1
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
2
|
Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev 2024; 25:e13724. [PMID: 38408757 DOI: 10.1111/obr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.
Collapse
Affiliation(s)
- Shujie Xu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Fang Y, Yuan C, Li C, Lu C, Yu W, Wang G. The Mediator Med23 controls a transcriptional switch for muscle stem cell proliferation and differentiation in muscle regeneration. Cell Rep 2024; 43:114177. [PMID: 38691453 DOI: 10.1016/j.celrep.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Muscle stem cells (MuSCs) contribute to a robust muscle regeneration process after injury, which is highly orchestrated by the sequential expression of multiple key transcription factors. However, it remains unclear how key transcription factors and cofactors such as the Mediator complex cooperate to regulate myogenesis. Here, we show that the Mediator Med23 is critically important for MuSC-mediated muscle regeneration. Med23 is increasingly expressed in activated/proliferating MuSCs on isolated myofibers or in response to muscle injury. Med23 deficiency reduced MuSC proliferation and enhanced its precocious differentiation, ultimately compromising muscle regeneration. Integrative analysis revealed that Med23 oppositely impacts Ternary complex factor (TCF)-targeted MuSC proliferation genes and myocardin-related transcription factor (MRTF)-targeted myogenic differentiation genes. Consistently, Med23 deficiency decreases the ETS-like transcription factor 1 (Elk1)/serum response factor (SRF) binding at proliferation gene promoters but promotes MRTF-A/SRF binding at myogenic gene promoters. Overall, our study reveals the important transcriptional control mechanism of Med23 in balancing MuSC proliferation and differentiation in muscle regeneration.
Collapse
Affiliation(s)
- Yi Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunlei Yuan
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chonghui Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chengjiang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Ilchuk LA, Kubekina MV, Okulova YD, Silaeva YY, Tatarskiy VV, Filatov MA, Bruter AV. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex. Int J Mol Sci 2023; 24:ijms24119330. [PMID: 37298278 DOI: 10.3390/ijms24119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. Molecular mechanisms underlying Mediator functioning are intensively studied, although most often using simple models such as tumor cell lines and yeast. Transgenic mouse models are required to study the role of Mediator components in physiological processes, disease, and development. As constitutive knockouts of most of the Mediator protein coding genes are embryonically lethal, conditional knockouts and corresponding activator strains are needed for these studies. Recently, they have become more easily available with the development of modern genetic engineering techniques. Here, we review existing mouse models for studying the Mediator, and data obtained in corresponding experiments.
Collapse
Affiliation(s)
- Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia Yu Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health of the Russian Federation, Kashirskoe Sh. 24, 115478 Moscow, Russia
| |
Collapse
|
5
|
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 2023; 186:327-345.e28. [PMID: 36603581 PMCID: PMC9910284 DOI: 10.1016/j.cell.2022.12.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.
Collapse
Affiliation(s)
- Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christy Fornero
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Song Z, Xiaoli AM, Li Y, Siqin G, Wu T, Strich R, Pessin JE, Yang F. The conserved Mediator subunit cyclin C (CCNC) is required for brown adipocyte development and lipid accumulation. Mol Metab 2022; 64:101548. [PMID: 35863637 PMCID: PMC9386464 DOI: 10.1016/j.molmet.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Cyclin C (CCNC) is the most conserved subunit of the Mediator complex, which is an important transcription cofactor. Recently, we have found that CCNC facilitates brown adipogenesis in vitro by activating C/EBPα-dependent transcription. However, the role of CCNC in brown adipose tissue (BAT) in vivo remains unclear. METHODS We generated conditional knock-out mice by crossing Ccncflox/flox mice with Myf5Cre, Ucp1Cre or AdipoqCre transgenic mice to investigate the role of CCNC in BAT development and function. We applied glucose and insulin tolerance test, cold exposure and indirect calorimetry to capture the physiological phenotypes and used immunostaining, immunoblotting, qRT-PCR, RNA-seq and cell culture to elucidate the underlying mechanisms. RESULTS Here, we show that deletion of CCNC in Myf5+ progenitor cells caused BAT paucity, despite the fact that there was significant neonatal lethality. Mechanistically different from in vitro, CCNC deficiency impaired the proliferation of embryonic brown fat progenitor cells without affecting brown adipogenesis or cell death. Interestingly, CCNC deficiency robustly reduced age-dependent lipid accumulation in differentiated brown adipocytes in all three mouse models. Mechanistically, CCNC in brown adipocytes is required for lipogenic gene expression through the activation of the C/EBPα/GLUT4/ChREBP axis. Consistent with the importance of de novo lipogenesis under carbohydrate-rich diets, high-fat diet (HFD) feeding abolished CCNC deficiency -caused defects of lipid accumulation in BAT. Although insulin sensitivity and response to acute cold exposure were not affected, CCNC deficiency in Ucp1+ cells enhanced the browning of white adipose tissue (beiging) upon prolonged cold exposure. CONCLUSIONS Together, these data indicate an important role of CCNC-Mediator in the regulation of BAT development and lipid accumulation in brown adipocytes.
Collapse
Affiliation(s)
- Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alus M Xiaoli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Youlei Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gerile Siqin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Tian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055, USA
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Fajun Yang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
7
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|