1
|
Wu CC, Ge JY, Huang XY, Liu XM, Liao Y, Zhang SJ, Wu L, Chen XF, Yu B. Isosilybin A exhibits anti-inflammatory properties in rosacea by inhibiting MAPK pathway and M1 macrophage polarization. Int Immunopharmacol 2024; 143:113323. [PMID: 39405940 DOI: 10.1016/j.intimp.2024.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Rosacea is a chronic inflammatory skin disease, which is prone to flares and requires continuous management and treatment. However, long-term use of drugs can lead to additional adverse drug reactions. Based on the comorbid relationship between rosacea and Parkinson's disease, bioinformatics and network pharmacology analysis were used to identify a safer drug for rosacea. It has been demonstrated that ISA has an ameliorative impact on the symptoms of Parkinson's disease. The results demonstrated that ISA exhibited anti-inflammatory properties, including reducing erythema areas and inflammatory cell infiltration in rosacea-like mice models, and inhibiting the expression of inflammatory factors in cellular inflammation models. Furthermore, the anti-inflammatory effect of ISA was associated with inhibition of the Erk, p38 and NF-κB signaling pathways and inhibition of macrophage polarization to M1 type. In addition, molecular docking and drug affinity responsive target stability experiment results indicated that VEGFA and RELA were the direct targets of ISA in the treatment for rosacea. In conclusion, these results suggested that ISA may be a potential therapeutic agent for rosacea.
Collapse
Affiliation(s)
- Chen-Chen Wu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Jing-Yao Ge
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong Province, China
| | - Xin-Yue Huang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong Province, China
| | - Xiao-Ming Liu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Yan Liao
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Shui-Jing Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Lin Wu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| | - Xiao-Fan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong Province, China.
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China; Institute of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
2
|
Franz H, Rathod M, Zimmermann A, Stüdle C, Beyersdorfer V, Leal-Fischer K, Hanns P, Cunha T, Didona D, Hertl M, Scheibe M, Butter F, Schmidt E, Spindler V. Unbiased screening identifies regulators of cell-cell adhesion and treatment options in pemphigus. Nat Commun 2024; 15:8044. [PMID: 39271654 PMCID: PMC11399147 DOI: 10.1038/s41467-024-51747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Cell-cell junctions, and specifically desmosomes, are crucial for robust intercellular adhesion. Desmosomal function is compromised in the autoimmune blistering skin disease pemphigus vulgaris. We combine whole-genome knockout screening and a promotor screen of the desmosomal gene desmoglein 3 in human keratinocytes to identify novel regulators of intercellular adhesion. Kruppel-like-factor 5 (KLF5) directly binds to the desmoglein 3 regulatory region and promotes adhesion. Reduced levels of KLF5 in patient tissue indicate a role in pemphigus vulgaris. Autoantibody fractions from patients impair intercellular adhesion and reduce KLF5 levels in in vitro and in vivo disease models. These effects were dependent on increased activity of histone deacetylase 3, leading to transcriptional repression of KLF5. Inhibiting histone deacetylase 3 increases KLF5 levels and protects against the deleterious effects of autoantibodies in murine and human pemphigus vulgaris models. Together, KLF5 and histone deacetylase 3 are regulators of desmoglein 3 gene expression and intercellular adhesion and represent potential therapeutic targets in pemphigus vulgaris.
Collapse
Affiliation(s)
- Henriette Franz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maitreyi Rathod
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
| | - Aude Zimmermann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Chiara Stüdle
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Vivien Beyersdorfer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
| | | | - Pauline Hanns
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tomás Cunha
- Klinik für Dermatologie und Allergologie, Philipps-Universität Marburg, Marburg, Deutschland
| | - Dario Didona
- Klinik für Dermatologie und Allergologie, Philipps-Universität Marburg, Marburg, Deutschland
| | - Michael Hertl
- Klinik für Dermatologie und Allergologie, Philipps-Universität Marburg, Marburg, Deutschland
| | - Marion Scheibe
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
3
|
Zhang X, Chen J, Lin R, Huang Y, Wang Z, Xu S, Wang L, Chen F, Zhang J, Pan K, Yin Z. Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway. Redox Biol 2024; 75:103246. [PMID: 38925041 PMCID: PMC11255112 DOI: 10.1016/j.redox.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
High levels of urinary lactate are an increased risk of progression in patients with diabetic kidney disease (DKD). However, it is still unveiled how lactate drive DKD. Epithelial-mesenchymal transition (EMT), which is characterized by the loss of epithelial cells polarity and cell-cell adhesion, and the acquisition of mesenchymal-like phenotypes, is widely recognized a critical contributor to DKD. Here, we found a switch from oxidative phosphorylation (OXPHOS) toward glycolysis in AGEs-induced renal tubular epithelial cells, thus leading to elevated levels of renal lactic acid. We demonstrated that reducing the lactate levels markedly delayed EMT progression and improved renal tubular fibrosis in DKD. Mechanically, we observed lactate increased the levels of histone H3 lysine 14 lactylation (H3K14la) in DKD. ChIP-seq & RNA-seq results showed histone lactylation contributed to EMT process by facilitating KLF5 expression. Moreover, KLF5 recognized the promotor of cdh1 and inhibited its transcription, which accelerated EMT of DKD. Additionally, nephro-specific knockdown and pharmacological inhibition of KLF5 diminished EMT development and attenuated DKD fibrosis. Thus, our study provides better understanding of epigenetic regulation of DKD pathogenesis, and new therapeutic strategy for DKD by disruption of the lactate-drived H3K14la/KLF5 pathway.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jicong Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruohui Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yaping Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ziyuan Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Susu Xu
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjin, 211200, China
| | - Lei Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjin, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Ke Pan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhiqi Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Sevilla LM, Pons-Alonso O, Gallego A, Azkargorta M, Elortza F, Pérez P. Glucocorticoid receptor controls atopic dermatitis inflammation via functional interactions with P63 and autocrine signaling in epidermal keratinocytes. Cell Death Dis 2024; 15:535. [PMID: 39069531 DOI: 10.1038/s41419-024-06926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Atopic dermatitis (AD), a prevalent chronic inflammatory disease with multifactorial etiology, features epidermal barrier defects and immune overactivation. Synthetic glucocorticoids (GCs) are widely prescribed for treating AD due to their anti-inflammatory actions; however, mechanisms are incompletely understood. Defective local GC signaling due to decreased production of endogenous ligand and/or GC receptor (GR) levels was reported in prevalent inflammatory skin disorders; whether this is a consequence or contributing factor to AD pathology is unclear. To identify the chromatin-bound cell-type-specific GR protein interactome in keratinocytes, we used rapid immunoprecipitation of endogenous proteins and mass spectrometry identifying 145 interactors that increased upon dexamethasone treatment. GR-interacting proteins were enriched in p53/p63 signaling, including epidermal transcription factors with critical roles in AD pathology. Previous analyses indicating mirrored AD-like phenotypes between P63 overexpression and GR loss in epidermis, and our data show an intricate relationship between these transcription factors in human keratinocytes, identifying TP63 as a direct GR target. Dexamethasone treatment counteracted transcriptional up-regulation of inflammatory markers by IL4/IL13, known to mimic AD, causing opposite shifts in GR and P63 genomic binding. Indeed, IL4/IL13 decreased GR and increased P63 levels in cultured keratinocytes and human epidermal equivalents (HEE), consistent with GR down-regulation and increased P63 expression in AD lesions vs normal skin. Moreover, GR knockdown (GRKD) resulted in constitutive increases in P63, phospho-P38 and S100A9, IL6, and IL33. Also, GRKD culture supernatants showed increased autocrine production of TH2-/TH1-/TH17-TH22-associated factors including IL4, CXCL10, CXCL11, and CXCL8. GRKD HEEs showed AD-like features including hyperplasia and abnormal differentiation, resembling phenotypes observed with GR antagonist or IL4/IL13 treatment. The simultaneous GR/P63 knockdown partially reversed constitutive up-regulation of inflammatory genes in GRKD. In summary, our data support a causative role for GR loss in AD pathogenesis via functional interactions with P63 and autocrine signaling in epidermal keratinocytes.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Omar Pons-Alonso
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Andrea Gallego
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain.
| |
Collapse
|
5
|
Reeder TL, Zarlenga DS, Zeigler AL, Dyer RM. Transcriptional responses consistent with perturbation in dermo-epidermal homeostasis in septic sole ulceration. J Dairy Sci 2024:S0022-0302(24)00843-9. [PMID: 38825108 DOI: 10.3168/jds.2023-24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
The aim of this study was to evaluate transcriptional changes in sole epidermis and dermis of bovine claws with septic sole ulceration of the lateral claw. Assessment included changes in transcripts orchestrating epidermal homeostatic processes including epidermal proliferation, differentiation, inflammation, and cell signaling. Sole epidermis and dermis was removed from region 4 of lesion-bearing lateral and lesion-free medial claws of pelvic limbs in multiparous, lactating Holstein cows. Control sole epidermis and dermis was obtained from region 4 of lateral claws of normal pelvic limbs. Transcript abundances were evaluated by real-time QPCR and relative expression analyzed by ANOVA. Relative to normal lateral claws, sole epidermis and dermis in ulcer-bearing claws exhibited downregulation of genes associated with growth factors, growth factor receptors, activator protein 1 (AP-1) and proto-oncogene (CMYC) transcription components, cell cycle elements, lateral cell-to-cell signaling elements and structures of early and late keratinocyte differentiation. These changes were accompanied by upregulation of pro-inflammatory transcripts interleukin 1 α (IL1A), interleukin1 β (IL1B), interleukin 1 receptor 1 (IL1R1), inducible nitric oxide synthase (NOS2), the inflammasome components NOD like receptor protein 3 (NLRP3), pyrin and caspase recruitment domain (PYCARD), and caspase-1 interleukin converting enzyme (CASPASE), the matrix metalloproteinases (MMP2 and MMP9), and anti-inflammatory genes interleukin 1 receptor antagonist (IL1RN) and interleukin1 receptor 2 (IL1R2). Transcript abundance varied across epidermis and dermis from the ulcer center, margin and epidermis and dermis adjacent to the lesion. Sole epidermis and dermis of lesion-free medial claws exhibited changes paralleling those in the adjacent lateral claws in an environment lacking inflammatory transcripts and downregulated IL1A, interleukin 18 (IL18), tumor necrosis factor α (TNFA) and NOS2. These data imply perturbations in signal pathways driving epidermal proliferation and differentiation are associated with, but not inevitably linked to epidermis and dermis inflammation. Further work is warranted to better define the role of crushing tissue injury, sepsis, metalloproteinase activity, and inflammation in sole ulceration.
Collapse
Affiliation(s)
- T L Reeder
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303
| | - D S Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agriculture Research Center, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705-2350
| | - A L Zeigler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695
| | - R M Dyer
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303.
| |
Collapse
|
6
|
Zhang T, Su F, Wang B, Liu L, Lu Y, Su H, Ling R, Yue P, Dai H, Yang T, Yang J, Chen R, Wu R, Zhu K, Zhao D, Hou X. Ubiquitin specific peptidase 38 epigenetically regulates KLF transcription factor 5 to augment malignant progression of lung adenocarcinoma. Oncogene 2024; 43:1190-1202. [PMID: 38409551 DOI: 10.1038/s41388-024-02985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Protein ubiquitination is a common post-translational modification and a critical mechanism for regulating protein stability. This study aimed to explore the role and potential molecular mechanism of ubiquitin-specific peptidase 38 (USP38) in the progression of lung adenocarcinoma (LUAD). USP38 expression was significantly higher in patients with LUAD than in their counterparts, and higher USP38 expression was closely associated with a worse prognosis. USP38 silencing suppresses the proliferation of LUAD cells in vitro and impedes the tumorigenic activity of cells in xenograft mouse models in vivo. Further, we found that USP38 affected the protein stability of transcription factor Krüppel-like factors 5 (KLF5) by inhibiting its degradation. Subsequent mechanistic investigations showed that the N-terminal of USP38 (residues 1-400aa) interacted with residues 1-200aa of KLF5, thereby stabilizing the KLF5 protein by deubiquitination. Moreover, we found that PIAS1-mediated SUMOylation of USP38 was promoted, whereas SENP2-mediated de-SUMOylation of USP38 suppressed the deubiquitination effects of USP38 on KLF5. Additionally, our results demonstrated that KLF5 overexpression restored the suppression of the malignant properties of LUAD cells by USP38 knockdown. SUMOylation of USP38 enhances the deubiquitination and stability of KLF5, thereby augmenting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Bofang Wang
- The second clinical medical college of Lanzhou University, Lanzhou, Gansu, PR China
| | - Lixin Liu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Yongbin Lu
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Hongxin Su
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ruijiang Ling
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Peng Yue
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Huanyu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Tianning Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Jingru Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Rui Chen
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ruiyue Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Kaili Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
7
|
Schwartz B, Levi H, Menon G, Maria R, Upcher A, Kotlovski Y, Oss-Ronen L, Cohen I. ZNF750 Regulates Skin Barrier Function by Driving Cornified Envelope and Lipid Processing Pathways. J Invest Dermatol 2024; 144:296-306.e3. [PMID: 37660780 DOI: 10.1016/j.jid.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
The epidermis is a constantly renewing stratified epithelial tissue that provides essential protective barrier functions. The major barrier is located at the outermost layers of the epidermis, formed by terminally differentiated keratinocytes reinforced by proteins of their cornified envelope and sequestered intercellular lipids. Disruptions to epidermal differentiation characterize various skin disorders. ZNF750 is an epithelial transcription factor essential for in vitro keratinocyte differentiation, whose truncating mutation in humans causes autosomal dominant psoriasis-like skin disease. In this study, we utilized an epidermal-specific Znf750 conditional knockout mouse model to uncover the role ZNF750 plays in epidermal development. We show that deletion of Znf750 in the developing skin does not block epidermal differentiation completely, suggesting in vivo compensatory feedback mechanisms, although it does result in impaired barrier function and perinatal lethality. Molecular dissection revealed ultrastructural defects in the differentiated layers of the epidermis, accompanied by alterations in the expression of ZNF750-dependent genes encoding key cornified envelope precursor proteins and lipid-processing enzymes, including gene subsets known to be mutated in human skin diseases involving impaired barrier function. Together, our findings provide molecular insights into the pathogenesis of human skin disease by linking ZNF750 to a subset of epidermal differentiation genes involved in barrier formation pathways.
Collapse
Affiliation(s)
- Bar Schwartz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hilla Levi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yulia Kotlovski
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Liat Oss-Ronen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
8
|
Xiong Y, Li S, Bai Y, Chen T, Sun W, Chen L, Yu J, Sun L, Li C, Wang J, Wu B. Generating detailed intercellular communication patterns in psoriasis at the single-cell level using social networking, pattern recognition, and manifold learning methods to optimize treatment strategies. Aging (Albany NY) 2024; 16:2194-2231. [PMID: 38289616 PMCID: PMC10911347 DOI: 10.18632/aging.205478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/13/2023] [Indexed: 02/22/2024]
Abstract
Psoriasis, a complex and recurrent chronic inflammatory skin disease involving various inflammatory cell types, requires effective cell communication to maintain the homeostatic balance of inflammation. However, patterns of communication at the single-cell level have not been systematically investigated. In this study, we employed social network analysis tools, pattern recognition, and manifold learning to compare molecular communication features between psoriasis cells and normal skin cells. Utilizing a process that facilitates the discovery of cell type-specific regulons, we analyzed internal regulatory networks among different cells in psoriasis. Advanced techniques for the quantitative detection of non-targeted proteins in pathological tissue sections were employed to demonstrate protein expression. Our findings revealed a synergistic interplay among the communication signals of immune cells in psoriasis. B-cells were activated, while Langerhans cells shifted into the primary signaling output mode to fulfill antigen presentation, mediating T-cell immunity. In contrast to normal skin cells, psoriasis cells shut down numerous signaling pathways, influencing the balance of skin cell renewal and differentiation. Additionally, we identified a significant number of active cell type-specific regulons of resident immune cells around the hair follicle. This study unveiled the molecular communication features of the hair follicle cell-psoriasis axis, showcasing its potential for therapeutic targeting at the single-cell level. By elucidating the pattern of immune cell communication in psoriasis and identifying new molecular features of the hair follicle cell-psoriasis axis, our findings present innovative strategies for drug targeting to enhance psoriasis treatment.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Sidi Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yunmeng Bai
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Shenzhen People’s Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Ting Chen
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Wenwen Sun
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Lijie Chen
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Jia Yu
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Liwei Sun
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Chijun Li
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Jiajian Wang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Bo Wu
- Department of Dermatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| |
Collapse
|
9
|
Hou J, Wei Y, Zou J, Jaffery R, Sun L, Liang S, Zheng N, Guerrero AM, Egan NA, Bohat R, Chen S, Zheng C, Mao X, Yi SS, Chen K, McGrail DJ, Sahni N, Shi PY, Chen Y, Xie X, Peng W. Integrated multi-omics analyses identify anti-viral host factors and pathways controlling SARS-CoV-2 infection. Nat Commun 2024; 15:109. [PMID: 38168026 PMCID: PMC10761986 DOI: 10.1038/s41467-023-44175-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we perform a genome-wide CRISPR dropout screen and integrate analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-Seq, and host-virus proteins or protein/RNA interactome. This study uncovers many host factors that are currently underappreciated, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulate viral entry and/or replication. The cohesin complex is also identified as an anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discover another anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which is up-regulated, and harbors genetic variations linked to COVID-19 patients with severe symptoms. Anti-viral effects of three identified candidates (DAZAP2/VTA1/KLF5) are confirmed individually. Molecular characterization of DAZAP2/VTA1/KLF5-knockout cells highlights the involvement of genes related to the coagulation system in determining the severity of COVID-19. Together, our results provide further resources for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.
Collapse
Affiliation(s)
- Jiakai Hou
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Roshni Jaffery
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Long Sun
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ningbo Zheng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ashley M Guerrero
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Nicholas A Egan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ritu Bohat
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Si Chen
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP) and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Translational Science, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, The University of Texas Medical Branch, Galveston, TX, USA.
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative Sciences Program, MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, The University of Texas Medical Branch, Galveston, TX, USA.
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Sun Q, Broadaway KA, Edmiston SN, Fajgenbaum K, Miller-Fleming T, Westerkam LL, Melendez-Gonzalez M, Bui H, Blum FR, Levitt B, Lin L, Hao H, Harris KM, Liu Z, Thomas NE, Cox NJ, Li Y, Mohlke KL, Sayed CJ. Genetic Variants Associated With Hidradenitis Suppurativa. JAMA Dermatol 2023; 159:930-938. [PMID: 37494057 PMCID: PMC10372759 DOI: 10.1001/jamadermatol.2023.2217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 07/27/2023]
Abstract
Importance Hidradenitis suppurativa (HS) is a common and severely morbid chronic inflammatory skin disease that is reported to be highly heritable. However, the genetic understanding of HS is insufficient, and limited genome-wide association studies (GWASs) have been performed for HS, which have not identified significant risk loci. Objective To identify genetic variants associated with HS and to shed light on the underlying genes and genetic mechanisms. Design, Setting, and Participants This genetic association study recruited 753 patients with HS in the HS Program for Research and Care Excellence (HS ProCARE) at the University of North Carolina Department of Dermatology from August 2018 to July 2021. A GWAS was performed for 720 patients (after quality control) with controls from the Add Health study and then meta-analyzed with 2 large biobanks, UK Biobank (247 cases) and FinnGen (673 cases). Variants at 3 loci were tested for replication in the BioVU biobank (290 cases). Data analysis was performed from September 2021 to December 2022. Main Outcomes and Measures Main outcome measures are loci identified, with association of P < 1 × 10-8 considered significant. Results A total of 753 patients were recruited, with 720 included in the analysis. Mean (SD) age at symptom onset was 20.3 (10.57) years and at enrollment was 35.3 (13.52) years; 360 (50.0%) patients were Black, and 575 (79.7%) were female. In a meta-analysis of the 4 studies, 2 HS-associated loci were identified and replicated, with lead variants rs10512572 (P = 2.3 × 10-11) and rs17090189 (P = 2.1 × 10-8) near the SOX9 and KLF5 genes, respectively. Variants at these loci are located in enhancer regulatory elements detected in skin tissue. Conclusions and Relevance In this genetic association study, common variants associated with HS located near the SOX9 and KLF5 genes were associated with risk of HS. These or other nearby genes may be associated with genetic risk of disease and the development of clinical features, such as cysts, comedones, and inflammatory tunnels, that are unique to HS. New insights into disease pathogenesis related to these genes may help predict disease progression and novel treatment approaches in the future.
Collapse
Affiliation(s)
- Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | | | - Sharon N. Edmiston
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Kristen Fajgenbaum
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine
| | - Tyne Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Linnea Lackstrom Westerkam
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine
- University of North Carolina at Chapel Hill School of Medicine
| | | | - Helen Bui
- Department of Internal Medicine, University of North Carolina at Chapel Hill School of Medicine
| | | | - Brandt Levitt
- Carolina Population Center, University of North Carolina at Chapel Hill
| | - Lan Lin
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine
| | - Honglin Hao
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine
| | - Kathleen Mullan Harris
- Carolina Population Center, University of North Carolina at Chapel Hill
- Sociology Department, University of North Carolina at Chapel Hill
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Nancy E. Thomas
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine
- Carolina Population Center, University of North Carolina at Chapel Hill
| | - Nancy J. Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Christopher J. Sayed
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine
| |
Collapse
|