histone H3 lysine 4 (H3K4) at enhancers, which together with the p300/CBP-mediated H3K27 acetylation can generate an active enhancer landscape for long-range target gene activation. Recent studies have provided a better understanding of the possible mechanisms underlying the roles of MLL3/MLL4 complexes in enhancer regulation. Moreover, accumulating studies offer new insights into our knowledge of the potential role of MLL3/MLL4 in cancer development. In this review, we summarize recent evidence on the molecular mechanisms of MLL3/MLL4 in the regulation of active enhancer landscape and long-range gene expression, and discuss their clinical implications in human cancers.
Collapse
|
11
|
Repair of programmed DNA lesions in antibody class switch recombination: common and unique features. ACTA ACUST UNITED AC 2021; 2:115-125. [PMID: 33817557 PMCID: PMC7996122 DOI: 10.1007/s42764-021-00035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023]
Abstract
The adaptive immune system can diversify the antigen receptors to eliminate various pathogens through programmed DNA lesions at antigen receptor genes. In immune diversification, general DNA repair machineries are applied to transform the programmed DNA lesions into gene mutation or recombination events with common and unique features. Here we focus on antibody class switch recombination (CSR), and review the initiation of base damages, the conversion of damaged base to DNA double-strand break, and the ligation of broken ends. With an emphasis on the unique features in CSR, we discuss recent advances in the understanding of DNA repair/replication coordination, and ERCC6L2-mediated deletional recombination. We further elaborate the application of CSR in end-joining, resection and translesion synthesis assays. In the time of the COVID-19 pandemic, we hope it help to understand the generation of therapeutic antibodies.
Collapse
|
12
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Mechanism and regulation of class switch recombination by IgH transcriptional control elements. Adv Immunol 2020; 147:89-137. [PMID: 32981636 DOI: 10.1016/bs.ai.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class switch recombination (CSR) plays an important role in humoral immunity by generating antibodies with different effector functions. CSR to a particular antibody isotype is induced by external stimuli, and occurs between highly repetitive switch (S) sequences. CSR requires transcription across S regions, which generates long non-coding RNAs and secondary structures that promote accessibility of S sequences to activation-induced cytidine deaminase (AID). AID initiates DNA double-strand breaks (DSBs) intermediates that are repaired by general DNA repair pathways. Switch transcription is controlled by various regulatory elements, including enhancers and insulators. The current paradigm posits that transcriptional control of CSR involves long-range chromatin interactions between regulatory elements and chromatin loops-stabilizing factors, which promote alignment of partner S regions in a CSR centre (CSRC) and initiation of CSR. In this review, we focus on the role of IgH transcriptional control elements in CSR and the chromatin-based mechanisms underlying this control.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
13
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
14
|
RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2020; 117:11624-11635. [PMID: 32385154 DOI: 10.1073/pnas.1921115117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is the key enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) to generate antibody memory. Previously, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was shown to be required for AID-dependent DNA breaks. Here, we defined the function of major RNA-binding motifs of hnRNP K, GXXGs and RGGs in the K-homology (KH) and the K-protein-interaction (KI) domains, respectively. Mutation of GXXG, RGG, or both impaired CSR, SHM, and cMyc/IgH translocation equally, showing that these motifs were necessary for AID-dependent DNA breaks. AID-hnRNP K interaction is dependent on RNA; hence, mutation of these RNA-binding motifs abolished the interaction with AID, as expected. Some of the polypyrimidine sequence-carrying prototypical hnRNP K-binding RNAs, which participate in DNA breaks or repair bound to hnRNP K in a GXXG and RGG motif-dependent manner. Mutation of the GXXG and RGG motifs decreased nuclear retention of hnRNP K. Together with the previous finding that nuclear localization of AID is necessary for its function, lower nuclear retention of these mutants may worsen their functional deficiency, which is also caused by their decreased RNA-binding capacity. In summary, hnRNP K contributed to AID-dependent DNA breaks with all of its major RNA-binding motifs.
Collapse
|
15
|
Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [K CDCOM-ADs]: an emerging class of congenital regulopathies. Clin Epigenetics 2020; 12:10. [PMID: 31924266 PMCID: PMC6954584 DOI: 10.1186/s13148-019-0802-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.
Collapse
Affiliation(s)
- William J Lavery
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Division of Human Genetics, CCHMC, Cincinnati, OH, USA
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, CCHMC, Cincinnati, OH, USA
| | | | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
| |
Collapse
|
16
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
17
|
Sheppard EC, Morrish RB, Dillon MJ, Leyland R, Chahwan R. Epigenomic Modifications Mediating Antibody Maturation. Front Immunol 2018. [PMID: 29535729 PMCID: PMC5834911 DOI: 10.3389/fimmu.2018.00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone modifications, DNA methylation status, and non-coding RNAs (ncRNA), all contribute to antibody maturation during somatic hypermutation (SHM) and class-switch recombination (CSR). Histone modifications alter the chromatin landscape and, together with DNA primary and tertiary structures, they help recruit Activation-Induced Cytidine Deaminase (AID) to the immunoglobulin (Ig) locus. AID is a potent DNA mutator, which catalyzes cytosine-to-uracil deamination on single-stranded DNA to create U:G mismatches. It has been shown that alternate chromatin modifications, in concert with ncRNAs and potentially DNA methylation, regulate AID recruitment and stabilize DNA repair factors. We, hereby, assess the combination of these distinct modifications and discuss how they contribute to initiating differential DNA repair pathways at the Ig locus, which ultimately leads to enhanced antibody–antigen binding affinity (SHM) or antibody isotype switching (CSR). We will also highlight how misregulation of epigenomic regulation during DNA repair can compromise antibody development and lead to a number of immunological syndromes and cancer.
Collapse
Affiliation(s)
- Emily C Sheppard
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Michael J Dillon
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Richard Chahwan
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
18
|
Baas R, van Teeffelen HAAM, Tjalsma SJD, Timmers HTM. The mixed lineage leukemia 4 (MLL4) methyltransferase complex is involved in transforming growth factor beta (TGF-β)-activated gene transcription. Transcription 2017; 9:67-74. [PMID: 28976802 PMCID: PMC5834223 DOI: 10.1080/21541264.2017.1373890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sma and Mad related (SMAD)-mediated Transforming Growth Factor β (TGF-β) and Bone Morphogenetic Protein (BMP) signaling is required for various cellular processes. The activated heterotrimeric SMAD protein complexes associate with nuclear proteins such as the histone acetyltransferases p300, PCAF and the Mixed Lineage Leukemia 4 (MLL4) subunit Pax Transactivation domain-Interacting Protein (PTIP) to regulate gene transcription. We investigated the functional role of PTIP and PTIP Interacting protein 1 (PA1) in relation to TGF-β-activated SMAD signaling. We immunoprecipitated PTIP and PA1 with all SMAD family members to identify the TGF-β and not BMP-specific SMADs as interacting proteins. Gene silencing experiments of MLL4 and the subunits PA1 and PTIP confirm TGF-β-specific genes to be regulated by the MLL4 complex, which links TGF-β signaling to transcription regulation by the MLL4 methyltransferase complex.
Collapse
Affiliation(s)
- Roy Baas
- a Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Hetty A A M van Teeffelen
- a Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Sjoerd J D Tjalsma
- a Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine , University Medical Center Utrecht , Utrecht , The Netherlands
| | - H Th Marc Timmers
- a Molecular Cancer Research and Stem Cells, Regenerative Medicine Center, Center for Molecular Medicine , University Medical Center Utrecht , Utrecht , The Netherlands
| |
Collapse
|
19
|
PTIP chromatin regulator controls development and activation of B cell subsets to license humoral immunity in mice. Proc Natl Acad Sci U S A 2017; 114:E9328-E9337. [PMID: 29078319 PMCID: PMC5676899 DOI: 10.1073/pnas.1707938114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To provide optimal host defense, the full spectrum of antibody-based immunity requires natural antibodies and immunization-induced antigen-specific antibodies. Here we show that the PTIP (Pax transactivation domain-interacting protein) chromatin regulator is induced by B cell activation to potentiate the establishment of steady-state and postimmune serum antibody levels. It does so by promoting activation-associated proliferation and differentiation of all the major B cell subsets, at least in part, through regulating the NF-κB pathway. With the genetic basis still unknown for a majority of patients with common variable immunodeficiency, further work investigating how PTIP controls cell signaling may generate valuable new insight for human health and disease. B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.
Collapse
|
20
|
Abstract
DNA double-strand breaks (DSBs) serve as obligatory intermediates for Ig heavy chain (Igh) class switch recombination (CSR). The mechanisms by which DSBs are resolved to promote long-range DNA end-joining while suppressing genomic instability inherently associated with DSBs are yet to be fully elucidated. Here, we use a targeted short-hairpin RNA screen in a B-cell lymphoma line to identify the BRCT-domain protein BRIT1 as an effector of CSR. We show that conditional genetic deletion of BRIT1 in mice leads to a marked increase in unrepaired Igh breaks and a significant reduction in CSR in ex vivo activated splenic B cells. We find that the C-terminal tandem BRCT domains of BRIT1 facilitate its interaction with phosphorylated H2AX and that BRIT1 is recruited to the Igh locus in an activation-induced cytidine deaminase (AID) and H2AX-dependent fashion. Finally, we demonstrate that depletion of another BRCT-domain protein, MDC1, in BRIT1-deleted B cells increases the severity of CSR defect over what is observed upon loss of either protein alone. Our results identify BRIT1 as a factor in CSR and demonstrate that multiple BRCT-domain proteins contribute to optimal resolution of AID-induced DSBs.
Collapse
|
21
|
Li X, Zhang Q, Shi Q, Liu Y, Zhao K, Shen Q, Shi Y, Liu X, Wang C, Li N, Ma Y, Cao X. Demethylase Kdm6a epigenetically promotes IL-6 and IFN-β production in macrophages. J Autoimmun 2017; 80:85-94. [DOI: 10.1016/j.jaut.2017.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
22
|
Raschellà G, Melino G, Malewicz M. New factors in mammalian DNA repair-the chromatin connection. Oncogene 2017; 36:4673-4681. [PMID: 28394347 PMCID: PMC5562846 DOI: 10.1038/onc.2017.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.
Collapse
Affiliation(s)
- G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Rome, Italy
| | - G Melino
- Department of Experimental Medicine &Surgery, University of Rome Tor Vergata, Rome, Italy.,MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| | - M Malewicz
- MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| |
Collapse
|
23
|
Leng S, Yang M, Zhao Y, Zhao J, Zeng Z, Yang Y, Yuan J, Lv B, Jun F, Wang B. PTIP promotes recurrence and metastasis of hepatocellular carcinoma by regulating epithelial-mesenchymal transition. Oncotarget 2017; 8:58184-58198. [PMID: 28938547 PMCID: PMC5601643 DOI: 10.18632/oncotarget.16436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/28/2017] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal tumors worldwide, which is mainly due to the high recurrence and metastasis rate after hepatectomy. In this study, we found that PTIP expression was dramatically upregulated in human HCC tissues and cell lines. High expression of PTIP was shown to be associated with aggressive clinicopathological features, including liver cirrhosis, vascular invasion and advanced stage. In addition, PTIP overexpression was independently associated with shorter survival and increased HCC recurrence in patients. Knockdown of the PTIP expression significantly inhibited invasion and metastasis in vitro and in vivo, whereas ectopic expression of PTIP significantly promoted invasion and metastasis. Mechanistically, PTIP promotes HCC progress by facilitating epithelial-mesenchymal transition (EMT). Notably, we also found that PTIP might increase miR-374a expression to promote EMT and metastasis in HCC. In summary, our study identified PTIP as a new potential prognostic indicator and therapeutic target for HCC.
Collapse
Affiliation(s)
- Shusheng Leng
- General Surgery Department, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Mingyang Yang
- Intensive Care Unit, The First People's Hospital of Chengdu (Chengdu Combine Traditional Chinese and Western Medicine Hospital), Chengdu 610041, China
| | - Yanhua Zhao
- Department of Laboratory Medicine/Clinical Research Center of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingfeng Zhao
- General Surgery Department, Chongqing Dazu District People's Hospital, Chongqing 402360, China
| | - Zhijun Zeng
- Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yunpeng Yang
- Department of Pathology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Jiatian Yuan
- General Surgery Department, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Bo Lv
- General Surgery Department, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Fan Jun
- General Surgery Department, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Bing Wang
- General Surgery Department, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu 610081, China
| |
Collapse
|
24
|
Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, Wong N, Lafarga V, Calvo JA, Panzarino NJ, John S, Day A, Crespo AV, Shen B, Starnes LM, de Ruiter JR, Daniel JA, Konstantinopoulos PA, Cortez D, Cantor SB, Fernandez-Capetillo O, Ge K, Jonkers J, Rottenberg S, Sharan SK, Nussenzweig A. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 2016; 535:382-7. [PMID: 27443740 PMCID: PMC4959813 DOI: 10.1038/nature18325] [Citation(s) in RCA: 654] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
Brca1- and Brca2-deficient cells have reduced capacity to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) and consequently are hypersensitive to DNA damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore HR activity at DSBs. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARPi and cisplatin resistance is associated with replication fork (RF) protection in Brca2-deficient tumor cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of RF protection, highlighting the complexities by which tumor cells evade chemotherapeutic interventions and acquire drug resistance.
Collapse
Affiliation(s)
- Arnab Ray Chaudhuri
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xia Ding
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Ewa Gogola
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alexandra A Duarte
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vanessa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Jennifer A Calvo
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| | - Sam John
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anna Vidal Crespo
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Binghui Shen
- Department of Radiation Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010, USA
| | - Linda M Starnes
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Julian R de Ruiter
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jeremy A Daniel
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Panagiotis A Konstantinopoulos
- Departments of Gynecologic Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, Tennessee 37232, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| | | | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|