1
|
Palazzo AF, Kejiou NS. Non-Darwinian Molecular Biology. Front Genet 2022; 13:831068. [PMID: 35251134 PMCID: PMC8888898 DOI: 10.3389/fgene.2022.831068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
With the discovery of the double helical structure of DNA, a shift occurred in how biologists investigated questions surrounding cellular processes, such as protein synthesis. Instead of viewing biological activity through the lens of chemical reactions, this new field used biological information to gain a new profound view of how biological systems work. Molecular biologists asked new types of questions that would have been inconceivable to the older generation of researchers, such as how cellular machineries convert inherited biological information into functional molecules like proteins. This new focus on biological information also gave molecular biologists a way to link their findings to concepts developed by genetics and the modern synthesis. However, by the late 1960s this all changed. Elevated rates of mutation, unsustainable genetic loads, and high levels of variation in populations, challenged Darwinian evolution, a central tenant of the modern synthesis, where adaptation was the main driver of evolutionary change. Building on these findings, Motoo Kimura advanced the neutral theory of molecular evolution, which advocates that selection in multicellular eukaryotes is weak and that most genomic changes are neutral and due to random drift. This was further elaborated by Jack King and Thomas Jukes, in their paper “Non-Darwinian Evolution”, where they pointed out that the observed changes seen in proteins and the types of polymorphisms observed in populations only become understandable when we take into account biochemistry and Kimura’s new theory. Fifty years later, most molecular biologists remain unaware of these fundamental advances. Their adaptionist viewpoint fails to explain data collected from new powerful technologies which can detect exceedingly rare biochemical events. For example, high throughput sequencing routinely detects RNA transcripts being produced from almost the entire genome yet are present less than one copy per thousand cells and appear to lack any function. Molecular biologists must now reincorporate ideas from classical biochemistry and absorb modern concepts from molecular evolution, to craft a new lens through which they can evaluate the functionality of transcriptional units, and make sense of our messy, intricate, and complicated genome.
Collapse
|
2
|
Jagannath A, Varga N, Dallmann R, Rando G, Gosselin P, Ebrahimjee F, Taylor L, Mosneagu D, Stefaniak J, Walsh S, Palumaa T, Di Pretoro S, Sanghani H, Wakaf Z, Churchill GC, Galione A, Peirson SN, Boison D, Brown SA, Foster RG, Vasudevan SR. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat Commun 2021; 12:2113. [PMID: 33837202 PMCID: PMC8035342 DOI: 10.1038/s41467-021-22179-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
The accumulation of adenosine is strongly correlated with the need for sleep and the detection of sleep pressure is antagonised by caffeine. Caffeine also affects the circadian timing system directly and independently of sleep physiology, but how caffeine mediates these effects upon the circadian clock is unclear. Here we identify an adenosine-based regulatory mechanism that allows sleep and circadian processes to interact for the optimisation of sleep/wake timing in mice. Adenosine encodes sleep history and this signal modulates circadian entrainment by light. Pharmacological and genetic approaches demonstrate that adenosine acts upon the circadian clockwork via adenosine A1/A2A receptor signalling through the activation of the Ca2+ -ERK-AP-1 and CREB/CRTC1-CRE pathways to regulate the clock genes Per1 and Per2. We show that these signalling pathways converge upon and inhibit the same pathways activated by light. Thus, circadian entrainment by light is systematically modulated on a daily basis by sleep history. These findings contribute to our understanding of how adenosine integrates signalling from both light and sleep to regulate circadian timing in mice.
Collapse
Affiliation(s)
- Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK.
| | - Norbert Varga
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Robert Dallmann
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Gianpaolo Rando
- Department of Molecular Biology, University of Geneva, Geneva 4, Switzerland
| | - Pauline Gosselin
- Department of Molecular Biology, University of Geneva, Geneva 4, Switzerland
| | - Farid Ebrahimjee
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Dragos Mosneagu
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jakub Stefaniak
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Steven Walsh
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Teele Palumaa
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Harshmeena Sanghani
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Zeinab Wakaf
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Grant C Churchill
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Antony Galione
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK.
| | - Sridhar R Vasudevan
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell 2020; 183:1151-1161. [PMID: 33068526 DOI: 10.1016/j.cell.2020.09.047] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
Transcriptome studies reveal pervasive transcription of complex genomes, such as those of mammals. Despite popular arguments for functionality of most, if not all, of these transcripts, genome-wide analysis of selective constraints indicates that most of the produced RNA are junk. However, junk is not garbage. On the contrary, junk transcripts provide the raw material for the evolution of diverse long non-coding (lnc) RNAs by non-adaptive mechanisms, such as constructive neutral evolution. The generation of many novel functional entities, such as lncRNAs, that fuels organismal complexity does not seem to be driven by strong positive selection. Rather, the weak selection regime that dominates the evolution of most multicellular eukaryotes provides ample material for functional innovation with relatively little adaptation involved.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
5
|
Gaspar LS, Álvaro AR, Carmo‐Silva S, Mendes AF, Relógio A, Cavadas C. The importance of determining circadian parameters in pharmacological studies. Br J Pharmacol 2019; 176:2827-2847. [PMID: 31099023 PMCID: PMC6637036 DOI: 10.1111/bph.14712] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022] Open
Abstract
In mammals, most molecular and cellular processes show circadian changes, leading to daily variations in physiology and ultimately in behaviour. Such daily variations induce a temporal coordination of processes that is essential to ensure homeostasis and health. Thus, it is of no surprise that pharmacokinetics (PK) and pharmacodynamics (PD) of many drugs are also subject to circadian variations, profoundly affecting their efficacy and tolerability. Understanding how circadian rhythms influence drug PK, PD, and toxicity might significantly improve treatment efficacy and decrease related side effects. Therefore, it is essential to take circadian variations into account and to determine circadian parameters in pharmacological studies, especially when drugs have a short half-life or target rhythmic processes. This review provides an overview of the current knowledge on circadian rhythms and their relevance to the field of pharmacology. Methodologies to evaluate circadian rhythms in vitro, in rodent models and in humans, from experimental to computational approaches, are described and discussed. Lastly, we aim at alerting the scientific, medical, and regulatory communities to the relevance of the physiological time, as a key parameter to be considered when designing pharmacological studies. This will eventually lead to more successful preclinical and clinical trials and pave the way to a more personalized treatment to the benefit of the patients.
Collapse
Affiliation(s)
- Laetitia S. Gaspar
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
| | - Ana Rita Álvaro
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Sara Carmo‐Silva
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Alexandrina Ferreira Mendes
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Angela Relógio
- Institute for Theoretical BiologyCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt—Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research CenterCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt—Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Cláudia Cavadas
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
6
|
Wu MR, Nissim L, Stupp D, Pery E, Binder-Nissim A, Weisinger K, Enghuus C, Palacios SR, Humphrey M, Zhang Z, Maria Novoa E, Kellis M, Weiss R, Rabkin SD, Tabach Y, Lu TK. A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS). Nat Commun 2019; 10:2880. [PMID: 31253799 PMCID: PMC6599391 DOI: 10.1038/s41467-019-10912-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023] Open
Abstract
Cell state-specific promoters constitute essential tools for basic research and biotechnology because they activate gene expression only under certain biological conditions. Synthetic Promoters with Enhanced Cell-State Specificity (SPECS) can be superior to native ones, but the design of such promoters is challenging and frequently requires gene regulation or transcriptome knowledge that is not readily available. Here, to overcome this challenge, we use a next-generation sequencing approach combined with machine learning to screen a synthetic promoter library with 6107 designs for high-performance SPECS for potentially any cell state. We demonstrate the identification of multiple SPECS that exhibit distinct spatiotemporal activity during the programmed differentiation of induced pluripotent stem cells (iPSCs), as well as SPECS for breast cancer and glioblastoma stem-like cells. We anticipate that this approach could be used to create SPECS for gene therapies that are activated in specific cell states, as well as to study natural transcriptional regulatory networks.
Collapse
Affiliation(s)
- Ming-Ru Wu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lior Nissim
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Doron Stupp
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Erez Pery
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Adina Binder-Nissim
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Karen Weisinger
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Casper Enghuus
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sebastian R Palacios
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Melissa Humphrey
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02144, USA
| | - Zhizhuo Zhang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Eva Maria Novoa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Center for Genomic Regulation (CRG), 08003, Barcelona, Spain
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02144, USA.,Department of Neurosurgery (Microbiology & Immunobiology), Harvard Medical School, Boston, MA, 02115, USA
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Biophysics Program, Harvard University, Boston, MA, 02115, USA. .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Higashikuni Y, Chen WC, Lu TK. Advancing therapeutic applications of synthetic gene circuits. Curr Opin Biotechnol 2017; 47:133-141. [PMID: 28750201 DOI: 10.1016/j.copbio.2017.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023]
Abstract
Synthetic biology aims to introduce new sense-and-respond capabilities into living cells, which would enable novel therapeutic strategies. The development of regulatory elements, molecular computing devices, and effector screening technologies has enabled researchers to design synthetic gene circuits in many organisms, including mammalian cells. Engineered gene networks, such as closed-loop circuits or Boolean logic gate circuits, can be used to program cells to perform specific functions with spatiotemporal control and restoration of homeostasis in response to the extracellular environment and intracellular signaling. In addition, genetically modified microbes can be designed as local delivery of therapeutic molecules. In this review, we will discuss recent advances in therapeutic applications of synthetic gene circuits, as well as challenges and future opportunities for biomedicine.
Collapse
Affiliation(s)
- Yasutomi Higashikuni
- Research Laboratory of Electronics, Massachusetts Institute of Technology, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA
| | - William Cw Chen
- Research Laboratory of Electronics, Massachusetts Institute of Technology, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Timothy K Lu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA.
| |
Collapse
|