1
|
Seah MKY, Han BY, Huang Y, Rasmussen LJH, Stäubli AJ, Bello-Rodríguez J, Chan ACH, Gasnier M, Wollmann H, Guccione E, Messerschmidt DM. Maternal PRDM10 activates essential genes for oocyte-to-embryo transition. Nat Commun 2025; 16:1939. [PMID: 39994175 PMCID: PMC11850896 DOI: 10.1038/s41467-025-56991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
PR/SET domain-containing (PRDM) proteins are metazoan-specific transcriptional regulators that play diverse roles in mammalian development and disease. Several members such as PRDM1, PRDM14 and PRDM9, have been implicated in germ cell specification and homoeostasis and are essential to fertility-related processes. Others, such as PRDM14, PRDM15 and PRDM10 play a role in early embryogenesis and embryonic stem cell maintenance. Here, we describe the first PRDM family member with a maternal effect. Absence of maternal Prdm10 results in catastrophic failure of oocyte-to-embryo transition and complete arrest at the 2-cell stage. We describe multiple defects in oocytes, zygotes and 2-cell stage embryos relating to the failure to accumulate PRDM10 target gene transcripts in the egg. Transcriptomic analysis and integration of genome-wide chromatin-binding data reveals new and essential PRDM10 targets, including the cytoskeletal protein encoding gene Septin11. We demonstrate that the failure to express maternal Septin11, in the absence of maternal PRDM10, disrupts Septin-complex assembly at the polar body extrusion site in MII oocytes. Our study sheds light into the essentiality of maternal PRDM10, the requirement of the maternal Septin-complex and the likely evolutionary conservation of this regulatory axis in human female germ cells.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Yong Loo Lin School of Medicine, Department of Obstetrics & Gynaecology, National University of Singapore, Singapore, Singapore
| | - Brenda Y Han
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Huang
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Louise J H Rasmussen
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andrina J Stäubli
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Judith Bello-Rodríguez
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Chi-Ho Chan
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maxime Gasnier
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Heike Wollmann
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT) Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniel M Messerschmidt
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Koryakov DE. Diversity and functional specialization of H3K9-specific histone methyltransferases. Bioessays 2024; 46:e2300163. [PMID: 38058121 DOI: 10.1002/bies.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Histone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, "division of labor," and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Lab of Molecular Cytogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| |
Collapse
|
4
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Di Zazzo E, Rienzo M, Casamassimi A, De Rosa C, Medici N, Gazzerro P, Bifulco M, Abbondanza C. Exploring the putative role of PRDM1 and PRDM2 transcripts as mediators of T lymphocyte activation. J Transl Med 2023; 21:217. [PMID: 36964555 PMCID: PMC10039509 DOI: 10.1186/s12967-023-04066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND T cell activation and programming from their naïve/resting state, characterized by widespread modifications in chromatin accessibility triggering extensive changes in transcriptional programs, is orchestrated by several cytokines and transcription regulators. PRDM1 and PRDM2 encode for proteins with PR/SET and zinc finger domains that control several biological processes, including cell differentiation, through epigenetic regulation of gene expression. Different transcripts leading to main protein isoforms with (PR +) or without (PR-) the PR/SET domain have been described. Although many studies have established the critical PRDM1 role in hematopoietic cell differentiation, maintenance and/or function, the single transcript contribution has not been investigated before. Otherwise, very few evidence is currently available on PRDM2. Here, we aimed to analyze the role of PRDM1 and PRDM2 different transcripts as mediators of T lymphocyte activation. METHODS We analyzed the transcription signature of the main variants from PRDM1 (BLIMP1a and BLIMP1b) and PRDM2 (RIZ1 and RIZ2) genes, in human T lymphocytes and Jurkat cells overexpressing PRDM2 cDNAs following activation through different signals. RESULTS T lymphocyte activation induced an early increase of RIZ2 and RIZ1 followed by BLIMP1b increase and finally by BLIMP1a increase. The "first" and the "second" signals shifted the balance towards the PR- forms for both genes. Interestingly, the PI3K signaling pathway modulated the RIZ1/RIZ2 ratio in favor of RIZ1 while the balance versus RIZ2 was promoted by MAPK pathway. Cytokines mediating different Jak/Stat signaling pathways (third signal) early modulated the expression of PRDM1 and PRDM2 and the relationship of their different transcripts confirming the early increase of the PR- transcripts. Different responses of T cell subpopulations were also observed. Jurkat cells showed that the acute transient RIZ2 increase promoted the balancing of PRDM1 forms towards BLIMP1b. The stable forced expression of RIZ1 or RIZ2 induced a significant variation in the expression of key transcription factors involved in T lymphocyte differentiation. The BLIMP1a/b balance shifted in favor of BLIMP1a in RIZ1-overexpressing cells and of BLIMP1b in RIZ2-overexpressing cells. CONCLUSIONS This study provides the first characterization of PRDM2 in T-lymphocyte activation/differentiation and novel insights on PRDM1 and PRDM2 transcription regulation during initial activation phases.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Nicola Medici
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084, Salerno, Fisciano (SA), Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131, Naples, Italy
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
6
|
Xue S, Rogers LR, Zheng M, He J, Piermarocchi C, Mias GI. Applying differential network analysis to longitudinal gene expression in response to perturbations. Front Genet 2022; 13:1026487. [PMID: 36324501 PMCID: PMC9618823 DOI: 10.3389/fgene.2022.1026487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Differential Network (DN) analysis is a method that has long been used to interpret changes in gene expression data and provide biological insights. The method identifies the rewiring of gene networks in response to external perturbations. Our study applies the DN method to the analysis of RNA-sequencing (RNA-seq) time series datasets. We focus on expression changes: (i) in saliva of a human subject after pneumococcal vaccination (PPSV23) and (ii) in primary B cells treated ex vivo with a monoclonal antibody drug (Rituximab). The DN method enabled us to identify the activation of biological pathways consistent with the mechanisms of action of the PPSV23 vaccine and target pathways of Rituximab. The community detection algorithm on the DN revealed clusters of genes characterized by collective temporal behavior. All saliva and some B cell DN communities showed characteristic time signatures, outlining a chronological order in pathway activation in response to the perturbation. Moreover, we identified early and delayed responses within network modules in the saliva dataset and three temporal patterns in the B cell data.
Collapse
Affiliation(s)
- Shuyue Xue
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Lavida R.K. Rogers
- Department of Biological Sciences, University of the Virgin Islands, St Thomas, US Virgin Islands
| | - Minzhang Zheng
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jin He
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Ah-Cann C, Wimmer VC, Weeden CE, Marceaux C, Law CW, Galvis L, Filby CE, Liu J, Breslin K, Willson T, Ritchie ME, Blewitt ME, Asselin-Labat ML. A functional genetic screen identifies aurora kinase b as an essential regulator of Sox9-positive mouse embryonic lung progenitor cells. Development 2021; 148:269134. [PMID: 34121118 DOI: 10.1242/dev.199543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Development of a branching tree in the embryonic lung is crucial for the formation of a fully mature functional lung at birth. Sox9+ cells present at the tip of the primary embryonic lung endoderm are multipotent cells responsible for branch formation and elongation. We performed a genetic screen in murine primary cells and identified aurora kinase b (Aurkb) as an essential regulator of Sox9+ cells ex vivo. In vivo conditional knockout studies confirmed that Aurkb was required for lung development but was not necessary for postnatal growth and the repair of the adult lung after injury. Deletion of Aurkb in embryonic Sox9+ cells led to the formation of a stunted lung that retained the expression of Sox2 in the proximal airways, as well as Sox9 in the distal tips. Although we found no change in cell polarity, we showed that loss of Aurkb or chemical inhibition of Aurkb caused Sox9+ cells to arrest at G2/M, likely responsible for the lack of branch bifurcation. This work demonstrates the power of genetic screens in identifying novel regulators of Sox9+ progenitor cells and lung branching morphogenesis.
Collapse
Affiliation(s)
- Casey Ah-Cann
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Verena C Wimmer
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Clare E Weeden
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Claire Marceaux
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - Laura Galvis
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Caitlin E Filby
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Joy Liu
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Kelsey Breslin
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Tracy Willson
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
9
|
Di Tullio F, Schwarz M, Zorgati H, Mzoughi S, Guccione E. The duality of PRDM proteins: epigenetic and structural perspectives. FEBS J 2021; 289:1256-1275. [PMID: 33774927 DOI: 10.1111/febs.15844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
PRDF1 and RIZ1 homology domain containing (PRDMs) are a subfamily of Krüppel-like zinc finger proteins controlling key processes in metazoan development and in cancer. PRDMs exhibit unique dualities: (a) PR domain/ZNF arrays-their structure combines a SET-like domain known as a PR domain, typically found in methyltransferases, with a variable array of C2H2 zinc fingers (ZNF) characteristic of DNA-binding transcription factors; (b) transcriptional activators/repressors-their physiological function is context- and cell-dependent; mechanistically, some PRDMs have a PKMT activity and directly catalyze histone lysine methylation, while others are rather pseudomethyltransferases and act by recruiting transcriptional cofactors; (c) oncogenes/tumor suppressors-their pathological function depends on the specific PRDM isoform expressed during tumorigenesis. This duality is well known as the 'Yin and Yang' of PRDMs and involves a complex regulation of alternative splicing or alternative promoter usage, to generate full-length or PR-deficient isoforms with opposing functions in cancer. In conclusion, once their dualities are fully appreciated, PRDMs represent a promising class of targets in oncology by virtue of their widespread upregulation across multiple tumor types and their somatic dispensability, conferring a broad therapeutic window and limited toxic side effects. The recent discovery of a first-in-class compound able to inhibit PRDM9 activity has paved the way for the identification of further small molecular inhibitors able to counteract PRDM oncogenic activity.
Collapse
Affiliation(s)
- Federico Di Tullio
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan Schwarz
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Habiba Zorgati
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Slim Mzoughi
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Rienzo M, Sorrentino A, Di Zazzo E, Di Donato M, Carafa V, Marino MM, De Rosa C, Gazzerro P, Castoria G, Altucci L, Casamassimi A, Abbondanza C. Searching for a Putative Mechanism of RIZ2 Tumor-Promoting Function in Cancer Models. Front Oncol 2021; 10:583533. [PMID: 33585202 PMCID: PMC7880127 DOI: 10.3389/fonc.2020.583533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Positive Regulatory Domain (PRDM) gene family members commonly express two main molecular variants, the PR-plus isoform usually acting as tumor suppressor and the PR-minus one functioning as oncogene. Accordingly, PRDM2/RIZ encodes for RIZ1 (PR-plus) and RIZ2 (PR-minus). In human cancers, genetic or epigenetic modifications induce RIZ1 silencing with an expression level imbalance in favor of RIZ2 that could be relevant for tumorigenesis. Additionally, in estrogen target cells and tissues, estradiol increases RIZ2 expression level with concurrent increase of cell proliferation and survival. Several attempts to study RIZ2 function in HeLa or MCF-7 cells by its over-expression were unsuccessful. Thus, we over-expressed RIZ2 in HEK-293 cells, which are both RIZ1 and RIZ2 positive but unresponsive to estrogens. The forced RIZ2 expression increased cell viability and growth, prompted the G2-to-M phase transition and organoids formation. Accordingly, microarray analysis revealed that RIZ2 regulates several genes involved in mitosis. Consistently, RIZ silencing in both estrogen-responsive MCF-7 and -unresponsive MDA-MB-231 cells induced a reduction of cell proliferation and an increase of apoptosis rate. Our findings add novel insights on the putative RIZ2 tumor-promoting functions, although additional attempts are warranted to depict the underlying molecular mechanism.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Mzoughi S, Fong JY, Papadopoli D, Koh CM, Hulea L, Pigini P, Di Tullio F, Andreacchio G, Hoppe MM, Wollmann H, Low D, Caldez MJ, Peng Y, Torre D, Zhao JN, Uchenunu O, Varano G, Motofeanu CM, Lakshmanan M, Teo SX, Wun CM, Perini G, Tan SY, Ong CB, Al-Haddawi M, Rajarethinam R, Hue SSS, Lim ST, Ong CK, Huang D, Ng SB, Bernstein E, Hasson D, Wee KB, Kaldis P, Jeyasekharan A, Dominguez-Sola D, Topisirovic I, Guccione E. PRDM15 is a key regulator of metabolism critical to sustain B-cell lymphomagenesis. Nat Commun 2020; 11:3520. [PMID: 32665551 PMCID: PMC7360777 DOI: 10.1038/s41467-020-17064-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023] Open
Abstract
PRDM (PRDI-BF1 and RIZ homology domain containing) family members are sequence-specific transcriptional regulators involved in cell identity and fate determination, often dysregulated in cancer. The PRDM15 gene is of particular interest, given its low expression in adult tissues and its overexpression in B-cell lymphomas. Despite its well characterized role in stem cell biology and during early development, the role of PRDM15 in cancer remains obscure. Herein, we demonstrate that while PRDM15 is largely dispensable for mouse adult somatic cell homeostasis in vivo, it plays a critical role in B-cell lymphomagenesis. Mechanistically, PRDM15 regulates a transcriptional program that sustains the activity of the PI3K/AKT/mTOR pathway and glycolysis in B-cell lymphomas. Abrogation of PRDM15 induces a metabolic crisis and selective death of lymphoma cells. Collectively, our data demonstrate that PRDM15 fuels the metabolic requirement of B-cell lymphomas and validate it as an attractive and previously unrecognized target in oncology.
Collapse
Affiliation(s)
- Slim Mzoughi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Yi Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - David Papadopoli
- Lady Davis Institute, SMBD JGH, McGill University, Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Cheryl M Koh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laura Hulea
- Lady Davis Institute, SMBD JGH, McGill University, Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, H3T 1E2, Canada
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montreal, QC, H1T 2M4, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Paolo Pigini
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacy and Biotechnology, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| | - Federico Di Tullio
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Giuseppe Andreacchio
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacy and Biotechnology, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| | - Michal Marek Hoppe
- Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Diana Low
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matias J Caldez
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Frontiers Research Center, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan
| | - Yanfen Peng
- Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| | - Denis Torre
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia N Zhao
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oro Uchenunu
- Lady Davis Institute, SMBD JGH, McGill University, Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Gabriele Varano
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina-Mihaela Motofeanu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shun Xie Teo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cheng Mun Wun
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| | - Soo Yong Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Advanced Molecular Pathology Laboratory, IMCB, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chee Bing Ong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Advanced Molecular Pathology Laboratory, IMCB, Singapore, Singapore
| | - Muthafar Al-Haddawi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Advanced Molecular Pathology Laboratory, IMCB, Singapore, Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Advanced Molecular Pathology Laboratory, IMCB, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Hospital (NUH), Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dachuan Huang
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keng Boon Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anand Jeyasekharan
- Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| | - David Dominguez-Sola
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD JGH, McGill University, Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, H3T 1E2, Canada.
- Lady Davis Institute, SMBD JGH, McGill University, Departments of Experimental Medicine and Biochemistry, McGill University, Montreal, QC, H3T 1E2, Canada.
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
13
|
Genome-wide promoter methylation of hairy cell leukemia. Blood Adv 2020; 3:384-396. [PMID: 30723113 DOI: 10.1182/bloodadvances.2018024059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Classic hairy cell leukemia (HCL) is a tumor of mature clonal B cells with unique genetic, morphologic, and phenotypic features. DNA methylation profiling has provided a new tier of investigation to gain insight into the origin and behavior of B-cell malignancies; however, the methylation profile of HCL has not been specifically investigated. DNA methylation profiling was analyzed with the Infinium HumanMethylation27 array in 41 mature B-cell tumors, including 11 HCL, 7 splenic marginal zone lymphomas (SMZLs), and chronic lymphocytic leukemia with an unmutated (n = 7) or mutated (n = 6) immunoglobulin gene heavy chain variable (IGHV) region or using IGHV3-21 (n = 10). Methylation profiles of nontumor B-cell subsets and gene expression profiling data were obtained from public databases. HCL had a methylation signature distinct from each B-cell tumor entity, including the closest entity, SMZL. Comparison with normal B-cell subsets revealed the strongest similarity with postgerminal center (GC) B cells and a clear separation from pre-GC and GC cellular programs. Comparison of the integrated analysis with post-GC B cells revealed significant hypomethylation and overexpression of BCR-TLR-NF-κB and BRAF-MAPK signaling pathways and cell adhesion, as well as hypermethylation and underexpression of cell-differentiation markers and methylated genes in cancer, suggesting regulation of the transformed hairy cells through specific components of the B-cell receptor and the BRAF signaling pathways. Our data identify a specific methylation profile of HCL, which may help to distinguish it from other mature B-cell tumors.
Collapse
|
14
|
Zhang Q, Thakur C, Shi J, Sun J, Fu Y, Stemmer P, Chen F. New discoveries of mdig in the epigenetic regulation of cancers. Semin Cancer Biol 2019; 57:27-35. [PMID: 31276784 PMCID: PMC6844078 DOI: 10.1016/j.semcancer.2019.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Mineral dust-induced gene (mdig) encodes a member of the evolutionarily conserved JmjC family proteins that play fundamental roles in regulating chromatin-based processes as well as transcription of the genes in eukaryotic cells. This gene is also named as myc-induced nuclear antigen 53 (MINA), nucleolar protein 52 (NO52) and ribosomal oxygenase 2 (RIOX2). Increased expression of mdig had been noted in a number of human cancers, esp. lung cancer. Emerging evidence suggests that the oncogenic activity of mdig is most likely achieved through its regulation on the demethylation of histone proteins, despite it lacks the structural identities of the demethylases. Here, we discuss the latest discoveries on the characteristics of the mdig protein and its roles in a wide variety of normal and carcinogenic processes. We will also provide perspectives on how mdig is involved in the maintenance and differentiation of the embryonic stem cells, somatic stem cells and cancer stem cells.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Junwei Shi
- Nantong Pulmonary Hospital, 500 Yonghe Road, Gangzha Qu, Nantong, 226011, Jiangsu Province, China
| | - Jiaying Sun
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, 6135 Woodward Avenue, Detroit, MI, 48202, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Tracey LJ, Justice MJ. Off to a Bad Start: Cancer Initiation by Pluripotency Regulator PRDM14. Trends Genet 2019; 35:489-500. [PMID: 31130394 DOI: 10.1016/j.tig.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Despite advances in chemotherapies that improve cancer survival, most patients who relapse succumb to the disease due to the presence of cancer stem cells (CSCs), which are highly chemoresistant. The pluripotency factor PR domain 14 (PRDM14) has a key role in initiating many types of cancer. Normally, PRDM14 uses epigenetic mechanisms to establish and maintain the pluripotency of embryonic cells, and its role in cancer is similar. This important link between cancer and induced pluripotency is a key revelation for how CSCs may form: pluripotency genes, such as PRDM14, can expand stem-like cells as they promote ongoing DNA damage. PRDM14 and its protein-binding partners, the ETO/CBFA2T family, are ideal candidates for eliminating CSCs from relevant cancers, preventing relapse and improving long-term survival.
Collapse
Affiliation(s)
- Lauren J Tracey
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
16
|
Chang YS, Chang CC, Huang HY, Lin CY, Yeh KT, Chang JG. Detection of Molecular Alterations in Taiwanese Patients with Medullary Thyroid Cancer Using Whole-Exome Sequencing. Endocr Pathol 2018; 29:324-331. [PMID: 30120715 DOI: 10.1007/s12022-018-9543-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic and epigenetic alterations are associated with the progression and prognosis of medullary thyroid carcinoma (MTC). We performed whole-exome sequencing of tumor tissue from seven patients with sporadic MTC using an Illumina HiSeq 2000 sequencing system. We conducted Sanger sequencing to confirm the somatic mutations in both tumor and matched normal tissues. We applied Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis with the Database for Annotation, Visualization, and Integrated Discovery and STRING for pathway analysis. We detected new somatic mutations in the BICD2, DLG1, FSD2, IL17RD, KLHL25, PAPPA2, PRDM2, PSEN1, SCRN1, and TTC1 genes. We found a somatic mutation in the PDE4DIP gene that had previously been discovered mutated in other tumors but that had not been characterized in MTC. We investigated pathway deregulation in MTC. Data regarding 1152 MTCs were assembled from the Catalogue of Somatic Mutations in Cancer (COSMIC) and seven of our patients. Ontological analysis revealed that most of the variants aggregated in pathways that included the signaling pathways of thyroid cancer, central carbon metabolism, microRNAs in cancer, PI3K-Akt, ErbB, MAPK, mTOR, VEGF, and RAS. In conclusion, we conducted wide-ranging exome-wide analysis of the mutational spectrum of MTC in Taiwan's population and detected novel genes with potential associations with MTC tumorigenesis and irregularities in pathways that resulted in MTC pathogenesis.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Chi Chang
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsi-Yuan Huang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Yu Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
17
|
Guarnieri V, Muscarella LA, Verdelli C, Corbetta S. Alterations of DNA methylation in parathyroid tumors. Mol Cell Endocrinol 2018; 469:60-69. [PMID: 28501573 DOI: 10.1016/j.mce.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Parathyroid tumors are common endocrine neoplasias associated with primary hyperparathyroidism, a metabolic disorder characterized by parathormone hypersecretion. Parathyroid neoplasia are frequently benign adenomas or multiple glands hyperplasia, while malignancies are rare. The epigenetic scenario in parathyroid tumors has just begun to be decoded: DNA methylation, histones and chromatin modifiers expression have been investigated so far. The main findings suggest that DNA methylation and chromatin remodeling are active and deregulated in parathyroid tumors, cooperating with genetic alterations to drive the tumor phenotype: the tumor suppressors menin and parafibromin, involved in parathyroid tumorigenesis, interact with chromatin modifiers, defining distinct epigenetic derangements. Many epigenetic alterations identified in parathyroid tumors are common to those in human cancers; moreover, some aspects of the epigenetic profile resemble epigenetic features of embryonic stem cells. Epigenetic profile may contribute to define the heterogeneity of parathyroid tumors and to provide targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Vito Guarnieri
- Genetic Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Chiara Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology Service, Department of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
18
|
Silva-Figueroa AM, Perrier ND. Epigenetic processes in sporadic parathyroid neoplasms. Mol Cell Endocrinol 2018; 469:54-59. [PMID: 28400272 DOI: 10.1016/j.mce.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 01/18/2023]
Abstract
Parathyroid tumors (PTs) are highly variable in their genetic background. Increasing evidence demonstrates that endocrine diseases can be caused by epigenetic alterations. The present review is focused on epigenetic aberrations related to PTs. DNA methylation, posttranslational histone modification, and noncoding RNAs are epigenetic mechanisms involved in parathyroid tumorigenesis. The information in this review has the potential to define epigenetic signatures associated with PTs for future use as diagnostic markers and lead to the development of new epigenetic drugs with therapeutic applications for these tumors. However, several epigenetic aspects regarding the biomarkers involved and their interactions in tumorigenesis on PTs are still unknown. Key to future epigenetic research would be a focus on global epigenetic identification of biomarkers in the different types of PTs, especially in parathyroid carcinoma. Better understanding may be useful for diagnostic and therapeutic uncertainty.
Collapse
Affiliation(s)
- Angelica M Silva-Figueroa
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Nancy D Perrier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
19
|
Sorrentino A, Rienzo M, Ciccodicola A, Casamassimi A, Abbondanza C. Human PRDM2: Structure, function and pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30071-3. [PMID: 29883756 DOI: 10.1016/j.bbagrm.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
PRDM2/RIZ is a member of a superfamily of histone/protein methyltransferases (PRDMs), which are characterized by the conserved N-terminal PR domain, with methyltransferase activity and zinc finger arrays at the C-terminus. Similar to other family members, two main protein types, known as RIZ1 and RIZ2, are produced from the PRDM2 locus differing by the presence or absence of the PR domain. The imbalance in their respective amounts may be an important cause of malignancy, with the PR-positive isoform commonly lost or downregulated and the PR-negative isoform always being present at higher levels in cancer cells. Interestingly, the RIZ1 isoform also represents an important target of estradiol action downstream of the interaction with hormone receptor. Furthermore, the imbalance between the two products could also be a molecular basis for other human diseases. Thus, understanding the molecular mechanisms underlying PRDM2 function could be useful in the pathophysiological context, with a potential to exploit this information in clinical practice.
Collapse
Affiliation(s)
- A Sorrentino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Science and Technology, University of Naples "Parthenope", Naples, Italy
| | - M Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - A Ciccodicola
- Department of Science and Technology, University of Naples "Parthenope", Naples, Italy; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| | - A Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - C Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
20
|
Yang S, Xing L, Gu L, Cheng H, Feng Y, Zhang Y. Combination of RIZ1 Overexpression and Radiotherapy Contributes to Apoptosis and DNA Damage of HeLa and SiHa Cervical Cancer Cells. Basic Clin Pharmacol Toxicol 2018; 123:137-146. [PMID: 29575614 DOI: 10.1111/bcpt.13008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
Although radiotherapy has been widely applied to treating cervical cancer in the clinic, its therapeutic efficacy is often restricted to the radioresistance of cancer cells. Retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) has been suggested as a tumour suppressor gene, whereas its role in cervical cancer with or without radiotherapy has been unclear. In this study, two cervical cancer cell lines, HeLa and SiHa cells, stably transfected with RIZ1 overexpression plasmid were subjected to ionizing radiation, and their survival fractions were calculated by assessing their clonogenic abilities. Our results showed that the forced overexpression of RIZ1 significantly reduced the clonogenic survival rates of both HeLa and SiHa cells exposed to ionizing radiation. By analysing the cell apoptotic status, we found that the RIZ1-overexpressed cervical cancer cells under ionizing radiation were more vulnerable to damage, and more γ-H2AX foci were found in these cells. Furthermore, the volumes of tumour xenografts formed by the RIZ1-overexpressed cells in nude mice under ionizing radiation were smaller than those generated by the control cells. There were more morphological changes, apoptosis cells and lower expression of PCNA in RIZ1-overexpressed tumour tissues of mice after exposure to ionizing radiation. Taken together, our study demonstrates that the overexpression of RIZ1 combined with radiotherapy facilitates apoptosis and DNA damage of cervical cancer cells.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Linan Xing
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haiyan Cheng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Feng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
21
|
Fratta E, Montico B, Rizzo A, Colizzi F, Sigalotti L, Dolcetti R. Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget 2018; 7:57327-57350. [PMID: 27329599 PMCID: PMC5302993 DOI: 10.18632/oncotarget.10033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/28/2016] [Indexed: 12/31/2022] Open
Abstract
In recent years, recurrent somatic mutations in epigenetic regulators have been identified in patients with hematological malignancies. Furthermore, chromosomal translocations in which the fusion protein partners are themselves epigenetic regulators or where epigenetic regulators are recruited/targeted by oncogenic fusion proteins have also been described. Evidence has accumulated showing that "epigenetic drugs" are likely to provide clinical benefits in several hematological malignancies, granting their approval for the treatment of myelodysplastic syndromes and cutaneous T-cell lymphomas. A large number of pre-clinical and clinical trials evaluating epigenetic drugs alone or in combination therapies are ongoing. The aim of this review is to provide a comprehensive summary of known epigenetic alterations and of the current use of epigenetic drugs for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Barbara Montico
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Aurora Rizzo
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Francesca Colizzi
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Luca Sigalotti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
22
|
Liu Q, Qu X, Xie X, He P, Huang S. Repression of Akt3 gene transcription by the tumor suppressor RIZ1. Sci Rep 2018; 8:1528. [PMID: 29367689 PMCID: PMC5784169 DOI: 10.1038/s41598-018-19943-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/10/2018] [Indexed: 12/04/2022] Open
Abstract
RIZ1 has been studied as a tumor suppressor and may play a role in metabolic diseases related to the Western style diet, such as cancer and obesity. The Akt pathway is known to play a role in both cancer and obesity, and a link between Akt and RIZ1 has also been found. To better understand the role of RIZ1 in obesity and cancer, we investigated how RIZ1 regulates the expression of Akt3. We found that overexpression of RIZ1 in HEK293 cells reduced the expression of Akt3 protein. Luciferase reporter activity of Akt3 gene promoter was significantly reduced in cells co-transfected with RIZ1. Recombinant proteins of RIZ1 was able to bind the Akt3 promoter in vitro, and chromatin immunoprecipitation assay also demonstrated the ability of RIZ1 binding to the Akt3 promoter in vivo. Overexpression of RIZ1 increased H3K9 methylation on the Akt3 promoter. These results identify Akt3 as a target of RIZ1 regulation and expand our understanding of the Akt pathway in cancer and obesity.
Collapse
Affiliation(s)
- Qingnan Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Department of Pathology, YiYang Medical College, Yiyang, Hunan, China
| | - Xiaotian Qu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaolei Xie
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Pei He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shi Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Pandzic T, Rendo V, Lim J, Larsson C, Larsson J, Stoimenov I, Kundu S, Ali MA, Hellström M, He L, Lindroth AM, Sjöblom T. Somatic PRDM2 c.4467delA mutations in colorectal cancers control histone methylation and tumor growth. Oncotarget 2017; 8:98646-98659. [PMID: 29228717 PMCID: PMC5716757 DOI: 10.18632/oncotarget.21713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/26/2017] [Indexed: 12/12/2022] Open
Abstract
The chromatin modifier PRDM2/RIZ1 is inactivated by mutation in several forms of cancer and is a putative tumor suppressor gene. Frameshift mutations in the C-terminal region of PRDM2, affecting (A)8 or (A)9 repeats within exon 8, are found in one third of colorectal cancers with microsatellite instability, but the contribution of these mutations to colorectal tumorigenesis is unknown. To model somatic mutations in microsatellite unstable tumors, we devised a general approach to perform genome editing while stabilizing the mutated nucleotide repeat. We then engineered isogenic cell systems where the PRDM2 c.4467delA mutation in human HCT116 colorectal cancer cells was corrected to wild-type by genome editing. Restored PRDM2 increased global histone 3 lysine 9 dimethylation and reduced migration, anchorage-independent growth and tumor growth in vivo. Gene set enrichment analysis revealed regulation of several hallmark cancer pathways, particularly of epithelial-to-mesenchymal transition (EMT), with VIM being the most significantly regulated gene. These observations provide direct evidence that PRDM2 c.4467delA is a driver mutation in colorectal cancer and confirms PRDM2 as a cancer gene, pointing to regulation of EMT as a central aspect of its tumor suppressive action.
Collapse
Affiliation(s)
- Tatjana Pandzic
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Veronica Rendo
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jinyeong Lim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Republic of Korea
| | - Chatarina Larsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jimmy Larsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ivaylo Stoimenov
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Snehangshu Kundu
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Muhammad Akhtar Ali
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anders M. Lindroth
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Republic of Korea
| | - Tobias Sjöblom
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Xue Y, Chen R, Du W, Yang F, Wei X. RIZ1 and histone methylation status in pituitary adenomas. Tumour Biol 2017; 39:1010428317711794. [PMID: 28718376 DOI: 10.1177/1010428317711794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RIZ1 displays strong tumor-suppressive activities, which has a potential histone methyltransferase activity. The objective of the study was to evaluate the level and the methylation status of RIZ1 and analyze its association with clinicopathological features and the histone in the pituitary adenomas. We found that RIZ1-positive cases were 11/50 and H-Scores 22.75 ± 11.83 in invasive pituitary adenomas and 26/53 and 66.3 ± 21.7 in non-invasive pituitary adenomas (χ2 = 8.182, p = 0.004). RIZ1 and C-myc showed the opposite trend in these cases. The methylation levels of RIZ1 were more than 50% in 30.4% (7/23) CpG sites through MALDI-TOF Mass array. There was significant difference (p < 0.01) in 4 CpG sites between invasive pituitary adenoma group and non-invasive pituitary adenoma group; furthermore, the relieved methylation levels of H3K4/H3K9 and enhanced methylation levels of H3K27 in the patients' serum were found. Furthermore, there was statistic difference of H3K4 and H3K27 methylation between invasive pituitary adenoma and non-invasive pituitary adenoma group (p < 0.01). The average progression-free survival in high RIZ1 group was 52.63 ± 7.62 months and 26.06 ± 4.23 months in low RIZ1 group (p < 0.05). Promoter region methylation of RIZ1 may play an important role in the epigenetic silencing of RIZ1 expression in pituitary adenomas, which may translate into important diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yake Xue
- Department of Neurosurgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ruokun Chen
- Department of Neurosurgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Du
- Department of Neurosurgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Fengdong Yang
- Department of Neurosurgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xinting Wei
- Department of Neurosurgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Genetic background influences susceptibility to chemotherapy-induced hematotoxicity. THE PHARMACOGENOMICS JOURNAL 2017; 18:319-330. [PMID: 28607509 PMCID: PMC5729066 DOI: 10.1038/tpj.2017.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022]
Abstract
Hematotoxicity is a life-threatening side effect of many chemotherapy regimens. While clinical factors influence patient responses, genetic factors may also play an important role. We sought to identify genomic loci that influence chemotherapy-induced hematotoxicity by dosing Diversity Outbred mice with one of three chemotherapy drugs; doxorubicin, cyclophosphamide or docetaxel. We observed that each drug had a distinct effect on both the changes in blood cell sub-populations and the underlying genetic architecture of hematotoxicity. For doxorubicin, we mapped the change in cell counts before and after dosing and found that alleles of ATP-binding cassette B1B (Abcb1b) on chromosome 5 influence all cell populations. For cyclophosphamide and docetaxel, we found that each cell population was influenced by distinct loci, none of which overlapped between drugs. These results suggest that susceptibility to chemotherapy-induced hematotoxicity is influenced by different genes for different chemotherapy drugs.
Collapse
|
26
|
RIZ1 is regulated by estrogen and suppresses tumor progression in endometrial cancer. Biochem Biophys Res Commun 2017; 489:96-102. [PMID: 28528974 DOI: 10.1016/j.bbrc.2017.05.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022]
Abstract
Endometrial cancer (EC) is the estrogen-dependent gynecologic malignancy, however the molecular mechanism involved in the development and progression of EC remain unclear. The aim of this study was to investigate the role of RIZ1 in EC. Immunohistochemical analysis revealed that RIZ1was decreased in EC than in normal endometrium. Lower RIZ1 level was correlated with high-grade carcinoma (p = 0.048) and positive expression of ERα (p = 0.004). In EC cells, estrogen could down regulated the expression of RIZ1, however, ICI182,780 could up regulated the expression of RIZ1. Besides, in vitro and in vivo, RIZ1 could remarkably suppress tumor proliferation, metastasis and invasion. Our data support that RIZ1 was a novel tumor suppressor and could provide a potential therapeutic target in human EC.
Collapse
|
27
|
Chiara V, Sabrina C. Epigenetics of human parathyroid tumors. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2017. [DOI: 10.2217/ije-2017-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Parathyroid tumors are common endocrine neoplasia associated with primary hyperparathyroidism, a metabolic disorder sustained by parathormone hypersecretion. The epigenetic scenario in parathyroid tumors is beginning to be decoded. Here, main findings are reviewed: hypermethylation of specific DNA CpG islands has been described, despite global DNA promoter hypomethylation was not detectable; embryonic-related miRNAs, belonging to the C19MC and miR‐371-373 clusters, and miR‐296, are deregulated; expression of histone H1.2 and H2B is increased; expression of histone methyltransferase EZH2, BMI1 and RIZ1 is impaired; the tumor suppressor HIC1, MEN1 and CDC73 gene products, key molecules in parathyroid tumorigenesis, may be involved in epigenetic aberrant changes. Epigenetic changes are more frequent and more consistent in parathyroid malignancies, and positively correlated with severity of primary hyperparathyroidism.
Collapse
Affiliation(s)
- Verdelli Chiara
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Corbetta Sabrina
- Endocrinology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
28
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 776] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
29
|
Szafranski P, Karolak JA, Lanza D, Gajęcka M, Heaney J, Stankiewicz P. CRISPR/Cas9-mediated deletion of lncRNA Gm26878 in the distant Foxf1 enhancer region. Mamm Genome 2017; 28:275-282. [PMID: 28405742 DOI: 10.1007/s00335-017-9686-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/12/2017] [Indexed: 11/29/2022]
Abstract
Recent genome editing techniques, including CRISPR mutagenesis screens, offer unparalleled opportunities to study the regulatory non-coding genomic regions, enhancers, promoters, and functional non-coding RNAs. Heterozygous point mutations in FOXF1 and genomic deletion copy-number variants at chromosomal region 16q24.1 involving FOXF1 or its regulatory region mapping ~300 kb upstream of FOXF1 and leaving it intact have been identified in the vast majority of patients with a lethal neonatal lung disease, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Homozygous Foxf1 -/- mice have been shown to die by embryonic day 8.5 because of defects in the development of extraembryonic and lateral mesoderm-derived tissues, whereas heterozygous Foxf1 +/- mice exhibit features resembling ACDMPV. We have previously defined a human lung-specific enhancer region encoding two long non-coding RNAs, LINC01081 and LINC01082, expressed in the lungs. To investigate the biological significance of lncRNAs in the Foxf1 enhancer region, we have generated a CRISPR/Cas9-mediated ~2.4 kb deletion involving the entire lncRNA-encoding gene Gm26878, located in the mouse region syntenic with the human Foxf1 upstream enhancer. Very recently, this mouse genomic region has been shown to function as a Foxf1 enhancer. Our results indicate that homozygous loss of Gm26878 is neonatal lethal with low penetrance. No changes in Foxf1 expression were observed, suggesting that the regulation of Foxf1 expression differs between mouse and human.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marzena Gajęcka
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Jason Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Mori N, Ohwashi-Miyazaki M, Yoshinaga K, Okada M, Shiseki M, Motoji T, Tanaka J. Tumor suppressor gene methylation on the short arm of chromosome 1 in chronic myelogenous leukemia. Eur J Haematol 2017; 98:467-477. [PMID: 28129457 DOI: 10.1111/ejh.12857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We previously reported loss of heterozygosity on 1p in chronic myelogenous leukemia (CML). We analyzed promoter methylation and mutation of tumor suppressor genes on 1p36 in CML. METHODS We performed methylation-specific PCR (MS-PCR) analysis of the PRDM2, RUNX3, and TP73 genes in 61 patients with CML (43 chronic phase, CP; two accelerated phase; and 16 blast crisis, BC). Oxidative MS-PCR, PCR-single-strand conformation polymorphism, and real-time reverse transcriptase PCR were also analyzed. K-562 cells were grown in the presence of 5-Aza-dC and trichostatin A. RESULTS Methylation of the PRDM2, RUNX3, and TP73 genes was detected in 24/60 (40%), 21/61 (34%), and 28/60 (47%) patients, respectively. Methylation of all three genes was detected in 19/59 (32%) patients. Methylation was more frequent in BC than in CP. Oxidative MS-PCR analysis detected 5-mC in the PRDM2, RUNX3, and TP73 genes in 10/22 (45%), 15/21 (71%), and 16/26 (62%) samples with methylation detected by MS-PCR, respectively. Decreased expression was observed in several samples with methylation, while no mutations were found in the genes. Treatment of K-562 cells induced growth suppression, demethylation, and reexpression of the PRDM2 and RUNX3 genes. CONCLUSION Multiple tumor suppressor genes on 1p were inactivated in CML by methylation.
Collapse
Affiliation(s)
- Naoki Mori
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Kentaro Yoshinaga
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Michiko Okada
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Shiseki
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiko Motoji
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
31
|
Critical Function of PRDM2 in the Neoplastic Growth of Testicular Germ Cell Tumors. BIOLOGY 2016; 5:biology5040054. [PMID: 27983647 PMCID: PMC5192434 DOI: 10.3390/biology5040054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
Testicular germ cell tumors (TGCTs) derive from primordial germ cells. Their maturation is blocked at different stages, reflecting histological tumor subtypes. A common genetic alteration in TGCT is a deletion of the chromosome 1 short arm, where the PRDM2 gene, belonging to the Positive Regulatory domain gene (PRDM) family, is located. Expression of PRDM2 gene is shifted in different human tumors, where the expression of the two principal protein forms coded by PRDM2 gene, RIZ1 and RIZ2, is frequently unbalanced. Therefore, PRDM2 is actually considered a candidate tumor suppressor gene in different types of cancer. Although recent studies have demonstrated that PRDM gene family members have a pivotal role during the early stages of testicular development, no information are actually available on the involvement of these genes in TGCTs. In this article we show by qRT-PCR analysis that PRDM2 expression level is modulated by proliferation and differentiation agents such as estradiol, whose exposure during fetal life is probably an important risk factor for TGCTs development in adulthood. Furthermore in normal and cancer germ cell lines, PRDM2 binds estradiol receptor α (ERα) and influences proliferation, survival and apoptosis, as previously reported using MCF-7 breast cancer cell line, suggesting a potential tumor-suppressor role in TGCT formation.
Collapse
|
32
|
Lei Q, Liu X, Fu H, Sun Y, Wang L, Xu G, Wang W, Yu Z, Liu C, Li P, Feng J, Li G, Wu M. miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells. Oncotarget 2016; 7:5007-22. [PMID: 26701852 PMCID: PMC4826261 DOI: 10.18632/oncotarget.6652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/05/2015] [Indexed: 01/17/2023] Open
Abstract
Our previous report identified PR domain containing 16 (PRDM16), a member of the PR-domain gene family, as a new methylation associated gene in astrocytoma cells. This previous study also reported that miR-101 is a tumor suppressor in glioma. The present study confirms that PRDM16 is a hypomethylated gene that can be overexpressed in astrocytoma patients and demonstrates that the hypomethylation status of the PRDM16 promoter can predict poor prognoses for astrocytoma patients. The results reported herein show that PRDM16 was inhibited by miR-101 directly and also through epigenetic regulation. PRDM16 was confirmed as a new target of miR-101 and shown to be directly inhibited by miR-101. miR-101 also decreased the expression of PRDM16 by altering the methylation status of the PRDM16 promoter. miR-101 was associated with a decrease in the methylation-related histones H3K4me2 and H3K27me3 and an increase in H3K9me3 and H4K20me3 on the PRDM16 promoter. In addition, EZH2, EED and DNMT3A were identified as direct targets of miR-101, and miR-101 suppressed PRDM16 expression by targeting DNMT3A which decreases histone H3K27me3 and H3K4me2 at the PRDM16 core promoter. The results reported here demonstrate that miR-101 disrupted cellular mitochondrial function and induced cellular apoptosis via the mitochondrial pathway; for example, MMP and ATP levels decreased, while there was an increase in ADP/ATP ratios and ROS levels, levels of cleaved Caspase-9 and cleaved-PARP, the Bax/Bcl-2 ratios, and Smac release from the mitochondria to the cytoplasm. Knockdown of PRDM16 reversed the anti-apoptotic effect of miR-101 inhibition. In summary, miR-101 reversed the hypomethylation of the PRDM16 promoter which suppressed the expression of PRDM16, disrupted cellular mitochondrial function, and induced cellular apoptosis.
Collapse
Affiliation(s)
- Qianqian Lei
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Xiaoping Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Haijuan Fu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Liping Wang
- Department of Oncology, The First Hospital of Chenzhou City, 423000, Hunan, China
| | - Gang Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Wei Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Zhibin Yu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Changhong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Minghua Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| |
Collapse
|
33
|
Cheng HY, Zhang T, Qu Y, Shi WJ, Lou G, Liu YX, Zhang YY, Cheng L. Synergism between RIZ1 gene therapy and paclitaxel in SiHa cervical cancer cells. Cancer Gene Ther 2016; 23:392-395. [PMID: 27713401 DOI: 10.1038/cgt.2016.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/29/2023]
Abstract
RIZ1 is a tumor suppressor gene. The purpose of the present study was to investigate the inhibitory effect of RIZ1 gene therapy on the growth of SiHa cervical cancer cells and its synergism with paclitaxel. The expression levels of RIZ1 were examined by real-time PCR and western blotting before and after transfection of RIZ1. The effects of paclitaxel or pcDNA3.1(+)-RIZ1 alone or in combination, on the proliferation of SiHa cells were evaluated by MTT method. The inhibitory effect on the proliferation of SiHa cells was more significant in the pcDNA3.1(+)-RIZ1 combined with paclitaxel group than in the pcDNA3.1(+)-RIZ1 or paclitaxel groups (P<0.05). The expression level of RIZ1 in SiHa cells increased after treatment with paclitaxel, which indicated a synergism between them. RIZ1 gene therapy combined with paclitaxel showed stronger cell inhibition than paclitaxel alone, which indicated a synergism between them.
Collapse
Affiliation(s)
- H Y Cheng
- Department of Gynecologic Oncology, The Tumor Hospital of Harbin Medical University, Heilongjiang, China
| | - T Zhang
- Department of Gynecologic Oncology, The Red Flag Hospital of Mudanjiang Medical School, Heilongjiang, China
| | - Y Qu
- Department of Gynecologic Oncology, The Traditional Chinese and Western Medicine Hospital of Fengtai District, Beijing, China
| | - W J Shi
- Department of Gynecologic Oncology, The Tumor Hospital of Harbin Medical University, Heilongjiang, China
| | - G Lou
- Department of Gynecologic Oncology, The Tumor Hospital of Harbin Medical University, Heilongjiang, China
| | - Y X Liu
- Department of Gynecologic Oncology, The Tumor Hospital of Harbin Medical University, Heilongjiang, China
| | - Y Y Zhang
- Department of Gynecologic Oncology, The Tumor Hospital of Harbin Medical University, Heilongjiang, China
| | - L Cheng
- Department of Gynecologic Oncology, The Tumor Hospital of Harbin Medical University, Heilongjiang, China
| |
Collapse
|
34
|
Xie X, Man X, Zhu Z, Yuan D, Huang S. Tumor suppressor RIZ1 in obesity and the PI3K/AKT/mTOR pathway. Obesity (Silver Spring) 2016; 24:389-97. [PMID: 26709097 DOI: 10.1002/oby.21364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the shared molecular pathways of obesity and cancer by exploring the role of RIZ1 in obesity and the phospatidylinositol 3-kinase (PI3K)/V-Akt murine thymoma viral oncogene homolog (PKB) (AKT)/mechanistic target of rapamycin (mTOR) pathway. METHODS Male wild type (WT) and Riz1(-/-) mice (KO) were fed a standard diet (STD) or a high-fat (HF) diet for up to 8 months. These mice were studied for phenotypic and molecular changes. RESULTS Riz1(-/-) mice gained more weight on a HF diet compared to WT mice, with higher free fatty acid and increased visceral fat. Metabolic cage analysis of Riz1(-/-) mice showed lower oxygen consumption but no changes in food intake and ambulatory activity. Riz1(-/-) mice showed impaired glucose regulation but no change in insulin sensitivity. RNA-seq and quantitative RT-PCR analysis found altered expression in certain glycolysis and ATP production genes such as Ubiad1, Atp5g2, and Cyp4a12. The PI3K/AKT/mTOR pathway was activated in the Riz1(-/-) mice fed a HF diet with higher Akt3 mRNA levels and increased phosphorylation of AKT (Ser473), mTOR, and S6. CONCLUSIONS The results identify RIZ1 as an important regulator of both Akt3 transcription and AKT phosphorylation and suggest a role for RIZ1 in HF-induced obesity and the AKT pathway.
Collapse
Affiliation(s)
- Xiaolei Xie
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Xian Man
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Zuobin Zhu
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Dejian Yuan
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Shi Huang
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
35
|
The role of PRDMs in cancer: one family, two sides. Curr Opin Genet Dev 2016; 36:83-91. [DOI: 10.1016/j.gde.2016.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/24/2016] [Indexed: 12/24/2022]
|
36
|
Li J, Zhu S, Ke XX, Cui H. Role of several histone lysine methyltransferases in tumor development. Biomed Rep 2016; 4:293-299. [PMID: 26998265 PMCID: PMC4774316 DOI: 10.3892/br.2016.574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/31/2015] [Indexed: 12/17/2022] Open
Abstract
The field of cancer epigenetics has been evolving rapidly in recent decades. Epigenetic mechanisms include DNA methylation, histone modifications and microRNAs. Histone modifications are important markers of function and chromatin state. Aberrant histone methylation frequently occurs in tumor development and progression. Multiple studies have identified that histone lysine methyltransferases regulate gene transcription through the methylation of histone, which affects cell proliferation and differentiation, cell migration and invasion, and other biological characteristics. Histones have variant lysine sites for different levels of methylation, catalyzed by different lysine methyltransferases, which have numerous effects on human cancers. The present review focused on the most recent advances, described the key function sites of histone lysine methyltransferases, integrated significant quantities of data to introduce several compelling histone lysine methyltransferases in various types of human cancers, summarized their role in tumor development and discussed their potential mechanisms of action.
Collapse
Affiliation(s)
- Jifu Li
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing 400716, P.R. China
| | - Xiao-Xue Ke
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
37
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Zhang C, Zhu Q, He H, Jiang L, Qiang Q, Hu L, Hu G, Jiang Y, Ding X, Lu Y. RIZ1: a potential tumor suppressor in glioma. BMC Cancer 2015; 15:990. [PMID: 26690953 PMCID: PMC4685634 DOI: 10.1186/s12885-015-2023-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinoblastoma protein-interacting zinc-finger gene 1 (RIZ1) displays strong tumor suppressive activities, and its expression is often silenced in many types of human tumors. However, the relationship between RIZ1 expression and glioma prognosis remains unclear. METHODS The dysregulation of RIZ1 was evaluated using real-time polymerase chain reaction, western blot, and immunohistochemical analysis of gliomas from 51 patients. Correlation analysis was performed to examine relationships between RIZ1 immunoreactivity, clinicopathological features, and patient prognosis. Also, human malignant glioma U87 and U251 cell lines were stably transduced with ectogenic RIZ1 using a lentiviral vector to investigate the effects of induced expression of RIZ1 on cell proliferation, cell cycle, and apoptosis. RESULTS Real-time polymerase chain reaction and western blot analysis showed that RIZ1 was downregulated in high-grade gliomas compared with low-grade gliomas and normal brain tissue. Immunohistochemistry showed less RIZ1 labeling in high-grade gliomas than in low-grade gliomas. There was a negative correlation between RIZ1 and Ki-67 immunoreactivity. Clinicopathological evaluation revealed that RIZ1 expression was negatively correlated with tumor grade and patient age. Kaplan-Meier survival analysis showed a positive correlation between RIZ1 immunoreactivity level and progression-free and overall survival times. Multivariate analysis showed that high RIZ1 expression was an independent prognostic factor for patients with gliomas. Induced expression of RIZ1 in U87 and U251 cells reduced cell proliferation and increased apoptosis, and cell cycle analysis revealed that a majority of cells were arrested at G2-M. Moreover, transfection with a RIZ1 expression vector increased p53 and caspase-3 expression and decreased p-IKBα and p-AKT protein levels, suggesting that RIZ1 may stimulate p53-mediated apoptosis and inhibit p-IKBα and p-AKT signaling pathways. CONCLUSIONS Our results suggest that high RIZ1 labeling is indicative of lower grades of gliomas and is associated with better progression-free and overall survival rates. Therefore, RIZ1 may be a promising therapeutic target for patients with gliomas.
Collapse
Affiliation(s)
- Chenran Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Qiubei Zhu
- Department of Otolaryngology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Hua He
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Liuhua Hu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Guohan Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Ying Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Xuehua Ding
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Yicheng Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
39
|
Haney SL, Hlady RA, Opavska J, Klinkebiel D, Pirruccello SJ, Dutta S, Datta K, Simpson MA, Wu L, Opavsky R. Methylation-independent repression of Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell lymphomagenesis. Oncogene 2015; 34:5436-5446. [PMID: 25639876 PMCID: PMC4533871 DOI: 10.1038/onc.2014.472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) catalyzes cytosine methylation of mammalian genomic DNA. In addition to myeloid malignancies, mutations in DNMT3A have been recently reported in T-cell lymphoma and leukemia, implying a possible involvement in the pathogenesis of human diseases. However, the role of Dnmt3a in T-cell transformation in vivo is poorly understood. Here we analyzed the functional consequences of Dnmt3a inactivation in a mouse model of MYC-induced T-cell lymphomagenesis (MTCL). Loss of Dnmt3a delayed tumorigenesis by suppressing cellular proliferation during disease progression. Gene expression profiling and pathway analysis identified upregulation of 17 putative tumor suppressor genes, including DNA methyltransferase Dnmt3b, in Dnmt3a-deficient lymphomas as molecular events potentially responsible for the delayed lymphomagenesis in Dnmt3a(Δ/Δ) mice. Interestingly, promoter and gene body methylation of these genes was not substantially changed between control and Dnmt3a-deficient lymphomas, suggesting that Dnmt3a may inhibit their expression in a methylation-independent manner. Re-expression of both wild type and catalytically inactive Dnmt3a in Dnmt3a(Δ/Δ) lymphoma cells in vitro inhibited Dnmt3b expression, indicating that Dnmt3b upregulation may be directly repressed by Dnmt3a. Importantly, genetic inactivation of Dnmt3b accelerated lymphomagenesis in Dnmt3a(Δ/Δ) mice, demonstrating that upregulation of Dnmt3b is a relevant molecular change in Dnmt3a-deficient lymphomas that inhibits disease progression. Collectively, our data demonstrate an unexpected oncogenic role for Dnmt3a in MTCL through methylation-independent repression of Dnmt3b and possibly other tumor suppressor genes.
Collapse
Affiliation(s)
- Staci L. Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ryan A. Hlady
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Samuel J. Pirruccello
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melanie A. Simpson
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | - Lizhao Wu
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School-Cancer Center, Newark, NJ, USA
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Center for Lymphoma and Leukemia Research, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
40
|
Yang Z, Jones A, Widschwendter M, Teschendorff AE. An integrative pan-cancer-wide analysis of epigenetic enzymes reveals universal patterns of epigenomic deregulation in cancer. Genome Biol 2015; 16:140. [PMID: 26169266 PMCID: PMC4501092 DOI: 10.1186/s13059-015-0699-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022] Open
Abstract
Background One of the most important recent findings in cancer genomics is the identification of novel driver mutations which often target genes that regulate genome-wide chromatin and DNA methylation marks. Little is known, however, as to whether these genes exhibit patterns of epigenomic deregulation that transcend cancer types. Results Here we conduct an integrative pan-cancer-wide analysis of matched RNA-Seq and DNA methylation data across ten different cancer types. We identify seven tumor suppressor and eleven oncogenic epigenetic enzymes which display patterns of deregulation and association with genome-wide cancer DNA methylation patterns, which are largely independent of cancer type. In doing so, we provide evidence that genome-wide cancer hyper- and hypo- DNA methylation patterns are independent processes, controlled by distinct sets of epigenetic enzyme genes. Using causal network modeling, we predict a number of candidate drivers of cancer DNA hypermethylation and hypomethylation. Finally, we show that the genomic loci whose DNA methylation levels associate most strongly with expression of these putative drivers are highly consistent across cancer types. Conclusions This study demonstrates that there exist universal patterns of epigenomic deregulation that transcend cancer types, and that intra-tumor levels of genome-wide DNA hypomethylation and hypermethylation are controlled by distinct processes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0699-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China
| | - Allison Jones
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Andrew E Teschendorff
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China. .,Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
41
|
Ding MH, Wang Z, Jiang L, Fu HL, Gao J, Lin XB, Zhang CL, Liu ZY, Shi YF, Qiu GZ, Ma Y, Cui DX, Hu GH, Jin WL. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials 2015; 56:165-78. [DOI: 10.1016/j.biomaterials.2015.03.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/29/2015] [Accepted: 03/29/2015] [Indexed: 01/22/2023]
|
42
|
Cheedipudi S, Puri D, Saleh A, Gala HP, Rumman M, Pillai MS, Sreenivas P, Arora R, Sellathurai J, Schrøder HD, Mishra RK, Dhawan J. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res 2015; 43:6236-56. [PMID: 26040698 PMCID: PMC4513853 DOI: 10.1093/nar/gkv567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells invivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs—myogenesis and the cell cycle—while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal.
Collapse
Affiliation(s)
- Sirisha Cheedipudi
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Deepika Puri
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Max Planck Institute of Immunobiology and Epigenetics, Freiburg D-79108, Germany
| | - Amena Saleh
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Hardik P Gala
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Mohammed Rumman
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Malini S Pillai
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Prethish Sreenivas
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Reety Arora
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Jeeva Sellathurai
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Henrik Daa Schrøder
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Rakesh K Mishra
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
43
|
Verdelli C, Forno I, Vaira V, Corbetta S. Epigenetic alterations in human parathyroid tumors. Endocrine 2015; 49:324-32. [PMID: 25722013 DOI: 10.1007/s12020-015-0555-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics alterations are involved in tumorigenesis and have been identified in endocrine neoplasia. In particular, DNA methylation, microRNAs deregulations and histone methylation impairment are detected in tumors of the parathyroid glands. Parathyroid tumors are the second most common endocrine neoplasia following thyroid cancer in women, and it is associated with primary hyperparathyroidism, a disease sustained by PTH hypersecretion. Despite the hallmark of global promoter hypomethylations was not detectable in parathyroid tumors, increase of hypermethylation in specific CpG islands was detected in the progression from benign to malignant parathyroid tumors. Furthermore, deregulation of a panel of embryonic-related microRNAs (miRNAs) was documented in parathyroid tumors compared with normal glands. Impaired expression of the histone methyltransferases EZH2, BMI1, and RIZ1 have been described in parathyroid tumors. Moreover, histone methyltransferases have been shown to be modulated by the oncosuppressors HIC1, MEN1, and HRPT2/CDC73 gene products that characterize tumorigenesis of parathyroid adenomas and carcinomas, respectively. The epigenetic scenario in parathyroid tumors have just began to be decoded but emerging data highlight the involvement of an embryonic gene signature in parathyroid tumor development.
Collapse
Affiliation(s)
- Chiara Verdelli
- Laboratory of Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy
| | | | | | | |
Collapse
|
44
|
Ge P, Yu X, Wang ZC, Lin J. Aberrant Methylation of the 1p36 Tumor Suppressor Gene RIZ1 in Renal Cell Carcinoma. Asian Pac J Cancer Prev 2015; 16:4071-5. [DOI: 10.7314/apjcp.2015.16.9.4071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Wada S, Ideno H, Shimada A, Kamiunten T, Nakamura Y, Nakashima K, Kimura H, Shinkai Y, Tachibana M, Nifuji A. H3K9MTase G9a is essential for the differentiation and growth of tenocytes in vitro. Histochem Cell Biol 2015; 144:13-20. [PMID: 25812847 DOI: 10.1007/s00418-015-1318-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Cell differentiation is controlled by specific transcription factors. The functions and expression levels of these transcription factors are regulated by epigenetic modifications, such as histone modifications and cytosine methylation of the genome. In tendon tissue, tendon-specific transcription factors have been shown to play functional roles in the regulation of tenocyte differentiation. However, the effects of epigenetic modifications on gene expression and differentiation in tenocytes are unclear. In this study, we investigated the epigenetic regulation of tenocyte differentiation, focusing on the enzymes mediating histone 3 lysine 9 (H3K9) methylation. In primary mouse tenocytes, six H3K9 methyltransferase (H3K9MTase) genes, i.e., G9a, G9a-like protein (GLP), PR domain zinc finger protein 2 (PRDM2), SUV39H1, SUV39H2, and SETDB1/ESET were all expressed, with increased mRNA levels observed during tenocyte differentiation. In mouse embryos, G9a and Prdm2 mRNAs were expressed in tenocyte precursor cells, which were overlapped with or were adjacent to cells expressing a tenocyte-specific marker, tenomodulin. Using tenocytes isolated from G9a-flox/flox mice, we deleted G9a by infecting the cells with Cre-expressing adenoviruses. Proliferation of G9a-null tenocytes was significantly decreased compared with that of control cells infected with GFP-expressing adenoviruses. Moreover, the expression levels of tendon transcription factors gene, i.e., Scleraxis (Scx), Mohawk (Mkx), Egr1, Six1, and Six2 were all suppressed in G9a-null tenocytes. The tendon-related genes Col1a1, tenomodulin, and periostin were also downregulated. Consistent with this, Western blot analysis showed that tenomodulin protein expression was significantly suppressed by G9a deletion. These results suggested that expression of the H3K9MTase G9a was essential for the differentiation and growth of tenocytes and that H3K9MTases may play important roles in tendinogenesis.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sun Y, Stine JM, Atwater DZ, Sharmin A, Ross JBA, Briknarová K. Structural and functional characterization of the acidic region from the RIZ tumor suppressor. Biochemistry 2015; 54:1390-400. [PMID: 25640033 DOI: 10.1021/bi501398w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RIZ (retinoblastoma protein-interacting zinc finger protein), also denoted PRDM2, is a transcriptional regulator and tumor suppressor. It was initially identified because of its ability to interact with another well-established tumor suppressor, the retinoblastoma protein (Rb). A short motif, IRCDE, in the acidic region (AR) of RIZ was reported to play an important role in the interaction with the pocket domain of Rb. The IRCDE motif is similar to a consensus Rb-binding sequence LXCXE (where X denotes any amino acid) that is found in several viral Rb-inactivating oncoproteins. To improve our understanding of the molecular basis of binding of Rb to RIZ, we investigated the interaction between purified recombinant AR and the pocket domain of Rb using nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, and fluorescence anisotropy experiments. We show that AR is intrinsically disordered and that it binds the pocket domain with submicromolar affinity. We also demonstrate that the interaction between AR and the pocket domain is mediated primarily by the short stretch of residues containing the IRCDE motif and that the contribution of other parts of AR to the interaction with the pocket domain is minimal. Overall, our data provide clear evidence that RIZ is one of the few cellular proteins that can interact directly with the LXCXE-binding cleft on Rb.
Collapse
Affiliation(s)
- Yizhi Sun
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | | | | | | | | | | |
Collapse
|
47
|
Kamiunten T, Ideno H, Shimada A, Nakamura Y, Kimura H, Nakashima K, Nifuji A. Coordinated expression of H3K9 histone methyltransferases during tooth development in mice. Histochem Cell Biol 2014; 143:259-66. [DOI: 10.1007/s00418-014-1284-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
|
48
|
Brown LJ, Baranowski M, Wang Y, Schrey AK, Lenz T, Taverna SD, Cole PA, Sefkow M. Using S-adenosyl-L-homocysteine capture compounds to characterize S-adenosyl-L-methionine and S-adenosyl-L-homocysteine binding proteins. Anal Biochem 2014; 467:14-21. [PMID: 25172130 DOI: 10.1016/j.ab.2014.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022]
Abstract
S-Adenosyl-l-methionine (SAM) is recognized as an important cofactor in a variety of biochemical reactions. As more proteins and pathways that require SAM are discovered, it is important to establish a method to quickly identify and characterize SAM binding proteins. The affinity of S-adenosyl-l-homocysteine (SAH) for SAM binding proteins was used to design two SAH-derived capture compounds (CCs). We demonstrate interactions of the proteins COMT and SAHH with SAH-CC with biotin used in conjunction with streptavidin-horseradish peroxidase. After demonstrating SAH-dependent photo-crosslinking of the CC to these proteins, we used a CC labeled with a fluorescein tag to measure binding affinity via fluorescence anisotropy. We then used this approach to show and characterize binding of SAM to the PR domain of PRDM2, a lysine methyltransferase with putative tumor suppressor activity. We calculated the Kd values for COMT, SAHH, and PRDM2 (24.1 ± 2.2 μM, 6.0 ± 2.9 μM, and 10.06 ± 2.87 μM, respectively) and found them to be close to previously established Kd values of other SAM binding proteins. Here, we present new methods to discover and characterize SAM and SAH binding proteins using fluorescent CCs.
Collapse
Affiliation(s)
- Lindsey J Brown
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Yun Wang
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Thomas Lenz
- Caprotec Bioanalytics, 12489 Berlin, Germany
| | - Sean D Taverna
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Philip A Cole
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
49
|
Khurana S, Kruhlak MJ, Kim J, Tran AD, Liu J, Nyswaner K, Shi L, Jailwala P, Sung MH, Hakim O, Oberdoerffer P. A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell Rep 2014; 8:1049-62. [PMID: 25131201 PMCID: PMC4154351 DOI: 10.1016/j.celrep.2014.07.024] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 04/28/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023] Open
Abstract
Appropriate DNA double-strand break (DSB) repair factor choice is essential for ensuring accurate repair outcome and genomic integrity. The factors that regulate this process remain poorly understood. Here, we identify two repressive chromatin components, the macrohistone variant macroH2A1 and the H3K9 methyltransferase and tumor suppressor PRDM2, which together direct the choice between the antagonistic DSB repair mediators BRCA1 and 53BP1. The macroH2A1/PRDM2 module mediates an unexpected shift from accessible to condensed chromatin that requires the ataxia telangiectasia mutated (ATM)-dependent accumulation of both proteins at DSBs in order to promote DSB-flanking H3K9 dimethylation. Remarkably, loss of macroH2A1 or PRDM2, as well as experimentally induced chromatin decondensation, impairs the retention of BRCA1, but not 53BP1, at DSBs. As a result, mac-roH2A1 and/or PRDM2 depletion causes epistatic defects in DSB end resection, homology-directed repair, and the resistance to poly(ADP-ribose) polymerase (PARP) inhibition—all hallmarks of BRCA1-deficient tumors. Together, these findings identify dynamic, DSB-associated chromatin reorganization as a critical modulator of BRCA1-dependent genome maintenance.
Collapse
Affiliation(s)
- Simran Khurana
- Laboratory of Receptor Biology and Gene Expression, NCI/NIH, Bethesda, MD 20892, USA
| | | | - Jeongkyu Kim
- Laboratory of Receptor Biology and Gene Expression, NCI/NIH, Bethesda, MD 20892, USA
| | - Andy D Tran
- Laboratory of Receptor Biology and Gene Expression, NCI/NIH, Bethesda, MD 20892, USA
| | - Jinping Liu
- Laboratory of Receptor Biology and Gene Expression, NCI/NIH, Bethesda, MD 20892, USA
| | | | - Lei Shi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Parthav Jailwala
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, NCI/NIH, Bethesda, MD 20892, USA
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Philipp Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, NCI/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Dong SW, Zhang H, Wang BL, Sun P, Wang YG, Zhang P. Effect of the downregulation of SMYD3 expression by RNAi on RIZ1 expression and proliferation of esophageal squamous cell carcinoma. Oncol Rep 2014; 32:1064-70. [PMID: 24993551 DOI: 10.3892/or.2014.3307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the expression and role of SET and MYND domain-containing protein 3 (SMYD3) in esophageal squamous cell carcinoma; to observe the proliferation of esophageal squamous cell carcinoma after suppression of SMYD3 expression; and to explore the effect of SMYD3 downregulation on the expression of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1). Tissues from 11 patients, including cancer and normal esophageal tissues, were obtained by surgery to observe the SMYD3 protein expression immunohistochemistry. Esophageal squamous cell carcinoma TE13 cells were transfected with four different SMYD3-shRNA plasmids, and SMYD3 mRNA expression levels were assessed to select the most efficient interfering plasmid. After SMYD3 downregulation in TE13 cells, mRNA and protein expression levels of SMYD3 and RIZ1 were determined using RT-PCR and western blotting, and cell proliferation was evaluated by the MTT method. In all 11 tissue paired samples, SMYD3 protein expression was higher in the cancer tissues (72.7%; 8/11), than that in the normal tissues (18.2%; 2/11) (Fisher's exact test, P=0.03). The mRNA expression levels of SMYD3 were significantly decreased by RNA interference (P<0.05), and plasmid SMYD3-shRNA-1242 was determined to be the most effective. Compared with the controls, transfection with the SMYD3-shRNA interfering plasmid significantly reduced the SMYD3 mRNA and protein expression levels in TE13 cells (P<0.05), whereas the expression levels of the anti-oncogene RIZ1 were increased (P<0.05). The MTT assay showed that ablation of SMYD3 expression significantly inhibited proliferation of TE13 cells (P<0.05). SMYD3 may participate in the biological activity of esophageal squamous cell carcinoma, as overexpression of SMYD3 correlates with its occurrence and its downregulation inhibits cancer cell proliferation. The shRNA efficiently downregulated SMYD3 in TE13 cells, which represents an SMYD3-interfered cell-test-model for future experiments. RNAi suppression of SMYD3 promoted the expression of RIZ1 in TE13 cells, suggesting a signal transduction pathway between SMYD3 and RIZ1. The SMYD3-RIZ1 pathway may represent a therapeutic target for esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Shang-Wen Dong
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, Heping 300052, P.R. China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, Heping 300052, P.R. China
| | - Bao-Li Wang
- Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, Heping 300070, P.R. China
| | - Pei Sun
- Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, Heping 300070, P.R. China
| | - Yuan-Guo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, Heping 300052, P.R. China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, Heping 300052, P.R. China
| |
Collapse
|