1
|
Alonso-González A, Véliz-Flores I, Tosco-Herrera E, González-Barbuzano S, Mendoza-Alvarez A, Galván-Fernández H, Sastre L, Fernández-Varas B, Corrales A, Rubio-Rodríguez LA, Jáspez D, Lorenzo-Salazar JM, Molina-Molina M, Rodríguez-de-Castro F, González-Montelongo R, Flores C. A tiered strategy to identify relevant genetic variants in familial pulmonary fibrosis: a proof of concept for the clinical practice. Eur J Hum Genet 2025:10.1038/s41431-024-01772-y. [PMID: 39748130 DOI: 10.1038/s41431-024-01772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, late-onset disease marked by lung scarring and irreversible loss of lung function. Genetic factors significantly contribute to both familial and sporadic cases, yet there are scarce evidence-based studies highlighting the benefits of integrating genetics into the management of IPF patients. In this study, we performed whole-exome sequencing and telomere length (TL) measurements on IPF patients and their relatives. We then identified rare deleterious variants using three virtual gene panels encompassing IPF or TL genes with varying levels of evidence supporting their potential relationship with the disease. We identified 10 candidate variants in well-established disease genes, and these results were validated using two automatic prioritization tools (Exomiser and Franklin). Pathogenic variants were found in two telomere-related genes (RTEL1 and NAF1), and both were associated with severe TL shortening. Our results suggest that this tiered virtual panel strategy is sufficiently robust and serves as a viable solution in clinical practice. It generates valuable genetic data which can be interpreted and validated with the expertise of a multidisciplinary team.
Collapse
Affiliation(s)
- Aitana Alonso-González
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Laguna, Spain
| | - Ibrahim Véliz-Flores
- Servicio de Neumología, Hospital Universitario de Gran Canaria "Dr Negrín", Las Palmas de Gran Canaria, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Silvia González-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Alejandro Mendoza-Alvarez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Helena Galván-Fernández
- Servicio de Neumología, Hospital Universitario de Gran Canaria "Dr Negrín", Las Palmas de Gran Canaria, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC-UAM, Madrid, Spain
| | | | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, IDIBELL, Barcelona, Spain
- Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Felipe Rodríguez-de-Castro
- Servicio de Neumología, Hospital Universitario de Gran Canaria "Dr Negrín", Las Palmas de Gran Canaria, Spain
| | | | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Laguna, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
2
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00800-5. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
3
|
Tummala H, Walne AJ, Badat M, Patel M, Walne AM, Alnajar J, Chow CC, Albursan I, Frost JM, Ballard D, Killick S, Szitányi P, Kelly AM, Raghavan M, Powell C, Raymakers R, Todd T, Mantadakis E, Polychronopoulou S, Pontikos N, Liao T, Madapura P, Hossain U, Vulliamy T, Dokal I. The evolving genetic landscape of telomere biology disorder dyskeratosis congenita. EMBO Mol Med 2024; 16:2560-2582. [PMID: 39198715 PMCID: PMC11473520 DOI: 10.1038/s44321-024-00118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome, caused by genetic mutations that principally affect telomere biology. Approximately 35% of cases remain uncharacterised at the genetic level. To explore the genetic landscape, we conducted genetic studies on a large collection of clinically diagnosed cases of DC as well as cases exhibiting features resembling DC, referred to as 'DC-like' (DCL). This led us to identify several novel pathogenic variants within known genetic loci and in the novel X-linked gene, POLA1. In addition, we have also identified several novel variants in POT1 and ZCCHC8 in multiple cases from different families expanding the allelic series of DC and DCL phenotypes. Functional characterisation of novel POLA1 and POT1 variants, revealed pathogenic effects on protein-protein interactions with primase, CTC1-STN1-TEN1 (CST) and shelterin subunit complexes, that are critical for telomere maintenance. ZCCHC8 variants demonstrated ZCCHC8 deficiency and signs of pervasive transcription, triggering inflammation in patients' blood. In conclusion, our studies expand the current genetic architecture and broaden our understanding of disease mechanisms underlying DC and DCL disorders.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK.
- Barts Health NHS Trust, London, UK.
| | - Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Mohsin Badat
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Manthan Patel
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Abigail M Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jenna Alnajar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Chi Ching Chow
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Ibtehal Albursan
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jennifer M Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - David Ballard
- Department of Analytical, Environmental & Forensic Sciences, Kings College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK
| | - Sally Killick
- Department of Haematology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, BH7 7DW, UK
| | - Peter Szitányi
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Prague, Czech Republic
| | - Anne M Kelly
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Manoj Raghavan
- Clinical Haematology, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | - Corrina Powell
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK
| | - Reinier Raymakers
- University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Tony Todd
- Department of Haematology, Royal Devon and Exeter Hospital, Exeter, EX2 5DW, UK
| | - Elpis Mantadakis
- Department of Pediatrics' University General Hospital of Alexandroupolis, Democritus University of Thrace Faculty of Medicine, 6th Kilometer Alexandroupolis-Makris, 68 100 Alexandroupolis, Thrace, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Tianyi Liao
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Pradeep Madapura
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Upal Hossain
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
4
|
Rolles B, Tometten M, Meyer R, Kirschner M, Beier F, Brümmendorf TH. Inherited Telomere Biology Disorders: Pathophysiology, Clinical Presentation, Diagnostics, and Treatment. Transfus Med Hemother 2024; 51:292-309. [PMID: 39371255 PMCID: PMC11452174 DOI: 10.1159/000540109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Telomeres are the end-capping structures of all eukaryotic chromosomes thereby protecting the genome from damage and degradation. During the aging process, telomeres shorten continuously with each cell division until critically short telomeres prevent further proliferation whereby cells undergo terminal differentiation, senescence, or apoptosis. Premature aging due to critically short telomere length (TL) can also result from pathogenic germline variants in the telomerase complex or related genes that typically counteract replicative telomere shortening in germline and certain somatic cell populations, e.g., hematopoetic stem cells. Inherited diseases that result in altered telomere maintenance are summarized under the term telomere biology disorder (TBD). Summary Since TL both reflects but more importantly restricts the replicative capacity of various human tissues, a sufficient telomere reserve is particularly important in cells with high proliferative activity (e.g., hematopoiesis, immune cells, intestinal cells, liver, lung, and skin). Consequently, altered telomere maintenance as observed in TBDs typically results in premature replicative cellular exhaustion in the respective organ systems eventually leading to life-threatening complications such as bone marrow failure (BMF), pulmonary fibrosis, and liver cirrhosis. Key Messages The recognition of a potential congenital origin in approximately 10% of adult patients with clinical BMF is of utmost importance for the proper diagnosis, appropriate patient and family counseling, to prevent the use of inefficient treatment and to avoid therapy-related toxicities including appropriate donor selection when patients have to undergo stem cell transplantation from related donors. This review summarizes the current state of knowledge about TBDs with particular focus on the clinical manifestation patterns in children (termed early onset TBD) compared to adults (late-onset TBD) including typical treatment- and disease course-related complications as well as their prognosis and adequate therapy. Thereby, it aims to raise awareness for a disease group that is currently still highly underdiagnosed particularly when it first manifests itself in adulthood.
Collapse
Affiliation(s)
- Benjamin Rolles
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Mareike Tometten
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Robert Meyer
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| |
Collapse
|
5
|
Iglesias Pastrana C, Navas González FJ, Macri M, Martínez Martínez MDA, Ciani E, Delgado Bermejo JV. Identification of novel genetic loci related to dromedary camel (Camelus dromedarius) morphometrics, biomechanics, and behavior by genome-wide association studies. BMC Vet Res 2024; 20:418. [PMID: 39294626 PMCID: PMC11409489 DOI: 10.1186/s12917-024-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
In the realm of animal breeding for sustainability, domestic camels have traditionally been valued for their milk and meat production. However, key aspects such as zoometrics, biomechanics, and behavior have often been overlooked in terms of their genetic foundations. Recognizing this gap, the present study perfomed genome-wide association analyses to identify genetic markers associated with zoometrics-, biomechanics-, and behavior-related traits in dromedary camels (Camelus dromedarius). 16 and 108 genetic markers were significantly associated (q < 0.05) at genome and chromosome-wide levels of significance, respectively, with zoometrics- (width, length, and perimeter/girth), biomechanics- (acceleration, displacement, spatial position, and velocity), and behavior-related traits (general cognition, intelligence, and Intelligence Quotient (IQ)) in dromedaries. In most association loci, the nearest protein-coding genes are linkedto neurodevelopmental and sensory disorders. This suggests that genetic variations related to neural development and sensory perception play crucial roles in shaping a dromedary camel's physical characteristics and behavior. In summary, this research advances our understanding of the genomic basis of essential traits in dromedary camels. Identifying specific genetic markers associated with zoometrics, biomechanics, and behavior provides valuable insights into camel domestication. Moreover, the links between these traits and genes related to neurodevelopmental and sensory disorders highlight the broader implications of domestication and modern selection on the health and welfare of dromedary camels. This knowledge could guide future breeding strategies, fostering a more holistic approach to camel husbandry and ensuring the sustainability of these animals in diverse agricultural contexts.
Collapse
Affiliation(s)
| | | | - Martina Macri
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, Spain
- Animal Breeding Consulting S.L, Parque Científico Tecnológico de Córdoba, Córdoba, Spain
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, Faculty of Veterinary Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | |
Collapse
|
6
|
Wang CY, Chang SH, Hu CF, Hu YQ, Luo H, Liu L, Fan LL. ZCCHC8 p.P410A disrupts nucleocytoplasmic localization, promoting idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Mol Med 2024; 30:144. [PMID: 39256642 PMCID: PMC11389302 DOI: 10.1186/s10020-024-00913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a special kind of chronic interstitial lung disease with insidious onset. Previous studies have revealed that mutations in ZCCHC8 may lead to IPF. The aim of this study is to explore the ZCCHC8 mutations in Chinese IPF patients. METHODS Here, we enrolled 124 patients with interstitial lung disease from 2017 to 2023 in our hospital. Whole exome sequencing and Sanger sequencing were employed to explore the genetic lesions of these patients. RESULTS Among these 124 patients, a novel mutation (NM_017612: c.1228 C > G/p.P410A) of Zinc Finger CCHC-Type Containing 8 (ZCCHC8)was identified in a family with IPF and chronic obstructive lung disease. As a component of the nuclear exosome-targeting complex that regulates the turnover of human telomerase RNA, ZCCHC8 mutations have been reported may lead to IPF in European population and American population. Functional study confirmed that the novel mutation can disrupt the nucleocytoplasmic localization of ZCCHC8, which further decreased the expression of DKC1 and RTEL1, and finally reduced the length of telomere and led to IPF and related disorders. CONCLUSIONS We may first report the ZCCHC8 mutation in Asian population with IPF. Our study broadens the mutation, phenotype, and population spectrum of ZCCHC8 deficiency.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Si-Hua Chang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Cheng-Feng Hu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yi-Qiao Hu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lv Liu
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Liang-Liang Fan
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
7
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
8
|
Nitschke NJ, Jelsig AM, Lautrup C, Lundsgaard M, Severinsen MT, Cowland JB, Maroun LL, Andersen MK, Grønbæk K. Expanding the understanding of telomere biology disorder with reports from two families harboring variants in ZCCHC8 and TERC. Clin Genet 2024; 106:187-192. [PMID: 38606545 DOI: 10.1111/cge.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Telomere biology disorder (TBD) can present within a wide spectrum of symptoms ranging from severe congenital malformations to isolated organ dysfunction in adulthood. Diagnosing TBD can be challenging given the substantial variation in symptoms and age of onset across generations. In this report, we present two families, one with a pathogenic variant in ZCCHC8 and another with a novel variant in TERC. In the literature, only one family has previously been reported with a ZCCHC8 variant and TBD symptoms. This family had multiple occurrences of pulmonary fibrosis and one case of bone marrow failure. In this paper, we present a second family with the same ZCCHC8 variant (p.Pro186Leu) and symptoms of TBD including pulmonary fibrosis, hematological disease, and elevated liver enzymes. The suspicion of TBD was confirmed with the measurement of short telomeres in the proband. In another family, we report a novel likely pathogenic variant in TERC. Our comprehensive description encompasses hematological manifestations, as well as pulmonary and hepatic fibrosis. Notably, there are no other reports which associate this variant to disease. The families expand our understanding of the clinical implications and genetic causes of TBD.
Collapse
Affiliation(s)
- Nikolaj Juul Nitschke
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Anne Marie Jelsig
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Malene Lundsgaard
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Marianne Tang Severinsen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jack Bernard Cowland
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisa Leth Maroun
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Klarskov Andersen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Barrett E, Ivey G, Cunningham A, Coffman G, Pemberton T, Lee C, Patra P, Day JB, Lee PHU, Shim JW. Reduced GLP-1R availability in the caudate nucleus with Alzheimer's disease. Front Aging Neurosci 2024; 16:1350239. [PMID: 38915346 PMCID: PMC11194438 DOI: 10.3389/fnagi.2024.1350239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonists reduce glycated hemoglobin in patients with type 2 diabetes. Mounting evidence indicates that the potential of GLP-1R agonists, mimicking a 30 amino acid ligand, GLP-1, extends to the treatment of neurodegenerative conditions, with a particular focus on Alzheimer's disease (AD). However, the mechanism that underlies regulation of GLP-1R availability in the brain with AD remains poorly understood. Here, using whole transcriptome RNA-Seq of the human postmortem caudate nucleus with AD and chronic hydrocephalus (CH) in the elderly, we found that GLP-1R and select mRNAs expressed in glucose dysmetabolism and dyslipidemia were significantly altered. Furthermore, we detected human RNA indicating a deficiency in doublecortin (DCX) levels and the presence of ferroptosis in the caudate nucleus impacted by AD. Using the genome data viewer, we assessed mutability of GLP-1R and 39 other genes by two factors associated with high mutation rates in chromosomes of four species. Surprisingly, we identified that nucleotide sizes of GLP-1R transcript exceptionally differed in all four species of humans, chimpanzees, rats, and mice by up to 6-fold. Taken together, the protein network database analysis suggests that reduced GLP-1R in the aged human brain is associated with glucose dysmetabolism, ferroptosis, and reduced DCX+ neurons, that may contribute to AD.
Collapse
Affiliation(s)
- Emma Barrett
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gabrielle Ivey
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Adam Cunningham
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gary Coffman
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Tyera Pemberton
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Prabir Patra
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - James B. Day
- Department of Orthopedic Surgery, Cabell Huntington Hospital and Marshall University School of Medicine, Huntington, WV, United States
| | - Peter H. U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| |
Collapse
|
10
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL105756 NHLBI NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AI132476 NIAID NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R35 GM139580 NIGMS NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153805 NHLBI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joshua Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Strober
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R Bleecker
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Juan C Celedon
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark T Gladwin
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jill M Johnsen
- Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington DC, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics, Medicine, and Epidemiology, University of Colorado, Boulder, CO, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | | | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stefan Kaab
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Stephen T McGarvey
- Department of Epidemiology & International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Courtney G Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Susan Redline
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Schwartz
- Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas L Smith
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Carol W Greider
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- University Professor Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
- Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Hannes L, Atzori M, Goldenberg A, Argente J, Attie-Bitach T, Amiel J, Attanasio C, Braslavsky DG, Bruel AL, Castanet M, Dubourg C, Jacobs A, Lyonnet S, Martinez-Mayer J, Pérez Millán MI, Pezzella N, Pelgrims E, Aerden M, Bauters M, Rochtus A, Scaglia P, Swillen A, Sifrim A, Tammaro R, Mau-Them FT, Odent S, Thauvin-Robinet C, Franco B, Breckpot J. Differential alternative splicing analysis links variation in ZRSR2 to a novel type of oral-facial-digital syndrome. Genet Med 2024; 26:101059. [PMID: 38158857 DOI: 10.1016/j.gim.2023.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.
Collapse
Affiliation(s)
- Laurens Hannes
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Marta Atzori
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Alice Goldenberg
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Rouen, Rouen, France
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBEROBN de fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain
| | - Tania Attie-Bitach
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | - Jeanne Amiel
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | | | - Débora G Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez. Buenos Aires, Argentina
| | - Ange-Line Bruel
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Mireille Castanet
- Normandie Univ, UNIROUEN, Inserm U1239, CHU Rouen, Department of Pediatrics, Rouen, France
| | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR, UMR 6290, ERL U1305, Rennes, France
| | - An Jacobs
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Stanislas Lyonnet
- Université Paris Cité, INSERM, IHU Imagine - Institut des maladies génétiques, Paris, France; Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Institut Imagine, Paris, France
| | - Julian Martinez-Mayer
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - María Inés Pérez Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy; Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program, Naples, Italy
| | - Elise Pelgrims
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mio Aerden
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Marijke Bauters
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez. Buenos Aires, Argentina
| | - Ann Swillen
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy
| | - Frederic Tran Mau-Them
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Sylvie Odent
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR, UMR 6290, ERL U1305, Rennes, France; Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Ouest, ERN ITHACA, FHU GenOmedS, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Christel Thauvin-Robinet
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France; UF Innovation diagnostique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; Centre de Référence Anomalies du Développement de l'Est, Centre de Génétique, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine-TIGEM, Naples, Italy; Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program, Naples, Italy; Department of Translational Medicine, Medical Genetics Federico II University of Naples, Naples, Italy
| | - Jeroen Breckpot
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Dubiez E, Pellegrini E, Finderup Brask M, Garland W, Foucher AE, Huard K, Heick Jensen T, Cusack S, Kadlec J. Structural basis for competitive binding of productive and degradative co-transcriptional effectors to the nuclear cap-binding complex. Cell Rep 2024; 43:113639. [PMID: 38175753 DOI: 10.1016/j.celrep.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The nuclear cap-binding complex (CBC) coordinates co-transcriptional maturation, transport, or degradation of nascent RNA polymerase II (Pol II) transcripts. CBC with its partner ARS2 forms mutually exclusive complexes with diverse "effectors" that promote either productive or destructive outcomes. Combining AlphaFold predictions with structural and biochemical validation, we show how effectors NCBP3, NELF-E, ARS2, PHAX, and ZC3H18 form competing binary complexes with CBC and how PHAX, NCBP3, ZC3H18, and other effectors compete for binding to ARS2. In ternary CBC-ARS2 complexes with PHAX, NCBP3, or ZC3H18, ARS2 is responsible for the initial effector recruitment but inhibits their direct binding to the CBC. We show that in vivo ZC3H18 binding to both CBC and ARS2 is required for nuclear RNA degradation. We propose that recruitment of PHAX to CBC-ARS2 can lead, with appropriate cues, to competitive displacement of ARS2 and ZC3H18 from the CBC, thus promoting a productive rather than a degradative RNA fate.
Collapse
Affiliation(s)
- Etienne Dubiez
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Erika Pellegrini
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Maja Finderup Brask
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - William Garland
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | | | - Karine Huard
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.
| | - Jan Kadlec
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
13
|
Mahalanobish S, Ghosh S, Sil PC. Genetic Underpinnings of Pulmonary Fibrosis: An Overview. Cardiovasc Hematol Agents Med Chem 2024; 22:367-374. [PMID: 38284708 DOI: 10.2174/0118715257261006231207113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disorder, in which genetic and environmental factors are involved in disease onset. Although, by definition, the disease is considered idiopathic in nature, evidence-based studies have indicated familial cases of pulmonary fibrosis, in which genetic factors contribute to IPF pathogenesis. METHODS Both common as well as rare genetic variants are associated with sporadic as well as familial forms of IPF. Although clinical inferences of the genetic association have still not been explored properly, observation-based studies have found a genotypic influence on disease development and outcome. RESULTS Based on genetic studies, individuals with a risk of IPF can be easily identified and can be classified more precisely. Identification of genetic variants also helps to develop more effective therapeutic approaches. CONCLUSION Further comprehensive research is needed to get a blueprint of IPF pathogenesis. The rapidly evolving field of genetic engineering and molecular biology, along with the bioinformatics approach, will possibly explore a new horizon very soon to achieve this goal.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| |
Collapse
|
14
|
Groen K, van der Vis JJ, van Batenburg AA, Kazemier KM, de Bruijn MJ, Stadhouders R, Arp P, Verkerk AJ, Schoemaker AE, de Bie CI, Massink MP, van Beek FT, Grutters JC, Vergouw LJ, van Moorsel CH. A new variant in the ZCCHC8 gene: diverse clinical phenotypes and expression in the lung. ERJ Open Res 2024; 10:00487-2023. [PMID: 38375433 PMCID: PMC10875464 DOI: 10.1183/23120541.00487-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Pulmonary fibrosis is a severe disease which can be familial. A genetic cause can only be found in ∼40% of families. Searching for shared novel genetic variants may aid the discovery of new genetic causes of disease. Methods Whole-exome sequencing was performed in 152 unrelated patients with a suspected genetic cause of pulmonary fibrosis from the St Antonius interstitial lung disease biobank. Variants of interest were selected by filtering for novel, potentially deleterious variants that were present in at least three unrelated pulmonary fibrosis patients. Results The novel c.586G>A p.(E196K) variant in the ZCCHC8 gene was observed in three unrelated patients: two familial patients and one sporadic patient, who was later genealogically linked to one of the families. The variant was identified in nine additional relatives with pulmonary fibrosis and other telomere-related phenotypes, such as pulmonary arterial venous malformations, emphysema, myelodysplastic syndrome, acute myeloid leukaemia and dyskeratosis congenita. One family showed incomplete segregation, with absence of the variant in one pulmonary fibrosis patient who carried a PARN variant. The majority of ZCCHC8 variant carriers showed short telomeres in blood. ZCCHC8 protein was located in different lung cell types, including alveolar type 2 (AT2) pneumocytes, the culprit cells in pulmonary fibrosis. AT2 cells showed telomere shortening and increased DNA damage, which was comparable to patients with sporadic pulmonary fibrosis and those with pulmonary fibrosis carrying a telomere-related gene variant, respectively. Discussion The ZCCHC8 c.586G>A variant confirms the involvement of ZCCHC8 in pulmonary fibrosis and short-telomere syndromes and underlines the importance of including the ZCCHC8 gene in diagnostic gene panels for these diseases.
Collapse
Affiliation(s)
- Karlijn Groen
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Joanne J. van der Vis
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
- Department of Clinical Chemistry, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Aernoud A. van Batenburg
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Karin M. Kazemier
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Laboratory of Population Genomics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annemieke J.M.H. Verkerk
- Department of Internal Medicine, Laboratory of Population Genomics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Angela E. Schoemaker
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Charlotte I. de Bie
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maarten P.G. Massink
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frouke T. van Beek
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Jan C. Grutters
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leonie J.M. Vergouw
- Department of Internal Medicine, Laboratory of Population Genomics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Coline H.M. van Moorsel
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| |
Collapse
|
15
|
Ongie L, Raj HA, Stevens KB. Genetic Counseling and Family Screening Recommendations in Patients with Telomere Biology Disorders. Curr Hematol Malig Rep 2023; 18:273-283. [PMID: 37787873 DOI: 10.1007/s11899-023-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) encompass a spectrum of genetic diseases with a common pathogenesis of defects in telomerase function and telomere maintenance causing extremely short telomere lengths. Here, we review the current literature surrounding genetic testing strategies, cascade testing, reproductive implications, and the role of genetic counseling. RECENT FINDINGS The understanding of the genetic causes and clinical symptoms of TBDs continues to expand while genetic testing and telomere length testing are nuanced tools utilized in the diagnosis of this condition. Access to genetic counseling is becoming more abundant and is valuable in supporting patients and their families in making informed decisions. Patient resources and support groups are valuable to this community. Defining which populations should be offered genetic counseling and testing is imperative to provide proper diagnoses and medical management for not only the primary patient, but also their biological relatives.
Collapse
Affiliation(s)
| | - Hannah A Raj
- Team Telomere, Inc., New York, NY, USA
- College of Medicine, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
16
|
Vittal A, Niewisch MR, Bhala S, Kudaravalli P, Rahman F, Hercun J, Kleiner DE, Savage SA, Koh C, Heller T, Giri N. Progression of liver disease and portal hypertension in dyskeratosis congenita and related telomere biology disorders. Hepatology 2023; 78:1777-1787. [PMID: 37184208 PMCID: PMC10733788 DOI: 10.1097/hep.0000000000000461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Dyskeratosis congenita (DC) and related telomere biology disorders (TBD) are characterized by very short telomeres and multisystem organ involvement including liver disease. Our study aimed to characterize baseline hepatic abnormalities in patients with DC/TBD and determine risk factors associated with liver disease progression. APPROACH AND RESULTS A retrospective review was performed on a cohort of 58 patients (39 males) with DC/TBD who were prospectively evaluated at a single institute from 2002 to 2019. The median age at initial assessment was 18 (1.4-67.6) years, and median follow-up duration was 6 (1.4-8.2) years. Patients with autosomal or X-linked recessive inheritance and those with heterozygous TINF2 DC were significantly younger, predominantly male, and more likely to have DC-associated mucocutaneous triad features and severe bone marrow failure compared with autosomal dominant-non- TINF2 DC/TBD patients. Liver abnormality (defined at baseline assessment by laboratory and/or radiological findings) was present in 72.4% of patients with predominantly cholestatic pattern of liver enzyme elevation. Clinically significant liver disease and portal hypertension developed in 17.2% of patients during the 6-year follow-up; this progression was mainly seen in patients with recessive or TINF2 -associated DC. Significant risk factors associated with progression included the presence of pulmonary or vascular disease. CONCLUSIONS Our experience shows a high prevalence of cholestatic pattern of liver abnormality with progression to portal hypertension in patients with DC/TBD. Presence of pulmonary and/or vascular disease in patients with recessive or TINF2 DC was an important predictor of liver disease progression, suggesting the need for increased vigilance and monitoring for complications in these patients.
Collapse
Affiliation(s)
- Anusha Vittal
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonia Bhala
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pujitha Kudaravalli
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Farial Rahman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Julian Hercun
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Liao P, Yan B, Wang C, Lei P. Telomeres: Dysfunction, Maintenance, Aging and Cancer. Aging Dis 2023; 15:2595-2631. [PMID: 38270117 PMCID: PMC11567242 DOI: 10.14336/ad.2023.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Aging has emerged at the forefront of scientific research due to the growing social and economic costs associated with the growing aging global population. The defining features of aging involve a variety of molecular processes and cellular systems, which are interconnected and collaboratively contribute to the aging process. Herein, we analyze how telomere dysfunction potentially amplifies or accelerates the molecular and biochemical mechanisms underpinning each feature of aging and contributes to the emergence of age-associated illnesses, including cancer and neurodegeneration, via the perspective of telomere biology. Furthermore, the recently identified novel mechanistic actions for telomere maintenance offer a fresh viewpoint and approach to the management of telomeres and associated disorders. Telomeres and the defining features of aging are intimately related, which has implications for therapeutic and preventive approaches to slow aging and reduce the prevalence of age-related disorders.
Collapse
Affiliation(s)
- Pan Liao
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bo Yan
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ping Lei
- The School of Medicine, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
18
|
Rakotopare J, Lejour V, Duval C, Eldawra E, Escoffier H, Toledo F. A systematic approach identifies p53-DREAM pathway target genes associated with blood or brain abnormalities. Dis Model Mech 2023; 16:dmm050376. [PMID: 37661832 PMCID: PMC10581385 DOI: 10.1242/dmm.050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
p53 (encoded by Trp53) is a tumor suppressor, but mouse models have revealed that increased p53 activity may cause bone marrow failure, likely through dimerization partner, RB-like, E2F4/E2F5 and MuvB (DREAM) complex-mediated gene repression. Here, we designed a systematic approach to identify p53-DREAM pathway targets, the repression of which might contribute to abnormal hematopoiesis. We used Gene Ontology analysis to study transcriptomic changes associated with bone marrow cell differentiation, then chromatin immunoprecipitation-sequencing (ChIP-seq) data to identify DREAM-bound promoters. We next created positional frequency matrices to identify evolutionary conserved sequence elements potentially bound by DREAM. The same approach was developed to find p53-DREAM targets associated with brain abnormalities, also observed in mice with increased p53 activity. Putative DREAM-binding sites were found for 151 candidate target genes, of which 106 are mutated in a blood or brain genetic disorder. Twenty-one DREAM-binding sites were tested and found to impact gene expression in luciferase assays, to notably regulate genes mutated in dyskeratosis congenita (Rtel1), Fanconi anemia (Fanca), Diamond-Blackfan anemia (Tsr2), primary microcephaly [Casc5 (or Knl1), Ncaph and Wdr62] and pontocerebellar hypoplasia (Toe1). These results provide clues on the role of the p53-DREAM pathway in regulating hematopoiesis and brain development, with implications for tumorigenesis.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Carla Duval
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| | | | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris 75248 Cedex 05, France
- CNRS UMR3244, Paris 75005, France
- Sorbonne University, Paris 75005, France
- PSL Research University, Paris 75005, France
| |
Collapse
|
19
|
Gobbo F, Zingariello M, Verachi P, Falchi M, Arciprete F, Martelli F, Peli A, Mazzarini M, Vierstra J, Mead-Harvey C, Dueck AC, Sarli G, Nava S, Sgalla G, Richeldi L, Migliaccio AR. GATA1-defective immune-megakaryocytes as possible drivers of idiopathic pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.542249. [PMID: 37425686 PMCID: PMC10327123 DOI: 10.1101/2023.06.20.542249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disorder with limited therapeutic options. Insufficient understanding of driver mutations and poor fidelity of currently available animal models has limited the development of effective therapies. Since GATA1 deficient megakaryocytes sustain myelofibrosis, we hypothesized that they may also induce fibrosis in lungs. We discovered that lungs from IPF patients and Gata1low mice contain numerous GATA1negative immune-poised megakaryocytes that, in mice, have defective RNA-seq profiling and increased TGF-β1, CXCL1 and P-selectin content. With age, Gata1low mice develop fibrosis in lungs. Development of lung fibrosis in this model is prevented by P-selectin deletion and rescued by P-selectin, TGF-β1 or CXCL1 inhibition. Mechanistically, P-selectin inhibition decreases TGF-β1 and CXCL1 content and increases GATA1positive megakaryocytes while TGF-β1 or CXCL1 inhibition decreased CXCL1 only. In conclusion, Gata1low mice are a novel genetic-driven model for IPF and provide a link between abnormal immune-megakaryocytes and lung fibrosis.
Collapse
Affiliation(s)
- Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia (Bologna) 40064, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Mario Falchi
- National Center HIV/AIDS Research, Istituto Superiore di Sanita, Rome 00161, Italy
| | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanita, Rome 00161, Italy
| | - Angelo Peli
- Department for Life Quality Studies, University of Bologna, Rimini Campus, Rimini 47921, Italy
| | - Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Jeff Vierstra
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Carolyn Mead-Harvey
- Mayo Clinic, Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Scottsdale, AZ 85259, USA
| | - Amylou C. Dueck
- Mayo Clinic, Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Scottsdale, AZ 85259, USA
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia (Bologna) 40064, Italy
| | - Stefano Nava
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Respiratory and Critical Care Unit, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Giacomo Sgalla
- Department of Medical and Surgical Sciences Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Universita Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Luca Richeldi
- Department of Medical and Surgical Sciences Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Universita Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Anna Rita Migliaccio
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| |
Collapse
|
20
|
Liu Q, Zhou Y, Cogan JD, Mitchell DB, Sheng Q, Zhao S, Bai Y, Ciombor KK, Sabusap CM, Malabanan MM, Markin CR, Douglas K, Ding G, Banovich NE, Nickerson DA, Blue EE, Bamshad MJ, Brown KK, Schwartz DA, Phillips JA, Martinez-Barricarte R, Salisbury ML, Shyr Y, Loyd JE, Kropski JA, Blackwell TS. The Genetic Landscape of Familial Pulmonary Fibrosis. Am J Respir Crit Care Med 2023; 207:1345-1357. [PMID: 36622818 PMCID: PMC10595451 DOI: 10.1164/rccm.202204-0781oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Rationale and Objectives: Up to 20% of idiopathic interstitial lung disease is familial, referred to as familial pulmonary fibrosis (FPF). An integrated analysis of FPF genetic risk was performed by comprehensively evaluating for genetic rare variants (RVs) in a large cohort of FPF kindreds. Methods: Whole-exome sequencing and/or candidate gene sequencing from affected individuals in 569 FPF kindreds was performed, followed by cosegregation analysis in large kindreds, gene burden analysis, gene-based risk scoring, cell-type enrichment analysis, and coexpression network construction. Measurements and Main Results: It was found that 14.9-23.4% of genetic risk in kindreds could be explained by RVs in genes previously linked to FPF, predominantly telomere-related genes. New candidate genes were identified in a small number of families-including SYDE1, SERPINB8, GPR87, and NETO1-and tools were developed for evaluation and prioritization of RV-containing genes across kindreds. Several pathways were enriched for RV-containing genes in FPF, including focal adhesion and mitochondrial complex I assembly. By combining single-cell transcriptomics with prioritized candidate genes, expression of RV-containing genes was discovered to be enriched in smooth muscle cells, type II alveolar epithelial cells, and endothelial cells. Conclusions: In the most comprehensive FPF genetic study to date, the prevalence of RVs in known FPF-related genes was defined, and new candidate genes and pathways relevant to FPF were identified. However, new RV-containing genes shared across multiple kindreds were not identified, thereby suggesting that heterogeneous genetic variants involving a variety of genes and pathways mediate genetic risk in most FPF kindreds.
Collapse
Affiliation(s)
- Qi Liu
- Department of Biostatistics
| | | | - Joy D. Cogan
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics
| | | | | | | | | | | | | | | | | | | | - Guixiao Ding
- Division of Allergy, Pulmonary and Critical Care Medicine
| | | | | | | | - Michael J. Bamshad
- Department of Genome Sciences
- Brotman-Baty Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | | | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado Denver, Denver, Colorado; and
| | - John A. Phillips
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics
| | | | | | | | - James E. Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Schratz KE, Flasch DA, Atik CC, Cosner ZL, Blackford AL, Yang W, Gable DL, Vellanki PJ, Xiang Z, Gaysinskaya V, Vonderheide RH, Rooper LM, Zhang J, Armanios M. T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to squamous cancers. Cancer Cell 2023; 41:807-817.e6. [PMID: 37037617 PMCID: PMC10188244 DOI: 10.1016/j.ccell.2023.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Patients with short telomere syndromes (STS) are predisposed to developing cancer, believed to stem from chromosome instability in neoplastic cells. We tested this hypothesis in a large cohort assembled over the last 20 years. We found that the only solid cancers to which patients with STS are predisposed are squamous cell carcinomas of the head and neck, anus, or skin, a spectrum reminiscent of cancers seen in patients with immunodeficiency. Whole-genome sequencing showed no increase in chromosome instability, such as translocations or chromothripsis. Moreover, STS-associated cancers acquired telomere maintenance mechanisms, including telomerase reverse transcriptase (TERT) promoter mutations. A detailed study of the immune status of patients with STS revealed a striking T cell immunodeficiency at the time of cancer diagnosis. A similar immunodeficiency that impaired tumor surveillance was documented in mice with short telomeres. We conclude that STS patients’ predisposition to solid cancers is due to T cell exhaustion rather than autonomous defects in the neoplastic cells themselves.
Collapse
Affiliation(s)
- Kristen E Schratz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christine C Atik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zoe L Cosner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda L Blackford
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dustin L Gable
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paz J Vellanki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhimin Xiang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Valeriya Gaysinskaya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lisa M Rooper
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
22
|
Liu S, Nong W, Ji L, Zhuge X, Wei H, Luo M, Zhou L, Chen S, Zhang S, Lei X, Huang H. The regulatory feedback of inflammatory signaling and telomere/telomerase complex dysfunction in chronic inflammatory diseases. Exp Gerontol 2023; 174:112132. [PMID: 36849001 DOI: 10.1016/j.exger.2023.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Inflammation is believed to play a role in the progression of numerous human diseases. Research has shown that inflammation and telomeres are involved in a feedback regulatory loop: inflammation increases the rate of telomere attrition, leading to telomere dysfunction, while telomere components also participate in regulating the inflammatory response. However, the specific mechanism behind this feedback loop between inflammatory signaling and telomere/telomerase complex dysfunction has yet to be fully understood. This review presents the latest findings on this topic, with a particular focus on the detailed regulation and molecular mechanisms involved in the progression of aging, various chronic inflammatory diseases, cancers, and different stressors. Several feedback loops between inflammatory signaling and telomere/telomerase complex dysfunction, including NF-κB-TERT feedback, NF-κB-RAP1 feedback, NF-κB-TERC feedback, STAT3-TERT feedback, and p38 MAPK-shelterin complex-related gene feedback, are summarized. Understanding the latest discoveries of this feedback regulatory loop can help identify novel potential drug targets for the suppression of various inflammation-associated diseases.
Collapse
Affiliation(s)
- Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Weihua Nong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533300, China
| | - Lin Ji
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| | - Xiuhong Zhuge
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Huimei Wei
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Min Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Leguang Zhou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Shun Zhang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China.
| |
Collapse
|
23
|
Borie R, Kannengiesser C, Antoniou K, Bonella F, Crestani B, Fabre A, Froidure A, Galvin L, Griese M, Grutters JC, Molina-Molina M, Poletti V, Prasse A, Renzoni E, van der Smagt J, van Moorsel CHM. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J 2023; 61:13993003.01383-2022. [PMID: 36549714 DOI: 10.1183/13993003.01383-2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Genetic predisposition to pulmonary fibrosis has been confirmed by the discovery of several gene mutations that cause pulmonary fibrosis. Although genetic sequencing of familial pulmonary fibrosis (FPF) cases is embedded in routine clinical practice in several countries, many centres have yet to incorporate genetic sequencing within interstitial lung disease (ILD) services and proper international consensus has not yet been established. An international and multidisciplinary expert Task Force (pulmonologists, geneticists, paediatrician, pathologist, genetic counsellor, patient representative and librarian) reviewed the literature between 1945 and 2022, and reached consensus for all of the following questions: 1) Which patients may benefit from genetic sequencing and clinical counselling? 2) What is known of the natural history of FPF? 3) Which genes are usually tested? 4) What is the evidence for telomere length measurement? 5) What is the role of common genetic variants (polymorphisms) in the diagnostic workup? 6) What are the optimal treatment options for FPF? 7) Which family members are eligible for genetic sequencing? 8) Which clinical screening and follow-up parameters may be considered in family members? Through a robust review of the literature, the Task Force offers a statement on genetic sequencing, clinical management and screening of patients with FPF and their relatives. This proposal may serve as a basis for a prospective evaluation and future international recommendations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | | | - Katerina Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Aurélie Fabre
- Department of Histopathology, St Vincent's University Hospital and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Pulmonology Department, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Blackrock, Ireland
| | - Matthias Griese
- Dr von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, UMC Utrecht, Utrecht, The Netherlands
| | - Maria Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), CIBERES, Barcelona, Spain
| | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Department of Experimental, Diagnostics and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jasper van der Smagt
- Division of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
24
|
Helderman N, Lucas M, Blank C. Autoantibodies involved in primary and secondary adrenal insufficiency following treatment with immune checkpoint inhibitors. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 17:100374. [PMID: 36937704 PMCID: PMC10014276 DOI: 10.1016/j.iotech.2023.100374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Primary and secondary adrenal insufficiency (AI) are commonly known immune-related adverse events following treatment with immune checkpoint inhibitors (ICIs), and are clinically relevant due to their morbidity and potential mortality. For this reason, upfront identification of patients susceptible for ICI-induced AI could be a step in improving patient's safety. Multiple studies have focused on the identification of novel biomarkers for ICI-induced AI, including autoantibodies, which may be involved in ICI-induced AI as a result of the T-cell-mediated activation of autoreactive B cells. This review highlights the currently described autoantibodies that may be involved in either primary [e.g. anti-21-hydroxylase, anti-17α-hydroxylase, anti-P450scc, anti-aromatic L-amino acid decarboxylase (AADC), anti-interferon (IFN)α and anti-IFNΩ] or secondary AI [e.g. anti-guanine nucleotide-binding protein G(olf) subunit alpha (GNAL), anti-integral membrane protein 2B (ITM2B), anti-zinc finger CCHC-type containing 8 (ZCCHC8), anti-pro-opiomelanocortin (POMC), anti-TPIT (corticotroph-specific transcription factor), anti-pituitary-specific transcriptional factor-1 (PIT-1) and others], and discusses the current evidence concerning their role as biomarker for ICI-induced AI. Standardized autoantibody measurements in patients (to be) treated with ICIs would be a clinically accessible and patient-friendly screening method to identify the patients at risk, and could change the management of ICI-induced AI.
Collapse
Affiliation(s)
- N.C. Helderman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - M.W. Lucas
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
| | - C.U. Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
- Correspondence to: Prof. Dr Christian U. Blank, Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121 A, 1066 CX, Amsterdam, The Netherlands. Tel: +31-(0)20-512-9111
| |
Collapse
|
25
|
Nelson N, Feurstein S, Niaz A, Truong J, Holien JK, Lucas S, Fairfax K, Dickinson J, Bryan TM. Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review. Genet Med 2023; 25:100354. [PMID: 36496180 DOI: 10.1016/j.gim.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications. METHODS We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity. RESULTS In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants. CONCLUSION Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.
Collapse
Affiliation(s)
- Niles Nelson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia; Department of Molecular Medicine, The Royal Hobart Hospital, Hobart, Tasmania, Australia; Department of Molecular Haematology, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Simone Feurstein
- Section of Hematology, Oncology, and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aram Niaz
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jia Truong
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Sionne Lucas
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Kirsten Fairfax
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne Dickinson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
26
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
27
|
Ding D, Gao R, Xue Q, Luan R, Yang J. Genomic Fingerprint Associated with Familial Idiopathic Pulmonary Fibrosis: A Review. Int J Med Sci 2023; 20:329-345. [PMID: 36860670 PMCID: PMC9969503 DOI: 10.7150/ijms.80358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease; although the recent introduction of two anti-fibrosis drugs, pirfenidone and Nidanib, have resulted in a significant reduction in lung function decline, IPF is still not curable. Approximately 2-20% of patients with IPF have a family history of the disease, which is considered the strongest risk factor for idiopathic interstitial pneumonia. However, the genetic predispositions of familial IPF (f-IPF), a particular type of IPF, remain largely unknown. Genetics affect the susceptibility and progression of f-IPF. Genomic markers are increasingly being recognized for their contribution to disease prognosis and drug therapy outcomes. Existing data suggest that genomics may help identify individuals at risk for f-IPF, accurately classify patients, elucidate key pathways involved in disease pathogenesis, and ultimately develop more effective targeted therapies. Since several genetic variants associated with the disease have been found in f-IPF, this review systematically summarizes the latest progress in the gene spectrum of the f-IPF population and the underlying mechanisms of f-IPF. The genetic susceptibility variation related to the disease phenotype is also illustrated. This review aims to improve the understanding of the IPF pathogenesis and facilitate his early detection.
Collapse
Affiliation(s)
- Dongyan Ding
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Brouze A, Krawczyk PS, Dziembowski A, Mroczek S. Measuring the tail: Methods for poly(A) tail profiling. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1737. [PMID: 35617484 PMCID: PMC10078590 DOI: 10.1002/wrna.1737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
The 3'-end poly(A) tail is an important and potent feature of most mRNA molecules that affects mRNA fate and translation efficiency. Polyadenylation is a posttranscriptional process that occurs in the nucleus by canonical poly(A) polymerases (PAPs). In some specific instances, the poly(A) tail can also be extended in the cytoplasm by noncanonical poly(A) polymerases (ncPAPs). This epitranscriptomic regulation of mRNA recently became one of the most interesting aspects in the field. Advances in RNA sequencing technologies and software development have allowed the precise measurement of poly(A) tails, identification of new ncPAPs, expansion of the function of known enzymes, discovery and a better understanding of the physiological role of tail heterogeneity, and recognition of a correlation between tail length and RNA translatability. Here, we summarize the development of polyadenylation research methods, including classic low-throughput approaches, Illumina-based genome-wide analysis, and advanced state-of-art techniques that utilize long-read third-generation sequencing with Pacific Biosciences and Oxford Nanopore Technologies platforms. A boost in technical opportunities over recent decades has allowed a better understanding of the regulation of gene expression at the mRNA level. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Aleksandra Brouze
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Szczepan Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
29
|
Alonso-Gonzalez A, Tosco-Herrera E, Molina-Molina M, Flores C. Idiopathic pulmonary fibrosis and the role of genetics in the era of precision medicine. Front Med (Lausanne) 2023; 10:1152211. [PMID: 37181377 PMCID: PMC10172674 DOI: 10.3389/fmed.2023.1152211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, rare progressive lung disease, characterized by lung scarring and the irreversible loss of lung function. Two anti-fibrotic drugs, nintedanib and pirfenidone, have been demonstrated to slow down disease progression, although IPF mortality remains a challenge and the patients die after a few years from diagnosis. Rare pathogenic variants in genes that are involved in the surfactant metabolism and telomere maintenance, among others, have a high penetrance and tend to co-segregate with the disease in families. Common recurrent variants in the population with modest effect sizes have been also associated with the disease risk and progression. Genome-wide association studies (GWAS) support at least 23 genetic risk loci, linking the disease pathogenesis with unexpected molecular pathways including cellular adhesion and signaling, wound healing, barrier function, airway clearance, and innate immunity and host defense, besides the surfactant metabolism and telomere biology. As the cost of high-throughput genomic technologies continuously decreases and new technologies and approaches arise, their widespread use by clinicians and researchers is efficiently contributing to a better understanding of the pathogenesis of progressive pulmonary fibrosis. Here we provide an overview of the genetic factors known to be involved in IPF pathogenesis and discuss how they will continue to further advance in this field. We also discuss how genomic technologies could help to further improve IPF diagnosis and prognosis as well as for assessing genetic risk in unaffected relatives. The development and validation of evidence-based guidelines for genetic-based screening of IPF will allow redefining and classifying this disease relying on molecular characteristics and contribute to the implementation of precision medicine approaches.
Collapse
Affiliation(s)
- Aitana Alonso-Gonzalez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Tosco-Herrera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, IDIBELL, Barcelona, Spain
- Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- *Correspondence: Carlos Flores,
| |
Collapse
|
30
|
Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics (Basel) 2022; 12:diagnostics12123107. [PMID: 36553114 PMCID: PMC9777399 DOI: 10.3390/diagnostics12123107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare disease of the lung with a largely unknown etiology and a poor prognosis. Intriguingly, forms of familial pulmonary fibrosis (FPF) have long been known and linked to specific genetic mutations. There is little evidence of the possible role of genetics in the etiology of sporadic IPF. We carried out a non-systematic, narrative literature review aimed at describing the main known genetic and epigenetic mechanisms that are involved in the pathogenesis and prognosis of IPF and FPF. In this review, we highlighted the mutations in classical genes associated with FPF, including those encoding for telomerases (TERT, TERC, PARN, RTEL1), which are also found in about 10-20% of cases of sporadic IPF. In addition to the Mendelian forms, mutations in the genes encoding for the surfactant proteins (SFTPC, SFTPA1, SFTPA2, ABCA3) and polymorphisms of genes for the mucin MUC5B and the Toll-interacting protein TOLLIP are other pathways favoring the fibrogenesis that have been thoroughly explored. Moreover, great attention has been paid to the main epigenetic alterations (DNA methylation, histone modification and non-coding RNA gene silencing) that are emerging to play a role in fibrogenesis. Finally, a gaze on the shared mechanisms between cancer and fibrogenesis, and future perspectives on the genetics of pulmonary fibrosis have been analyzed.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Chiara Pesenti
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Laura Fontana
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
31
|
Zhang D, Newton CA, Wang B, Povysil G, Noth I, Martinez FJ, Raghu G, Goldstein D, Garcia CK. Utility of whole genome sequencing in assessing risk and clinically relevant outcomes for pulmonary fibrosis. Eur Respir J 2022; 60:2200577. [PMID: 36028256 PMCID: PMC10038316 DOI: 10.1183/13993003.00577-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Whole genome sequencing (WGS) can detect variants and estimate telomere length. The clinical utility of WGS in estimating risk, progression and survival of pulmonary fibrosis patients is unknown. METHODS In this observational cohort study, we performed WGS on 949 patients with idiopathic pulmonary fibrosis or familial pulmonary fibrosis to determine rare and common variant genotypes, estimate telomere length and assess the association of genomic factors with clinical outcomes. RESULTS WGS estimates of telomere length correlated with quantitative PCR (R=0.65) and Southern blot (R=0.71) measurements. Rare deleterious qualifying variants were found in 14% of the total cohort, with a five-fold increase in those with a family history of disease versus those without (25% versus 5%). Most rare qualifying variants (85%) were found in telomere-related genes and were associated with shorter telomere lengths. Rare qualifying variants had a greater effect on telomere length than a polygenic risk score calculated using 20 common variants previously associated with telomere length. The common variant polygenic risk score predicted telomere length only in sporadic disease. Reduced transplant-free survival was associated with rare qualifying variants, shorter quantitative PCR-measured telomere lengths and absence of the MUC5B promoter (rs35705950) single nucleotide polymorphism, but not with WGS-estimated telomere length or the common variant polygenic risk score. Disease progression was associated with both measures of telomere length (quantitative PCR measured and WGS estimated), rare qualifying variants and the common variant polygenic risk score. CONCLUSION As a single test, WGS can inform pulmonary fibrosis genetic-mediated risk, evaluate the functional effect of telomere-related variants by estimating telomere length, and prognosticate clinically relevant disease outcomes.
Collapse
Affiliation(s)
- David Zhang
- Dept of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chad A Newton
- Dept of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Binhan Wang
- Dept of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Imre Noth
- Dept of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Ganesh Raghu
- Dept of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - David Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine Kim Garcia
- Dept of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
32
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
33
|
White H, Webb R, McKnight I, Legg K, Lee C, Lee PH, Spicer OS, Shim JW. TRPV4 mRNA is elevated in the caudate nucleus with NPH but not in Alzheimer's disease. Front Genet 2022; 13:936151. [PMID: 36406122 PMCID: PMC9670164 DOI: 10.3389/fgene.2022.936151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 01/04/2023] Open
Abstract
Symptoms of normal pressure hydrocephalus (NPH) and Alzheimer's disease (AD) are somewhat similar, and it is common to misdiagnose these two conditions. Although there are fluid markers detectable in humans with NPH and AD, determining which biomarker is optimal in representing genetic characteristics consistent throughout species is poorly understood. Here, we hypothesize that NPH can be differentiated from AD with mRNA biomarkers of unvaried proximity to telomeres. We examined human caudate nucleus tissue samples for the expression of transient receptor potential cation channel subfamily V member 4 (TRPV4) and amyloid precursor protein (APP). Using the genome data viewer, we analyzed the mutability of TRPV4 and other genes in mice, rats, and humans through matching nucleotides of six genes of interest and one house keeping gene with two factors associated with high mutation rate: 1) proximity to telomeres or 2) high adenine and thymine (A + T) content. We found that TRPV4 and microtubule associated protein tau (MAPT) mRNA were elevated in NPH. In AD, mRNA expression of TRPV4 was unaltered unlike APP and other genes. In mice, rats, and humans, the nucleotide size of TRPV4 did not vary, while in other genes, the sizes were inconsistent. Proximity to telomeres in TRPV4 was <50 Mb across species. Our analyses reveal that TRPV4 gene size and mutability are conserved across three species, suggesting that TRPV4 can be a potential link in the pathophysiology of chronic hydrocephalus in aged humans (>65 years) and laboratory rodents at comparable ages.
Collapse
Affiliation(s)
- Hunter White
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ryan Webb
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Kaitlyn Legg
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Peter H.U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Olivia Smith Spicer
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States,*Correspondence: Joon W. Shim,
| |
Collapse
|
34
|
Batista LFZ, Dokal I, Parker R. Telomere biology disorders: time for moving towards the clinic? Trends Mol Med 2022; 28:882-891. [PMID: 36057525 PMCID: PMC9509473 DOI: 10.1016/j.molmed.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Telomere biology disorders (TBDs) are a group of rare diseases caused by mutations that impair telomere maintenance. Mutations that cause reduced levels of TERC/hTR, the telomerase RNA component, are found in most TBD patients and include loss-of-function mutations in hTR itself, in hTR-binding proteins [NOP10, NHP2, NAF1, ZCCHC8, and dyskerin (DKC1)], and in proteins required for hTR processing (PARN). These patients show diverse clinical presentations that most commonly include bone marrow failure (BMF)/aplastic anemia (AA), pulmonary fibrosis, and liver cirrhosis. There are no curative therapies for TBD patients. An understanding of hTR biogenesis, maturation, and degradation has identified pathways and pharmacological agents targeting the poly(A) polymerase PAPD5, which adds 3'-oligoadenosine tails to hTR to promote hTR degradation, and TGS1, which modifies the 5'-cap structure of hTR to enhance degradation, as possible therapeutic approaches. Critical next steps will be clinical trials to establish the effectiveness and potential side effects of these compounds in TBD patients.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Center for Genome Integrity, Washington University in St. Louis, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Roy Parker
- Department of Biochemistry and Biofrontiers Instiute, University of Colorado, Boulder, CO, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
35
|
Nagpal N, Tai AK, Nandakumar J, Agarwal S. Domain specific mutations in dyskerin disrupt 3' end processing of scaRNA13. Nucleic Acids Res 2022; 50:9413-9425. [PMID: 36018809 PMCID: PMC9458449 DOI: 10.1093/nar/gkac706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in DKC1 (encoding dyskerin) cause telomere diseases including dyskeratosis congenita (DC) by decreasing steady-state levels of TERC, the non-coding RNA component of telomerase. How DKC1 mutations variably impact numerous other snoRNAs remains unclear, which is a barrier to understanding disease mechanisms in DC beyond impaired telomere maintenance. Here, using DC patient iPSCs, we show that mutations in the dyskerin N-terminal extension domain (NTE) dysregulate scaRNA13. In iPSCs carrying the del37L NTE mutation or engineered to carry NTE mutations via CRISPR/Cas9, but not in those with C-terminal mutations, we found scaRNA13 transcripts with aberrant 3' extensions, as seen when the exoribonuclease PARN is mutated in DC. Biogenesis of scaRNA13 was rescued by repair of the del37L DKC1 mutation by genome-editing, or genetic or pharmacological inactivation of the polymerase PAPD5, which counteracts PARN. Inspection of the human telomerase cryo-EM structure revealed that in addition to mediating intermolecular dyskerin interactions, the NTE interacts with terminal residues of the associated snoRNA, indicating a role for this domain in 3' end definition. Our results provide mechanistic insights into the interplay of dyskerin and the PARN/PAPD5 axis in the biogenesis and accumulation of snoRNAs beyond TERC, broadening our understanding of ncRNA dysregulation in human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Stem Cell Institute; Department of Pediatrics, Harvard Medical School; Manton Center for Orphan Disease Research; Harvard Initiative in RNA Medicine; Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Suneet Agarwal
- To whom correspondence should be addressed. Tel: +1 617 919 4610; Fax: +1 617 919 3359;
| |
Collapse
|
36
|
Abstract
Telomere biology was first studied in maize, ciliates, yeast, and mice, and in recent decades, it has informed understanding of common disease mechanisms with broad implications for patient care. Short telomere syndromes are the most prevalent premature aging disorders, with prominent phenotypes affecting the lung and hematopoietic system. Less understood are a newly recognized group of cancer-prone syndromes that are associated with mutations that lengthen telomeres. A large body of new data from Mendelian genetics and epidemiology now provides an opportunity to reconsider paradigms related to the role of telomeres in human aging and cancer, and in some cases, the findings diverge from what was interpreted from model systems. For example, short telomeres have been considered potent drivers of genome instability, but age-associated solid tumors are rare in individuals with short telomere syndromes, and T cell immunodeficiency explains their spectrum. More commonly, short telomeres promote clonal hematopoiesis, including somatic reversion, providing a new leukemogenesis paradigm that is independent of genome instability. Long telomeres, on the other hand, which extend the cellular life span in vitro, are now appreciated to be the most common shared germline risk factor for cancer in population studies. Through this contemporary lens, I revisit here the role of telomeres in human aging, focusing on how short and long telomeres drive cancer evolution but through distinct mechanisms.
Collapse
Affiliation(s)
- Mary Armanios
- Departments of Oncology, Genetic Medicine, Pathology, and Molecular Biology and Genetics; Telomere Center at Johns Hopkins; and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
37
|
Dokal I, Tummala H, Vulliamy T. Inherited bone marrow failure in the pediatric patient. Blood 2022; 140:556-570. [PMID: 35605178 PMCID: PMC9373017 DOI: 10.1182/blood.2020006481] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/05/2022] Open
Abstract
Inherited bone marrow (BM) failure syndromes are a diverse group of disorders characterized by BM failure, usually in association with ≥1 extrahematopoietic abnormalities. BM failure, which can involve ≥1 cell lineages, often presents in the pediatric age group. Furthermore, some children initially labeled as having idiopathic aplastic anemia or myelodysplasia represent cryptic cases of inherited BM failure. Significant advances in the genetics of these syndromes have been made, identifying more than 100 disease genes, giving insights into normal hematopoiesis and how it is disrupted in patients with BM failure. They have also provided important information on fundamental biological pathways, including DNA repair: Fanconi anemia (FA) genes; telomere maintenance: dyskeratosis congenita (DC) genes; and ribosome biogenesis: Shwachman-Diamond syndrome and Diamond-Blackfan anemia genes. In addition, because these disorders are usually associated with extrahematopoietic abnormalities and increased risk of cancer, they have provided insights into human development and cancer. In the clinic, genetic tests stemming from the recent advances facilitate diagnosis, especially when clinical features are insufficient to accurately classify a disorder. Hematopoietic stem cell transplantation using fludarabine-based protocols has significantly improved outcomes, particularly in patients with FA or DC. Management of some other complications, such as cancer, remains a challenge. Recent studies have suggested the possibility of new and potentially more efficacious therapies, including a renewed focus on hematopoietic gene therapy and drugs [transforming growth factor-β inhibitors for FA and PAPD5, a human poly(A) polymerase, inhibitors for DC] that target disease-specific defects.
Collapse
Affiliation(s)
- Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, London, United Kingdom; and
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, London, United Kingdom; and
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, London, United Kingdom; and
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| |
Collapse
|
38
|
Tummala H, Walne A, Buccafusca R, Alnajar J, Szabo A, Robinson P, McConkie-Rosell A, Wilson M, Crowley S, Kinsler V, Ewins AM, Madapura PM, Patel M, Pontikos N, Codd V, Vulliamy T, Dokal I. Germline thymidylate synthase deficiency impacts nucleotide metabolism and causes dyskeratosis congenita. Am J Hum Genet 2022; 109:1472-1483. [PMID: 35931051 PMCID: PMC9388389 DOI: 10.1016/j.ajhg.2022.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.
Collapse
Affiliation(s)
- Hemanth Tummala
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK.
| | - Amanda Walne
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Roberto Buccafusca
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End, London E1 4NS, UK
| | - Jenna Alnajar
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Anita Szabo
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V 9EL, UK
| | - Peter Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032, USA
| | | | - Meredith Wilson
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Suzanne Crowley
- Department of Paediatrics, St George's Healthcare NHS Trust, London, UK
| | - Veronica Kinsler
- Department of Paediatric Dermatology, Great Ormond Street Hospital, The Francis Crick Institute, London, UK
| | - Anna-Maria Ewins
- Haematology/Oncology Department, Royal Hospital for Sick Children, Glasgow, UK
| | - Pradeepa M Madapura
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Manthan Patel
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V 9EL, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Tom Vulliamy
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Inderjeet Dokal
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK; Barts Health NHS Trust, London, UK
| |
Collapse
|
39
|
Tummala H, Walne A, Dokal I. The biology and management of dyskeratosis congenita and related disorders of telomeres. Expert Rev Hematol 2022; 15:685-696. [PMID: 35929966 DOI: 10.1080/17474086.2022.2108784] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/29/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a multisystem syndrome characterized by mucocutaneous abnormalities, bone marrow failure, and predisposition to cancer. Studies over the last 25 years have led to the identification of 18 disease genes. These have a principal role in telomere maintenance, and patients usually have very short/abnormal telomeres. The advances have also led to the unification of DC with a number of other diseases, now collectively referred to as the telomeropathies or telomere biology disorders. WHAT IS COVERED Clinical features, genetics, and biology of the different subtypes. Expert view on diagnosis, treatment of the hematological complications and future. EXPERT VIEW As these are very pleotropic disorders affecting multiple organs, a high index of suspicion is necessary to make the diagnosis. Telomere length measurement and genetic analysis of the disease genes have become useful diagnostic tools. Although hematological defects can respond to danazol/oxymetholone, the only current curative treatment for these is hematopoietic stem cell transplantation (HSCT) using fludarabine-based conditioning protocols. New therapies are needed where danazol/oxymetholone is ineffective and HSCT is not feasible.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amanda Walne
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, Barts Health, London, UK
| |
Collapse
|
40
|
Newton CA, Oldham JM, Applegate C, Carmichael N, Powell K, Dilling D, Schmidt SL, Scholand MB, Armanios M, Garcia CK, Kropski JA, Talbert J. The Role of Genetic Testing in Pulmonary Fibrosis. Chest 2022; 162:394-405. [PMID: 35337808 PMCID: PMC9424324 DOI: 10.1016/j.chest.2022.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with familial pulmonary fibrosis represent a subset of patients with pulmonary fibrosis in whom inherited gene variation predisposes them to disease development. In the appropriate setting, genetic testing allows for personalized assessment of disease, recognition of clinically relevant extrapulmonary manifestations, and assessing susceptibility in unaffected relatives. However currently, the use of genetic testing is inconsistent, partly because of the lack of guidance regarding high-yield scenarios in which the results of genetic testing can inform clinical decision-making. To address this, the Pulmonary Fibrosis Foundation commissioned a genetic testing work group comprising pulmonologists, geneticists, and genetic counselors from the United States to provide guidance on genetic testing in patients with pulmonary fibrosis. This CHEST special feature presents a concise review of these proceedings and reviews pulmonary fibrosis susceptibility, clinically available genetic testing methods, and clinical scenarios in which genetic testing should be considered.
Collapse
|
41
|
Fujiwara N, Shigemoto M, Hirayama M, Fujita KI, Seno S, Matsuda H, Nagahama M, Masuda S. MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus. Nucleic Acids Res 2022; 50:8779-8806. [PMID: 35902094 PMCID: PMC9410898 DOI: 10.1093/nar/gkac559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)+ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)+ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Maki Shigemoto
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Mizuki Hirayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Ken-Ichi Fujita
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan.,Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Seiji Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan.,Department of Food Science and Nutrition, Faculty of Agriculture Kindai University, Nara, Nara 631-8505, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Nara 631-8505, Japan.,Antiaging center, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
42
|
Razew M, Galej WP. What's NEXT for the exosome? Mol Cell 2022; 82:2355-2357. [PMID: 35803215 DOI: 10.1016/j.molcel.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Two recent studies by Gerlach et al. (2022) and Puno and Lima (2022) provide new structural and functional insight into the assembly of the nuclear exosome targeting complex (NEXT) and how it may target specific classes of RNA for degradation.
Collapse
Affiliation(s)
- Michal Razew
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
43
|
Wang JY, Young LR. Insights into the Pathogenesis of Pulmonary Fibrosis from Genetic Diseases. Am J Respir Cell Mol Biol 2022; 67:20-35. [PMID: 35294321 PMCID: PMC9273221 DOI: 10.1165/rcmb.2021-0557tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a disease process associated with significant morbidity and mortality, with limited therapeutic options owing to an incomplete understanding of the underlying pathophysiology. Mechanisms driving the fibrotic cascade have been elucidated through studies of rare and common variants in surfactant-related and telomere-related genes in familial and sporadic forms of pulmonary fibrosis, as well as in multisystem Mendelian genetic disorders that present with pulmonary fibrosis. In this translational review, we outline insights into the pathophysiology of pulmonary fibrosis derived from genetic forms of the disease, with a focus on model systems, shared cellular and molecular mechanisms, and potential targets for therapy.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Puno MR, Lima CD. Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex. Cell 2022; 185:2132-2147.e26. [PMID: 35688134 PMCID: PMC9210550 DOI: 10.1016/j.cell.2022.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.
Collapse
Affiliation(s)
- M Rhyan Puno
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
45
|
Abstract
Parenchymal lung disease is the fourth leading cause of death in the United States; among the top causes, it continues on the rise. Telomeres and telomerase have historically been linked to cellular processes related to aging and cancer, but surprisingly, in the recent decade genetic discoveries have linked the most apparent manifestations of telomere and telomerase dysfunction in humans to the etiology of lung disease: both idiopathic pulmonary fibrosis (IPF) and emphysema. The short telomere defect is pervasive in a subset of IPF patients, and human IPF is the phenotype most intimately tied to germline defects in telomere maintenance. One-third of families with pulmonary fibrosis carry germline mutations in telomerase or other telomere maintenance genes, and one-half of patients with apparently sporadic IPF have short telomere length. Beyond explaining genetic susceptibility, short telomere length uncovers clinically relevant syndromic extrapulmonary disease, including a T-cell immunodeficiency and a propensity to myeloid malignancies. Recognition of this subset of patients who share a unifying molecular defect has provided a precision medicine paradigm wherein the telomere-mediated lung disease diagnosis provides more prognostic value than histopathology or multidisciplinary evaluation. Here, we critically evaluate this progress, emphasizing how the genetic findings put forth a new pathogenesis paradigm of age-related lung disease that links telomere abnormalities to alveolar stem senescence, remodeling, and defective gas exchange.
Collapse
Affiliation(s)
- Jonathan K. Alder
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Mary Armanios
- Departments of Oncology and Genetic Medicine, Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
46
|
Gerlach P, Garland W, Lingaraju M, Salerno-Kochan A, Bonneau F, Basquin J, Jensen TH, Conti E. Structure and regulation of the nuclear exosome targeting complex guides RNA substrates to the exosome. Mol Cell 2022; 82:2505-2518.e7. [PMID: 35688157 PMCID: PMC9278407 DOI: 10.1016/j.molcel.2022.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3′ end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome. NEXT homodimerizes through two intertwined ZCCHC8 subunits ZCCHC8 binds MTR4 with both constitutive and regulatory interactions Stable MTR4 arch interactions orient the two helicases in opposite directions Regulatory interactions at the MTR4 helicase domain guide RNA to the exosome
Collapse
Affiliation(s)
- Piotr Gerlach
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mahesh Lingaraju
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Anna Salerno-Kochan
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| |
Collapse
|
47
|
Niewisch MR, Giri N, McReynolds LJ, Alsaggaf R, Bhala S, Alter BP, Savage SA. Disease progression and clinical outcomes in telomere biology disorders. Blood 2022; 139:1807-1819. [PMID: 34852175 PMCID: PMC8952184 DOI: 10.1182/blood.2021013523] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Dyskeratosis congenita related telomere biology disorders (DC/TBDs) are characterized by very short telomeres caused by germline pathogenic variants in telomere biology genes. Clinical presentations can affect all organs, and inheritance patterns include autosomal dominant (AD), autosomal recessive (AR), X-linked (XLR), or de novo. This study examined the associations between mode of inheritance with phenotypes and long-term clinical outcomes. Two hundred thirty-one individuals with DC/TBDs (144 male, 86.6% known genotype, median age at diagnosis 19.4 years [range 0 to 71.6]), enrolled in the National Cancer Institute's Inherited Bone Marrow Failure Syndrome Study, underwent detailed clinical assessments and longitudinal follow-up (median follow-up 5.2 years [range 0 to 36.7]). Patients were grouped by inheritance pattern, considering AD-nonTINF2, AR/XLR, and TINF2 variants separately. Severe bone marrow failure (BMF), severe liver disease, and gastrointestinal telangiectasias were more prevalent in AR/XLR or TINF2 disease, whereas pulmonary fibrosis developed predominantly in adults with AD disease. After adjusting for age at DC/TBD diagnosis, we observed the highest cancer risk in AR/XLR individuals. At last follow-up, 42% of patients were deceased with a median overall survival (OS) of 52.8 years (95% confidence interval [CI] 45.5-57.6), and the hematopoietic cell or solid organ transplant-free median survival was 45.3 years (95% CI 37.4-52.1). Significantly better OS was present in AD vs AR/XLR/TINF2 disease (P < .01), while patients with AR/XLR and TINF2 disease had similar survival probabilities. This long-term study of the clinical manifestations of DC/TBDs creates a foundation for incorporating the mode of inheritance into evidence-based clinical care guidelines and risk stratification in patients with DC/TBDs. This trial was registered at www.clinicaltrials.gov as #NCT00027274.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sonia Bhala
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
48
|
Philippot Q, Kannengiesser C, Debray MP, Gauvain C, Ba I, Vieri M, Gondouin A, Naccache JM, Reynaud-Gaubert M, Uzunhan Y, Bondue B, Israël-Biet D, Dieudé P, Fourrage C, Lainey E, Manali E, Papiris S, Wemeau L, Hirschi S, Mal H, Nunes H, Schlemmer F, Blanchard E, Beier F, Cottin V, Crestani B, Borie R. Interstitial lung diseases associated with mutations of poly(A)-specific ribonuclease: A multicentre retrospective study. Respirology 2022; 27:226-235. [PMID: 34981600 DOI: 10.1111/resp.14195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Poly(A)-specific ribonuclease (PARN) mutations have been associated with familial pulmonary fibrosis. This study aims to describe the phenotype of patients with interstitial lung disease (ILD) and heterozygous PARN mutations. METHODS We performed a retrospective, observational, non-interventional study of patients with an ILD diagnosis and a pathogenic heterozygous PARN mutation followed up in a centre of the OrphaLung network. RESULTS We included 31 patients (29 from 16 kindreds and two sporadic patients). The median age at ILD diagnosis was 59 years (range 54 to 63). In total, 23 (74%) patients had a smoking history and/or fibrogenic exposure. The pulmonary phenotypes were heterogenous, but the most frequent diagnosis was idiopathic pulmonary fibrosis (n = 12, 39%). Haematological abnormalities were identified in three patients and liver disease in two. In total, 21 patients received a specific treatment for ILD: steroids (n = 13), antifibrotic agents (n = 11), immunosuppressants (n = 5) and N-acetyl cysteine (n = 2). The median forced vital capacity decline for the whole sample was 256 ml/year (range -363 to -148). After a median follow-up of 32 months (range 18 to 66), 10 patients had died and six had undergone lung transplantation. The median transplantation-free survival was 54 months (95% CI 29 to ∞). Extra-pulmonary features were less frequent with PARN mutation than telomerase reverse transcriptase (TERT) or telomerase RNA component (TERC) mutation. CONCLUSION IPF is common among individuals with PARN mutation, but other ILD subtypes may be observed.
Collapse
Affiliation(s)
| | - Caroline Kannengiesser
- INSERM, Unité 1152, Université de Paris, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, APHP, Paris, France
| | - Marie Pierre Debray
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Radiologie, Hôpital Bichat, APHP, Paris, France
| | | | - Ibrahima Ba
- Laboratoire de Génétique, Hôpital Bichat, APHP, Paris, France
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Gondouin
- Service de Pneumologie, CHU de Besançon, Besancon, France
| | | | | | | | | | | | - Philippe Dieudé
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Rhumatologie, Hôpital Bichat, APHP, Paris, France
| | - Cécile Fourrage
- Service de Génétique Hôpital Necker Enfants Malades, APHP, Paris, France.,Plateforme de Bio-informatique, Institut Imagine, Université de Paris, Paris, France
| | - Elodie Lainey
- Laboratoire d'Hématologie Hôpital Robert Debré, APHP, Paris, France
| | - Effrosyne Manali
- 2nd Pulmonary department, Attikon University Hospital, Athens, Greece
| | - Spyros Papiris
- 2nd Pulmonary department, Attikon University Hospital, Athens, Greece
| | | | | | - Hervé Mal
- INSERM, Unité 1152, Université de Paris, Paris, France.,Service de Pneumologie B, Hôpital Bichat, APHP, Paris, France
| | - Hilario Nunes
- Service de Pneumologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Frédéric Schlemmer
- Unité de Pneumologie, Université Paris-Est Créteil, APHP, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | | | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vincent Cottin
- Coordonnateur OrphaLung, Centre coordonnateur national de référence des maladies pulmonaires rares, Service de Pneumologie, Hôpital Louis Pradel, Université de Lyon, INRAE, member of Radico-ILD, Lyon, France.,RespiFil, ERN-LUNG, Lyon, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | - Raphaël Borie
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | | |
Collapse
|
49
|
Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 2022; 73:101507. [PMID: 34736994 PMCID: PMC8920518 DOI: 10.1016/j.arr.2021.101507] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Short telomeres confer risk of degenerative diseases. Chronic psychological stress can lead to disease through many pathways, and research from in vitro studies to human longitudinal studies has pointed to stress-induced telomere damage as an important pathway. However, there has not been a comprehensive model to describe how changes in stress physiology and neuroendocrine pathways can lead to changes in telomere biology. Critically short telomeres or the collapse of the telomere structure caused by displacement of telomere binding protein complex shelterin elicit a DNA damage response and lead to senescence or apoptosis. In this narrative review, we summarize the key roles glucocorticoids, reactive oxygen species (ROS) and mitochondria, and inflammation play in mediating the relationship between psychological stress and telomere maintenance. We emphasis that these mediators are interconnected and reinforce each other in positive feedback loops. Telomere length has not been studied across the lifespan yet, but the initial setting point at birth appears to be the most influential point, as it sets the lifetime trajectory, and is influenced by stress. We describe two types of intergenerational stress effects on telomeres - prenatal stress effects on telomeres during fetal development, and 'telotype transmission" -the directly inherited transmission of short telomeres from parental germline. It is clear that the initial simplistic view of telomere length as a mitotic clock has evolved into a far more complex picture of both transgenerational telomere influences, and of interconnected molecular and cellular pathways and networks, as hallmarks of aging where telomere maintenance is a key player interacting with mitochondria. Further mechanistic investigations testing this comprehensive model of stress mediators shaping telomere biology and the telomere-mitochondrial nexus will lead to better understanding from cell to human lifespan aging, and could lead to anti-aging interventions.
Collapse
|
50
|
Ogami K, Suzuki HI. Nuclear RNA Exosome and Pervasive Transcription: Dual Sculptors of Genome Function. Int J Mol Sci 2021; 22:13401. [PMID: 34948199 PMCID: PMC8707817 DOI: 10.3390/ijms222413401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023] Open
Abstract
The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.
Collapse
Affiliation(s)
- Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|