1
|
Jiang Y, Chen X, Wang C, Lyu L, Al-Farraj SA, Stover NA, Gao F. Genes and proteins expressed at different life cycle stages in the model protist Euplotes vannus revealed by both transcriptomic and proteomic approaches. SCIENCE CHINA. LIFE SCIENCES 2025; 68:232-248. [PMID: 39276255 DOI: 10.1007/s11427-023-2605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 09/16/2024]
Abstract
Sexual reproduction first appeared in unicellular protists and has continued to be an essential biological process in almost all eukaryotes. Ciliated protists, which contain both germline and somatic genomes within a single cell, have evolved a special form of sexual reproduction called conjugation that involves mitosis, meiosis, fertilization, nuclear differentiation, genome rearrangement, and the development of unique cellular structures. The molecular basis and mechanisms of conjugation vary dramatically among ciliates, and many details of the process and its regulation are still largely unknown. In order to better comprehend these processes and mechanisms from an evolutionary perspective, this study provides the first comprehensive overview of the transcriptome and proteome profiles during the entire life cycle of the newly-established marine model ciliate Euplotes vannus. Transcriptome analyses from 14 life cycle stages (three vegetative stages and 11 sexual stages) revealed over 26,000 genes that are specifically expressed at different stages, many of which are related to DNA replication, transcription, translation, mitosis, meiosis, nuclear differentiation, and/or genome rearrangement. Quantitative proteomic analyses identified 338 proteins with homologs associated with conjugation and/or somatic nuclear development in other ciliates, including dicer-like proteins, Hsp90 proteins, RNA polymerase II and transcription elongation factors, ribosomal-associated proteins, and ubiquitin-related proteins. Four of these homologs belong to the PIWI family, each with different expression patterns identified and confirmed by RT-qPCR, which may function in small RNA-mediated genome rearrangement. Proteins involved in the nonhomologous end-joining pathway are induced early during meiosis and accumulate in the developing new somatic nucleus, where more than 80% of the germline sequences are eliminated from the somatic genome. A number of new candidate genes and proteins likely to play roles in conjugation and its related genome rearrangements have also been revealed. The gene expression profiles reported here will be valuable resources for further studies of the origin and evolution of sexual reproduction in this new model species.
Collapse
Affiliation(s)
- Yaohan Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao Chen
- Marine College, Shandong University, Weihai, 264209, China
| | - Chundi Wang
- Marine College, Shandong University, Weihai, 264209, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Balan T, Lerner LK, Holoch D, Duharcourt S. Small-RNA-guided histone modifications and somatic genome elimination in ciliates. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1848. [PMID: 38605483 DOI: 10.1002/wrna.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Thomas Balan
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Daniel Holoch
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | | |
Collapse
|
3
|
Shehzada S, Noto T, Saksouk J, Mochizuki K. A SUMO E3 ligase promotes long non-coding RNA transcription to regulate small RNA-directed DNA elimination. eLife 2024; 13:e95337. [PMID: 38197489 PMCID: PMC10830130 DOI: 10.7554/elife.95337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Small RNAs target their complementary chromatin regions for gene silencing through nascent long non-coding RNAs (lncRNAs). In the ciliated protozoan Tetrahymena, the interaction between Piwi-associated small RNAs (scnRNAs) and the nascent lncRNA transcripts from the somatic genome has been proposed to induce target-directed small RNA degradation (TDSD), and scnRNAs not targeted for TDSD later target the germline-limited sequences for programmed DNA elimination. In this study, we show that the SUMO E3 ligase Ema2 is required for the accumulation of lncRNAs from the somatic genome and thus for TDSD and completing DNA elimination to make viable sexual progeny. Ema2 interacts with the SUMO E2 conjugating enzyme Ubc9 and enhances SUMOylation of the transcription regulator Spt6. We further show that Ema2 promotes the association of Spt6 and RNA polymerase II with chromatin. These results suggest that Ema2-directed SUMOylation actively promotes lncRNA transcription, which is a prerequisite for communication between the genome and small RNAs.
Collapse
Affiliation(s)
- Salman Shehzada
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Tomoko Noto
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Julie Saksouk
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| |
Collapse
|
4
|
Bétermier M, Klobutcher LA, Orias E. Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends. Microbiol Mol Biol Rev 2023; 87:e0018422. [PMID: 38009915 PMCID: PMC10732028 DOI: 10.1128/mmbr.00184-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
SUMMARYCiliated protozoa undergo large-scale developmental rearrangement of their somatic genomes when forming a new transcriptionally active macronucleus during conjugation. This process includes the fragmentation of chromosomes derived from the germline, coupled with the efficient healing of the broken ends by de novo telomere addition. Here, we review what is known of developmental chromosome fragmentation in ciliates that have been well-studied at the molecular level (Tetrahymena, Paramecium, Euplotes, Stylonychia, and Oxytricha). These organisms differ substantially in the fidelity and precision of their fragmentation systems, as well as in the presence or absence of well-defined sequence elements that direct excision, suggesting that chromosome fragmentation systems have evolved multiple times and/or have been significantly altered during ciliate evolution. We propose a two-stage model for the evolution of the current ciliate systems, with both stages involving repetitive or transposable elements in the genome. The ancestral form of chromosome fragmentation is proposed to have been derived from the ciliate small RNA/chromatin modification process that removes transposons and other repetitive elements from the macronuclear genome during development. The evolution of this ancestral system is suggested to have potentiated its replacement in some ciliate lineages by subsequent fragmentation systems derived from mobile genetic elements.
Collapse
Affiliation(s)
- Mireille Bétermier
- Department of Genome Biology, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Lawrence A. Klobutcher
- Department of Molecular Biology and Biophysics, UCONN Health (University of Connecticut), Farmington, Connecticut, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
5
|
Bazin-Gélis M, Eleftheriou E, Zangarelli C, Lelandais G, Sperling L, Arnaiz O, Bétermier M. Inter-generational nuclear crosstalk links the control of gene expression to programmed genome rearrangement during the Paramecium sexual cycle. Nucleic Acids Res 2023; 51:12337-12351. [PMID: 37953377 PMCID: PMC10711438 DOI: 10.1093/nar/gkad1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Multinucleate cells are found in many eukaryotes, but how multiple nuclei coordinate their functions is still poorly understood. In the cytoplasm of the ciliate Paramecium tetraurelia, two micronuclei (MIC) serving sexual reproduction coexist with a somatic macronucleus (MAC) dedicated to gene expression. During sexual processes, the MAC is progressively destroyed while still ensuring transcription, and new MACs develop from copies of the zygotic MIC. Several gene clusters are successively induced and switched off before vegetative growth resumes. Concomitantly, programmed genome rearrangement (PGR) removes transposons and their relics from the new MACs. Development of the new MACs is controlled by the old MAC, since the latter expresses genes involved in PGR, including the PGM gene encoding the essential PiggyMac endonuclease that cleaves the ends of eliminated sequences. Using RNA deep sequencing and transcriptome analysis, we show that impairing PGR upregulates key known PGR genes, together with ∼600 other genes possibly also involved in PGR. Among these genes, 42% are no longer induced when no new MACs are formed, including 180 genes that are co-expressed with PGM under all tested conditions. We propose that bi-directional crosstalk between the two coexisting generations of MACs links gene expression to the progression of MAC development.
Collapse
Affiliation(s)
- Mélanie Bazin-Gélis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Evangelia Eleftheriou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Gaëlle Lelandais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
7
|
Paramecium Polycomb repressive complex 2 physically interacts with the small RNA-binding PIWI protein to repress transposable elements. Dev Cell 2022; 57:1037-1052.e8. [DOI: 10.1016/j.devcel.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022]
|
8
|
Haga N. Micromanipulation in Paramecium: From Non-Mendelian Inheritance to the Outlook for Versatile Micromachines. J Eukaryot Microbiol 2022; 69:e12909. [PMID: 35318763 PMCID: PMC9543784 DOI: 10.1111/jeu.12909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review addresses nine areas of knowledge revealed by micromanipulations performed with Paramecium. Microinjection has shown that sexual maturation and senescence of Paramecium caudatum is a programmed process conducted by a specific gene and its product protein. In Paramecium tetraurelia, autogamy was revealed to depend on the number of DNA syntheses rather than the number of cell divisions in clonal aging. The cytoplasmic complementarity test established that microinjection of wild‐type cytoplasm can correct genetic defects of mutants. The concept of complementarity together with protein chemistry revealed compounds that control membrane excitability. In non‐Mendelian inheritance, noncoding small RNAs made from the parental micronucleus regulate the rearrangement of the progeny's macronuclear DNA. The macronucleus has the potential to be used as a factory for genetic engineering. The development and differentiation of progeny's nuclei in mating pairs are controlled by the parental macronucleus. The chemical reaction processes associated with exocytosis have been revealed by microinjection of various enzymes and antibodies. Using the fusion gene of histone H2B and yellow‐fluorescence protein, it was revealed that the fusion gene‐mRNA is transferred between cells during mating. Experiments with endosymbiotic bacteria and the host shed light on the conditions needed to establish sustainable symbiotic relationships.
Collapse
Affiliation(s)
- Nobuyuki Haga
- Department of Biological Science, Faculty of Sciences and Technology, Senshu University of Ishinomaki, Ishinomaki, Miyagi, 986-8580, Japan
| |
Collapse
|
9
|
Ahsan R, Blanche W, Katz LA. Macronuclear development in ciliates, with a focus on nuclear architecture. J Eukaryot Microbiol 2022; 69:e12898. [PMID: 35178799 DOI: 10.1111/jeu.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Ciliates are defined by the presence of dimorphic nuclei as they have both a somatic macronucleus and germline micronucleus within each individual cell. The size and structure of both germline micronuclei and somatic macronuclei varies tremendously among ciliates. Except just after conjugation (i.e. the nuclear exchange in sexual cycle), the germline micronucleus is transcriptionally-inactive and contains canonical chromosomes that will be inherited between generations. In contrast, the transcriptionally-active macronucleus contains chromosomes that vary in size in different classes of ciliates, with some lineages having extensively-fragmented gene-sized somatic chromosomes while others contain longer multigene chromosomes. Here, we describe the variation in somatic macronuclear architecture in lineages sampled across the ciliate tree of life, specifically focusing on lineages with extensively fragmented chromosomes (e.g. the classes Phyllopharyngea and Spirotrichea). Further, we synthesize information from the literature on the development of ciliate macronuclei, focusing on changes in nuclear architecture throughout life cycles. These data highlight the tremendous diversity among ciliate nuclear cycles, extend our understanding of patterns of genome evolution, and provide insight into different germline and somatic nuclear features (e.g. nuclear structure and development) among eukaryotes.
Collapse
Affiliation(s)
- Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA.,University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, 01003, USA
| | - Wumei Blanche
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA.,University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
10
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
11
|
Zangarelli C, Arnaiz O, Bourge M, Gorrichon K, Jaszczyszyn Y, Mathy N, Escoriza L, Bétermier M, Régnier V. Developmental timing of programmed DNA elimination in Paramecium tetraurelia recapitulates germline transposon evolutionary dynamics. Genome Res 2022; 32:2028-2042. [PMID: 36418061 PMCID: PMC9808624 DOI: 10.1101/gr.277027.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
With its nuclear dualism, the ciliate Paramecium constitutes a unique model to study how host genomes cope with transposable elements (TEs). P. tetraurelia harbors two germline micronuclei (MICs) and a polyploid somatic macronucleus (MAC) that develops from one MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development. Whereas TE elimination is generally imprecise, excision of approximately 45,000 TE-derived internal eliminated sequences (IESs) is precise, allowing for functional gene assembly. Programmed DNA elimination is concomitant with genome amplification. It is guided by noncoding RNAs and repressive chromatin marks. A subset of IESs is excised independently of this epigenetic control, raising the question of how IESs are targeted for elimination. To gain insight into the determinants of IES excision, we established the developmental timing of DNA elimination genome-wide by combining fluorescence-assisted nuclear sorting with high-throughput sequencing. Essentially all IESs are excised within only one endoreplication round (32C to 64C), whereas TEs are eliminated at a later stage. We show that DNA elimination proceeds independently of replication. We defined four IES classes according to excision timing. The earliest excised IESs tend to be independent of epigenetic factors, display strong sequence signals at their ends, and originate from the most ancient integration events. We conclude that old IESs have been optimized during evolution for early and accurate excision by acquiring stronger sequence determinants and escaping epigenetic control.
Collapse
Affiliation(s)
- Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Mickaël Bourge
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Gorrichon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Mathy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Loïc Escoriza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Vinciane Régnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France;,Université Paris Cité, UFR Sciences du Vivant, 75205 Paris Cedex 13, France
| |
Collapse
|
12
|
Catania F, Rothering R, Vitali V. One Cell, Two Gears: Extensive Somatic Genome Plasticity Accompanies High Germline Genome Stability in Paramecium. Genome Biol Evol 2021; 13:6443145. [PMID: 34849843 PMCID: PMC8670300 DOI: 10.1093/gbe/evab263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mutation accumulation (MA) experiments are conventionally employed to study spontaneous germline mutations. However, MA experiments can also shed light on somatic genome plasticity in a habitual and genetic drift-maximizing environment. Here, we revisit an MA experiment that uncovered extraordinary germline genome stability in Paramecium tetraurelia, a single-celled eukaryote with nuclear dimorphism. Our re-examination of isogenic P. tetraurelia MA lines propagated in nutrient-rich medium for >40 sexual cycles reveals that their polyploid somatic genome accrued hundreds of intervening DNA segments (IESs), which are normally eliminated during germline-soma differentiation. These IESs frequently occupy a fraction of the somatic DNA copies of a given locus, producing IES excision/retention polymorphisms, and preferentially fall into a class of epigenetically controlled sequences. Relative to control lines, retained IESs are flanked by stronger cis-acting signals and interrupt an excess of highly expressed coding exons. These findings suggest that P. tetraurelia’s elevated germline DNA replication fidelity is associated with pervasive somatic genome plasticity. They show that MA regimes are powerful tools for investigating the role that developmental plasticity, somatic mutations, and epimutations have in ecology and evolution.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany.,Institute of Environmental Radioactivity, Fukushima University, Japan
| | - Rebecca Rothering
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, Germany
| |
Collapse
|
13
|
Abstract
More than a century ago, August Weissman defined a distinction between the germline (responsible for propagating heritable information from generation to generation) and the perishable soma. A central motivation for this distinction was to argue against the inheritance of acquired characters, as the germline was partly defined by its protection from external conditions. However, recent decades have seen an explosion of studies documenting the intergenerational and transgenerational effects of environmental conditions, forcing a re-evaluation of how external signals are sensed by, or communicated to, the germline epigenome. Here, motivated by the centrality of small RNAs in paradigms of epigenetic inheritance, we review across species the myriad examples of intercellular RNA trafficking from nurse cells or somatic tissues to developing gametes.
Collapse
|
14
|
Sellis D, Guérin F, Arnaiz O, Pett W, Lerat E, Boggetto N, Krenek S, Berendonk T, Couloux A, Aury JM, Labadie K, Malinsky S, Bhullar S, Meyer E, Sperling L, Duret L, Duharcourt S. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biol 2021; 19:e3001309. [PMID: 34324490 PMCID: PMC8354472 DOI: 10.1371/journal.pbio.3001309] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/10/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression. A comparative genomics study of nine Paramecium species reveals successful invasion of genes by transposable elements in their germline genomes, showing that the internal eliminated sequences (IESs) followed an evolutionary trajectory remarkably similar to that of spliceosomal introns.
Collapse
Affiliation(s)
- Diamantis Sellis
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Frédéric Guérin
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Walker Pett
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Emmanuelle Lerat
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Nicole Boggetto
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Sascha Krenek
- TU Dresden, Institute of Hydrobiology, Dresden, Germany
| | | | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Sophie Malinsky
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Paris, Paris, France
| | - Simran Bhullar
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Meyer
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laurent Duret
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
- * E-mail: (LD); (SD)
| | - Sandra Duharcourt
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
- * E-mail: (LD); (SD)
| |
Collapse
|
15
|
Redl S, de Jesus Domingues AM, Caspani E, Möckel S, Salvenmoser W, Mendez-Lago M, Ketting RF. Extensive nuclear gyration and pervasive non-genic transcription during primordial germ cell development in zebrafish. Development 2021; 148:dev193060. [PMID: 33298460 PMCID: PMC7847270 DOI: 10.1242/dev.193060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/02/2021] [Indexed: 12/02/2022]
Abstract
Primordial germ cells (PGCs) are the precursors of germ cells, which migrate to the genital ridge during early development. Relatively little is known about PGCs after their migration. We studied this post-migratory stage using microscopy and sequencing techniques, and found that many PGC-specific genes, including genes known to induce PGC fate in the mouse, are only activated several days after migration. At this same time point, PGC nuclei become extremely gyrated, displaying general broad opening of chromatin and high levels of intergenic transcription. This is accompanied by changes in nuage morphology, expression of large loci (PGC-expressed non-coding RNA loci, PERLs) that are enriched for retro-transposons and piRNAs, and a rise in piRNA biogenesis signatures. Interestingly, no nuclear Piwi protein could be detected at any time point, indicating that the zebrafish piRNA pathway is fully cytoplasmic. Our data show that the post-migratory stage of zebrafish PGCs holds many cues to both germ cell fate establishment and piRNA pathway activation.
Collapse
Affiliation(s)
- Stefan Redl
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Edoardo Caspani
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, 55128 Mainz, Germany
| | - Stefanie Möckel
- Flow Cytometry Core Facility, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Willi Salvenmoser
- Institute of Zoology, Evolution and Developmental Biology, University of Innsbruck, Technikerstraβe 25, 6020 Innsbruck, Austria
| | - Maria Mendez-Lago
- Genomics Core Facility, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|
16
|
Rzeszutek I, Maurer-Alcalá XX, Nowacki M. Programmed genome rearrangements in ciliates. Cell Mol Life Sci 2020; 77:4615-4629. [PMID: 32462406 PMCID: PMC7599177 DOI: 10.1007/s00018-020-03555-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Ciliates are a highly divergent group of unicellular eukaryotes with separate somatic and germline genomes found in distinct dimorphic nuclei. This characteristic feature is tightly linked to extremely laborious developmentally regulated genome rearrangements in the development of a new somatic genome/nuclei following sex. The transformation from germline to soma genome involves massive DNA elimination mediated by non-coding RNAs, chromosome fragmentation, as well as DNA amplification. In this review, we discuss the similarities and differences in the genome reorganization processes of the model ciliates Paramecium and Tetrahymena (class Oligohymenophorea), and the distantly related Euplotes, Stylonychia, and Oxytricha (class Spirotrichea).
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
17
|
The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements. PLoS Genet 2020; 16:e1008949. [PMID: 32702045 PMCID: PMC7402521 DOI: 10.1371/journal.pgen.1008949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/04/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
In Paramecium tetraurelia, a large proportion of the germline genome is reproducibly removed from the somatic genome after sexual events via a process involving small (s)RNA-directed heterochromatin formation and DNA excision and repair. How germline limited DNA sequences are specifically recognized in the context of chromatin remains elusive. Here, we use a reverse genetics approach to identify factors involved in programmed genome rearrangements. We have identified a P. tetraurelia homolog of the highly conserved histone chaperone Spt16 subunit of the FACT complex, Spt16-1, and show its expression is developmentally regulated. A functional GFP-Spt16-1 fusion protein localized exclusively in the nuclei where genome rearrangements take place. Gene silencing of Spt16-1 showed it is required for the elimination of all germline-limited sequences, for the survival of sexual progeny, and for the accumulation of internal eliminated sequence (ies)RNAs, an sRNA population produced when elimination occurs. Normal accumulation of 25 nt scanRNAs and deposition of silent histone marks H3K9me3 and H3K27me3 indicated that Spt16-1 does not regulate the scanRNA-directed heterochromatin pathway involved in the early steps of DNA elimination. We further show that Spt16-1 is required for the correct nuclear localization of the PiggyMac (Pgm) endonuclease, which generates the DNA double-strand breaks required for DNA elimination. Thus, Spt16-1 is essential for Pgm function during programmed genome rearrangements. We propose a model in which Spt16-1 mediates interactions between the excision machinery and chromatin, facilitating endonuclease access to DNA cleavage sites during genome rearrangements. The genome is generally similar in all the cells of an organism. However, in the ciliate Paramecium tetraurelia, massive and reproducible programmed DNA elimination leads to a highly streamlined somatic genome. In eukaryotes, DNA is packaged into nucleosomes, which ensure genome integrity but act as a barrier to enzymes acting on DNA. How the endonuclease PiggyMac gains access to the genome to initiate DNA elimination remains elusive. Here, we identified four P. tetraurelia genes encoding homologs of the conserved histone chaperone Spt16, which can modulate access to DNA by promoting nucleosome assembly and disassembly. We demonstrated that the most divergent gene, SPT16-1, has a highly specialized expression pattern, similar to that of PiggyMac, and a specific role in programmed DNA elimination. We show that the Spt16-1 protein, like PiggyMac, is exclusively localized in the differentiating somatic nucleus, and is also required for the dramatic elimination of germline-limited sequences. We further show that Spt16-1 directs the correct nuclear localization of the PiggyMac endonuclease. Thus, Spt16-1 is essential for PiggyMac function during programmed DNA elimination. We propose that Spt16-1 mediates the interaction between PiggyMac and chromatin or DNA, facilitating endonuclease access to DNA cleavage sites.
Collapse
|
18
|
Allen SE, Nowacki M. Roles of Noncoding RNAs in Ciliate Genome Architecture. J Mol Biol 2020; 432:4186-4198. [PMID: 31926952 PMCID: PMC7374600 DOI: 10.1016/j.jmb.2019.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
Ciliates are an interesting model system for investigating diverse functions of noncoding RNAs, especially in genome defence pathways. During sexual development, the ciliate somatic genome undergoes massive rearrangement and reduction through removal of transposable elements and other repetitive DNA. This is guided by a multitude of noncoding RNAs of different sizes and functions, the extent of which is only recently becoming clear. The genome rearrangement pathways evolved as a defence against parasitic DNA, but interestingly also use the transposable elements and transposases to execute their own removal. Thus, ciliates are also a good model for the coevolution of host and transposable element, and the mutual dependence between the two. In this review, we summarise the genome rearrangement pathways in three diverse species of ciliate, with focus on recent discoveries and the roles of noncoding RNAs. Ciliate genomes undergo massive rearrangement and reduction during development. Transposon elimination is guided by small RNAs and carried out by transposases. New pathways for noncoding RNA production have recently been discovered in ciliates. Diverse ciliate species have different mechanisms for RNA-guided genome remodeling.
Collapse
Affiliation(s)
- Sarah E Allen
- Institute of Cell Biology, University of Bern, Switzerland
| | | |
Collapse
|
19
|
Vitali V, Hagen R, Catania F. Environmentally induced plasticity of programmed DNA elimination boosts somatic variability in Paramecium tetraurelia. Genome Res 2019; 29:1693-1704. [PMID: 31548355 PMCID: PMC6771405 DOI: 10.1101/gr.245332.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Can ecological changes impact somatic genome development? Efforts to resolve this question could reveal a direct link between environmental changes and somatic variability, potentially illuminating our understanding of how variation can surface from a single genotype under stress. Here, we tackle this question by leveraging the biological properties of ciliates. When Paramecium tetraurelia reproduces sexually, its polyploid somatic genome regenerates from the germline genome through a developmental process that involves the removal of thousands of ORF-interrupting sequences known as internal eliminated sequences (IESs). We show that exposure to nonstandard culture temperatures impacts the efficiency of this process of programmed DNA elimination, prompting the emergence of hundreds of incompletely excised IESs in the newly developed somatic genome. These alternative DNA isoforms display a patterned genomic topography, impact gene expression, and might be inherited transgenerationally. On this basis, we conclude that environmentally induced developmental thermoplasticity contributes to genotypic diversification in Paramecium.
Collapse
Affiliation(s)
- Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Rebecca Hagen
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| |
Collapse
|
20
|
Diversification of small RNA amplification mechanisms for targeting transposon-related sequences in ciliates. Proc Natl Acad Sci U S A 2019; 116:14639-14644. [PMID: 31262823 DOI: 10.1073/pnas.1903491116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The silencing of repetitive transposable elements (TEs) is ensured by signal amplification of the initial small RNA trigger, which occurs at distinct steps of TE silencing in different eukaryotes. How such a variety of secondary small RNA biogenesis mechanisms has evolved has not been thoroughly elucidated. Ciliated protozoa perform small RNA-directed programmed DNA elimination of thousands of TE-related internal eliminated sequences (IESs) in the newly developed somatic nucleus. In the ciliate Paramecium, secondary small RNAs are produced after the excision of IESs. In this study, we show that in another ciliate, Tetrahymena, secondary small RNAs accumulate at least a few hours before their derived IESs are excised. We also demonstrate that DNA excision is dispensable for their biogenesis in this ciliate. Therefore, unlike in Paramecium, small RNA amplification occurs before IES excision in Tetrahymena This study reveals the remarkable diversity of secondary small RNA biogenesis mechanisms, even among ciliates with similar DNA elimination processes, and thus raises the possibility that the evolution of TE-targeting small RNA amplification can be traced by investigating the DNA elimination mechanisms of ciliates.
Collapse
|
21
|
Bhullar S, Denby Wilkes C, Arnaiz O, Nowacki M, Sperling L, Meyer E. A mating-type mutagenesis screen identifies a zinc-finger protein required for specific DNA excision events in Paramecium. Nucleic Acids Res 2019; 46:9550-9562. [PMID: 30165457 PMCID: PMC6182129 DOI: 10.1093/nar/gky772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, functional genes are reconstituted during development of the somatic macronucleus through the precise excision of ∼45 000 single-copy Internal Eliminated Sequences (IESs), thought to be the degenerate remnants of ancient transposon insertions. Like introns, IESs are marked only by a weak consensus at their ends. How such a diverse set of sequences is faithfully recognized and precisely excised remains unclear: specialized small RNAs have been implicated, but in their absence up to ∼60% of IESs are still correctly excised. To get further insight, we designed a mutagenesis screen based on the hypersensitivity of a specific excision event in the mtA gene, which determines mating types. Unlike most IES-containing genes, the active form of mtA is the unexcised one, allowing the recovery of hypomorphic alleles of essential IES recognition/excision factors. Such is the case of one mutation recovered in the Piwi gene PTIWI09, a key player in small RNA-mediated IES recognition. Another mutation identified a novel protein with a C2H2 zinc finger, mtGa, which is required for excision of a small subset of IESs characterized by enrichment in a 5-bp motif. The unexpected implication of a sequence-specific factor establishes a new paradigm for IES recognition and/or excision.
Collapse
Affiliation(s)
- Simran Bhullar
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL University, F-75005 Paris, France.,Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Eric Meyer
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL University, F-75005 Paris, France
| |
Collapse
|
22
|
Noto T, Mochizuki K. Whats, hows and whys of programmed DNA elimination in Tetrahymena. Open Biol 2018; 7:rsob.170172. [PMID: 29021213 PMCID: PMC5666084 DOI: 10.1098/rsob.170172] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
Programmed genome rearrangements in ciliates provide fascinating examples of flexible epigenetic genome regulations and important insights into the interaction between transposable elements (TEs) and host genomes. DNA elimination in Tetrahymena thermophila removes approximately 12 000 internal eliminated sequences (IESs), which correspond to one-third of the genome, when the somatic macronucleus (MAC) differentiates from the germline micronucleus (MIC). More than half of the IESs, many of which show high similarity to TEs, are targeted for elimination in cis by the small RNA-mediated genome comparison of the MIC to the MAC. Other IESs are targeted for elimination in trans by the same small RNAs through repetitive sequences. Furthermore, the small RNA–heterochromatin feedback loop ensures robust DNA elimination. Here, we review an updated picture of the DNA elimination mechanism, discuss the physiological and evolutionary roles of DNA elimination, and outline the key questions that remain unanswered.
Collapse
Affiliation(s)
- Tomoko Noto
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| | - Kazufumi Mochizuki
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| |
Collapse
|
23
|
Noto T, Mochizuki K. Small RNA-Mediated trans-Nuclear and trans-Element Communications in Tetrahymena DNA Elimination. Curr Biol 2018; 28:1938-1949.e5. [DOI: 10.1016/j.cub.2018.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 10/14/2022]
|
24
|
Neeb ZT, Nowacki M. RNA-mediated transgenerational inheritance in ciliates and plants. Chromosoma 2018; 127:19-27. [PMID: 29230532 PMCID: PMC5818585 DOI: 10.1007/s00412-017-0655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
In the age of next-generation sequencing (NGS) and with the availability of whole sequenced genomes and epigenomes, some attention has shifted from purely sequence-based studies to those of heritable epigenetic modifications. Transgenerational inheritance can be defined as heritable changes to the state of DNA that may be passed on to subsequent generations without alterations to the underlying DNA sequence. Although this phenomenon has been extensively studied in many systems, studies of transgenerational inheritance in mammals and other higher-level eukaryotes may be complicated by the fact that many epigenetic marks are reprogrammed during sexual reproduction. This, by definition, may obscure our interpretation of what is in fact truly transgenerational. Therefore, in this mini review, we discuss what is currently known in the field about transgenerational epigenetic inheritance in ciliates and plants, with a particular emphasis on RNA-mediated processes and changes in chromatin states.
Collapse
Affiliation(s)
- Zachary T Neeb
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
25
|
Gruchota J, Denby Wilkes C, Arnaiz O, Sperling L, Nowak JK. A meiosis-specific Spt5 homolog involved in non-coding transcription. Nucleic Acids Res 2017; 45:4722-4732. [PMID: 28053118 PMCID: PMC5416832 DOI: 10.1093/nar/gkw1318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Spt5 is a conserved and essential transcriptional regulator that binds directly to RNA polymerase and is involved in transcription elongation, polymerase pausing and various co-transcriptional processes. To investigate the role of Spt5 in non-coding transcription, we used the unicellular model Paramecium tetraurelia. In this ciliate, development is controlled by epigenetic mechanisms that use different classes of non-coding RNAs to target DNA elimination. We identified two SPT5 genes. One (STP5v) is involved in vegetative growth, while the other (SPT5m) is essential for sexual reproduction. We focused our study on SPT5m, expressed at meiosis and associated with germline nuclei during sexual processes. Upon Spt5m depletion, we observed absence of scnRNAs, piRNA-like 25 nt small RNAs produced at meiosis. The scnRNAs are a temporal copy of the germline genome and play a key role in programming DNA elimination. Moreover, Spt5m depletion abolishes elimination of all germline-limited sequences, including sequences whose excision was previously shown to be scnRNA-independent. This suggests that in addition to scnRNA production, Spt5 is involved in setting some as yet uncharacterized epigenetic information at meiosis. Our study establishes that Spt5m is crucial for developmental genome rearrangements and necessary for scnRNA production.
Collapse
Affiliation(s)
- Julita Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, University of Paris Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, University of Paris Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, University of Paris Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Jacek K Nowak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
26
|
Matsui A, Iida K, Tanaka M, Yamaguchi K, Mizuhashi K, Kim JM, Takahashi S, Kobayashi N, Shigenobu S, Shinozaki K, Seki M. Novel Stress-Inducible Antisense RNAs of Protein-Coding Loci Are Synthesized by RNA-Dependent RNA Polymerase. PLANT PHYSIOLOGY 2017; 175:457-472. [PMID: 28710133 PMCID: PMC5580770 DOI: 10.1104/pp.17.00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/12/2017] [Indexed: 05/03/2023]
Abstract
Our previous study identified approximately 6,000 abiotic stress-responsive noncoding transcripts existing on the antisense strand of protein-coding genes and implied that a type of antisense RNA was synthesized from a sense RNA template by RNA-dependent RNA polymerase (RDR). Expression analyses revealed that the expression of novel abiotic stress-induced antisense RNA on 1,136 gene loci was reduced in the rdr1/2/6 mutants. RNase protection indicated that the RD29A antisense RNA and other RDR1/2/6-dependent antisense RNAs are involved in the formation of dsRNA. The accumulation of stress-inducible antisense RNA was decreased and increased in dcp5 and xrn4, respectively, but not changed in dcl2/3/4, nrpd1a and nrpd1b RNA-seq analyses revealed that the majority of the RDR1/2/6-dependent antisense RNA loci did not overlap with RDR1/2/6-dependent 20-30 nt RNA loci. Additionally, rdr1/2/6 mutants decreased the degradation rate of the sense RNA and exhibited arrested root growth during the recovery stage following a drought stress, whereas dcl2/3/4 mutants did not. Collectively, these results indicate that RDRs have stress-inducible antisense RNA synthesis activity and a novel biological function that is different from the known endogenous small RNA pathways from protein-coding genes. These data reveal a novel mechanism of RNA regulation during abiotic stress response that involves complex RNA degradation pathways.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kei Iida
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kayoko Mizuhashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Norio Kobayashi
- Computational Engineering Applications Unit, Advanced Center for Computing and Communication, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Lindblad KA, Bracht JR, Williams AE, Landweber LF. Thousands of RNA-cached copies of whole chromosomes are present in the ciliate Oxytricha during development. RNA (NEW YORK, N.Y.) 2017; 23:1200-1208. [PMID: 28450531 PMCID: PMC5513065 DOI: 10.1261/rna.058511.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
The ciliate Oxytricha trifallax maintains two genomes: a germline genome that is active only during sexual conjugation and a transcriptionally active, somatic genome that derives from the germline via extensive sequence reduction and rearrangement. Previously, we found that long noncoding (lnc) RNA "templates"-telomere-containing, RNA-cached copies of mature chromosomes-provide the information to program the rearrangement process. Here we used a modified RNA-seq approach to conduct the first genome-wide search for endogenous, telomere-to-telomere RNA transcripts. We find that during development, Oxytricha produces long noncoding RNA copies for over 10,000 of its 16,000 somatic chromosomes, consistent with a model in which Oxytricha transmits an RNA-cached copy of its somatic genome to the sexual progeny. Both the primary sequence and expression profile of a somatic chromosome influence the temporal distribution and abundance of individual template RNAs. This suggests that Oxytricha may undergo multiple rounds of DNA rearrangement during development. These observations implicate a complex set of thousands of long RNA molecules in the wiring and maintenance of a highly elaborate somatic genome architecture.
Collapse
Affiliation(s)
- Kelsi A Lindblad
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - John R Bracht
- Department of Biology, American University, Washington, DC 20016, USA
| | - April E Williams
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Psychiatry, University of California, San Diego, California, La Jolla 92093, USA
| | - Laura F Landweber
- Department of Biochemistry and Molecular Biophysics
- Department of Biological Sciences, Columbia University, New York, New York 10032, USA
| |
Collapse
|
28
|
Arnaiz O, Van Dijk E, Bétermier M, Lhuillier-Akakpo M, de Vanssay A, Duharcourt S, Sallet E, Gouzy J, Sperling L. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression. BMC Genomics 2017; 18:483. [PMID: 28651633 PMCID: PMC5485702 DOI: 10.1186/s12864-017-3887-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Background The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. Results We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. Conclusions We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3′ and 5′ UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB (http://paramecium.i2bc.paris-saclay.fr). TrUC software is freely distributed under a GNU GPL v3 licence (https://github.com/oarnaiz/TrUC). Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3887-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Erwin Van Dijk
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.,Current address: IRCM, CEA, INSERM UMR 967, Université Paris Diderot, Université Paris-Saclay, 92265, Fontenay-aux-Roses CEDEX, France
| | - Augustin de Vanssay
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Erika Sallet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
29
|
Chwalenia K, Facemire L, Li H. Chimeric RNAs in cancer and normal physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1427] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Loryn Facemire
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Hui Li
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
- Department of Biochemistry and Molecular Genetics, School of Medicine; University of Virginia; Charlottesville VA USA
| |
Collapse
|
30
|
Unusual features of non-dividing somatic macronuclei in the ciliate class Karyorelictea. Eur J Protistol 2017; 61:399-408. [PMID: 28673471 DOI: 10.1016/j.ejop.2017.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Genome structure and nuclear organization have been intensely studied in model ciliates such as Tetrahymena and Paramecium, yet few studies have focused on nuclear features of other ciliate clades including the class Karyorelictea. In most ciliates, both the somatic macronuclei and germline micronuclei divide during cell division and macronuclear development only occurs after conjugation. However, the macronuclei of Karyorelictea are non-dividing (i.e. division minus (Div-)) and develop anew from micronuclei during each asexual division. As macronuclei age within Karyorelictea, they undergo changes in morphology and DNA content until they are eventually degraded and replaced by newly developed macronuclei. No less than two macronuclei and one micronucleus are present in karyorelictid species, which suggests that a mature macronucleus 1) might be needed to sustain the cell while a new macronucleus is developing and 2) likely plays a role in guiding the development of the new macronucleus. Here we use a phylogenetic framework to compile information on the morphology and development of nuclei in Karyorelictea, largely relying on the work of Dr. Igor Raikov (1932-1998). We synthesize data to speculate on the functional implications of key features of Karyorelictea including the presence of at least two macronuclei in each cell and the inability for macronuclei to divide.
Collapse
|
31
|
Pilling OA, Rogers AJ, Gulla-Devaney B, Katz LA. Insights into transgenerational epigenetics from studies of ciliates. Eur J Protistol 2017; 61:366-375. [PMID: 28689743 DOI: 10.1016/j.ejop.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
Abstract
Epigenetics, a term with many meanings, can be broadly defined as the study of dynamic states of the genome. Ciliates, a clade of unicellular eukaryotes, can teach us about the intersection of epigenetics and evolution due to the advantages of working with cultivable ciliate lineages, plus their tendency to express extreme phenotypes such as heritable doublet morphology. Moreover, ciliates provide a powerful model for studying epigenetics given the presence of dimorphic nuclei - a somatic macronucleus and germline micronucleus - within each cell. Here, we exemplify the power of studying ciliates to learn about epigenetic phenomena. We highlight "classical" examples from morphology and physiology including cortical inheritance, mating type determination, and serotype expression. In addition, we detail molecular studies of epigenetic phenomena, including: DNA elimination; alternative processing and unscrambling; and copy number determination. Based on the implications of these studies, we discuss epigenetics as a possible functional mechanism for rapid speciation in ciliates.
Collapse
Affiliation(s)
- Olivia A Pilling
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Anna J Rogers
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | | | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
32
|
Bengueddach H, Lemullois M, Aubusson-Fleury A, Koll F. Basal body positioning and anchoring in the multiciliated cell Paramecium tetraurelia: roles of OFD1 and VFL3. Cilia 2017; 6:6. [PMID: 28367320 PMCID: PMC5374602 DOI: 10.1186/s13630-017-0050-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
Background The development of a ciliary axoneme requires the correct docking of the basal body at cytoplasmic vesicles or plasma membrane. In the multiciliated cell Paramecium, three conserved proteins, FOR20, Centrin 2, and Centrin 3 participate in this process, FOR20 and Centrin 2 being involved in the assembly of the transition zone. We investigated the function of two other evolutionary conserved proteins, OFD1 and VFL3, likely involved in this process. Results In Paramecium tetraurelia, a single gene encodes OFD1, while four genes encode four isoforms of VFL3, grouped into two families, VFL3-A and VFL3-B. Depletion of OFD1 and the sole VFL3-A family impairs basal body docking. Loss of OFD1 yields a defective assembly of the basal body distal part. Like FOR20, OFD1 is recruited early during basal body assembly and localizes at the transition zone between axoneme and membrane at the level of the microtubule doublets. While the recruitment of OFD1 and Centrin 2 proceed independently, the localizations of OFD1 and FOR20 at the basal body are interdependent. In contrast, in VFL3-A depleted cells, the unanchored basal bodies harbor a fully organized distal part but display an abnormal distribution of their associated rootlets which mark their rotational asymmetry. VFL3-A, which is required for the recruitment of Centrin 3, is transiently present near the basal bodies at an early step of their duplication. VFL3-A localizes at the junction between the striated rootlet and the basal body. Conclusion Our results demonstrate the conserved role of OFD1 in the anchoring mechanisms of motile cilia and establish its relations with FOR20 and Centrin 2. They support the hypothesis of its association with microtubule doublets. They suggest that the primary defect of VFL3 depletion is a loss of the rotational asymmetry of the basal body which specifies the sites of assembly of the appendages which guide the movement of basal bodies toward the cell surface. The localization of VFL3 outside of the basal body suggests that extrinsic factors could control this asymmetry. Electronic supplementary material The online version of this article (doi:10.1186/s13630-017-0050-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hakim Bengueddach
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Michel Lemullois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Anne Aubusson-Fleury
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
33
|
Allen SE, Nowacki M. Necessity Is the Mother of Invention: Ciliates, Transposons, and Transgenerational Inheritance. Trends Genet 2017; 33:197-207. [PMID: 28174020 DOI: 10.1016/j.tig.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/01/2023]
Abstract
Ciliates are a fascinating model system for the study of the interaction between eukaryotic germlines and somatic lines, especially with regard to the invasion and defence against transposable elements. They separate their germline and somatic line into two nuclei within the same cell, and they silence transposons and repetitive elements by way of deleting them from their somatic genome. This large-scale deletion event uses a series of intricate sequence targeting pathways involving small RNAs and transposases, part of which consists of a transnuclear comparison between maternal soma and daughter germline. We present recent progress in this dynamic field, and argue that these DNA targeting pathways provide an optimal system for the transgenerational inheritance of acquired traits. Ciliates thus also demonstrate the evolutionary value of transposable elements, both as sources of sequence diversity and also as drivers of adaptive evolution by necessitating defensive systems.
Collapse
Affiliation(s)
- Sarah E Allen
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
34
|
Hadjivasiliou Z, Pomiankowski A, Kuijper B. The evolution of mating type switching. Evolution 2016; 70:1569-81. [PMID: 27271362 PMCID: PMC5008120 DOI: 10.1111/evo.12959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
Abstract
Predictions about the evolution of sex determination mechanisms have mainly focused on animals and plants, whereas unicellular eukaryotes such as fungi and ciliates have received little attention. Many taxa within the latter groups can stochastically switch their mating type identity during vegetative growth. Here, we investigate the hypothesis that mating type switching overcomes distortions in the distribution of mating types due to drift during asexual growth. Using a computational model, we show that smaller population size, longer vegetative periods and more mating types lead to greater distortions in the distribution of mating types. However, the impact of these parameters on optimal switching rates is not straightforward. We find that longer vegetative periods cause reductions and considerable fluctuations in the switching rate over time. Smaller population size increases the strength of selection for switching but has little impact on the switching rate itself. The number of mating types decreases switching rates when gametes can freely sample each other, but increases switching rates when there is selection for speedy mating. We discuss our results in light of empirical work and propose new experiments that could further our understanding of sexuality in isogamous eukaryotes.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- CoMPLEX, Centre for Mathematics and Physics in the Life sciences and Experimental biology, University College London, Gower Street, London, United Kingdom. .,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, United Kingdom.
| | - Andrew Pomiankowski
- CoMPLEX, Centre for Mathematics and Physics in the Life sciences and Experimental biology, University College London, Gower Street, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, United Kingdom
| | - Bram Kuijper
- CoMPLEX, Centre for Mathematics and Physics in the Life sciences and Experimental biology, University College London, Gower Street, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, United Kingdom
| |
Collapse
|
35
|
Bracht JR, Wang X, Shetty K, Chen X, Uttarotai GJ, Callihan EC, McCloud SS, Clay DM, Wang J, Nowacki M, Landweber LF. Chromosome fusions triggered by noncoding RNA. RNA Biol 2016; 14:620-631. [PMID: 27267579 PMCID: PMC5449082 DOI: 10.1080/15476286.2016.1195940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Chromosomal fusions are common in normal and cancer cells and can produce aberrant gene products that promote transformation. The mechanisms driving these fusions are poorly understood, but recurrent fusions are widespread. This suggests an underlying mechanism, and some authors have proposed a possible role for RNA in this process. The unicellular eukaryote Oxytricha trifallax displays an exorbitant capacity for natural genome editing, when it rewrites its germline genome to form a somatic epigenome. This developmental process provides a powerful model system to directly test the influence of small noncoding RNAs on chromosome fusion events during somatic differentiation. Here we show that small RNAs are capable of inducing chromosome fusions in 4 distinct cases (out of 4 tested), including one fusion of 3 chromosomes. We further show that these RNA-mediated chromosome fusions are heritable over multiple sexual generations and that transmission of the acquired fusion is associated with endogenous production of novel piRNA molecules that target the fused junction. We also demonstrate the capacity of a long noncoding RNA (lncRNA) to induce chromosome fusion of 2 distal germline loci. These results underscore the ability of short-lived, aberrant RNAs to act as drivers of chromosome fusion events that can be stably transmitted to future generations.
Collapse
Affiliation(s)
- John R Bracht
- a Department of Biology , American University , Washington, DC , USA
| | - Xing Wang
- b Department of Chemistry & Chemical Biology , Rensselaer Polytechnic Institute Troy , NY , USA
| | - Keerthi Shetty
- c Department of Molecular Biology , Princeton University , Princeton , NJ , USA.,d Department of Immunobiology , Yale University , New Haven , CT , USA
| | - Xiao Chen
- c Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Grace J Uttarotai
- a Department of Biology , American University , Washington, DC , USA
| | - Evan C Callihan
- a Department of Biology , American University , Washington, DC , USA
| | - Sierra S McCloud
- c Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Derek M Clay
- c Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Jingmei Wang
- e Department of Ecology & Evolutionary Biology , Princeton University , NJ , USA
| | - Mariusz Nowacki
- f Institute of Cell Biology, University of Bern , Switzerland
| | - Laura F Landweber
- e Department of Ecology & Evolutionary Biology , Princeton University , NJ , USA.,g Departments of Biochemistry & Molecular Biophysics and Biological Sciences , Columbia University , NY , USA
| |
Collapse
|
36
|
Abstract
Programmed genome rearrangements in the ciliate Paramecium provide a nice illustration of the impact of transposons on genome evolution and plasticity. During the sexual cycle, development of the somatic macronucleus involves elimination of ∼30% of the germline genome, including repeated DNA (e.g., transposons) and ∼45,000 single-copy internal eliminated sequences (IES). IES excision is a precise cut-and-close process, in which double-stranded DNA cleavage at IES ends depends on PiggyMac, a domesticated piggyBac transposase. Genome-wide analysis has revealed that at least a fraction of IESs originate from Tc/mariner transposons unrelated to piggyBac. Moreover, genomic sequences with no transposon origin, such as gene promoters, can be excised reproducibly as IESs, indicating that genome rearrangements contribute to the control of gene expression. How the system has evolved to allow elimination of DNA sequences with no recognizable conserved motif has been the subject of extensive research during the past two decades. Increasing evidence has accumulated for the participation of noncoding RNAs in epigenetic control of elimination for a subset of IESs, and in trans-generational inheritance of alternative rearrangement patterns. This chapter summarizes our current knowledge of the structure of the germline and somatic genomes for the model species Paramecium tetraurelia, and describes the DNA cleavage and repair factors that constitute the IES excision machinery. We present an overview of the role of specialized RNA interference machineries and their associated noncoding RNAs in the control of DNA elimination. Finally, we discuss how RNA-dependent modification and/or remodeling of chromatin may guide PiggyMac to its cognate cleavage sites.
Collapse
|
37
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
38
|
Denby Wilkes C, Arnaiz O, Sperling L. ParTIES: a toolbox for Paramecium interspersed DNA elimination studies. Bioinformatics 2015; 32:599-601. [PMID: 26589276 DOI: 10.1093/bioinformatics/btv691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/14/2015] [Indexed: 01/11/2023] Open
Abstract
MOTIVATION Developmental DNA elimination occurs in a wide variety of multicellular organisms, but ciliates are the only single-celled eukaryotes in which this phenomenon has been reported. Despite considerable interest in ciliates as models for DNA elimination, no standard methods for identification and characterization of the eliminated sequences are currently available. RESULTS We present the Paramecium Toolbox for Interspersed DNA Elimination Studies (ParTIES), designed for Paramecium species, that (i) identifies eliminated sequences, (ii) measures their presence in a sequencing sample and (iii) detects rare elimination polymorphisms. AVAILABILITY AND IMPLEMENTATION ParTIES is multi-threaded Perl software available at https://github.com/oarnaiz/ParTIES. ParTIES is distributed under the GNU General Public Licence v3.
Collapse
Affiliation(s)
- Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
39
|
Parent JS, Jauvion V, Bouché N, Béclin C, Hachet M, Zytnicki M, Vaucheret H. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Res 2015. [PMID: 26209135 PMCID: PMC4787800 DOI: 10.1093/nar/gkv753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3′ maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS.
Collapse
Affiliation(s)
| | - Vincent Jauvion
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | - Christophe Béclin
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | | | | | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| |
Collapse
|
40
|
Maliszewska-Olejniczak K, Gruchota J, Gromadka R, Denby Wilkes C, Arnaiz O, Mathy N, Duharcourt S, Bétermier M, Nowak JK. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements. PLoS Genet 2015; 11:e1005383. [PMID: 26177014 PMCID: PMC4503560 DOI: 10.1371/journal.pgen.1005383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/22/2015] [Indexed: 02/07/2023] Open
Abstract
Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for the first time a specific role of TFIIS in non-coding transcription in eukaryotes. Paramecium tetraurelia provides an excellent model for studying the mechanisms involved in the production of non-coding transcripts and their mode of action. Different types of non-coding RNAs (ncRNAs) were shown to be implicated in the programmed DNA elimination process that occurs in this organism. At each sexual cycle, during development of the somatic nucleus from the germline nucleus, the genome is massively rearranged through the reproducible elimination of germline-specific sequences including thousands of short, single copy, non-coding Internal Eliminated Sequences (IES). Here, we demonstrate, using RNA interference, that the TFIIS4 gene encoding a development-specific homolog of RNA polymerase II elongation factor TFIIS, is indispensable for ncRNA synthesis in the new somatic nucleus. TFIIS4 depletion impairs the assembly of a functional somatic genome and affects excision of a large fraction of IESs, which leads to strong lethality in the sexual progeny. We propose that TFIIS4-dependent ncRNAs provide an important component of the molecular machinery that is responsible for developmental genome remodeling in Paramecium.
Collapse
Affiliation(s)
| | - Julita Gruchota
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Nathalie Mathy
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Jacek K. Nowak
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
- * E-mail:
| |
Collapse
|
41
|
Carradec Q, Götz U, Arnaiz O, Pouch J, Simon M, Meyer E, Marker S. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia. Nucleic Acids Res 2015; 43:1818-33. [PMID: 25593325 PMCID: PMC4330347 DOI: 10.1093/nar/gku1331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3′-to-5′ and 5′-to-3′ transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism.
Collapse
Affiliation(s)
- Quentin Carradec
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France UPMC, IFD, Sorbonne Universités, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Ulrike Götz
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Olivier Arnaiz
- Centre de Génétique Moléculaire, CNRS UPR3404, 91198 Gif-sur-Yvette cedex, France
| | - Juliette Pouch
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Martin Simon
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Eric Meyer
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Simone Marker
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| |
Collapse
|
42
|
Arambasic M, Sandoval PY, Hoehener C, Singh A, Swart EC, Nowacki M. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium. PLoS One 2014; 9:e112899. [PMID: 25397898 PMCID: PMC4232520 DOI: 10.1371/journal.pone.0112899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/16/2014] [Indexed: 01/25/2023] Open
Abstract
The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.
Collapse
Affiliation(s)
| | | | | | - Aditi Singh
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
43
|
Ignarski M, Singh A, Swart EC, Arambasic M, Sandoval PY, Nowacki M. Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination. Nucleic Acids Res 2014; 42:11952-64. [PMID: 25270876 PMCID: PMC4231744 DOI: 10.1093/nar/gku874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.
Collapse
Affiliation(s)
- Michael Ignarski
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Aditi Singh
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Miroslav Arambasic
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Pamela Y Sandoval
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
44
|
Lhuillier-Akakpo M, Frapporti A, Denby Wilkes C, Matelot M, Vervoort M, Sperling L, Duharcourt S. Local effect of enhancer of zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet 2014; 10:e1004665. [PMID: 25254958 PMCID: PMC4177680 DOI: 10.1371/journal.pgen.1004665] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences. The unicellular eukaryote Paramecium tetraurelia provides an extraordinary model for studying the mechanisms involved in zygotic genome rearrangements. At each sexual cycle, differentiation of the somatic nucleus from the zygotic nucleus is characterized by extensive remodeling of the entire somatic genome, which includes the precise excision of 45,000 short noncoding germline DNA segments to reconstitute functional open reading frames. Exploiting the unique properties of the Paramecium genome, we show that the enhancer of zeste like protein Ezl1 is necessary for histone H3 trimethylation on lysines 27 and 9 and is required for the precise excision of 31,000 of these single copy, dispersed germline DNA segments that can be as short as 26 bp in length. This implies that histone marks usually associated with heterochromatin may contribute to the precise demarcation of segments that are even shorter than the length of DNA wrapped around a single nucleosome. A quantitative analysis of high throughput sequencing datasets further shows that the underlying genetic properties of the germline DNA segments might act in concert with epigenetic signals to define germline specific sequences.
Collapse
Affiliation(s)
- Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités, UPMC Univ., IFD, Paris, France
| | - Andrea Frapporti
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Denby Wilkes
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Mélody Matelot
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Institut Universitaire de France, Paris, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Marmignon A, Bischerour J, Silve A, Fojcik C, Dubois E, Arnaiz O, Kapusta A, Malinsky S, Bétermier M. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia. PLoS Genet 2014; 10:e1004552. [PMID: 25166013 PMCID: PMC4148214 DOI: 10.1371/journal.pgen.1004552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR. DNA double-strand breaks (DSBs) are potential threats for chromosome stability, but they are usually repaired by two major pathways, homologous recombination or non-homologous end joining (NHEJ). DSBs can also be essential during physiological processes, such as the programmed removal of germline sequences that takes place in various eukaryotes, including ciliates, during somatic differentiation. We use the ciliate Paramecium tetraurelia as a unicellular model to study how DNA breakage and DSB repair are coordinated during programmed genome rearrangements. In this organism, assembly of the somatic genome involves the elimination of ∼25% of germline DNA, including the precise excision of thousands of short Internal Eliminated Sequences (IES) scattered along germline chromosomes. A domesticated piggyBac transposase, PiggyMac, is required for double-strand DNA cleavage at IES ends and IES excision sites are very precisely repaired by the NHEJ pathway. Here, we report that a specialized Ku heterodimer, specifically expressed during programmed genome rearrangements, is an essential partner of PiggyMac and activates DNA cleavage. We propose that incorporation of DSB repair proteins in a pre-cleavage complex constitutes a safe and efficient way for Paramecium to direct thousands of programmed DSBs to the NHEJ pathway and make sure that somatic chromosomes are assembled correctly.
Collapse
Affiliation(s)
- Antoine Marmignon
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Julien Bischerour
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aude Silve
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Clémentine Fojcik
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Emeline Dubois
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aurélie Kapusta
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Sophie Malinsky
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Mireille Bétermier
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
- * E-mail:
| |
Collapse
|
46
|
Swart EC, Wilkes CD, Sandoval PY, Arambasic M, Sperling L, Nowacki M. Genome-wide analysis of genetic and epigenetic control of programmed DNA deletion. Nucleic Acids Res 2014; 42:8970-83. [PMID: 25016527 PMCID: PMC4132734 DOI: 10.1093/nar/gku619] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control.
Collapse
Affiliation(s)
- Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Cyril Denby Wilkes
- CNRS UPR3404 Centre de Génétique Moléculaire, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198 cedex, France Université Paris-Sud, Département de Biologie, Orsay, F-91405, France
| | - Pamela Y Sandoval
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Miroslav Arambasic
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198 cedex, France Université Paris-Sud, Département de Biologie, Orsay, F-91405, France
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
47
|
Bloomfield G. Sex determination: ciliates' self-censorship. Curr Biol 2014; 24:R617-9. [PMID: 25004369 DOI: 10.1016/j.cub.2014.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Differentiation involves the expression of certain latent cellular characteristics and the repression of others. A new study has revealed how Paramecium uses short RNAs to delete information from the somatic genome of one of its two sexes.
Collapse
Affiliation(s)
- Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
48
|
Marker S, Carradec Q, Tanty V, Arnaiz O, Meyer E. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia. Nucleic Acids Res 2014; 42:7268-80. [PMID: 24860163 PMCID: PMC4066745 DOI: 10.1093/nar/gku223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia.
Collapse
Affiliation(s)
- Simone Marker
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| | - Quentin Carradec
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, F-75252 Paris cedex 05, France
| | - Véronique Tanty
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198 cedex, France; Université Paris-Sud, Département de Biologie, Orsay, F-91405, France
| | - Eric Meyer
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| |
Collapse
|
49
|
Chalker DL. Keeping one's sex. Nature 2014; 509:430-1. [DOI: 10.1038/nature13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Goût JF, Prajer M, Potekhin A, Przybòs E, Aubusson-Fleury A, Bhullar S, Bouhouche K, Lhuillier-Akakpo M, Tanty V, Blugeon C, Alberti A, Labadie K, Aury JM, Sperling L, Duharcourt S, Meyer E. Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 2014; 509:447-52. [PMID: 24805235 DOI: 10.1038/nature13318] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 04/11/2014] [Indexed: 12/30/2022]
Abstract
In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.
Collapse
Affiliation(s)
- Deepankar Pratap Singh
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Baptiste Saudemont
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [3] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Gérard Guglielmi
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Jean-François Goût
- 1] CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 43 boulevard du 11 Novembre 1918, Villeurbanne F-69622, France [2] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Malgorzata Prajer
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, St Petersburg State University, Saint Petersburg 199034, Russia
| | - Ewa Przybòs
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Anne Aubusson-Fleury
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Simran Bhullar
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Khaled Bouhouche
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Maoussi Lhuillier-Akakpo
- 1] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [2] Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Véronique Tanty
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Corinne Blugeon
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Adriana Alberti
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Eric Meyer
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| |
Collapse
|