1
|
Liman GLS, Lennon CW, Mandley JL, Galyon AM, Zatopek KM, Gardner AF, Santangelo TJ. Intein splicing efficiency and RadA levels can control the mode of archaeal DNA replication. SCIENCE ADVANCES 2024; 10:eadp4995. [PMID: 39292776 PMCID: PMC11409957 DOI: 10.1126/sciadv.adp4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Inteins (intervening proteins), mobile genetic elements removed through protein splicing, often interrupt proteins required for DNA replication, recombination, and repair. An abundance of in vitro evidence implies that inteins may act as regulatory elements, whereby reduced splicing inhibits production of the mature protein lacking the intein, but in vivo evidence of regulatory intein excision in the native host is absent. The model archaeon Thermococcus kodakarensis encodes 15 inteins, and we establish the impacts of intein splicing inhibition on host physiology and replication in vivo. We report that a decrease in intein splicing efficiency of the recombinase RadA, a Rad51/RecA homolog, has widespread physiological consequences, including a general growth defect, increased sensitivity to DNA damage, and a switch in the mode of DNA replication from recombination-dependent replication toward origin-dependent replication.
Collapse
Affiliation(s)
- Geraldy L. S. Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Jaylin L. Mandley
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Alina M. Galyon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Schneider RF, Hallstrom K, DeMott C, McDonough KA. Conditional protein splicing of the Mycobacterium tuberculosis RecA intein in its native host. Sci Rep 2024; 14:20664. [PMID: 39237639 PMCID: PMC11377839 DOI: 10.1038/s41598-024-71248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The recA gene, encoding Recombinase A (RecA) is one of three Mycobacterium tuberculosis (Mtb) genes encoding an in-frame intervening protein sequence (intein) that must splice out of precursor host protein to produce functional protein. Ongoing debate about whether inteins function solely as selfish genetic elements or benefit their host cells requires understanding of interplay between inteins and their hosts. We measured environmental effects on native RecA intein splicing within Mtb using a combination of western blots and promoter reporter assays. RecA splicing was stimulated in bacteria exposed to DNA damaging agents or by treatment with copper in hypoxic, but not normoxic, conditions. Spliced RecA was processed by the Mtb proteasome, while free intein was degraded efficiently by other unknown mechanisms. Unspliced precursor protein was not observed within Mtb despite its accumulation during ectopic expression of Mtb recA within E. coli. Surprisingly, Mtb produced free N-extein in some conditions, and ectopic expression of Mtb N-extein activated LexA in E. coli. These results demonstrate that the bacterial environment greatly impacts RecA splicing in Mtb, underscoring the importance of studying intein splicing in native host environments and raising the exciting possibility of intein splicing as a novel regulatory mechanism in Mtb.
Collapse
Affiliation(s)
- Ryan F Schneider
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany, Albany, USA
| | - Kelly Hallstrom
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Christopher DeMott
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
- Regeneron Pharmaceuticals Inc, Albany, NY, USA
| | - Kathleen A McDonough
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany, Albany, USA.
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
3
|
Hume AJ, Deeney DJ, Smetana JS, Turcinovic J, Connor JH, Belfort M, Mühlberger E, Lennon CW. Improved protein splicing through viral passaging. mBio 2024; 15:e0098424. [PMID: 38780266 PMCID: PMC11237716 DOI: 10.1128/mbio.00984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Intervening proteins (inteins) are translated as subdomains within host proteins and removed through an intein-driven splicing reaction where the flanking sequences (exteins) are joined with a peptide bond. Previously, we developed a self-removing translation reporter for labeling Ebola virus (EBOV). In this reporter, an intein (RadA) containing the fluorescent protein ZsGreen (ZsG) is inserted within the EBOV protein VP30. Upon VP30-RadA-ZsG expression from the viral genome, RadA-ZsG is removed from VP30 through the protein splicing activity of RadA, generating functional, non-tagged VP30 and functional ZsGreen. While incorporation of our VP30-RadA-ZsG fusion reporter into recombinant EBOV (rEBOV-RadA-ZsG) resulted in an infectious virus that expresses ZsG upon infection of cells, this virus displayed a replication defect compared to wild-type EBOV, which might be the result of insufficient RadA splicing. Here, we demonstrate that the serial passaging of rEBOV-RadA-ZsG in human cells led to an increase in replication efficiency compared to unpassaged rEBOV-RadA-ZsG. Sequencing of passaged viruses revealed intein-specific mutations. These mutations improve intein activity in both prokaryotic and eukaryotic systems, as well as in multiple extein contexts. Taken together, our findings offer a novel means to select for inteins with enhanced catalytic properties that appear independent of extein context and expression system.IMPORTANCEIntervening proteins (inteins) are self-removing protein elements that have been utilized to develop a variety of innovative protein engineering technologies. Here, we report the isolation of inteins with improved catalytic activity through viral passaging. Specifically, we inserted a highly active intein within an essential protein of Ebola virus and serially passaged this recombinant virus, which led to intein-specific hyper-activity mutations. The identified mutations showed improved intein activity within both bacterial and eukaryotic expression systems and in multiple extein contexts. These results present a new strategy for developing inteins with improved splicing activity.
Collapse
Affiliation(s)
- Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, Massachusetts, USA
| | - Dylan J Deeney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - John S Smetana
- Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
| | - Jacquelyn Turcinovic
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, Massachusetts, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Christopher W Lennon
- Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
| |
Collapse
|
4
|
Schneider RF, Hallstrom K, DeMott C, McDonough KA. Conditional protein splicing of the Mycobacterium tuberculosis RecA intein in its native host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589443. [PMID: 38659745 PMCID: PMC11042385 DOI: 10.1101/2024.04.15.589443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The recA gene, encoding Recombinase A (RecA) is one of three Mycobacterium tuberculosis (Mtb) genes encoding an in-frame intervening protein sequence (intein) that must splice out of precursor host protein to produce functional protein. Ongoing debate about whether inteins function solely as selfish genetic elements or benefit their host cells requires understanding of interplay between inteins and their hosts. We measured environmental effects on native RecA intein splicing within Mtb using a combination of western blots and promoter reporter assays. RecA splicing was stimulated in bacteria exposed to DNA damaging agents or by treatment with copper in hypoxic, but not normoxic, conditions. Spliced RecA was processed by the Mtb proteasome, while free intein was degraded efficiently by other unknown mechanisms. Unspliced precursor protein was not observed within Mtb despite its accumulation during ectopic expression of Mtb recA within E. coli. Surprisingly, Mtb produced free N-extein in some conditions, and ectopic expression of Mtb N-extein activated LexA in E. coli. These results demonstrate that the bacterial environment greatly impacts RecA splicing in Mtb, underscoring the importance of studying intein splicing in native host environments and raising the exciting possibility of intein splicing as a novel regulatory mechanism in Mtb.
Collapse
Affiliation(s)
- Ryan F. Schneider
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany
| | | | | | - Kathleen A. McDonough
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany
- Wadsworth Center, New York Department of Health
| |
Collapse
|
5
|
Son A, Smetana JS, Horowitz S, Lennon CW. An intein-based biosensor to measure protein stability in vivo. Protein Sci 2024; 33:e4925. [PMID: 38380775 PMCID: PMC10880411 DOI: 10.1002/pro.4925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Biosensors to measure protein stability in vivo are valuable tools for a variety of applications. Previous work has demonstrated that a tripartite design, whereby a protein of interest (POI) is inserted within a reporter, can link POI stability to reporter activity. Inteins are translated within other proteins and excised in a self-mediated protein splicing reaction. Here, we developed a novel folding biosensor where a POI is inserted within an intein, which is subsequently translated within an antibiotic resistance marker. We showed that protein splicing is required for antibiotic resistance and that housing a stable POI within the intein, compared to an unstable variant, results in a 100,000-fold difference in survival. Further, using a fluorescent protein that matures slowly as the POI, we developed a reporter with two simultaneous readouts for protein folding. Finally, we showed that co-expression of GroEL can significantly increase the activity of both reporters, further verifying that protein folding factors can act on the POI in the biosensor. As a whole, our work provides a new twist on the traditional tripartite approach to measuring protein stability in vivo.
Collapse
Affiliation(s)
- Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy AgingUniversity of DenverDenverColoradoUSA
| | - John S. Smetana
- Department of Biological SciencesMurray State UniversityMurrayKentuckyUSA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy AgingUniversity of DenverDenverColoradoUSA
| | | |
Collapse
|
6
|
Panda S, Rout M, Mishra S, Turuk J, Pati S, Dehury B. Molecular docking and MD simulations reveal protease inhibitors block the catalytic residues in Prp8 intein of Aspergillus fumigatus: a potential target for antimycotics. J Biomol Struct Dyn 2023:1-16. [PMID: 38149850 DOI: 10.1080/07391102.2023.2298735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Resistance to azoles and amphotericin B especially in Aspergillus fumigatus is a growing concern towards the treatment of invasive fungal infection. At this critical juncture, intein splicing would be a productive, and innovative target to establish therapies against resistant strains. Intein splicing is the central event for the activation of host protein, essential for the growth and survival of various microorganisms including A. fumigatus. The splicing process is a four-step protease-like nucleophilic cascade. Thus, we hypothesise that protease inhibitors would successfully halt intein splicing and potentially restrict the growth of the aforementioned pathogen. Using Rosetta Fold and molecular dynamics simulations, we modelled Prp8 intein structure; resembling classic intein fold with horse shoe shaped splicing domain. To fully comprehend the active site of Afu Prp8 intein, C1, T62, H65, H818, N819 from intein sequences and S820, the first C-extein residue are selected. Molecular docking shows that two FDA-approved drugs, i.e. Lufotrelvir and Remdesivir triphosphate efficiently interact with Prp8 intein from the assortment of 212 protease inhibitors. MD simulation portrayed that Prp8 undergoes conformational change upon ligand binding, and inferred the molecular recognition and stability of the docked complexes. Per-residue decomposition analysis confirms the importance of F: block R802, V803, and Q807 binding pocket in intein splicing domain towards recognition of inhibitors, along with active site residues through strong hydrogen bonds and hydrophobic contacts. However, in vitro and in vivo assays are required to confirm the inhibitory action on Prp8 intein splicing; which may pave the way for the development of new antifungals for A. fumigatus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunita Panda
- Mycology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Jyotirmayee Turuk
- Mycology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Mycology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
7
|
Wood DW, Belfort M, Lennon CW. Inteins-mechanism of protein splicing, emerging regulatory roles, and applications in protein engineering. Front Microbiol 2023; 14:1305848. [PMID: 38029209 PMCID: PMC10663303 DOI: 10.3389/fmicb.2023.1305848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Protein splicing is a posttranslational process in which an intein segment excises itself from two flanking peptides, referred to as exteins. In the native context, protein splicing results in two separate protein products coupled to the activation of the intein-containing host protein. Inteins are generally described as either full-length inteins, mini-inteins or split inteins, which are differentiated by their genetic structure and features. Inteins can also be divided into three classes based on their splicing mechanisms, which differ in the location of conserved residues that mediate the splicing pathway. Although inteins were once thought to be selfish genetic elements, recent evidence suggests that inteins may confer a genetic advantage to their host cells through posttranslational regulation of their host proteins. Finally, the ability of modified inteins to splice and cleave their fused exteins has enabled many new applications in protein science and synthetic biology. In this review, we briefly cover the mechanisms of protein splicing, evidence for some inteins as environmental sensors, and intein-based applications in protein engineering.
Collapse
Affiliation(s)
- David W. Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, United States
| | - Christopher W. Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
8
|
de Groot A, Blanchard L. DNA repair and oxidative stress defense systems in radiation-resistant Deinococcus murrayi. Can J Microbiol 2023; 69:416-431. [PMID: 37552890 DOI: 10.1139/cjm-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Deinococcus murrayi is a bacterium isolated from hot springs in Portugal, and named after Dr. Robert G.E. Murray in recognition of his research on the genus Deinococcus. Like other Deinococcus species, D. murrayi is extremely resistant to ionizing radiation. Repair of massive DNA damage and limitation of oxidative protein damage are two important factors contributing to the robustness of Deinococcus bacteria. Here, we identify, among others, the DNA repair and oxidative stress defense proteins in D. murrayi, and highlight special features of D. murrayi. For DNA repair, D. murrayi does not contain a standalone uracil-DNA glycosylase (Ung), but it encodes a protein in which Ung is fused to a DNA photolyase domain (PhrB). UvrB and UvrD contain large insertions corresponding to inteins. One of its endonuclease III enzymes lacks a [4Fe-4S] cluster. Deinococcus murrayi possesses a homolog of the error-prone DNA polymerase IV. Concerning oxidative stress defense, D. murrayi encodes a manganese catalase in addition to a heme catalase. Its organic hydroperoxide resistance protein Ohr is atypical because the redox active cysteines are present in a CXXC motif. These and other characteristics of D. murrayi show further diversity among Deinococcus bacteria with respect to resistance-associated mechanisms.
Collapse
Affiliation(s)
- Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| | - Laurence Blanchard
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| |
Collapse
|
9
|
Clark ET, Sievers EE, Debelouchina GT. A Chemical Biology Primer for NMR Spectroscopists. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100044. [PMID: 35494416 PMCID: PMC9053072 DOI: 10.1016/j.jmro.2022.100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among structural biology techniques, NMR spectroscopy offers unique capabilities that enable the atomic resolution studies of dynamic and heterogeneous biological systems under physiological and native conditions. Complex biological systems, however, often challenge NMR spectroscopists with their low sensitivity, crowded spectra or large linewidths that reflect their intricate interaction patterns and dynamics. While some of these challenges can be overcome with the development of new spectroscopic approaches, chemical biology can also offer elegant and efficient solutions at the sample preparation stage. In this tutorial, we aim to present several chemical biology tools that enable the preparation of selectively and segmentally labeled protein samples, as well as the introduction of site-specific spectroscopic probes and post-translational modifications. The four tools covered here, namely cysteine chemistry, inteins, native chemical ligation, and unnatural amino acid incorporation, have been developed and optimized in recent years to be more efficient and applicable to a wider range of proteins than ever before. We briefly introduce each tool, describe its advantages and disadvantages in the context of NMR experiments, and offer practical advice for sample preparation and analysis. We hope that this tutorial will introduce beginning researchers in the field to the possibilities chemical biology can offer to NMR spectroscopists, and that it will inspire new and exciting applications in the quest to understand protein function in health and disease.
Collapse
Affiliation(s)
- Evan T. Clark
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Elanor E. Sievers
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Corresponding author: Galia Debelouchina, University of California, San Diego, Natural Sciences Building 4322, 9500 Gilman Dr., La Jolla, CA 92093, 858-534-3038,
| |
Collapse
|
10
|
Prabhala SV, Gierach I, Wood DW. The Evolution of Intein-Based Affinity Methods as Reflected in 30 years of Patent History. Front Mol Biosci 2022; 9:857566. [PMID: 35463948 PMCID: PMC9033041 DOI: 10.3389/fmolb.2022.857566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Self-cleaving affinity tags, based on engineered intein protein domains, have been touted as a universal single step purification platform for tagless non-mAb proteins. These approaches provide all of the power and flexibility of tag-based affinity methods, but deliver a tagless target protein suitable for clinical applications without complex process development. This combination of features might accelerate and de-risk biopharmaceutical development by bridging early discovery to full-scale manufacturing under a single platform. Despite this profound promise, intein-based technologies have yet to reach their full potential. This review examines the evolution of intein-based purification methods in the light of several significant intein patents filed over the last 3 decades. Illustrated with actual key figures from each of the relevant patents, key advances are described with a focus on applications in basic research and biopharmaceutical production. Suggestions for extending intein-based purification systems to emerging therapies and non-protein applications are presented as concluding remarks.
Collapse
Affiliation(s)
- Sai Vivek Prabhala
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | | | - David W. Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States,Protein Capture Science, Columbus, OH, United States,*Correspondence: David W. Wood,
| |
Collapse
|
11
|
SufB intein splicing in Mycobacterium tuberculosis is influenced by two remote conserved N-extein histidines. Biosci Rep 2022; 42:230724. [PMID: 35234249 PMCID: PMC8891592 DOI: 10.1042/bsr20212207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Inteins are auto-processing domains that implement a multistep biochemical reaction termed protein splicing, marked by cleavage and formation of peptide bonds. They excise from a precursor protein, generating a functional protein via covalent bonding of flanking exteins. We report the kinetic study of splicing and cleavage reaction in [Fe–S] cluster assembly protein SufB from Mycobacterium tuberculosis (Mtu). Although it follows a canonical intein splicing pathway, distinct features are added by extein residues present in the active site. Sequence analysis identified two conserved histidines in the N-extein region; His-5 and His-38. Kinetic analyses of His-5Ala and His-38Ala SufB mutants exhibited significant reductions in splicing and cleavage rates relative to the SufB wildtype (WT) precursor protein. Structural analysis and molecular dynamics (MD) simulations suggested that Mtu SufB displays a unique mechanism where two remote histidines work concurrently to facilitate N-terminal cleavage reaction. His-38 is stabilized by the solvent-exposed His-5, and can impact N–S acyl shift by direct interaction with the catalytic Cys1. Development of inteins as biotechnological tools or as pathogen-specific novel antimicrobial targets requires a more complete understanding of such unexpected roles of conserved extein residues in protein splicing.
Collapse
|
12
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Yalala VR, Lynch AK, Mills KV. Conditional Alternative Protein Splicing Promoted by Inteins from Haloquadratum walsbyi. Biochemistry 2022; 61:294-302. [PMID: 35073064 PMCID: PMC8847336 DOI: 10.1021/acs.biochem.1c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein splicing is a post-translational process by which an intervening protein, or an intein, catalyzes its own excision from flanking polypeptides, or exteins, coupled to extein ligation. Four inteins interrupt the MCM helicase of the halophile Haloquadratum walsbyi, two of which are mini-inteins that lack a homing endonuclease. Both inteins can be overexpressed in Escherichia coli and purified as unspliced precursors; splicing can be induced in vitro by incubation with salt. However, one intein can splice in 0.5 M NaCl in vitro, whereas the other splices efficiently only in buffer containing over 2 M NaCl; the organism also requires high salt to grow, with the standard growth media containing over 3 M NaCl and about 0.75 M magnesium salts. Consistent with this difference in salt-dependent activity, an intein-containing precursor protein with both inteins promotes conditional alternative protein splicing (CAPS) to yield different spliced products dependent on the salt concentration. Native Trp fluorescence of the inteins suggests that the difference in activity may be due to partial unfolding of the inteins at lower salt concentrations. This differential salt sensitivity of intein activity may provide a useful mechanism for halophiles to respond to environmental changes.
Collapse
Affiliation(s)
- Vaishnavi R Yalala
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Abigeal K Lynch
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
14
|
Nanda A, Nasker SS, Kushwaha AK, Ojha DK, Dearden AK, Nayak SK, Nayak S. Gold Nanoparticles Augment N-Terminal Cleavage and Splicing Reactions in Mycobacterium tuberculosis SufB. Front Bioeng Biotechnol 2021; 9:773303. [PMID: 35004641 PMCID: PMC8735848 DOI: 10.3389/fbioe.2021.773303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Protein splicing is a self-catalyzed event where the intervening sequence intein cleaves off, joining the flanking exteins together to generate a functional protein. Attempts have been made to regulate the splicing rate through variations in temperature, pH, and metals. Although metal-regulated protein splicing has been more captivating to researchers, metals were shown to only inhibit splicing reactions that confine their application. This is the first study to show the effect of nanoparticles (NPs) on protein splicing. We found that gold nanoparticles (AuNPs) of various sizes can increase the splicing efficiency by more than 50% and the N-terminal cleavage efficiency by more than 45% in Mycobacterium tuberculosis SufB precursor protein. This study provides an effective strategy for engineering splicing-enhanced intein platforms. UV-vis absorption spectroscopy, isothermal titration calorimetry (ITC), and transmission electron microscopy (TEM) confirmed AuNP interaction with the native protein. Quantum mechanics/molecular mechanics (QM/MM) analysis suggested a significant reduction in the energy barrier at the N-terminal cleavage site in the presence of gold atom, strengthening our experimental evidence on heightened the N-terminal cleavage reaction. The encouraging observation of enhanced N-terminal cleavage and splicing reaction can have potential implementations from developing a rapid drug delivery system to designing a contemporary protein purification system.
Collapse
Affiliation(s)
- Ananya Nanda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Sourya Subhra Nasker
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Anoop K. Kushwaha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Deepak Kumar Ojha
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Albert K. Dearden
- Departments of Physics and Astronomy, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Saroj K. Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
15
|
Arbab S, Ullah H, Khan MIU, Khattak MNK, Zhang J, Li K, Hassan IU. Diversity and distribution of thermophilic microorganisms and their applications in biotechnology. J Basic Microbiol 2021; 62:95-108. [PMID: 34878177 DOI: 10.1002/jobm.202100529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 11/07/2022]
Abstract
Hot springs ecosystem is the most ancient continuously inhabited ecosystem on earth which harbors diverse thermophilic bacteria and archaea distributed worldwide. Life in extreme environments is very challenging so there is a great potential biological dark matter and their adaptation to harsh environments eventually producing thermostable enzymes which are very vital for the welfare of mankind. There is an enormous need for a new generation of stable enzymes that can endure harsh conditions in industrial processes and can either substitute or complement conventional chemical processes. Here, we review at the variety and distribution of thermophilic microbes, as well as the different thermostable enzymes that help them survive at high temperatures, such as proteases, amylases, lipases, cellulases, pullulanase, xylanases, and DNA polymerases, as well as their special properties, such as high-temperature stability. We have documented the novel isolated thermophilic and hyperthermophilic microorganisms, as well as the discovery of their enzymes, demonstrating their immense potential in the scientific community and in industry.
Collapse
Affiliation(s)
- Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hanif Ullah
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad I U Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Muhammad N K Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ka Li
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University, Manshera, Pakistan
| |
Collapse
|
16
|
Abstract
Intervening proteins, or inteins, are mobile genetic elements that are translated within host polypeptides and removed at the protein level by splicing. In protein splicing, a self-mediated reaction removes the intein, leaving a peptide bond in place. While protein splicing can proceed in the absence of external cofactors, several examples of conditional protein splicing (CPS) have emerged. In CPS, the rate and accuracy of splicing are highly dependent on environmental conditions. Because the activity of the intein-containing host protein is compromised prior to splicing and inteins are highly abundant in the microbial world, CPS represents an emerging form of posttranslational regulation that is potentially widespread in microbes. Reactive chlorine species (RCS) are highly potent oxidants encountered by bacteria in a variety of natural environments, including within cells of the mammalian innate immune system. Here, we demonstrate that two naturally occurring RCS, namely, hypochlorous acid (the active compound in bleach) and N-chlorotaurine, can reversibly block splicing of DnaB inteins from Mycobacterium leprae and Mycobacterium smegmatis in vitro. Further, using a reporter that monitors DnaB intein activity within M. smegmatis, we show that DnaB protein splicing is inhibited by RCS in the native host. DnaB, an essential replicative helicase, is the most common intein-housing protein in bacteria. These results add to the growing list of environmental conditions that are relevant to the survival of the intein-containing host and influence protein splicing, as well as suggesting a novel mycobacterial response to RCS. We propose a model in which DnaB splicing, and therefore replication, is paused when these mycobacteria encounter RCS. IMPORTANCE Inteins are both widespread and abundant in microbes, including within several bacterial and fungal pathogens. Inteins are domains translated within host proteins and removed at the protein level by splicing. Traditionally considered molecular parasites, some inteins have emerged in recent years as adaptive posttranslational regulatory elements. Several studies have demonstrated CPS, in which the rate and accuracy of protein splicing, and thus host protein functions, are responsive to environmental conditions relevant to the intein-containing organism. In this work, we demonstrate that two naturally occurring RCS, including the active compound in household bleach, reversibly inhibit protein splicing of Mycobacterium leprae and Mycobacterium smegmatis DnaB inteins. In addition to describing a new physiologically relevant condition that can temporarily inhibit protein splicing, this study suggests a novel stress response in Mycobacterium, a bacterial genus of tremendous importance to humans.
Collapse
|
17
|
Woods D, LeSassier DS, Egbunam I, Lennon CW. Construction and Quantitation of a Selectable Protein Splicing Sensor Using Gibson Assembly and Spot Titers. Curr Protoc 2021; 1:e82. [PMID: 33739627 DOI: 10.1002/cpz1.82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inteins (intervening proteins) are translated within host proteins and removed through protein splicing. Conditional protein splicing (CPS), where the rate and accuracy of splicing are highly dependent on environmental cues, has emerged as a novel form of post-translational regulation. While CPS has been demonstrated for several inteins in vitro, a comprehensive understanding of inteins requires tools to quantitatively monitor their activity within the cellular context. Here, we describe a method for construction of a splicing-dependent system that can be used to quantitatively assay for conditions that modulate protein splicing. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Construction of an intein-containing KanR2 library using Gibson assembly Basic Protocol 2: Phenotype determination using quantitative spot titers Support Protocol 1: Preparation of LB agar plates for spot titers Support Protocol 2: Preparation and transformation of competent M. smegmatis cells.
Collapse
Affiliation(s)
- Daniel Woods
- Wadsworth Center, New York State Department of Health, Albany, New York
| | | | | | | |
Collapse
|
18
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
19
|
Kawase M, Fujioka M, Takahashi T. Activation of Protease and Luciferase Using Engineered Nostoc punctiforme PCC73102 DnaE Intein with Altered Split Position. Chembiochem 2020; 22:577-584. [PMID: 32969142 DOI: 10.1002/cbic.202000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Inteins, self-catalytic enzymes, have been widely used in the field of protein engineering and chemical biology. Here, Nostoc punctiforme PCC73102 (Npu) DnaE intein was engineered to have an altered split position. An 11-residue N-intein of DnaE in which Gly and Asp were substituted for Tyr4 and Glu5, respectively, was designed, and the active C-intein variants were acquired by a GFP fluorescence-based screening. The designed N-intein and the obtained active C-intein variants were used to construct a turn-on system for enzyme activities such as human immunodeficiency 1 protease and NanoLuc luciferase. Based on the NanoLuc-intein fusion, we developed two intein pairs, each of which is capable of reacting preferentially, by interchanging the charged amino acids on N- and C-inteins. The specific splicing reactions were easily monitored and discriminated by bioluminescence resonance energy transfer (BRET).
Collapse
Affiliation(s)
- Misaki Kawase
- Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Meiko Fujioka
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Tsuyoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
20
|
Woods D, Vangaveti S, Egbanum I, Sweeney AM, Li Z, Bacot-Davis V, LeSassier DS, Stanger M, Hardison GE, Li H, Belfort M, Lennon CW. Conditional DnaB Protein Splicing Is Reversibly Inhibited by Zinc in Mycobacteria. mBio 2020; 11:e01403-20. [PMID: 32665276 PMCID: PMC7360933 DOI: 10.1128/mbio.01403-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Inteins, as posttranslational regulatory elements, can tune protein function to environmental changes by conditional protein splicing (CPS). Translated as subdomains interrupting host proteins, inteins splice to scarlessly join flanking sequences (exteins). We used DnaB-intein1 (DnaBi1) from a replicative helicase of Mycobacterium smegmatis to build a kanamycin intein splicing reporter (KISR) that links splicing of DnaBi1 to kanamycin resistance. Using expression in heterologous Escherichia coli, we observed phenotypic classes of various levels of splicing-dependent resistance (SDR) and related these to the insertion position of DnaBi1 within the kanamycin resistance protein (KanR). The KanR-DnaBi1 construct demonstrating the most stringent SDR was used to probe for CPS of DnaB in the native host environment, M. smegmatis We show here that zinc, important during mycobacterial pathogenesis, inhibits DnaB splicing in M. smegmatis Using an in vitro reporter system, we demonstrated that zinc potently and reversibly inhibited DnaBi1 splicing, as well as splicing of a comparable intein from Mycobacterium leprae Finally, in a 1.95 Å crystal structure, we show that zinc inhibits splicing through binding to the very cysteine that initiates the splicing reaction. Together, our results provide compelling support for a model whereby mycobacterial DnaB protein splicing, and thus DNA replication, is responsive to environmental zinc.IMPORTANCE Inteins are present in a large fraction of prokaryotes and localize within conserved proteins, including the mycobacterial replicative helicase DnaB. In addition to their extensive protein engineering applications, inteins have emerged as environmentally responsive posttranslational regulators of the genes that encode them. While several studies have shown compelling evidence of conditional protein splicing (CPS), examination of splicing in the native host of the intein has proven to be challenging. Here, we demonstrated through a number of measures, including the use of a splicing-dependent sensor capable of monitoring intein activity in the native host, that zinc is a potent and reversible inhibitor of mycobacterial DnaB splicing. This work also expands our knowledge of site selection for intein insertion within nonnative proteins, demonstrating that splicing-dependent host protein activation correlates with proximity to the active site. Additionally, we surmise that splicing regulation by zinc has mycobacteriocidal and CPS application potential.
Collapse
Affiliation(s)
- Daniel Woods
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, Albany, New York, USA
| | - Ikechukwu Egbanum
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Allison M Sweeney
- Department of Biology, Murray State University, Murray, Kentucky, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Valjean Bacot-Davis
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | - Matthew Stanger
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | | | - Hongmin Li
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marlene Belfort
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- The RNA Institute, University at Albany, Albany, New York, USA
| | | |
Collapse
|
21
|
Chiarolanzio KC, Pusztay JM, Chavez A, Zhao J, Xie J, Wang C, Mills KV. Allosteric Influence of Extremophile Hairpin Motif Mutations on the Protein Splicing Activity of a Hyperthermophilic Intein. Biochemistry 2020; 59:2459-2467. [PMID: 32559373 DOI: 10.1021/acs.biochem.0c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein splicing is a post-translational process mediated by an intein, whereby the intein excises itself from a precursor protein with concomitant ligation of the two flanking polypeptides. The intein that interrupts the DNA polymerase II in the extreme hyperthermophile Pyrococcus abyssi has a β-hairpin that extends the central β-sheet of the intein. This β-hairpin is mostly found in inteins from archaea, as well as halophilic eubacteria, and is thus called the extremophile hairpin (EXH) motif. The EXH is stabilized by multiple favorable interactions, including electrostatic interactions involving Glu29, Glu31, and Arg40. Mutations of these residues diminish the extent of N-terminal cleavage and the extent of protein splicing, likely by interfering with the coordination of the steps of splicing. These same mutations decrease the global stability of the intein fold as measured by susceptibility to thermolysin cleavage. 15N-1H heteronuclear single-quantum coherence demonstrated that these mutations altered the chemical environment of active site residues such as His93 (B-block histidine) and Ser166 (F-block residue 4). This work again underscores the connected and coordinated nature of intein conformation and dynamics, where remote mutations can disturb a finely tuned interaction network to inhibit or enhance protein splicing.
Collapse
Affiliation(s)
- Kathryn C Chiarolanzio
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Jennifer M Pusztay
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Angel Chavez
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Jing Zhao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Xie
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
22
|
Yang F, Jin H, Wang XQ, Li Q, Zhang JT, Cui N, Jiang YL, Chen Y, Wu QF, Zhou CZ, Li WF. Genomic Analysis of Mic1 Reveals a Novel Freshwater Long-Tailed Cyanophage. Front Microbiol 2020; 11:484. [PMID: 32322241 PMCID: PMC7156551 DOI: 10.3389/fmicb.2020.00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Lake Chaohu, one of the five largest freshwater lakes in China, has been suffering from severe cyanobacterial blooms in the summer for many years. Cyanophages, the viruses that specifically infect cyanobacteria, play a key role in modulating cyanobacterial population, and thus regulate the emergence and decline of cyanobacterial blooms. Here we report a long-tailed cyanophage isolated from Lake Chaohu, termed Mic1, which specifically infects the cyanobacterium Microcystis aeruginosa. Mic1 has an icosahedral head of 88 nm in diameter and a long flexible tail of 400 nm. It possesses a circular genome of 92,627 bp, which contains 98 putative open reading frames. Genome sequence analysis enabled us to define a novel terminase large subunit that consists of two types of intein, indicating that the genome packaging of Mic1 is under fine control via posttranslational maturation of the terminase. Moreover, phylogenetic analysis suggested Mic1 and mitochondria share a common evolutionary origin of DNA polymerase γ gene. All together, these findings provided a start-point for investigating the co-evolution of cyanophages and its cyanobacterial hosts.
Collapse
Affiliation(s)
- Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiao-Qian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Abstract
While the model bacteria Escherichia coli and Bacillus subtilis harbor single chromosomes, which is known as monoploidy, some freshwater cyanobacteria contain multiple chromosome copies per cell throughout their cell cycle, which is known as polyploidy. In the model cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, chromosome copy number (ploidy) is regulated in response to growth phase and environmental factors. In S. elongatus 7942, chromosome replication is asynchronous both among cells and chromosomes. Comparative analysis of S. elongatus 7942 and S. sp. 6803 revealed a variety of DNA replication mechanisms. In this review, the current knowledge of ploidy and DNA replication mechanisms in cyanobacteria is summarized together with information on the features common with plant chloroplasts. It is worth noting that the occurrence of polyploidy and its regulation are correlated with certain cyanobacterial lifestyles and are shared between some cyanobacteria and chloroplasts. ABBREVIATIONS NGS: next-generation sequencing; Repli-seq: replication sequencing; BrdU: 5-bromo-2'-deoxyuridine; TK: thymidine kinase; GCSI: GC skew index; PET: photosynthetic electron transport; RET: respiration electron transport; Cyt b6f complex: cytochrome b6f complex; PQ: plastoquinone; PC: plastocyanin.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
24
|
Abstract
In recent years, split inteins have seen widespread use as molecular platforms for the design of a variety of peptide and protein chemistry technologies, most notably protein ligation. The development of these approaches is dependent on the identification and/or design of split inteins with robust activity, stability, and solubility. Here, we describe two approaches to characterize and compare the activities of newly identified or engineered split inteins. The first assay employs an E. coli-based selection system to rapidly screen the activities of many inteins and can be repurposed for directed evolution. The second assay utilizes reverse-phase high-performance liquid chromatography (RP-HPLC) to provide insights into individual chemical steps in the protein splicing reaction, information that can guide further engineering efforts. These techniques provide useful alternatives to common assays that utilize SDS-PAGE to analyze splicing reaction progress.
Collapse
|
25
|
Green CM, Li Z, Smith AD, Novikova O, Bacot-Davis VR, Gao F, Hu S, Banavali NK, Thiele DJ, Li H, Belfort M. Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. PLoS Biol 2019; 17:e3000104. [PMID: 31600193 PMCID: PMC6805012 DOI: 10.1371/journal.pbio.3000104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 10/22/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
The spliceosome is a large ribonucleoprotein complex that removes introns from pre-mRNAs. At its functional core lies the essential pre-mRNA processing factor 8 (Prp8) protein. Across diverse eukaryotes, this protein cofactor of RNA catalysis harbors a self-splicing element called an intein. Inteins in Prp8 are extremely pervasive and are found at 7 different sites in various species. Here, we focus on the Prp8 intein from Cryptococcus neoformans (Cne), a human fungal pathogen. We solved the crystal structure of this intein, revealing structural homology among protein splicing sequences in eukaryotes, including the Hedgehog C terminus. Working with the Cne Prp8 intein in a reporter assay, we find that the biologically relevant divalent metals copper and zinc inhibit intein splicing, albeit by 2 different mechanisms. Copper likely stimulates reversible modifications on a catalytically important cysteine, whereas zinc binds at the terminal asparagine and the same critical cysteine. Importantly, we also show that copper treatment inhibits Prp8 protein splicing in Cne. Lastly, an intein-containing Prp8 precursor model is presented, suggesting that metal-induced protein splicing inhibition would disturb function of both Prp8 and the spliceosome. These results indicate that Prp8 protein splicing can be modulated, with potential functional implications for the spliceosome.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Zhong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Aaron D. Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Valjean R. Bacot-Davis
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Fengshan Gao
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Saiyang Hu
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Nilesh K. Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hongmin Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America,* E-mail: (MB); (HL)
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America,* E-mail: (MB); (HL)
| |
Collapse
|
26
|
Lennon CW, Stanger MJ, Belfort M. Mechanism of Single-Stranded DNA Activation of Recombinase Intein Splicing. Biochemistry 2019; 58:3335-3339. [PMID: 31318538 DOI: 10.1021/acs.biochem.9b00506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inteins, or intervening proteins, are mobile genetic elements translated within host polypeptides and removed through protein splicing. This self-catalyzed process breaks two peptide bonds and rejoins the flanking sequences, called N- and C-exteins, with the intein scarlessly escaping the host protein. As these elements have traditionally been viewed as purely selfish genetic elements, recent work has demonstrated that the conditional protein splicing (CPS) of several naturally occurring inteins can be regulated by a variety of environmental cues relevant to the survival of the host organism or crucial to the invading protein function. The RadA recombinase from the archaeon Pyrococcus horikoshii represents an intriguing example of CPS, whereby protein splicing is inhibited by interactions between the intein and host protein C-extein. Single-stranded DNA (ssDNA), a natural substrate of RadA as well as signal that recombinase activity is needed by the cell, dramatically improves the splicing rate and accuracy. Here, we investigate the mechanism by which ssDNA exhibits this influence and find that ssDNA strongly promotes a specific step of the splicing reaction, cyclization of the terminal asparagine of the intein. Interestingly, inhibitory interactions between the host protein and intein that block splicing localize to this asparagine, suggesting that ssDNA binding alleviates this inhibition to promote splicing. We also find that ssDNA directly influences the position of catalytic nucleophiles required for protein splicing, implying that ssDNA promotes assembly of the intein active site. This work advances our understanding of how ssDNA accelerates RadA splicing, providing important insights into this intriguing example of CPS.
Collapse
Affiliation(s)
- Christopher W Lennon
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Matthew J Stanger
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| |
Collapse
|
27
|
Garcia Garces H, Hamae Yamauchi D, Theodoro RC, Bagagli E. PRP8 Intein in Onygenales: Distribution and Phylogenetic Aspects. Mycopathologia 2019; 185:37-49. [PMID: 31286362 DOI: 10.1007/s11046-019-00355-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022]
Abstract
Inteins (internal proteins) are mobile genetic elements, inserted in housekeeping proteins, with self-splicing properties. Some of these elements have been recently pointed out as modulators of genetic expression or protein function. Herein, we evaluated, in silico, the distribution and phylogenetic patterns of PRP8 intein among 93 fungal strains of the order Onygenales. PRP8 intein(s) are present in most of the species (45/49), mainly as full-length inteins (containing both the Splicing and the Homing Endonuclease domains), and must have transferred vertically in all lineages, since their phylogeny reflects the group phylogeny. While the distribution of PRP8 intein(s) varies among species of Onygenaceae family, being absent in Coccidioides spp. and present as full and mini-intein in other species, they are consistently observed as full-length inteins in all evaluated pathogenic species of the Arthrodermataceae and Ajellomycetaceae families. This conservative and massive PRP8 intein presence in Ajellomycetacean and Arthrodermatecean species reinforces the previous idea that such genetic elements do not decrease the fungal fitness significantly and even might play some role in the host-pathogen relationship, at least in these two fungal groups. We may better position the species Ophidiomyces ophiodiicola (with no intein) in the Onygenaceae family and Onygena corvina (with a full-length intein) as a basal member in the Arthrodermataceae family.
Collapse
Affiliation(s)
- Hans Garcia Garces
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, State University of Sao Paulo (UNESP), Botucatu, São Paulo, Brazil
| | - Danielle Hamae Yamauchi
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, State University of Sao Paulo (UNESP), Botucatu, São Paulo, Brazil
| | - Raquel Cordeiro Theodoro
- Tropical Medicine Institute of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Eduardo Bagagli
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, State University of Sao Paulo (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
28
|
Li Z, Fu B, Green CM, Liu B, Zhang J, Lang Y, Chaturvedi S, Belfort M, Liao G, Li H. Cisplatin protects mice from challenge of Cryptococcus neoformans by targeting the Prp8 intein. Emerg Microbes Infect 2019; 8:895-908. [PMID: 31223062 PMCID: PMC6598491 DOI: 10.1080/22221751.2019.1625727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The Prp8 intein is one of the most widespread eukaryotic inteins, present in important pathogenic fungi, including Cryptococcus and Aspergillus species. Because the processed Prp8 carries out essential and non-redundant cellular functions, a Prp8 intein inhibitor is a mechanistically novel antifungal agent. In this report, we demonstrated that cisplatin, an FDA-approved cancer drug, significantly arrested growth of Prp8 intein-containing fungi C. neoformans and C. gattii, but only poorly inhibited growth of intein-free Candida species. These results suggest that cisplatin arrests fungal growth through specific inhibition of the Prp8 intein. Cisplatin was also found to significantly inhibit growth of C. neoformans in a mouse model. Our results further showed that cisplatin inhibited Prp8 intein splicing in vitro in a dose-dependent manner by direct binding to the Prp8 intein. Crystal structures of the apo- and cisplatin-bound Prp8 inteins revealed that two degenerate cisplatin molecules bind at the intein active site. Mutation of the splicing-site residues led to loss of cisplatin binding, as well as impairment of intein splicing. Finally, we found that overexpression of the Prp8 intein in cryptococcal species conferred cisplatin resistance. Overall, these results indicate that the Prp8 intein is a novel antifungal target worth further investigation.
Collapse
Affiliation(s)
- Zhong Li
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Bin Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, USA
| | - Binbin Liu
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Jing Zhang
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Yuekun Lang
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Sudha Chaturvedi
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Hongmin Li
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
29
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
30
|
Kelley DS, Lennon CW, Li Z, Miller MR, Banavali NK, Li H, Belfort M. Mycobacterial DnaB helicase intein as oxidative stress sensor. Nat Commun 2018; 9:4363. [PMID: 30341292 PMCID: PMC6195587 DOI: 10.1038/s41467-018-06554-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
Inteins are widespread self-splicing protein elements emerging as potential post-translational environmental sensors. Here, we describe two inteins within one protein, the Mycobacterium smegmatis replicative helicase DnaB. These inteins, DnaBi1 and DnaBi2, have homology to inteins in pathogens, splice with vastly varied rates, and are differentially responsive to environmental stressors. Whereas DnaBi1 splicing is reversibly inhibited by oxidative and nitrosative insults, DnaBi2 is not. Using a reporter that measures splicing in a native intein-containing organism and western blotting, we show that H2O2 inhibits DnaBi1 splicing in M. smegmatis. Intriguingly, upon oxidation, the catalytic cysteine of DnaBi1 forms an intramolecular disulfide bond. We report a crystal structure of the class 3 DnaBi1 intein at 1.95 Å, supporting our findings and providing insight into this splicing mechanism. We propose that this cysteine toggle allows DnaBi1 to sense stress, pausing replication to maintain genome integrity, and then allowing splicing immediately when permissive conditions return.
Collapse
Affiliation(s)
- Danielle S Kelley
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA
| | - Christopher W Lennon
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, 12222, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA
| | - Michael R Miller
- Department of Chemistry, University at Albany, Albany, NY, 12222, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA
| | - Hongmin Li
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA.
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA.
| | - Marlene Belfort
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA.
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, 12222, USA.
| |
Collapse
|
31
|
Pavankumar TL. Inteins: Localized Distribution, Gene Regulation, and Protein Engineering for Biological Applications. Microorganisms 2018; 6:E19. [PMID: 29495613 PMCID: PMC5874633 DOI: 10.3390/microorganisms6010019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/24/2018] [Accepted: 02/25/2018] [Indexed: 11/25/2022] Open
Abstract
Inteins are self-splicing polypeptides with an ability to excise themselves from flanking host protein regions with remarkable precision; in the process, they ligate flanked host protein fragments. Inteins are distributed sporadically across all three domains of life (bacteria, archaea, and unicellular eukaryotes). However, their apparent localized distribution in DNA replication, repair, and recombination proteins (the 3Rs), particularly in bacteria and archaea, is enigmatic. Our understanding of the localized distribution of inteins in the 3Rs, and their possible regulatory role in such distribution, is still only partial. Nevertheless, understanding the chemistry of post-translational self-splicing of inteins has opened up opportunities for protein chemists to modify, manipulate, and bioengineer proteins. Protein-splicing technology is adapted to a wide range of applications, starting with untagged protein purification, site-specific protein labeling, protein biotinylation, isotope incorporation, peptide cyclization, as an antimicrobial target, and so on. This review is focused on the chemistry of splicing; the localized distribution of inteins, particularly in the 3Rs and their possible role in regulating host protein function; and finally, the use of protein-splicing technology in various protein engineering applications.
Collapse
Affiliation(s)
- Theetha L Pavankumar
- Department of Microbiology and Molecular Genetics, Briggs Hall, One Shields Ave, University of California, Davis, CA 95616, USA.
| |
Collapse
|
32
|
Abstract
Inteins are intervening proteins that undergo an autocatalytic splicing reaction that ligates flanking host protein sequences termed exteins. Some intein-containing proteins have evolved to couple splicing to environmental signals; this represents a new form of posttranslational regulation. Of particular interest is RadA from the archaeon Pyrococcus horikoshii, for which long-range intein-extein interactions block splicing, requiring temperature and single-stranded DNA (ssDNA) substrate to splice rapidly and accurately. Here, we report that splicing of the intein-containing RadA from another archaeon, Thermococcus sibericus, is activated by significantly lower temperatures than is P. horikoshii RadA, consistent with differences in their growth environments. Investigation into variations between T. sibericus and P. horikoshii RadA inteins led to the discovery that a nonconserved region (NCR) of the intein, a flexible loop where a homing endonuclease previously resided, is critical to splicing. Deletion of the NCR leads to a substantial loss in the rate and accuracy of P. horikoshii RadA splicing only within native exteins. The influence of the NCR deletion can be largely overcome by ssDNA, demonstrating that the splicing-competent conformation can be achieved. We present a model whereby the NCR is a flexible hinge which acts as a switch by controlling distant intein-extein interactions that inhibit active site assembly. These results speak to the repurposing of the vestigial endonuclease loop to control an intein-extein partnership, which ultimately allows exquisite adaptation of protein splicing upon changes in the environment. Inteins are mobile genetic elements that interrupt coding sequences (exteins) and are removed by protein splicing. They are abundant elements in microbes, and recent work has demonstrated that protein splicing can be controlled by environmental cues, including the substrate of the intein-containing protein. Here, we describe an intein-extein collaboration that controls temperature-induced splicing of RadA from two archaea and how variation in this intein-extein partnership results in fine-tuning of splicing to closely match the environment. Specifically, we found that a small sequence difference between the two inteins, a flexible loop that likely once housed a homing endonuclease used for intein mobility, acts as a switch to control intein-extein interactions that block splicing. Our results argue strongly that some inteins have evolved away from a purely parasitic lifestyle to control the activity of host proteins, representing a new form of posttranslational regulation that is potentially widespread in the microbial world.
Collapse
|
33
|
Green CM, Novikova O, Belfort M. The dynamic intein landscape of eukaryotes. Mob DNA 2018; 9:4. [PMID: 29416568 PMCID: PMC5784728 DOI: 10.1186/s13100-018-0111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Inteins are mobile, self-splicing sequences that interrupt proteins and occur across all three domains of life. Scrutiny of the intein landscape in prokaryotes led to the hypothesis that some inteins are functionally important. Our focus shifts to eukaryotic inteins to assess their diversity, distribution, and dissemination, with the aim to comprehensively evaluate the eukaryotic intein landscape, understand intein maintenance, and dissect evolutionary relationships. RESULTS This bioinformatics study reveals that eukaryotic inteins are scarce, but present in nuclear genomes of fungi, chloroplast genomes of algae, and within some eukaryotic viruses. There is a preponderance of inteins in several fungal pathogens of humans and plants. Inteins are pervasive in certain proteins, including the nuclear RNA splicing factor, Prp8, and the chloroplast DNA helicase, DnaB. We find that eukaryotic inteins frequently localize to unstructured loops of the host protein, often at highly conserved sites. More broadly, a sequence similarity network analysis of all eukaryotic inteins uncovered several routes of intein mobility. Some eukaryotic inteins appear to have been acquired through horizontal transfer with dsDNA viruses, yet other inteins are spread through intragenomic transfer. Remarkably, endosymbiosis can explain patterns of DnaB intein inheritance across several algal phyla, a novel mechanism for intein acquisition and distribution. CONCLUSIONS Overall, an intriguing picture emerges for how the eukaryotic intein landscape arose, with many evolutionary forces having contributed to its current state. Our collective results provide a framework for exploring inteins as novel regulatory elements and innovative drug targets.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| |
Collapse
|
34
|
Belfort M. Mobile self-splicing introns and inteins as environmental sensors. Curr Opin Microbiol 2017; 38:51-58. [PMID: 28482231 DOI: 10.1016/j.mib.2017.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Self-splicing introns and inteins are often mobile at the level of the genome. Although these RNA and protein elements, respectively, are generally considered to be selfish parasites, group I and group II introns and inteins can be triggered by environmental cues to splice and/or to mobilize. These cues include stressors such as oxidizing agents, reactive oxygen and nitrogen species, starvation, temperature, osmolarity and DNA damage. Their sensitivity to these stimuli leads to a carefully choreographed dance between the mobile element and its host that is in tune with the cellular environment. This responsiveness to a changing milieu provides strong evidence that these diverse, self-splicing mobile elements have adapted to react to prevailing conditions, to the potential advantage of both the element and its host.
Collapse
Affiliation(s)
- Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Life Sciences Research Building 2061, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
35
|
|