1
|
Stephen CN, Palmer DE, Bautista C, Mishanina TV. Structurally distinct manganese-sensing riboswitch aptamers regulate diverse expression platform architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.14.628514. [PMID: 39763765 PMCID: PMC11702587 DOI: 10.1101/2024.12.14.628514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Manganese (Mn)-sensing riboswitches protect bacteria from Mn toxicity by upregulating expression of Mn exporters. The Mn aptamers share key features but diverge in other important elements, including within the metal-binding core. Although X-ray crystal structures of isolated aptamers exist, these structural snapshots lack crucial details about how the aptamer communicates the presence or absence of ligand to the expression platform. In this work, we investigated the Mn-sensing translational riboswitches in E. coli ( mntP and alx ), which differ in aptamer secondary structure, nucleotide sequence, and pH-dependence of Mn response. We performed co-transcriptional RNA chemical probing, allowing us to visualize RNA folding intermediates that form and resolve en route to the final folded riboswitch. For the first time, we report that sampling of metal ions by the RNA begins before the aptamer synthesis and folding are complete. At a single-nucleotide resolution, we pinpoint the transcription window where "riboswitching" occurs in response to Mn binding and uncover key differences in how the alx and mntP riboswitches fold. Finally, we describe riboswitch-specific effects of pH, providing insights into how two members of the same riboswitch family differentially sense two distinct environmental cues: concentration of Mn and pH. GRAPHICAL ABSTRACT
Collapse
|
2
|
Remmel L, Meyer A, Ackermann K, Hagelueken G, Bennati M, Bode BE. Pulsed EPR Methods in the Angstrom to Nanometre Scale Shed Light on the Conformational Flexibility of a Fluoride Riboswitch. Angew Chem Int Ed Engl 2024; 63:e202411241. [PMID: 39225197 PMCID: PMC11586693 DOI: 10.1002/anie.202411241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Riboswitches control gene regulation upon external stimuli such as environmental factors or ligand binding. The fluoride sensing riboswitch from Thermotoga petrophila is a complex regulatory RNA proposed to be involved in resistance to F- cytotoxicity. The details of structure and dynamics underpinning the regulatory mechanism are currently debated. Here we demonstrate that a combination of pulsed electron paramagnetic resonance (ESR/EPR) spectroscopies, detecting distances in the angstrom to nanometre range, can probe distinct regions of conformational flexibility in this riboswitch. PELDOR (pulsed electron-electron double resonance) revealed a similar preorganisation of the sensing domain in three forms, i.e. the free aptamer, the Mg2+-bound apo, and the F--bound holo form. 19F ENDOR (electron-nuclear double resonance) was used to investigate the active site structure of the F--bound holo form. Distance distributions without a priori structural information were compared with in silico modelling of spin label conformations based on the crystal structure. While PELDOR, probing the periphery of the RNA fold, revealed conformational flexibility of the RNA backbone, ENDOR indicated low structural heterogeneity at the ligand binding site. Overall, the combination of PELDOR and ENDOR with sub-angstrom precision gave insight into structural organisation and flexibility of a riboswitch, not easily attainable by other biophysical techniques.
Collapse
Affiliation(s)
- Laura Remmel
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| | - Andreas Meyer
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- Institute of Physical ChemistryGeorg-August UniversityTammannstraße 637077GöttingenGermany
| | - Katrin Ackermann
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| | - Gregor Hagelueken
- Institute of Structural BiologyUniversity of BonnVenusberg-Campus 153127BonnGermany
| | - Marina Bennati
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- Institute of Physical ChemistryGeorg-August UniversityTammannstraße 637077GöttingenGermany
| | - Bela E. Bode
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| |
Collapse
|
3
|
Goh H, Choi S, Kim J. Synthetic translational coupling element for multiplexed signal processing and cellular control. Nucleic Acids Res 2024; 52:13469-13483. [PMID: 39526390 PMCID: PMC11602170 DOI: 10.1093/nar/gkae980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Repurposing natural systems to develop customized functions in biological systems is one of the main thrusts of synthetic biology. Translational coupling is a common phenomenon in diverse polycistronic operons for efficient allocation of limited genetic space and cellular resources. These beneficial features of translation coupling can provide exciting opportunities for creating novel synthetic biological devices. Here, we introduce a modular synthetic translational coupling element (synTCE) and integrate this design with de novo designed riboregulators, toehold switches. A systematic exploration of sequence domain variants for synTCEs led to the identification of critical design considerations for improving the system performance. Next, this design approach was seamlessly integrated into logic computations and applied to construct multi-output transcripts with well-defined stoichiometric control. This module was further applied to signaling cascades for combined signal transduction and multi-input/multi-output synthetic devices. Further, the synTCEs can precisely manipulate the N-terminal ends of output proteins, facilitating effective protein localization and cellular population control. Therefore, the synTCEs could enhance computational capability and applicability of riboregulators for reprogramming biological systems, leading to future applications in synthetic biology, metabolic engineering and biotechnology.
Collapse
Affiliation(s)
- Hyunseop Goh
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Seungdo Choi
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| |
Collapse
|
4
|
Sharma R, Mishanina TV. A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in Escherichia coli at alkaline pH. J Bacteriol 2024; 206:e0016824. [PMID: 38869303 PMCID: PMC11270866 DOI: 10.1128/jb.00168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Cells use transition metal ions as structural components of biomolecules and cofactors in enzymatic reactions, making transition metal ions integral cellular components. Organisms optimize metal ion concentration to meet cellular needs by regulating the expression of proteins that import and export that metal ion, often in a metal ion concentration-dependent manner. One such regulation mechanism is via riboswitches, which are 5'-untranslated regions of an mRNA that undergo conformational changes to promote or inhibit the expression of the downstream gene, commonly in response to a ligand. The yybP-ykoY family of bacterial riboswitches shares a conserved aptamer domain that binds manganese ions (Mn2+). In Escherichia coli, the yybP-ykoY riboswitch precedes and regulates the expression of two different genes: mntP, which based on genetic evidence encodes an Mn2+ exporter, and alx, which encodes a putative metal ion transporter whose cognate ligand is currently in question. The expression of alx is upregulated by both elevated concentrations of Mn2+ and alkaline pH. With metal ion measurements and gene expression studies, we demonstrate that the alkalinization of media increases the cytoplasmic manganese pool, which, in turn, enhances alx expression. The Alx-mediated Mn2+ export prevents the toxic buildup of the cellular manganese, with the export activity maximal at alkaline pH. We pinpoint a set of acidic residues in the predicted transmembrane segments of Alx that play a critical role in Mn2+ export. We propose that Alx-mediated Mn2+ export serves as a primary protective mechanism that fine tunes the cytoplasmic manganese content, especially during alkaline stress.IMPORTANCEBacteria use clever ways to tune gene expression upon encountering certain environmental stresses, such as alkaline pH in parts of the human gut and high concentration of a transition metal ion manganese. One way by which bacteria regulate the expression of their genes is through the 5'-untranslated regions of messenger RNA called riboswitches that bind ligands to turn expression of genes on/off. In this work, we have investigated the roles and regulation of alx and mntP, the two genes in Escherichia coli regulated by the yybP-ykoY riboswitches, in alkaline pH and high concentration of Mn2+. This work highlights the intricate ways through which bacteria adapt to their surroundings, utilizing riboregulatory mechanisms to maintain Mn2+ levels amidst varying environmental factors.
Collapse
Affiliation(s)
- Ravish Sharma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Li Z, Liu X, Ning N, Li T, Wang H. Diversity, Distribution, and Chromosomal Rearrangements of TRIP1 Repeat Sequences in Escherichia coli. Genes (Basel) 2024; 15:236. [PMID: 38397225 PMCID: PMC10888264 DOI: 10.3390/genes15020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterial genome contains numerous repeated sequences that greatly affect its genomic plasticity. The Escherichia coli K-12 genome contains three copies of the TRIP1 repeat sequence (TRIP1a, TRIP1b, and TRIP1c). However, the diversity, distribution, and role of the TRIP1 repeat sequence in the E. coli genome are still unclear. In this study, after screening 6725 E. coli genomes, the TRIP1 repeat was found in the majority of E. coli strains (96%: 6454/6725). The copy number and direction of the TRIP1 repeat sequence varied in each genome. Overall, 2449 genomes (36%: 2449/6725) had three copies of TRIP1 (TRIP1a, TRIP1b, and TRIP1c), which is the same as E. coli K-12. Five types of TRIP1 repeats, including two new types (TRIP1d and TRIP1e), are identified in E. coli genomes, located in 4703, 3529, 5741, 1565, and 232 genomes, respectively. Each type of TRIP1 repeat is localized to a specific locus on the chromosome. TRIP1 repeats can cause intra-chromosomal rearrangements. A total of 156 rearrangement events were identified, of which 88% (137/156) were between TRIP1a and TRIP1c. These findings have important implications for future research on TRIP1 repeats.
Collapse
Affiliation(s)
- Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing 100071, China; (Z.L.); (N.N.); (T.L.)
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Dongda Street 20#, Fengtai District, Beijing 100071, China;
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing 100071, China; (Z.L.); (N.N.); (T.L.)
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing 100071, China; (Z.L.); (N.N.); (T.L.)
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing 100071, China; (Z.L.); (N.N.); (T.L.)
| |
Collapse
|
6
|
Sharma R, Mishanina TV. A riboswitch-controlled manganese exporter (Alx) tunes intracellular Mn 2+ concentration in E. coli at alkaline pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539761. [PMID: 37214827 PMCID: PMC10197570 DOI: 10.1101/2023.05.07.539761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells use transition metal ions as structural components of biomolecules and cofactors in enzymatic reactions, making transition metals vital cellular components. The buildup of a particular metal ion in certain stress conditions becomes harmful to the organism due to the misincorporation of the excess ion into biomolecules, resulting in perturbed enzymatic activity or metal-catalyzed formation of reactive oxygen species. Organisms optimize metal concentration by regulating the expression of proteins that import and export that metal, often in a metal concentration-dependent manner. One such regulation mechanism is via riboswitches, which are 5'-untranslated regions (UTR) of an mRNA that undergo conformational changes to promote or inhibit the expression of the downstream gene, commonly in response to a ligand. The yybP-ykoY family of bacterial riboswitches shares a conserved aptamer domain that binds manganese (Mn2+). In E. coli, the yybP-ykoY riboswitch precedes and regulates the expression of two genes: mntP, which based on extensive genetic evidence encodes an Mn2+ exporter, and alx, which encodes a putative metal ion transporter whose cognate ligand is currently in question. Expression of alx is upregulated by both elevated intracellular concentrations of Mn2+ and alkaline pH. With metal ion measurements and gene expression studies, we demonstrate that the alkalinization of media increases cytoplasmic Mn2+ content, which in turn enhances alx expression. Alx then exports excess Mn2+ to prevent toxic buildup of the metal inside the cell, with the export activity maximal at alkaline pH. Using mutational and complementation experiments, we pinpoint a set of acidic residues in the predicted transmembrane segments of Alx that play a crucial role in its Mn2+ export. We propose that Alx-mediated Mn2+ export provides a primary protective layer that fine-tunes the cytoplasmic Mn2+ levels, especially during alkaline stress.
Collapse
Affiliation(s)
- Ravish Sharma
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
7
|
Kalita A, Mishra RK, Kumar V, Arora A, Dutta D. An Intrinsic Alkalization Circuit Turns on mntP Riboswitch under Manganese Stress in Escherichia coli. Microbiol Spectr 2022; 10:e0336822. [PMID: 36190429 PMCID: PMC9603457 DOI: 10.1128/spectrum.03368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023] Open
Abstract
The trace metal manganese in excess affects iron-sulfur cluster and heme-protein biogenesis, eliciting cellular toxicity. The manganese efflux protein MntP is crucial to evading manganese toxicity in bacteria. Recently, two Mn-sensing riboswitches upstream of mntP and alx in Escherichia coli have been reported to mediate the upregulation of their expression under manganese shock. As the alx riboswitch is also responsive to alkaline shock administered externally, it is intriguing whether the mntP riboswitch is also responsive to alkaline stress. Furthermore, how both manganese and alkaline pH simultaneously regulate these two riboswitches under physiological conditions is a puzzle. Using multiple approaches, we show that manganese shock activated glutamine synthetase (GlnA) and glutaminases (GlsA and GlsB) to spike ammonia production in E. coli. The elevated ammonia intrinsically alkalizes the cytoplasm. We establish that this alkalization under manganese stress is crucial for attaining the highest degree of riboswitch activation. Additional studies showed that alkaline pH promotes a 17- to 22-fold tighter interaction between manganese and the mntP riboswitch element. Our study uncovers a physiological linkage between manganese efflux and pH homeostasis that mediates enhanced manganese tolerance. IMPORTANCE Riboswitch RNAs are cis-acting elements that can adopt alternative conformations in the presence or absence of a specific ligand(s) to modulate transcription termination or translation initiation processes. In the present work, we show that manganese and alkaline pH are both necessary for maximal mntP riboswitch activation to mitigate the manganese toxicity. This study bridges the gap between earlier studies that separately emphasize the importance of alkaline pH and manganese in activating the riboswitches belonging to the yybP-ykoY family. This study also ascribes a physiological relevance as to how manganese can rewire cellular physiology to render cytoplasmic pH alkaline for its homeostasis.
Collapse
Affiliation(s)
- Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | | | - Vineet Kumar
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Amit Arora
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
8
|
Lennon SR, Batey RT. Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches. J Mol Biol 2022; 434:167585. [PMID: 35427633 PMCID: PMC9474592 DOI: 10.1016/j.jmb.2022.167585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Riboswitches are an outstanding example of genetic regulation mediated by RNA conformational switching. In these non-coding RNA elements, the occupancy status of a ligand-binding domain governs the mRNA's decision to form one of two mutually exclusive structures in the downstream expression platform. Temporal constraints upon the function of many riboswitches, requiring folding of complex architectures and conformational switching in a limited co-transcriptional timeframe, make them ideal model systems for studying these processes. In this review, we focus on the mechanism of ligand-directed conformational changes in one of the most widely distributed riboswitches in bacteria: the cobalamin family. We describe the architectural features of cobalamin riboswitches whose structures have been determined by x-ray crystallography, which suggest a direct physical role of cobalamin in effecting the regulatory switch. Next, we discuss a series of experimental approaches applied to several model cobalamin riboswitches that interrogate these structural models. As folding is central to riboswitch function, we consider the differences in folding landscapes experienced by RNAs that are produced in vitro and those that are allowed to fold co-transcriptionally. Finally, we highlight a set of studies that reveal the difficulties of studying cobalamin riboswitches outside the context of transcription and that co-transcriptional approaches are essential for developing a more accurate picture of their structure-function relationships in these switches. This understanding will be essential for future advancements in the use of small-molecule guided RNA switches in a range of applications such as biosensors, RNA imaging tools, and nucleic acid-based therapies.
Collapse
Affiliation(s)
- Shelby R Lennon
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
9
|
Stephen C, Mishanina TV. Alkaline pH has an unexpected effect on transcriptional pausing during synthesis of the E. coli pH-responsive riboswitch. J Biol Chem 2022; 298:102302. [PMID: 35934054 PMCID: PMC9472077 DOI: 10.1016/j.jbc.2022.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
Riboswitches are 5′-untranslated regions of mRNA that change their conformation in response to ligand binding, allowing post-transcriptional gene regulation. This ligand-based model of riboswitch function has been expanded with the discovery of a “pH-responsive element” (PRE) riboswitch in Escherichia coli. At neutral pH, the PRE folds into a translationally inactive structure with an occluded ribosome-binding sequence, whereas at alkaline pH, the PRE adopts a translationally active structure. This unique riboswitch does not rely on ligand binding in a traditional sense to modulate its alternative folding outcomes. Rather, pH controls riboswitch folding by two possible modes that are yet to be distinguished; pH either regulates the transcription rate of RNA polymerase (RNAP) or acts on the RNA itself. Previous work suggested that RNAP pausing is prolonged by alkaline pH at two sites, stimulating PRE folding into the active structure. To date, there has been no rigorous exploration into how pH influences RNAP pausing kinetics during PRE synthesis. To provide that understanding and distinguish between pH acting on RNAP versus RNA, we investigated RNAP pausing kinetics at key sites for PRE folding under different pH conditions. We find that pH influences RNAP pausing but not in the manner proposed previously. Rather, alkaline pH either decreases or has no effect on RNAP pause longevity, suggesting that the modulation of RNAP pausing is not the sole mechanism by which pH affects PRE folding. These findings invite the possibility that the RNA itself actively participates in the sensing of pH.
Collapse
|
10
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Callaghan MM, Koch B, Hackett KT, Klimowicz AK, Schaub RE, Krasnogor N, Dillard JP. Expression, Localization, and Protein Interactions of the Partitioning Proteins in the Gonococcal Type IV Secretion System. Front Microbiol 2021; 12:784483. [PMID: 34975804 PMCID: PMC8716806 DOI: 10.3389/fmicb.2021.784483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Partitioning proteins are well studied as molecular organizers of chromosome and plasmid segregation during division, however little is known about the roles partitioning proteins can play within type IV secretion systems. The single-stranded DNA (ssDNA)-secreting gonococcal T4SS has two partitioning proteins, ParA and ParB. These proteins work in collaboration with the relaxase TraI as essential facilitators of type IV secretion. Bacterial two-hybrid experiments identified interactions between each partitioning protein and the relaxase. Subcellular fractionation demonstrated that ParA is found in the cellular membrane, whereas ParB is primarily in the membrane, but some of the protein is in the soluble fraction. Since TraI is known to be membrane-associated, these data suggest that the gonococcal relaxosome is a membrane-associated complex. In addition, we found that translation of ParA and ParB is controlled by an RNA switch. Different mutations within the stem-loop sequence predicted to alter folding of this RNA structure greatly increased or decreased levels of the partitioning proteins.
Collapse
Affiliation(s)
- Melanie M. Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Birgit Koch
- Interdisciplinary Computing and Complex BioSystems (ICOS), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy K. Klimowicz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Chang T, He S, Amini R, Li Y. Functional Nucleic Acids Under Unusual Conditions. Chembiochem 2021; 22:2368-2383. [PMID: 33930229 DOI: 10.1002/cbic.202100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Functional nucleic acids (FNAs), including naturally occurring ribozymes and riboswitches as well as artificially created DNAzymes and aptamers, have been popular molecular toolboxes for diverse applications. Given the high chemical stability of nucleic acids and their ability to fold into diverse sequence-dependent structures, FNAs are suggested to be highly functional under unusual reaction conditions. This review will examine the progress of research on FNAs under conditions of low pH, high temperature, freezing conditions, and the inclusion of organic solvents and denaturants that are known to disrupt nucleic acid structures. The FNA species to be discussed include ribozymes, riboswitches, G-quadruplex-based peroxidase mimicking DNAzymes, RNA-cleaving DNAzymes, and aptamers. Research within this space has not only revealed the hidden talents of FNAs but has also laid important groundwork for pursuing these intriguing functional macromolecules for unique applications.
Collapse
Affiliation(s)
- Tianjun Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, P. R. China
| | - Sisi He
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, 518055, Guangdong, P. R. China
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
14
|
Gao X, Xu K, Ahmad N, Qin L, Li C. Recent advances in engineering of microbial cell factories for intelligent pH regulation and tolerance. Biotechnol J 2021; 16:e2100151. [PMID: 34164941 DOI: 10.1002/biot.202100151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/12/2022]
Abstract
pH regulation is a serious concern in the industrial fermentation process as pH adjustment heavily utilizes acid/base and pollutes the environment. Under pH-stress conditions, microbial growth and production of valuable target products may be severely affected. Furthermore, some strains generating acidic or alkaline products require self pH regulation and increased tolerance against pH-stress. For pH control, synthetic biology has provided advanced engineering approaches to construct robust and more intelligent microbial strains, exhibiting tolerance to pH-stress to cope with limitations of pH regulation. This study reviewed the current progress of advanced strain evolution strategies to engineer pH-stress tolerant strains via synthetic biology. In addition, a large number of pH-responsive elements, including promoters, riboswitches, and some proteins have been investigated and applied for construction of pH-responsive genetic circuits and intelligent pH-responsive microbial strains.
Collapse
Affiliation(s)
- Xiaopeng Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China.,School of Life Science, Yan'an University, Shanxi, PR China
| | - Ke Xu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China.,Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan, PR China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China.,School of Life Science, Yan'an University, Shanxi, PR China.,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
| |
Collapse
|
15
|
Carrier MC, Ng Kwan Lim E, Jeannotte G, Massé E. Trans-Acting Effectors Versus RNA Cis-Elements: A Tightly Knit Regulatory Mesh. Front Microbiol 2021; 11:609237. [PMID: 33384678 PMCID: PMC7769764 DOI: 10.3389/fmicb.2020.609237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic organisms often react instantly to environmental variations to ensure their survival. They can achieve this by rapidly and specifically modulating translation, the critical step of protein synthesis. The translation machinery responds to an array of cis-acting elements, located on the RNA transcript, which dictate the fate of mRNAs. These cis-encoded elements, such as RNA structures or sequence motifs, interact with a variety of regulators, among them small regulatory RNAs. These small regulatory RNAs (sRNAs) are especially effective at modulating translation initiation through their interaction with cis-encoded mRNA elements. Here, through selected examples of canonical and non-canonical regulatory events, we demonstrate the intimate connection between mRNA cis-encoded features and sRNA-dependent translation regulation. We also address how sRNA-based mechanistic studies can drive the discovery of new roles for cis-elements. Finally, we briefly overview the challenges of using translation regulation by synthetic regulators as a tool.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Evelyne Ng Kwan Lim
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Jeannotte
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
16
|
Secondary structure of the mRNA encoding listeriolysin O is essential to establish the replicative niche of L. monocytogenes. Proc Natl Acad Sci U S A 2020; 117:23774-23781. [PMID: 32878997 DOI: 10.1073/pnas.2004129117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intracellular pathogens are responsible for an enormous amount of worldwide morbidity and mortality, and each has evolved specialized strategies to establish and maintain their replicative niche. Listeria monocytogenes is a facultative intracellular pathogen that secretes a pore-forming cytolysin called listeriolysin O (LLO), which disrupts the phagosomal membrane and, thereby, allows the bacteria access to their replicative niche in the cytosol. Nonsynonymous and synonymous mutations in a PEST-like domain near the LLO N terminus cause enhanced LLO translation during intracellular growth, leading to host cell death and loss of virulence. Here, we explore the mechanism of translational control and show that there is extensive codon restriction within the PEST-encoding region of the LLO messenger RNA (mRNA) (hly). This region has considerable complementarity with the 5' UTR and is predicted to form an extensive secondary structure that overlaps the ribosome binding site. Analysis of both 5' UTR and synonymous mutations in the PEST-like domain that are predicted to disrupt the secondary structure resulted in up to a 10,000-fold drop in virulence during mouse infection, while compensatory double mutants restored virulence to WT levels. We showed by dynamic protein radiolabeling that LLO synthesis was growth phase-dependent. These data provide a mechanism to explain how the bacteria regulate translation of LLO to promote translation during starvation in a phagosome while repressing it during growth in the cytosol. These studies also provide a molecular explanation for codon bias at the 5' end of this essential determinant of pathogenesis.
Collapse
|
17
|
RNase E-dependent degradation of tnaA mRNA encoding tryptophanase is prerequisite for the induction of acid resistance in Escherichia coli. Sci Rep 2020; 10:7128. [PMID: 32346014 PMCID: PMC7188888 DOI: 10.1038/s41598-020-63981-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/09/2020] [Indexed: 01/25/2023] Open
Abstract
Acid-resistance systems are essential for pathogenic Escherichia coli to survive in the strongly acidic environment of the human stomach (pH < 2.5). Among these, the glutamic acid decarboxylase (GAD) system is the most effective. However, the precise mechanism of GAD induction is unknown. We previously reported that a tolC mutant lacking the TolC outer membrane channel was defective in GAD induction. Here, we show that indole, a substrate of TolC-dependent efflux pumps and produced by the tryptophanase encoded by the tnaA gene, negatively regulates GAD expression. GAD expression was restored by deleting tnaA in the tolC mutant; in wild-type E. coli, it was suppressed by adding indole to the growth medium. RNA-sequencing revealed that tnaA mRNA levels drastically decreased upon exposure to moderately acidic conditions (pH 5.5). This decrease was suppressed by RNase E deficiency. Collectively, our results demonstrate that the RNase E-dependent degradation of tnaA mRNA is accelerated upon acid exposure, which decreases intracellular indole concentrations and triggers GAD induction.
Collapse
|
18
|
Waters LS. Bacterial manganese sensing and homeostasis. Curr Opin Chem Biol 2020; 55:96-102. [PMID: 32086169 PMCID: PMC9997548 DOI: 10.1016/j.cbpa.2020.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) plays a complex role in the survival of pathogenic and symbiotic bacteria in eukaryotic hosts and is also important for free-living bacteria to thrive in stressful environments. This review summarizes new aspects of regulatory strategies to control intracellular Mn levels and gives an overview of several newly identified families of bacterial Mn transporters. Recent illustrative examples of advances in quantification of intracellular Mn pools and characterization of the effects of Mn perturbations are highlighted. These discoveries help define mechanisms of Mn selectivity and toxicity and could enable new strategies to combat pathogenic bacteria and promote growth of desirable bacteria.
Collapse
Affiliation(s)
- Lauren S Waters
- Department of Chemistry, University of Wisconsin, Oshkosh, WI, 54901, USA.
| |
Collapse
|
19
|
Bañares AB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Chung WJ. A pH-responsive genetic sensor for the dynamic regulation of D-xylonic acid accumulation in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:2097-2108. [PMID: 31900554 DOI: 10.1007/s00253-019-10297-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
The xylose oxidative pathway (XOP) is continuously gaining prominence as an alternative for the traditional pentose assimilative pathways in prokaryotes. It begins with the oxidation of D-xylose to D-xylonic acid, which is further converted to α-ketoglutarate or pyruvate + glycolaldehyde through a series of enzyme reactions. The persistent drawback of XOP is the accumulation of D-xylonic acid intermediate that causes culture media acidification. This study addresses this issue through the development of a novel pH-responsive synthetic genetic controller that uses a modified transmembrane transcription factor called CadCΔ. This genetic circuit was tested for its ability to detect extracellular pH and to control the buildup of D-xylonic acid in the culture media. Results showed that the pH-responsive genetic sensor confers dynamic regulation of D-xylonic acid accumulation, which adjusts with the perturbation of culture media pH. This is the first report demonstrating the use of a pH-responsive transmembrane transcription factor as a transducer in a synthetic genetic circuit that was designed for XOP. This may serve as a benchmark for the development of other genetic controllers for similar pathways that involve acidic intermediates.
Collapse
Affiliation(s)
- Angelo B Bañares
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea.
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
20
|
Abstract
RNA molecules fold into complex three-dimensional structures that sample alternate conformations ranging from minor differences in tertiary structure dynamics to major differences in secondary structure. This allows them to form entirely different substructures with each population potentially giving rise to a distinct biological outcome. The substructures can be partitioned along an existing energy landscape given a particular static cellular cue or can be shifted in response to dynamic cues such as ligand binding. We review a few key examples of RNA molecules that sample alternate conformations and how these are capitalized on for control of critical regulatory functions.
Collapse
Affiliation(s)
- Marie Teng-Pei Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Victoria D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
21
|
Venkata Subbaiah KC, Hedaya O, Wu J, Jiang F, Yao P. Mammalian RNA switches: Molecular rheostats in gene regulation, disease, and medicine. Comput Struct Biotechnol J 2019; 17:1326-1338. [PMID: 31741723 PMCID: PMC6849081 DOI: 10.1016/j.csbj.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023] Open
Abstract
Alteration of RNA structure by environmental signals is a fundamental mechanism of gene regulation. For example, the riboswitch is a noncoding RNA regulatory element that binds a small molecule and causes a structural change in the RNA, thereby regulating transcription, splicing, or translation of an mRNA. The role of riboswitches in metabolite sensing and gene regulation in bacteria and other lower species was reported almost two decades ago, but riboswitches have not yet been discovered in mammals. An analog of the riboswitch, the protein-directed RNA switch (PDRS), has been identified as an important regulatory mechanism of gene expression in mammalian cells. RNA-binding proteins and microRNAs are two major executors of PDRS via their interaction with target transcripts in mammals. These protein-RNA interactions influence cellular functions by integrating environmental signals and intracellular pathways from disparate stimuli to modulate stability or translation of specific mRNAs. The discovery of a riboswitch in eukaryotes that is composed of a single class of thiamine pyrophosphate (TPP) suggests that additional ligand-sensing RNAs may be present to control eukaryotic or mammalian gene expression. In this review, we focus on protein-directed RNA switch mechanisms in mammals. We offer perspectives on the potential discovery of mammalian protein-directed and compound-dependent RNA switches that are related to human disease and medicine.
Collapse
Affiliation(s)
- Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Omar Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| |
Collapse
|
22
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
23
|
Sterk M, Romilly C, Wagner EGH. Unstructured 5'-tails act through ribosome standby to override inhibitory structure at ribosome binding sites. Nucleic Acids Res 2019; 46:4188-4199. [PMID: 29420821 PMCID: PMC5934652 DOI: 10.1093/nar/gky073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
Initiation is the rate-limiting step in translation. It is well-known that stable structure at a ribosome binding site (RBS) impedes initiation. The ribosome standby model of de Smit and van Duin, based on studies of the MS2 phage coat cistron, proposed how high translation rates can be reconciled with stable, inhibitory structures at an RBS. Here, we revisited the coat protein system and assessed the translation efficiency from its sequestered RBS by introducing standby mutations. Further experiments with gfp reporter constructs assessed the effects of 5′-tails—as standby sites—with respect to length and sequence contributions. In particular, combining in vivo and in vitro assays, we can show that tails of CA-dinucleotide repeats—and to a lesser extent, AU-repeats—dramatically increase translation rates. Tails of increasing length reach maximal rate-enhancing effects at 16–18 nucleotides. These standby tails are single-stranded and do not exert their effect by structure changes in the neighboring RBS stem–loop. In vitro translation and toeprinting assays furthermore demonstrate that standby effects are exerted at the level of translation initiation. Finally, as expected, destabilizing mutations within the coat RBS indicate an interplay with the effects of standby tails.
Collapse
Affiliation(s)
- Maaike Sterk
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| | - Cédric Romilly
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| |
Collapse
|
24
|
Kang JY, Mishanina TV, Landick R, Darst SA. Mechanisms of Transcriptional Pausing in Bacteria. J Mol Biol 2019; 431:4007-4029. [PMID: 31310765 DOI: 10.1016/j.jmb.2019.07.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Pausing by RNA polymerase (RNAP) during transcription regulates gene expression in all domains of life. In this review, we recap the history of transcriptional pausing discovery, summarize advances in our understanding of the underlying causes of pausing since then, and describe new insights into the pausing mechanisms and pause modulation by transcription factors gained from structural and biochemical experiments. The accumulated evidence to date suggests that upon encountering a pause signal in the nucleic-acid sequence being transcribed, RNAP rearranges into an elemental, catalytically inactive conformer unable to load NTP substrate. The conformation, and as a consequence lifetime, of an elemental paused RNAP is modulated by backtracking, nascent RNA structure, binding of transcription regulators, or a combination of these mechanisms. We conclude the review by outlining open questions and directions for future research in the field of transcriptional pausing.
Collapse
Affiliation(s)
- Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea.
| | - Tatiana V Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
25
|
Manzourolajdad A, Spouge JL. Structural prediction of RNA switches using conditional base-pair probabilities. PLoS One 2019; 14:e0217625. [PMID: 31188853 PMCID: PMC6561571 DOI: 10.1371/journal.pone.0217625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/15/2019] [Indexed: 11/23/2022] Open
Abstract
An RNA switch triggers biological functions by toggling between two conformations. RNA switches include bacterial riboswitches, where ligand binding can stabilize a bound structure. For RNAs with only one stable structure, structural prediction usually just requires a straightforward free energy minimization, but for an RNA switch, the prediction of a less stable alternative structure is often computationally costly and even problematic. The current sampling-clustering method predicts stable and alternative structures by partitioning structures sampled from the energy landscape into two clusters, but it is very time-consuming. Instead, we predict the alternative structure of an RNA switch from conditional probability calculations within the energy landscape. First, our method excludes base pairs related to the most stable structure in the energy landscape. Then, it detects stable stems (“seeds”) in the remaining landscape. Finally, it folds an alternative structure prediction around a seed. While having comparable riboswitch classification performance, the conditional-probability computations had fewer adjustable parameters, offered greater predictive flexibility, and were more than one thousand times faster than the sampling step alone in sampling-clustering predictions, the competing standard. Overall, the described approach helps traverse thermodynamically improbable energy landscapes to find biologically significant substructures and structures rapidly and effectively.
Collapse
Affiliation(s)
- Amirhossein Manzourolajdad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - John L. Spouge
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
26
|
A review on native and denaturing purification methods for non-coding RNA (ncRNA). J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:71-79. [PMID: 31071581 DOI: 10.1016/j.jchromb.2019.04.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
Recently, non-coding RNA (ncRNA) became the centerpiece of human genome research. Modern ncRNA-based research has revolutionized disease diagnosis and therapeutics. However, decoding structural/functional information of ncRNA requires large amount of pure RNA, and hence effective RNA preparation and purification protocols. This review focuses on purification schemes of synthetic oligonucleotides, particularly liquid chromatographic (LC) techniques as improved alternatives to urea-polyacrylamide gel electrophoresis (urea-PAGE) purification. Moreover, the review summarizes the shortcomings of urea-PAGE purification method and details the chromatographic purification such as affinity, ion-exchange (IE) or size-exclusion (SE) chromatography. Specifically, we discuss denaturing and native RNA purification schemes with newest developments. In short, the review evaluates nucleic acid purification schemes required for various structural analyses.
Collapse
|
27
|
Kent R, Dixon N. Systematic Evaluation of Genetic and Environmental Factors Affecting Performance of Translational Riboswitches. ACS Synth Biol 2019; 8:884-901. [PMID: 30897329 PMCID: PMC6492952 DOI: 10.1021/acssynbio.9b00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Since their discovery, riboswitches have been attractive tools for the user-controlled regulation of gene expression in bacterial systems. Riboswitches facilitate small molecule mediated fine-tuning of protein expression, making these tools of great use to the synthetic biology community. However, the use of riboswitches is often restricted due to context dependent performance and limited dynamic range. Here, we report the drastic improvement of a previously developed orthogonal riboswitch achieved through in vivo functional selection and optimization of flanking coding and noncoding sequences. The behavior of the derived riboswitches was mapped under a wide array of growth and induction conditions, using a structured Design of Experiments approach. This approach successfully improved the maximal protein expression levels 8.2-fold relative to the original riboswitches, and the dynamic range was improved to afford riboswitch dependent control of 80-fold. The optimized orthogonal riboswitch was then integrated downstream of four endogenous stress promoters, responsive to phosphate starvation, hyperosmotic stress, redox stress, and carbon starvation. These responsive stress promoter-riboswitch devices were demonstrated to allow for tuning of protein expression up to ∼650-fold in response to both environmental and cellular stress responses and riboswitch dependent attenuation. We envisage that these riboswitch stress responsive devices will be useful tools for the construction of advanced genetic circuits, bioprocessing, and protein expression.
Collapse
Affiliation(s)
- R. Kent
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - N. Dixon
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
28
|
Gene expression and protein synthesis of esterase from Streptococcus mutans are affected by biodegradation by-product from methacrylate resin composites and adhesives. Acta Biomater 2018; 81:158-168. [PMID: 30268915 DOI: 10.1016/j.actbio.2018.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022]
Abstract
An esterase from S. mutans UA159, SMU_118c, was shown to hydrolyze methacrylate resin-based dental monomers. OBJECTIVE To investigate the association of SMU_118c to the whole cellular hydrolytic activity of S. mutans toward polymerized resin composites, and to examine how the bacterium adapts its hydrolytic activity in response to environmental stresses triggered by the presence of a resin composites and adhesives biodegradation by-product (BBP). MATERIALS AND METHODS Biofilms of S. mutans UA159 parent wild strain, SMU_118c knockout strain (ΔSMU_118c), and SMU_118c complemented strain (ΔSMU_118cC) were incubated with photo-polymerized resin composite. High performance liquid chromatography was used to quantify the amount of a universal 2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (bisGMA)-derived BBP, bishydroxy-propoxy-phenyl-propane (bisHPPP) in the media. Fluorescence in situ hybridization (FISH) and quantitative proteomic analysis were used to measure SMU_118c gene expression and production of SMU_118c protein, respectively, from biofilms of S. mutans UA159 wild strain that were cultured with bisHPPP. RESULTS The levels of bisHPPP released from composite were similar for ΔSMU_118c and media control, and these were significantly lower compared to the parent wild-strain UA159 and complemented strain (ΔSMU_118cC) (p < 0.05). Gene expression of SMU_118c and productions of SMU_118c protein were higher for bisHPPP incubated biofilms (p < 0.05). SIGNIFICANCE This study suggests that SMU_118c is a dominant esterase in S. mutans and capable of catalyzing the hydrolysis of the resinous matrix of polymerized composites and adhesives. In turn, the bacterial response to BBP was to increase the expression of the esterase gene and enhance esterase production, potentially accelerating the biodegradation of the restoration, adhesive and restoration-tooth interface, ultimately contributing to premature restoration failure. STATEMENT OF SIGNIFICANCE We recently reported (Huang et al., 2018) on the isolation and initial characterization of a specific esterase (SMU_118c) from S. mutans that show degradative activity toward the hydrolysis of dental monomers. The current study further characterize this enzyme and shows that SMU_118c is a dominant degradative esterase activity in the cariogenic bacterium S. mutans and is capable of catalyzing the hydrolysis of the resinous matrix of polymerized composites and adhesives. In turn, the bacterial response to biodegradation by-products from composites and adhesives was to increase the expression of the esterase gene and enhance esterase production, accelerating the biodegradation of the restoration, adhesive and the restoration-tooth interface, potentially contributing to the pathogenesis of recurrent caries around resin composite restorations.
Collapse
|
29
|
Patel S, Panchasara H, Braddick D, Gohil N, Singh V. Synthetic small RNAs: Current status, challenges, and opportunities. J Cell Biochem 2018; 119:9619-9639. [DOI: 10.1002/jcb.27252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Shreya Patel
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Happy Panchasara
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | | | - Nisarg Gohil
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Vijai Singh
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| |
Collapse
|
30
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
31
|
Abduljalil JM. Bacterial riboswitches and RNA thermometers: Nature and contributions to pathogenesis. Noncoding RNA Res 2018; 3:54-63. [PMID: 30159440 PMCID: PMC6096418 DOI: 10.1016/j.ncrna.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens are always challenged by fluctuations of chemical and physical parameters that pose serious threats to cellular integrity and metabolic status. Sudden deprivation of nutrients or key metabolites, changes in surrounding pH, and temperature shifts are the most important examples of such parameters. To elicit a proper response to such fluctuations, bacterial cells coordinate the expression of parameter-relevant genes. Although protein-mediated control of gene expression is well appreciated since many decades, RNA-based regulation has been discovered in early 2000s as a parallel level of regulation. Small regulatory RNAs have emerged as one of the most widespread and important gene regulatory systems in bacteria with rare representatives found in Archaea and Eukarya. Riboswitches and thermosensors are cis-encoded RNA regulatory elements that employ different mechanisms to regulate the expression of related genes controlling key metabolic pathways and genes of temperature relevant proteins including virulence factors. The extent of RNA contributions to gene regulation is not completely known even in well-studied models such E. coli and B. subtilis. In depth understanding of riboswitches is promising for opportunity to discover a narrow spectrum antibacterial drugs that target riboswitches of essential metabolic pathways.
Collapse
Key Words
- 5ʹ-UTRs, 5ʹ-untranslated region
- AdoCbl, adenosylcobalamine
- Aptamer
- Bacterial pathogenicity
- CSPs, Cold Shock Proteins
- FMN, Flavin mononucleotide
- Gene expression
- ORFs, open reading frames
- RBS, Ribosomal Binding Site
- RNA thermometer
- RNAP, RNA polymerase
- RNAT, RNA thermometer
- Riboswitches
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SD, Shine-Dalgarno
- TPP, Thiamine pyrophosphate
- Transcription termination
- Virulence
Collapse
|
32
|
Schwenk S, Arnvig KB. Regulatory RNA in Mycobacterium tuberculosis, back to basics. Pathog Dis 2018; 76:4966984. [PMID: 29796669 PMCID: PMC7615687 DOI: 10.1093/femspd/fty035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Since the turn of the millenium, RNA-based control of gene expression has added an extra dimension to the central dogma of molecular biology. Still, the roles of Mycobacterium tuberculosis regulatory RNAs and the proteins that facilitate their functions remain elusive, although there can be no doubt that RNA biology plays a central role in the baterium's adaptation to its many host environments. In this review, we have presented examples from model organisms and from M. tuberculosis to showcase the abundance and versatility of regulatory RNA, in order to emphasise the importance of these 'fine-tuners' of gene expression.
Collapse
MESH Headings
- Aconitate Hydratase/genetics
- Aconitate Hydratase/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Host-Pathogen Interactions
- Humans
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Mycobacterium tuberculosis/pathogenicity
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Riboswitch
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Stefan Schwenk
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
33
|
Donovan PD, Holland LM, Lombardi L, Coughlan AY, Higgins DG, Wolfe KH, Butler G. TPP riboswitch-dependent regulation of an ancient thiamin transporter in Candida. PLoS Genet 2018; 14:e1007429. [PMID: 29852014 PMCID: PMC5997356 DOI: 10.1371/journal.pgen.1007429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/12/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are non-coding RNA molecules that regulate gene expression by binding to specific ligands. They are primarily found in bacteria. However, one riboswitch type, the thiamin pyrophosphate (TPP) riboswitch, has also been described in some plants, marine protists and fungi. We find that riboswitches are widespread in the budding yeasts (Saccharomycotina), and they are most common in homologs of DUR31, originally described as a spermidine transporter. We show that DUR31 (an ortholog of N. crassa gene NCU01977) encodes a thiamin transporter in Candida species. Using an RFP/riboswitch expression system, we show that the functional elements of the riboswitch are contained within the native intron of DUR31 from Candida parapsilosis, and that the riboswitch regulates splicing in a thiamin-dependent manner when RFP is constitutively expressed. The DUR31 gene has been lost from Saccharomyces, and may have been displaced by an alternative thiamin transporter. TPP riboswitches are also present in other putative transporters in yeasts and filamentous fungi. However, they are rare in thiamin biosynthesis genes THI4 and THI5 in the Saccharomycotina, and have been lost from all genes in the sequenced species in the family Saccharomycetaceae, including S. cerevisiae. Thiamin, or Vitamin B1, is an essential requirement in all living organisms because it is a co-factor for many enzymes in metabolism. Unlike animals, many yeasts can synthesize thiamin, or they can import it from the environment. Expression of thiamin biosynthesis genes and of thiamin transporters is strictly regulated in response to the presence of thiamin. In many filamentous fungi, expression of thiamin biosynthesis genes is regulated by TPP riboswitches, RNA regulatory elements that are located within messenger RNA. TPP riboswitches are rare in yeasts. However, we find that TPP riboswitches are conserved in an ancient thiamin transporter, found in filamentous fungi, yeasts and other related organisms. There appears to be a high turnover of thiamin transporters in fungi, and there has been a gradual loss of TPP riboswitches in yeasts.
Collapse
Affiliation(s)
- Paul D. Donovan
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Linda M. Holland
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lisa Lombardi
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Y. Coughlan
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Desmond G. Higgins
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth H. Wolfe
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
34
|
Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM, Yang S. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng 2018; 50:57-73. [PMID: 29627506 DOI: 10.1016/j.ymben.2018.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 12/22/2022]
Abstract
Biorefinery of biomass-based biofuels and biochemicals by microorganisms is a competitive alternative of traditional petroleum refineries. Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for commercial production of desirable bioproducts through metabolic engineering. In this review, we summarize the metabolic engineering progress achieved in Z. mobilis to expand its substrate and product ranges as well as to enhance its robustness against stressful conditions such as inhibitory compounds within the lignocellulosic hydrolysates and slurries. We also discuss a few metabolic engineering strategies that can be applied in Z. mobilis to further develop it as a robust workhorse for economic lignocellulosic bioproducts. In addition, we briefly review the progress of metabolic engineering in Z. mobilis related to the classical synthetic biology cycle of "Design-Build-Test-Learn", as well as the progress and potential to develop Z. mobilis as a model chassis for biorefinery practices in the synthetic biology era.
Collapse
Affiliation(s)
- Xia Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Qiaoning He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yongfu Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jingwen Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Katie Haning
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States.
| | - Yun Hu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu 610041, China.
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu 610041, China.
| | - Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, United States.
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lydia M Contreras
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States.
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
35
|
Zeinert R, Martinez E, Schmitz J, Senn K, Usman B, Anantharaman V, Aravind L, Waters LS. Structure-function analysis of manganese exporter proteins across bacteria. J Biol Chem 2018; 293:5715-5730. [PMID: 29440394 DOI: 10.1074/jbc.m117.790717] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/26/2018] [Indexed: 01/01/2023] Open
Abstract
Manganese (Mn) is an essential trace nutrient for organisms because of its role in cofactoring enzymes and providing protection against reactive oxygen species (ROS). Many bacteria require manganese to form pathogenic or symbiotic interactions with eukaryotic host cells. However, excess manganese is toxic, requiring cells to have manganese export mechanisms. Bacteria are currently known to possess two widely distributed classes of manganese export proteins, MntP and MntE, but other types of transporters likely exist. Moreover, the structure and function of MntP is not well understood. Here, we characterized the role of three structurally related proteins known or predicted to be involved in manganese transport in bacteria from the MntP, UPF0016, and TerC families. These studies used computational analysis to analyze phylogeny and structure, physiological assays to test sensitivity to high levels of manganese and ROS, and inductively coupled plasma-mass spectrometry (ICP-MS) to measure metal levels. We found that MntP alters cellular resistance to ROS. Moreover, we used extensive computational analyses and phenotypic assays to identify amino acids required for MntP activity. These negatively charged residues likely serve to directly bind manganese and transport it from the cytoplasm through the membrane. We further characterized two other potential manganese transporters associated with a Mn-sensing riboswitch and found that the UPF0016 family of proteins has manganese export activity. We provide here the first phenotypic and biochemical evidence for the role of Alx, a member of the TerC family, in manganese homeostasis. It does not appear to export manganese, but rather it intriguingly facilitates an increase in intracellular manganese concentration. These findings expand the available knowledge about the identity and mechanisms of manganese homeostasis proteins across bacteria and show that proximity to a Mn-responsive riboswitch can be used to identify new components of the manganese homeostasis machinery.
Collapse
Affiliation(s)
- Rilee Zeinert
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Eli Martinez
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Jennifer Schmitz
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Katherine Senn
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Bakhtawar Usman
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Vivek Anantharaman
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - L Aravind
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Lauren S Waters
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| |
Collapse
|
36
|
Cho SH, Haning K, Shen W, Blome C, Li R, Yang S, Contreras LM. Identification and Characterization of 5' Untranslated Regions (5'UTRs) in Zymomonas mobilis as Regulatory Biological Parts. Front Microbiol 2017; 8:2432. [PMID: 29375488 PMCID: PMC5770649 DOI: 10.3389/fmicb.2017.02432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/23/2017] [Indexed: 01/03/2023] Open
Abstract
Regulatory RNA regions within a transcript, particularly in the 5' untranslated region (5'UTR), have been shown in a variety of organisms to control the expression levels of these mRNAs in response to various metabolites or environmental conditions. Considering the unique tolerance of Zymomonas mobilis to ethanol and the growing interest in engineering microbial strains with enhanced tolerance to industrial inhibitors, we searched natural cis-regulatory regions in this microorganism using transcriptomic data and bioinformatics analysis. Potential regulatory 5'UTRs were identified and filtered based on length, gene function, relative gene counts, and conservation in other organisms. An in vivo fluorescence-based screening system was developed to confirm the responsiveness of 36 5'UTR candidates to ethanol, acetate, and xylose stresses. UTR_ZMO0347 (5'UTR of gene ZMO0347 encoding the RNA binding protein Hfq) was found to down-regulate downstream gene expression under ethanol stress. Genomic deletion of UTR_ZMO0347 led to a general decrease of hfq expression at the transcript level and increased sensitivity for observed changes in Hfq expression at the protein level. The role of UTR_ZMO0347 and other 5'UTRs gives us insight into the regulatory network of Z. mobilis in response to stress and unlocks new strategies for engineering robust industrial strains as well as for harvesting novel responsive regulatory biological parts for controllable gene expression platforms in this organism.
Collapse
Affiliation(s)
- Seung Hee Cho
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - Katie Haning
- Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States
| | - Wei Shen
- Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Cameron Blome
- Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States
| | - Runxia Li
- Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Lydia M Contreras
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States.,Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
37
|
Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat Commun 2017; 8:411. [PMID: 28871084 PMCID: PMC5583362 DOI: 10.1038/s41467-017-00511-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
Environmental pH is a fundamental signal continuously directing the metabolism and behavior of living cells. Programming the precise cellular response toward environmental pH is, therefore, crucial for engineering cells for increasingly sophisticated functions. Herein, we engineer a set of riboswitch-based pH-sensing genetic devices to enable the control of gene expression according to differential environmental pH. We next develop a digital pH-sensing system to utilize the analogue-sensing behavior of these devices for high-resolution recording of host cell exposure to discrete external pH levels. The application of this digital pH-sensing system is demonstrated in a genetic program that autonomously regulated the evolutionary engineering of host cells for improved tolerance to a broad spectrum of organic acids, a valuable phenotype for metabolic engineering and bioremediation applications. Cells are exposed to shifts in environmental pH, which direct their metabolism and behavior. Here the authors design pH-sensing riboswitches to create a gene expression program, digitalize the system to respond to a narrow pH range and apply it to evolve host cells with improved tolerance to a variety of organic acids.
Collapse
|
38
|
Findeiß S, Etzel M, Will S, Mörl M, Stadler PF. Design of Artificial Riboswitches as Biosensors. SENSORS 2017; 17:s17091990. [PMID: 28867802 PMCID: PMC5621056 DOI: 10.3390/s17091990] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
RNA aptamers readily recognize small organic molecules, polypeptides, as well as other nucleic acids in a highly specific manner. Many such aptamers have evolved as parts of regulatory systems in nature. Experimental selection techniques such as SELEX have been very successful in finding artificial aptamers for a wide variety of natural and synthetic ligands. Changes in structure and/or stability of aptamers upon ligand binding can propagate through larger RNA constructs and cause specific structural changes at distal positions. In turn, these may affect transcription, translation, splicing, or binding events. The RNA secondary structure model realistically describes both thermodynamic and kinetic aspects of RNA structure formation and refolding at a single, consistent level of modelling. Thus, this framework allows studying the function of natural riboswitches in silico. Moreover, it enables rationally designing artificial switches, combining essentially arbitrary sensors with a broad choice of read-out systems. Eventually, this approach sets the stage for constructing versatile biosensors.
Collapse
Affiliation(s)
- Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, Währingerstraße 29, A-1090 Vienna, Austria.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
| | - Maja Etzel
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Sebastian Will
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg , Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| |
Collapse
|
39
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
40
|
Sherwood AV, Henkin TM. Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses. Annu Rev Microbiol 2017; 70:361-74. [PMID: 27607554 DOI: 10.1146/annurev-micro-091014-104306] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Riboswitches are RNA elements that act on the mRNA with which they are cotranscribed to modulate expression of that mRNA. These elements are widely found in bacteria, where they have a broad impact on gene expression. The defining feature of riboswitches is that they directly recognize a physiological signal, and the resulting shift in RNA structure affects gene regulation. The majority of riboswitches respond to cellular metabolites, often in a feedback loop to repress synthesis of the enzymes used to produce the metabolite. Related elements respond to the aminoacylation status of a specific tRNA or to a physical parameter, such as temperature or pH. Recent studies have identified new classes of riboswitches and have revealed new insights into the molecular mechanisms of signal recognition and gene regulation. Application of structural and biophysical approaches has complemented previous genetic and biochemical studies, yielding new information about how different riboswitches operate.
Collapse
Affiliation(s)
- Anna V Sherwood
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210; .,Molecular, Cellular and Developmental Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
41
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
42
|
Meyer IM. In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression. Methods 2017; 120:3-16. [PMID: 28433606 DOI: 10.1016/j.ymeth.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/16/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023] Open
Abstract
RNA transcripts are the primary products of active genes in any living organism, including many viruses. Their cellular destiny not only depends on primary sequence signals, but can also be determined by RNA structure. Recent experimental evidence shows that many transcripts can be assigned more than a single functional RNA structure throughout their cellular life and that structure formation happens co-transcriptionally, i.e. as the transcript is synthesised in the cell. Moreover, functional RNA structures are not limited to non-coding transcripts, but can also feature in coding transcripts. The picture that now emerges is that RNA structures constitute an additional layer of information that can be encoded in any RNA transcript (and on top of other layers of information such as protein-context) in order to exert a wide range of functional roles. Moreover, different encoded RNA structures can be expressed at different stages of a transcript's life in order to alter the transcript's behaviour depending on its actual cellular context. Similar to the concept of alternative splicing for protein-coding genes, where a single transcript can yield different proteins depending on cellular context, it is thus appropriate to propose the notion of alternative RNA structure expression for any given transcript. This review introduces several computational strategies that my group developed to detect different aspects of RNA structure expression in vivo. Two aspects are of particular interest to us: (1) RNA secondary structure features that emerge during co-transcriptional folding and (2) functional RNA structure features that are expressed at different times of a transcript's life and potentially mutually exclusive.
Collapse
Affiliation(s)
- Irmtraud M Meyer
- Laboratory of Bioinformatics of RNA Structure and Transcriptome Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany; Institute of Chemistry and Biochemistry, Free University, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
43
|
Smirnov A, Wang C, Drewry LL, Vogel J. Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J 2017; 36:1029-1045. [PMID: 28336682 PMCID: PMC5391140 DOI: 10.15252/embj.201696127] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
Research into post-transcriptional control of mRNAs by small noncoding RNAs (sRNAs) in the model bacteria Escherichia coli and Salmonella enterica has mainly focused on sRNAs that associate with the RNA chaperone Hfq. However, the recent discovery of the protein ProQ as a common binding partner that stabilizes a distinct large class of structured sRNAs suggests that additional RNA regulons exist in these organisms. The cellular functions and molecular mechanisms of these new ProQ-dependent sRNAs are largely unknown. Here, we report in Salmonella Typhimurium the mode-of-action of RaiZ, a ProQ-dependent sRNA that is made from the 3' end of the mRNA encoding ribosome-inactivating protein RaiA. We show that RaiZ is a base-pairing sRNA that represses in trans the mRNA of histone-like protein HU-α. RaiZ forms an RNA duplex with the ribosome-binding site of hupA mRNA, facilitated by ProQ, to prevent 30S ribosome loading and protein synthesis of HU-α. Similarities and differences between ProQ- and Hfq-mediated regulation will be discussed.
Collapse
Affiliation(s)
- Alexandre Smirnov
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Chuan Wang
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lisa L Drewry
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany .,Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| |
Collapse
|
44
|
Vigar JRJ, Wieden HJ. Engineering bacterial translation initiation - Do we have all the tools we need? Biochim Biophys Acta Gen Subj 2017; 1861:3060-3069. [PMID: 28315412 DOI: 10.1016/j.bbagen.2017.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. SCOPE OF REVIEW Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. MAJOR CONCLUSIONS Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. GENERAL SIGNIFICANCE Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Justin R J Vigar
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
45
|
Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol Cell 2016; 57:1110-1123. [PMID: 25794619 DOI: 10.1016/j.molcel.2015.02.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023]
Abstract
Gene regulation in cis by riboswitches is prevalent in bacteria. The yybP-ykoY riboswitch family is quite widespread, yet its ligand and function remained unknown. Here, we characterize the Lactococcus lactis yybP-ykoY orphan riboswitch as a Mn(2+)-dependent transcription-ON riboswitch, with a ∼30-40 μM affinity for Mn(2+). We further determined its crystal structure at 2.7 Å to elucidate the metal sensing mechanism. The riboswitch resembles a hairpin, with two coaxially stacked helices tethered by a four-way junction and a tertiary docking interface. The Mn(2+)-sensing region, strategically located at the highly conserved docking interface, has two metal binding sites. Whereas one site tolerates the binding of either Mg(2+) or Mn(2+), the other site strongly prefers Mn(2+) due to a direct contact from the N7 of an invariable adenosine. Mutagenesis and a Mn(2+)-free E. coli yybP-ykoY structure further reveal that Mn(2+) binding is coupled with stabilization of the Mn(2+)-sensing region and the aptamer domain.
Collapse
|
46
|
Dambach M, Sandoval M, Updegrove TB, Anantharaman V, Aravind L, Waters LS, Storz G. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol Cell 2016; 57:1099-1109. [PMID: 25794618 DOI: 10.1016/j.molcel.2015.01.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/17/2014] [Accepted: 01/23/2015] [Indexed: 11/18/2022]
Abstract
The highly structured, cis-encoded RNA elements known as riboswitches modify gene expression upon binding a wide range of molecules. The yybP-ykoY motif was one of the most broadly distributed and numerous bacterial riboswitches for which the cognate ligand was unknown. Using a combination of in vivo reporter and in vitro expression assays, equilibrium dialysis, and northern analysis, we show that the yybP-ykoY motif responds directly to manganese ions in both Escherichia coli and Bacillus subtilis. The identification of the yybP-ykoY motif as a manganese ion sensor suggests that the genes that are preceded by this motif and encode a diverse set of poorly characterized membrane proteins have roles in metal homeostasis.
Collapse
Affiliation(s)
- Michael Dambach
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | - Melissa Sandoval
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | - Taylor B Updegrove
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Lauren S Waters
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
47
|
Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries. PLoS Genet 2016; 12:e1005975. [PMID: 27057757 PMCID: PMC4825925 DOI: 10.1371/journal.pgen.1005975] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein.
Collapse
|
48
|
Liu SR, Hu CG, Zhang JZ. Regulatory effects of cotranscriptional RNA structure formation and transitions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:562-74. [PMID: 27028291 DOI: 10.1002/wrna.1350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
Abstract
RNAs, which play significant roles in many fundamental biological processes of life, fold into sophisticated and precise structures. RNA folding is a dynamic and intricate process, which conformation transition of coding and noncoding RNAs form the primary elements of genetic regulation. The cellular environment contains various intrinsic and extrinsic factors that potentially affect RNA folding in vivo, and experimental and theoretical evidence increasingly indicates that the highly flexible features of the RNA structure are affected by these factors, which include the flanking sequence context, physiochemical conditions, cis RNA-RNA interactions, and RNA interactions with other molecules. Furthermore, distinct RNA structures have been identified that govern almost all steps of biological processes in cells, including transcriptional activation and termination, transcriptional mutagenesis, 5'-capping, splicing, 3'-polyadenylation, mRNA export and localization, and translation. Here, we briefly summarize the dynamic and complex features of RNA folding along with a wide variety of intrinsic and extrinsic factors that affect RNA folding. We then provide several examples to elaborate RNA structure-mediated regulation at the transcriptional and posttranscriptional levels. Finally, we illustrate the regulatory roles of RNA structure and discuss advances pertaining to RNA structure in plants. WIREs RNA 2016, 7:562-574. doi: 10.1002/wrna.1350 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sheng-Rui Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Jahn N, Brantl S. Heat-shock-induced refolding entails rapid degradation of bsrG toxin mRNA by RNases Y and J1. Microbiology (Reading) 2016; 162:590-599. [DOI: 10.1099/mic.0.000247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Natalie Jahn
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, AG Bakteriengenetik, Philosophenweg 12, 07743 Jena, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, AG Bakteriengenetik, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
50
|
Zhang J, Landick R. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure. Trends Biochem Sci 2016; 41:293-310. [PMID: 26822487 DOI: 10.1016/j.tibs.2015.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
Abstract
The vectorial (5'-to-3' at varying velocity) synthesis of RNA by cellular RNA polymerases (RNAPs) creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived, pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here, we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNAP and nascent RNA structure. We categorize and rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| | - Robert Landick
- Departments of Biochemistry and Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|