1
|
Singh P, Zhu L, Shipley MA, Ye ZA, Neumann DM. The HSV-1 encoded CCCTC-binding factor, CTRL2, impacts the nature of viral chromatin during HSV-1 lytic infection. PLoS Pathog 2024; 20:e1012621. [PMID: 39374265 PMCID: PMC11486355 DOI: 10.1371/journal.ppat.1012621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/17/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
HSV-1 genomes are rapidly heterochromatinized following entry by host cells to limit viral gene expression. Efficient HSV-1 genome replication requires mechanisms that de-repress chromatin associated with the viral genome. CCCTC-binding factors, or CTCF insulators play both silencing and activating roles in cellular transcriptional regulation. Importantly, the HSV-1 genome encodes several CTCF insulators that flank IE genes, implying that individual HSV-1 encoded CTCF insulators regulate IE transcription during all stages of the HSV-1 life cycle. We previously reported that the HSV-1 encoded CTCF insulator located downstream of the LAT (CTRL2) controlled IE gene silencing during latency. To further characterize the role of this insulator during the lytic infection we leveraged a ΔCTRL2 recombinant virus to show that there was a genome replication defect that stemmed from decreased IE gene expression in fibroblasts and epithelial cells at early times following initiation of infection. Further experiments indicated that the defect in gene expression resulted from chromatin inaccessibility in the absence of the insulator. To elucidate how chromatin accessibility was altered in the absence of the CTRL2 insulator, we showed that enrichment of Alpha-thalassemia/mental retardation, X-linked chromatin remodeler (ATRX), and the histone variant H3.3, both of which are known for their roles in maintaining repressive histone markers on the HSV-1 viral genome were increased on IE regions of HSV-1. Finally, both H3K27me3 and H3K9me3 repressive histone marks remained enriched by 4 hours post infection in the absence of the CTRL2 insulator, confirming that the CTRL2 insulator is required for de-repression of IE genes of viral genomes. To our knowledge these are the first data that show that a specific CTCF insulator in the HSV-1 genome (CTRL2) regulates chromatin accessibility during the lytic infection.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Liqian Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- College of Life sciences, Hebei University, Baoding, China
| | - Mason A. Shipley
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Ziyun A. Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Donna M. Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Jores T, Mueth NA, Tonnies J, Char SN, Liu B, Grillo-Alvarado V, Abbitt S, Anand A, Deschamps S, Diehn S, Gordon-Kamm B, Jiao S, Munkvold K, Snowgren H, Sardesai N, Fields S, Yang B, Cuperus JT, Queitsch C. Small DNA elements that act as both insulators and silencers in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612883. [PMID: 39345455 PMCID: PMC11429706 DOI: 10.1101/2024.09.13.612883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Insulators are cis-regulatory elements that separate transcriptional units, whereas silencers are elements that repress transcription regardless of their position. In plants, these elements remain largely uncharacterized. Here, we use the massively parallel reporter assay Plant STARR-seq with short fragments of eight large insulators to identify more than 100 fragments that block enhancer activity. The short fragments can be combined to generate more powerful insulators that abolish the capacity of the strong viral 35S enhancer to activate the 35S minimal promoter. Unexpectedly, when tested upstream of weak enhancers, these fragments act as silencers and repress transcription. Thus, these elements are capable of both insulating or repressing transcription dependent upon regulatory context. We validate our findings in stable transgenic Arabidopsis, maize, and rice plants. The short elements identified here should be useful building blocks for plant biotechnology efforts.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- CEPLAS – Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Nicholas A. Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Graduate Program in Biology, University of Washington, Seattle, WA, USA
| | - Si Nian Char
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Bo Liu
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Valentina Grillo-Alvarado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular & Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | | | - Ajith Anand
- Corteva Agriscience, Johnston, IA, USA
- Present address: MyFloraDNA, Sacramento, CA, USA
| | | | | | | | | | - Kathy Munkvold
- Corteva Agriscience, Johnston, IA, USA
- Present address: Foundation for Food & Agriculture Research, Washington, DC, USA
| | | | | | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Ortabozkoyun H, Huang PY, Gonzalez-Buendia E, Cho H, Kim SY, Tsirigos A, Mazzoni EO, Reinberg D. Members of an array of zinc-finger proteins specify distinct Hox chromatin boundaries. Mol Cell 2024; 84:3406-3422.e6. [PMID: 39173638 DOI: 10.1016/j.molcel.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type-specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CCCTC-binding factor (CTCF), is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and Myc-associated zinc-finger protein (MAZ), and identified a family of zinc-finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.
Collapse
Affiliation(s)
- Havva Ortabozkoyun
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Pin-Yao Huang
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA
| | - Edgar Gonzalez-Buendia
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA
| | - Hyein Cho
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Department of Medicine, Division of Precision Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Esteban O Mazzoni
- Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
4
|
Ealo T, Sanchez-Gaya V, Respuela P, Muñoz-San Martín M, Martin-Batista E, Haro E, Rada-Iglesias A. Cooperative insulation of regulatory domains by CTCF-dependent physical insulation and promoter competition. Nat Commun 2024; 15:7258. [PMID: 39179577 PMCID: PMC11344162 DOI: 10.1038/s41467-024-51602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024] Open
Abstract
The specificity of gene expression during development requires the insulation of regulatory domains to avoid inappropriate enhancer-gene interactions. In vertebrates, this insulator function is mostly attributed to clusters of CTCF sites located at topologically associating domain (TAD) boundaries. However, TAD boundaries allow some physical crosstalk across regulatory domains, which is at odds with the specific and precise expression of developmental genes. Here we show that developmental genes and nearby clusters of CTCF sites cooperatively foster the robust insulation of regulatory domains. By genetically dissecting a couple of representative loci in mouse embryonic stem cells, we show that CTCF sites prevent undesirable enhancer-gene contacts (i.e. physical insulation), while developmental genes preferentially contribute to regulatory insulation through non-structural mechanisms involving promoter competition rather than enhancer blocking. Overall, our work provides important insights into the insulation of regulatory domains, which in turn might help interpreting the pathological consequences of certain structural variants.
Collapse
Affiliation(s)
- Thais Ealo
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
| | - Victor Sanchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| | - Patricia Respuela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
| | - María Muñoz-San Martín
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
- Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | | | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
5
|
Ortabozkoyun H, Huang PY, Gonzalez-Buendia E, Cho H, Kim SY, Tsirigos A, Mazzoni EO, Reinberg D. Members of an array of zinc finger proteins specify distinct Hox chromatin boundaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.25.538167. [PMID: 37162865 PMCID: PMC10168243 DOI: 10.1101/2023.04.25.538167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CTCF, is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and MAZ, and identified a family of zinc finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.
Collapse
|
6
|
Xiang G, He X, Giardine BM, Isaac KJ, Taylor DJ, McCoy RC, Jansen C, Keller CA, Wixom AQ, Cockburn A, Miller A, Qi Q, He Y, Li Y, Lichtenberg J, Heuston EF, Anderson SM, Luan J, Vermunt MW, Yue F, Sauria MEG, Schatz MC, Taylor J, Gottgens B, Hughes JR, Higgs DR, Weiss MJ, Cheng Y, Blobel GA, Bodine DM, Zhang Y, Li Q, Mahony S, Hardison RC. Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535219. [PMID: 37066352 PMCID: PMC10103973 DOI: 10.1101/2023.04.02.535219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Collapse
|
7
|
Garcia IS, Silva-Vignato B, Cesar ASM, Petrini J, da Silva VH, Morosini NS, Goes CP, Afonso J, da Silva TR, Lima BD, Clemente LG, Regitano LCDA, Mourão GB, Coutinho LL. Novel putative causal mutations associated with fat traits in Nellore cattle uncovered by eQTLs located in open chromatin regions. Sci Rep 2024; 14:10094. [PMID: 38698200 PMCID: PMC11066111 DOI: 10.1038/s41598-024-60703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.
Collapse
Affiliation(s)
- Ingrid Soares Garcia
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Bárbara Silva-Vignato
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Aline Silva Mello Cesar
- Department of Agroindustry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Juliana Petrini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Vinicius Henrique da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Natália Silva Morosini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Carolina Purcell Goes
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Thaís Ribeiro da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Beatriz Delcarme Lima
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Gerson Barreto Mourão
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
8
|
Zhimulev I, Vatolina T, Levitsky V, Tsukanov A. Developmental and Housekeeping Genes: Two Types of Genetic Organization in the Drosophila Genome. Int J Mol Sci 2024; 25:4068. [PMID: 38612878 PMCID: PMC11012173 DOI: 10.3390/ijms25074068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
We developed a procedure for locating genes on Drosophila melanogaster polytene chromosomes and described three types of chromosome structures (gray bands, black bands, and interbands), which differed markedly in morphological and genetic properties. This was reached through the use of our original methods of molecular and genetic analysis, electron microscopy, and bioinformatics data processing. Analysis of the genome-wide distribution of these properties led us to a bioinformatics model of the Drosophila genome organization, in which the genome was divided into two groups of genes. One was constituted by 65, in which the genome was divided into two groups, 62 genes that are expressed in most cell types during life cycle and perform basic cellular functions (the so-called "housekeeping genes"). The other one was made up of 3162 genes that are expressed only at particular stages of development ("developmental genes"). These two groups of genes are so different that we may state that the genome has two types of genetic organization. Different are the timings of their expression, chromatin packaging levels, the composition of activating and deactivating proteins, the sizes of these genes, the lengths of their introns, the organization of the promoter regions of the genes, the locations of origin recognition complexes (ORCs), and DNA replication timings.
Collapse
Affiliation(s)
- Igor Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Tatyana Vatolina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Victor Levitsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (V.L.); (A.T.)
| | - Anton Tsukanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (V.L.); (A.T.)
| |
Collapse
|
9
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
12
|
Zhang M, Ehmann ME, Matukumalli S, Boob AG, Gilbert DM, Zhao H. SHIELD: a platform for high-throughput screening of barrier-type DNA elements in human cells. Nat Commun 2023; 14:5616. [PMID: 37699958 PMCID: PMC10497619 DOI: 10.1038/s41467-023-41468-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Chromatin boundary elements contribute to the partitioning of mammalian genomes into topological domains to regulate gene expression. Certain boundary elements are adopted as DNA insulators for safe and stable transgene expression in mammalian cells. These elements, however, are ill-defined and less characterized in the non-coding genome, partially due to the lack of a platform to readily evaluate boundary-associated activities of putative DNA sequences. Here we report SHIELD (Site-specific Heterochromatin Insertion of Elements at Lamina-associated Domains), a platform tailored for the high-throughput screening of barrier-type DNA elements in human cells. SHIELD takes advantage of the high specificity of serine integrase at heterochromatin, and exploits the natural heterochromatin spreading inside lamina-associated domains (LADs) for the discovery of potent barrier elements. We adopt SHIELD to evaluate the barrier activity of 1000 DNA elements in a high-throughput manner and identify 8 candidates with barrier activities comparable to the core region of cHS4 element in human HCT116 cells. We anticipate SHIELD could facilitate the discovery of novel barrier DNA elements from the non-coding genome in human cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mary Elisabeth Ehmann
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Srija Matukumalli
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Pop RT, Pisante A, Nagy D, Martin PCN, Mikheeva L, Hayat A, Ficz G, Zabet NR. Identification of mammalian transcription factors that bind to inaccessible chromatin. Nucleic Acids Res 2023; 51:8480-8495. [PMID: 37486787 PMCID: PMC10484684 DOI: 10.1093/nar/gkad614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Transcription factors (TFs) are proteins that affect gene expression by binding to regulatory regions of DNA in a sequence specific manner. The binding of TFs to DNA is controlled by many factors, including the DNA sequence, concentration of TF, chromatin accessibility and co-factors. Here, we systematically investigated the binding mechanism of hundreds of TFs by analysing ChIP-seq data with our explainable statistical model, ChIPanalyser. This tool uses as inputs the DNA sequence binding motif; the capacity to distinguish between strong and weak binding sites; the concentration of TF; and chromatin accessibility. We found that approximately one third of TFs are predicted to bind the genome in a DNA accessibility independent fashion, which includes TFs that can open the chromatin, their co-factors and TFs with similar motifs. Our model predicted this to be the case when the TF binds to its strongest binding regions in the genome, and only a small number of TFs have the capacity to bind dense chromatin at their weakest binding regions, such as CTCF, USF2 and CEBPB. Our study demonstrated that the binding of hundreds of human and mouse TFs is predicted by ChIPanalyser with high accuracy and showed that many TFs can bind dense chromatin.
Collapse
Affiliation(s)
- Romana T Pop
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Alessandra Pisante
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Dorka Nagy
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | | | - Ateequllah Hayat
- Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, Tooting SW17 0RE, London
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
14
|
Zhang X, Zhu W, Sun H, Ding Y, Liu L. Prediction of CTCF loop anchor based on machine learning. Front Genet 2023; 14:1181956. [PMID: 37077544 PMCID: PMC10106609 DOI: 10.3389/fgene.2023.1181956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Various activities in biological cells are affected by three-dimensional genome structure. The insulators play an important role in the organization of higher-order structure. CTCF is a representative of mammalian insulators, which can produce barriers to prevent the continuous extrusion of chromatin loop. As a multifunctional protein, CTCF has tens of thousands of binding sites in the genome, but only a portion of them can be used as anchors of chromatin loops. It is still unclear how cells select the anchor in the process of chromatin looping.Methods: In this paper, a comparative analysis is performed to investigate the sequence preference and binding strength of anchor and non-anchor CTCF binding sites. Furthermore, a machine learning model based on the CTCF binding intensity and DNA sequence is proposed to predict which CTCF sites can form chromatin loop anchors.Results: The accuracy of the machine learning model that we constructed for predicting the anchor of the chromatin loop mediated by CTCF reached 0.8646. And we find that the formation of loop anchor is mainly influenced by the CTCF binding strength and binding pattern (which can be interpreted as the binding of different zinc fingers).Discussion: In conclusion, our results suggest that The CTCF core motif and it’s flanking sequence may be responsible for the binding specificity. This work contributes to understanding the mechanism of loop anchor selection and provides a reference for the prediction of CTCF-mediated chromatin loops.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- *Correspondence: Wen Zhu,
| | - Huimin Sun
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Yijie Ding
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
15
|
Gödecke N, Herrmann S, Weichelt V, Wirth D. A Ubiquitous Chromatin Opening Element and DNA Demethylation Facilitate Doxycycline-Controlled Expression during Differentiation and in Transgenic Mice. ACS Synth Biol 2023; 12:482-491. [PMID: 36755406 PMCID: PMC9942253 DOI: 10.1021/acssynbio.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthetic expression cassettes provide the ability to control transgene expression in experimental animal models through external triggers, enabling the study of gene function and the modulation of endogenous regulatory networks in vivo. The performance of synthetic expression cassettes in transgenic animals critically depends on the regulatory properties of the respective chromosomal integration sites, which are affected by the remodeling of the chromatin structure during development. The epigenetic status may affect the transcriptional activity of the synthetic cassettes and even lead to transcriptional silencing, depending on the chromosomal sites and the tissue. In this study, we investigated the influence of the ubiquitous chromosome opening element (UCOE) HNRPA2B1-CBX3 and its subfragments A2UCOE and CBX3 on doxycycline-controlled expression modules within the chromosomal Rosa26 locus. While HNRPA2B1-CBX3 and A2UCOE reduced the expression of the synthetic cassettes in mouse embryonic stem cells, CBX3 stabilized the expression and facilitated doxycycline-controlled expression after in vitro differentiation. In transgenic mice, the CBX3 element protected the cassettes from overt silencing although the expression was moderate and only partially controlled by doxycycline. We demonstrate that CBX3-flanked synthetic cassettes can be activated by decitabine-mediated blockade of DNA methylation or by specific recruitment of the catalytic demethylation domain of the ten-eleven translocation protein TET1 to the synthetic promoter. This suggests that CBX3 renders the synthetic cassettes permissive for subsequent epigenetic activation, thereby supporting doxycycline-controlled expression. Together, this study reveals a strategy for overcoming epigenetic constraints of synthetic expression cassettes, facilitating externally controlled transgene expression in mice.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Herrmann
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Viola Weichelt
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany,Institute
of Experimental Hematology, Medical University
Hannover (MHH), 30625 Hannover, Germany,
| |
Collapse
|
16
|
Lee SH, Kim KD, Cho M, Huh S, An SH, Seo D, Kang K, Lee M, Tanizawa H, Jung I, Cho H, Kang H. Characterization of a new CCCTC-binding factor binding site as a dual regulator of Epstein-Barr virus latent infection. PLoS Pathog 2023; 19:e1011078. [PMID: 36696451 PMCID: PMC9876287 DOI: 10.1371/journal.ppat.1011078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Distinct viral gene expression characterizes Epstein-Barr virus (EBV) infection in EBV-producing marmoset B-cell (B95-8) and EBV-associated gastric carcinoma (SNU719) cell lines. CCCTC-binding factor (CTCF) is a structural chromatin factor that coordinates chromatin interactions in the EBV genome. Chromatin immunoprecipitation followed by sequencing against CTCF revealed 16 CTCF binding sites in the B95-8 and SNU719 EBV genomes. The biological function of one CTCF binding site (S13 locus) located on the BamHI A right transcript (BART) miRNA promoter was elucidated experimentally. Microscale thermophoresis assay showed that CTCF binds more readily to the stable form than the mutant form of the S13 locus. EBV BART miRNA clusters encode 22 miRNAs, whose roles are implicated in EBV-related cancer pathogenesis. The B95-8 EBV genome lacks a 11.8-kb EcoRI C fragment, whereas the SNU719 EBV genome is full-length. ChIP-PCR assay revealed that CTCF, RNA polymerase II, H3K4me3 histone, and H3K9me3 histone were more enriched at S13 and S16 (167-kb) loci in B95-8 than in the SNU719 EBV genome. 4C-Seq and 3C-PCR assays using B95-8 and SNU719 cells showed that the S13 locus was associated with overall EBV genomic loci including 3-kb and 167-kb region in both EBV genomes. We generated mutations in the S13 locus in bacmids with or without the 11.8-kb BART transcript unit (BART(+/-)). The S13 mutation upregulated BART miRNA expression, weakened EBV latency, and reduced EBV infectivity in the presence of EcoRI C fragment. Another 3C-PCR assay using four types of BART(+/-)·S13(wild-type(Wt)/mutant(Mt)) HEK293-EBV cells revealed that the S13 mutation decreased DNA associations between the 167-kb region and 3-kb in the EBV genome. Based on these results, CTCF bound to the S13 locus along with the 11.8-kb EcoRI C fragment is suggested to form an EBV 3-dimensional DNA loop for coordinated EBV BART miRNA expression and infectivity.
Collapse
Affiliation(s)
- Sun Hee Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Miyeon Cho
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Sora Huh
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Seong Ho An
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Donghyun Seo
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Kyuhyun Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Minhee Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu, Korea
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- * E-mail: (HC); (HK)
| | - Hyojeung Kang
- College of Pharmacy, Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, Kyungpook National University, Daegu, Korea
- * E-mail: (HC); (HK)
| |
Collapse
|
17
|
Takeuchi C, Yokoshi M, Kondo S, Shibuya A, Saito K, Fukaya T, Siomi H, Iwasaki Y. Mod(mdg4) variants repress telomeric retrotransposon HeT-A by blocking subtelomeric enhancers. Nucleic Acids Res 2022; 50:11580-11599. [PMID: 36373634 PMCID: PMC9723646 DOI: 10.1093/nar/gkac1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Telomeres in Drosophila are composed of sequential non-LTR retrotransposons HeT-A, TART and TAHRE. Although they are repressed by the PIWI-piRNA pathway or heterochromatin in the germline, the regulation of these retrotransposons in somatic cells is poorly understood. In this study, we demonstrated that specific splice variants of Mod(mdg4) repress HeT-A by blocking subtelomeric enhancers in ovarian somatic cells. Among the variants, we found that the Mod(mdg4)-N variant represses HeT-A expression the most efficiently. Subtelomeric sequences bound by Mod(mdg4)-N block enhancer activity within subtelomeric TAS-R repeats. This enhancer-blocking activity is increased by the tandem association of Mod(mdg4)-N to repetitive subtelomeric sequences. In addition, the association of Mod(mdg4)-N couples with the recruitment of RNA polymerase II to the subtelomeres, which reinforces its enhancer-blocking function. Our findings provide novel insights into how telomeric retrotransposons are regulated by the specific variants of insulator proteins associated with subtelomeric sequences.
Collapse
Affiliation(s)
- Chikara Takeuchi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shu Kondo
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | - Yuka W Iwasaki
- To whom correspondence should be addressed. Tel: +81 3 5363 3529; Fax: +81 3 5363 3266;
| |
Collapse
|
18
|
Stow EC, Simmons JR, An R, Schoborg TA, Davenport NM, Labrador M. A Drosophila insulator interacting protein suppresses enhancer-blocking function and modulates replication timing. Gene 2022; 819:146208. [PMID: 35092858 DOI: 10.1016/j.gene.2022.146208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023]
Abstract
Insulators play important roles in genome structure and function in eukaryotes. Interactions between a DNA binding insulator protein and its interacting partner proteins define the properties of each insulator site. The different roles of insulator protein partners in the Drosophila genome and how they confer functional specificity remain poorly understood. The Suppressor of Hairy wing [Su(Hw)] insulator is targeted to the nuclear lamina, preferentially localizes at euchromatin/heterochromatin boundaries, and is associated with the gypsy retrotransposon. Insulator activity relies on the ability of the Su(Hw) protein to bind the DNA at specific sites and interact with Mod(mdg4)67.2 and CP190 partner proteins. HP1 and insulator partner protein 1 (HIPP1) is a partner of Su(Hw), but how HIPP1 contributes to the function of Su(Hw) insulator complexes is unclear. Here, we demonstrate that HIPP1 colocalizes with the Su(Hw) insulator complex in polytene chromatin and in stress-induced insulator bodies. We find that the overexpression of either HIPP1 or Su(Hw) or mutation of the HIPP1 crotonase-like domain (CLD) causes defects in cell proliferation by limiting the progression of DNA replication. We also show that HIPP1 overexpression suppresses the Su(Hw) insulator enhancer-blocking function, while mutation of the HIPP1 CLD does not affect Su(Hw) enhancer blocking. These findings demonstrate a functional relationship between HIPP1 and the Su(Hw) insulator complex and suggest that the CLD, while not involved in enhancer blocking, influences cell cycle progression.
Collapse
Affiliation(s)
- Emily C Stow
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ran An
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Todd A Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Nastasya M Davenport
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
19
|
Ribeiro-Dos-Santos AM, Hogan MS, Luther RD, Brosh R, Maurano MT. Genomic context sensitivity of insulator function. Genome Res 2022; 32:425-436. [PMID: 35082140 PMCID: PMC8896466 DOI: 10.1101/gr.276449.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
The specificity of interactions between genomic regulatory elements and potential target genes is influenced by the binding of insulator proteins such as CTCF, which can act as potent enhancer blockers when interposed between an enhancer and a promoter in a reporter assay. But not all CTCF sites genome-wide function as insulator elements, depending on cellular and genomic context. To dissect the influence of genomic context on enhancer blocker activity, we integrated reporter constructs with promoter-only, promoter and enhancer, and enhancer blocker configurations at hundreds of thousands of genomic sites using the Sleeping Beauty transposase. Deconvolution of reporter activity by genomic position reveals distinct expression patterns subject to genomic context, including a compartment of enhancer blocker reporter integrations with robust expression. The high density of integration sites permits quantitative delineation of characteristic genomic context sensitivity profiles and their decomposition into sensitivity to both local and distant DNase I hypersensitive sites. Furthermore, using a single-cell expression approach to test the effect of integrated reporters for differential expression of nearby endogenous genes reveals that CTCF insulator elements do not completely abrogate reporter effects on endogenous gene expression. Collectively, our results lend new insight into genomic regulatory compartmentalization and its influence on the determinants of promoter–enhancer specificity.
Collapse
Affiliation(s)
| | - Megan S Hogan
- Institute for Systems Genetics, NYU Grossman School of Medicine
| | - Raven D Luther
- Institute for Systems Genetics, NYU Grossman School of Medicine
| | - Ran Brosh
- Institute for Systems Genetics, NYU Grossman School of Medicine
| | | |
Collapse
|
20
|
Dugar G, Hofmann A, Heermann DW, Hamoen LW. A chromosomal loop anchor mediates bacterial genome organization. Nat Genet 2022; 54:194-201. [PMID: 35075232 DOI: 10.1038/s41588-021-00988-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022]
Abstract
Nucleoprotein complexes play an integral role in genome organization of both eukaryotes and prokaryotes. Apart from their role in locally structuring and compacting DNA, several complexes are known to influence global organization by mediating long-range anchored chromosomal loop formation leading to spatial segregation of large sections of DNA. Such megabase-range interactions are ubiquitous in eukaryotes, but have not been demonstrated in prokaryotes. Here, using a genome-wide sedimentation-based approach, we found that a transcription factor, Rok, forms large nucleoprotein complexes in the bacterium Bacillus subtilis. Using chromosome conformation capture and live-imaging of DNA loci, we show that these complexes robustly interact with each other over large distances. Importantly, these Rok-dependent long-range interactions lead to anchored chromosomal loop formation, thereby spatially isolating large sections of DNA, as previously observed for insulator proteins in eukaryotes.
Collapse
Affiliation(s)
- Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Andreas Hofmann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Abstract
The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.
Collapse
|
22
|
Ibragimov AN, Bylino OV, Kyrchanova OV, Shidlovskii YV, White R, Schedl P, Georgiev PG. The Variable CTCF Site from Drosophila melanogaster Ubx Gene is Redundant and Has no Insulator Activity. DOKL BIOCHEM BIOPHYS 2022; 505:173-175. [PMID: 36038685 PMCID: PMC9613721 DOI: 10.1134/s1607672922040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
CTCF is the most thoroughly studied chromatin architectural protein and it is found in both Drosophila and mammals. CTCF preferentially binds to promoters and insulators and is thought to facilitate formation of chromatin loops. In a subset of sites, CTCF binding depends on the epigenetic status of the surrounding chromatin. One such variable CTCF site (vCTCF) was found in the intron of the Ubx gene, in close proximity to the BRE and abx enhancers. CTCF binds to the variable site in tissues where Ubx gene is active, suggesting that the vCTCF site plays a role in facilitating contacts between the Ubx promoter and its enhancers. Using CRISPR/Cas9 and attP/attB site-specific integration methods, we investigated the functional role of vCTCF and showed that it is not required for normal Drosophila development. Furthermore, a 2161-bp fragment containing vCTCF does not function as an effective insulator when substituted for the Fab-7 boundary in the Bithorax complex. Our results suggest that vCTCF function is redundant in the regulation of Ubx.
Collapse
Affiliation(s)
- A. N. Ibragimov
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - O. V. Bylino
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - O. V. Kyrchanova
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Y. V. Shidlovskii
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - R. White
- University of Cambridge, Cambridge, United Kingdom
| | - P. Schedl
- Princeton University, Princeton, USA
| | - P. G. Georgiev
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Chien YL, Chen YC, Chiu YN, Tsai WC, Gau SSF. A translational exploration of the effects of WNT2 variants on altered cortical structures in autism spectrum disorder. J Psychiatry Neurosci 2021; 46:E647-E658. [PMID: 34862305 PMCID: PMC8648347 DOI: 10.1503/jpn.210022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Evidence suggests that cortical anatomy may be aytpical in autism spectrum disorder. The wingless-type MMTV integration site family, member 2 (WNT2), a candidate gene for autism spectrum disorder, may regulate cortical development. However, it is unclear whether WNT2 variants are associated with altered cortical thickness in autism spectrum disorder. METHODS In a sample of 118 people with autism spectrum disorder and 122 typically developing controls, we investigated cortical thickness using FreeSurfer software. We then examined the main effects of the WNT2 variants and the interactions of group × SNP and age × SNP for each hemisphere and brain region that was altered in people with autism spectrum disorder. RESULTS Compared to neurotypical controls, people with autism spectrum disorder showed reduced mean cortical thickness in both hemispheres and 9 cortical regions after false discovery rate correction, including the right cingulate gyrus, the orbital gyrus, the insula, the inferior frontal gyrus (orbital part and triangular part), the lateral occipitotemporal gyrus, the posterior transverse collateral sulcus, the lateral sulcus and the superior temporal sulcus. In the full sample, 2 SNPs of WNT2 (rs6950765 and rs2896218) showed age × SNP interactions for the mean cortical thickness of both hemispheres, the middle-posterior cingulate cortex and the superior temporal cortex. LIMITATIONS We examined the genetic effect for each hemisphere and the 9 regions that were altered in autism spectrum disorder. The age effect we found in this cross-sectional study needs to be examined in longitudinal studies. CONCLUSION Based on neuroimaging and genetic data, our findings suggest that WNT2 variants might be associated with altered cortical thickness in autism spectrum disorder. Whether and how these WNT2 variants might involve cortical thinning requires further investigation. TRIAL REGISTRATION ClinicalTrials.gov no. NCT01582256. PROTOCOL REGISTRATION National Institutes of Health no. NCT00494754.
Collapse
Affiliation(s)
| | | | | | | | - Susan Shur-Fen Gau
- From the Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan (Chien, Chen, Chiu, Tsai, Gau); and the Graduate Institute of Clinical Medicine, and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (Chen, Gau)
| |
Collapse
|
24
|
Goel VY, Hansen AS. The macro and micro of chromosome conformation capture. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e395. [PMID: 32987449 PMCID: PMC8236208 DOI: 10.1002/wdev.395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
The 3D organization of the genome facilitates gene regulation, replication, and repair, making it a key feature of genomic function and one that remains to be properly understood. Over the past two decades, a variety of chromosome conformation capture (3C) methods have delineated genome folding from megabase-scale compartments and topologically associating domains (TADs) down to kilobase-scale enhancer-promoter interactions. Understanding the functional role of each layer of genome organization is a gateway to understanding cell state, development, and disease. Here, we discuss the evolution of 3C-based technologies for mapping 3D genome organization. We focus on genomics methods and provide a historical account of the development from 3C to Hi-C. We also discuss ChIP-based techniques that focus on 3D genome organization mediated by specific proteins, capture-based methods that focus on particular regions or regulatory elements, 3C-orthogonal methods that do not rely on restriction digestion and proximity ligation, and methods for mapping the DNA-RNA and RNA-RNA interactomes. We consider the biological discoveries that have come from these methods, examine the mechanistic contributions of CTCF, cohesin, and loop extrusion to genomic folding, and detail the 3D genome field's current understanding of nuclear architecture. Finally, we give special consideration to Micro-C as an emerging frontier in chromosome conformation capture and discuss recent Micro-C findings uncovering fine-scale chromatin organization in unprecedented detail. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- Viraat Y. Goel
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anders S. Hansen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
25
|
Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat Commun 2021; 12:6115. [PMID: 34675193 PMCID: PMC8531453 DOI: 10.1038/s41467-021-26347-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that the asthma-associated single nucleotide polymorphism (SNP) rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a mechanism through which a regulatory SNP contributes to genetic risk of asthma. Susceptibility to asthma and severity of symptoms are regulated by a number of different genomic regions. Here the authors characterise a 5kb regulatory region and demonstrate genetic and topological regulation of IL33 and association with disease in different human cohorts.
Collapse
|
26
|
Dehdilani N, Taemeh SY, Goshayeshi L, Dehghani H. Genetically engineered birds; pre-CRISPR and CRISPR era. Biol Reprod 2021; 106:24-46. [PMID: 34668968 DOI: 10.1093/biolre/ioab196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
Generating biopharmaceuticals in genetically engineered bioreactors continues to reign supreme. Hence, genetically engineered birds have attracted considerable attention from the biopharmaceutical industry. Fairly recent genome engineering methods have made genome manipulation an easy and affordable task. In this review, we first provide a broad overview of the approaches and main impediments ahead of generating efficient and reliable genetically engineered birds, and various factors that affect the fate of a transgene. This section provides an essential background for the rest of the review, in which we discuss and compare different genome manipulation methods in the pre-CRISPR and CRISPR era in the field of avian genome engineering.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
27
|
Teng M, Du D, Chen D, Irizarry RA. Characterizing batch effects and binding site-specific variability in ChIP-seq data. NAR Genom Bioinform 2021; 3:lqab098. [PMID: 34661103 PMCID: PMC8515842 DOI: 10.1093/nargab/lqab098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Multiple sources of variability can bias ChIP-seq data toward inferring transcription factor (TF) binding profiles. As ChIP-seq datasets increase in public repositories, it is now possible and necessary to account for complex sources of variability in ChIP-seq data analysis. We find that two types of variability, the batch effects by sequencing laboratories and differences between biological replicates, not associated with changes in condition or state, vary across genomic sites. This implies that observed differences between samples from different conditions or states, such as cell-type, must be assessed statistically, with an understanding of the distribution of obscuring noise. We present a statistical approach that characterizes both differences of interests and these source of variability through the parameters of a mixed effects model. We demonstrate the utility of our approach on a CTCF binding dataset composed of 211 samples representing 90 different cell-types measured across three different laboratories. The results revealed that sites exhibiting large variability were associated with sequence characteristics such as GC-content and low complexity. Finally, we identified TFs associated with high-variance CTCF sites using TF motifs documented in public databases, pointing the possibility of these being false positives if the sources of variability are not properly accounted for.
Collapse
Affiliation(s)
- Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Danfeng Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rafael A Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
28
|
Kennedy PGE, Mogensen TH, Cohrs RJ. Recent Issues in Varicella-Zoster Virus Latency. Viruses 2021; 13:v13102018. [PMID: 34696448 PMCID: PMC8540691 DOI: 10.3390/v13102018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
Varicella-zoster virus (VZV) is a human herpes virus which causes varicella (chicken pox) as a primary infection, and, following a variable period of latency in neurons in the peripheral ganglia, may reactivate to cause herpes zoster (shingles) as well as a variety of neurological syndromes. In this overview we consider some recent issues in alphaherpesvirus latency with special focus on VZV ganglionic latency. A key question is the nature and extent of viral gene transcription during viral latency. While it is known that this is highly restricted, it is only recently that the very high degree of that restriction has been clarified, with both VZV gene 63-encoded transcripts and discovery of a novel VZV transcript (VLT) that maps antisense to the viral transactivator gene 61. It has also emerged in recent years that there is significant epigenetic regulation of VZV gene transcription, and the mechanisms underlying this are complex and being unraveled. The last few years has also seen an increased interest in the immunological aspects of VZV latency and reactivation, in particular from the perspective of inborn errors of host immunity that predispose to different VZV reactivation syndromes.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G61 1QH, UK
- Correspondence:
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, 8000 Aarhus, Denmark;
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Randall J. Cohrs
- Department of Neurology, University of Colorado School of Medicine, 80045 Aurora, CO, USA
| |
Collapse
|
29
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
30
|
Verma S, Pathak RU, Mishra RK. Genomic organization of the autonomous regulatory domain of eyeless locus in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2021; 11:6375946. [PMID: 34570231 PMCID: PMC8664461 DOI: 10.1093/g3journal/jkab338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
In Drosophila, expression of eyeless (ey) gene is restricted to the developing eyes and central nervous system. However, the flanking genes, myoglianin (myo), and bent (bt) have different temporal and spatial expression patterns as compared to the ey. How distinct regulation of ey is maintained is mostly unknown. Earlier, we have identified a boundary element intervening myo and ey genes (ME boundary) that prevents the crosstalk between the cis-regulatory elements of myo and ey genes. In the present study, we further searched for the cis-elements that define the domain of ey and maintain its expression pattern. We identify another boundary element between ey and bt, the EB boundary. The EB boundary separates the regulatory landscapes of ey and bt genes. The two boundaries, ME and EB, show a long-range interaction as well as interact with the nuclear architecture. This suggests functional autonomy of the ey locus and its insulation from differentially regulated flanking regions. We also identify a new Polycomb Response Element, the ey-PRE, within the ey domain. The expression state of the ey gene, once established during early development is likely to be maintained with the help of ey-PRE. Our study proposes a general regulatory mechanism by which a gene can be maintained in a functionally independent chromatin domain in gene-rich euchromatin.
Collapse
Affiliation(s)
- Shreekant Verma
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rashmi U Pathak
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
31
|
The HPSE Gene Insulator-A Novel Regulatory Element That Affects Heparanase Expression, Stem Cell Mobilization, and the Risk of Acute Graft versus Host Disease. Cells 2021; 10:cells10102523. [PMID: 34685503 PMCID: PMC8534152 DOI: 10.3390/cells10102523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/30/2023] Open
Abstract
The HPSE gene encodes heparanase (HPSE), a key player in cancer, inflammation, and autoimmunity. We have previously identified a strong HPSE gene enhancer involved in self-regulation of heparanase by negative feedback exerted in a functional rs4693608 single-nucleotide polymorphism (SNP) dependent manner. In the present study, we analyzed the HPSE gene insulator region, located in intron 9 and containing rs4426765, rs28649799, and rs4364254 SNPs. Our results indicate that this region exhibits HPSE regulatory activity. SNP substitutions lead to modulation of a unique DNA-protein complex that affects insulator activity. Analysis of interactions between enhancer and insulator SNPs revealed that rs4693608 has a major effect on HPSE expression and the risk of post-transplantation acute graft versus host disease (GVHD). The C alleles of insulator SNPs rs4364254 and rs4426765 modify the activity of the HPSE enhancer, resulting in altered HPSE expression and increased risk of acute GVHD. Moreover, rs4426765 correlated with HPSE expression in activated mononuclear cells, as well as with CD3 levels and lymphocyte counts following G-CSF mobilization. rs4363084 and rs28649799 were found to be associated with CD34+ levels. Our study provides new insight into the mechanism of HPSE gene regulation and its impact on normal and pathological processes in the hematopoietic system.
Collapse
|
32
|
Huang H, Zhu Q, Jussila A, Han Y, Bintu B, Kern C, Conte M, Zhang Y, Bianco S, Chiariello AM, Yu M, Hu R, Tastemel M, Juric I, Hu M, Nicodemi M, Zhuang X, Ren B. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Nat Genet 2021; 53:1064-1074. [PMID: 34002095 PMCID: PMC8853952 DOI: 10.1038/s41588-021-00863-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Insulators play a critical role in spatiotemporal gene regulation in animals. The evolutionarily conserved CCCTC-binding factor (CTCF) is required for insulator function in mammals, but not all of its binding sites act as insulators. Here we explore the sequence requirements of CTCF-mediated transcriptional insulation using a sensitive insulator reporter in mouse embryonic stem cells. We find that insulation potency depends on the number of CTCF-binding sites in tandem. Furthermore, CTCF-mediated insulation is dependent on upstream flanking sequences at its binding sites. CTCF-binding sites at topologically associating domain boundaries are more likely to function as insulators than those outside topologically associating domain boundaries, independently of binding strength. We demonstrate that insulators form local chromatin domain boundaries and weaken enhancer-promoter contacts. Taken together, our results provide genetic, molecular and structural evidence connecting chromatin topology to the action of insulators in the mammalian genome.
Collapse
Affiliation(s)
- Hui Huang
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, University of California, San Diego, Biomedical Sciences Graduate Program, La Jolla, California 92093, USA
| | - Quan Zhu
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Adam Jussila
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuanyuan Han
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Colin Kern
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Miao Yu
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Melodi Tastemel
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy, Berlin Institute for Medical Systems Biology, Max Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany., Berlin Institute of Health (BIH), Berlin, Germany
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA, University of California, San Diego School of Medicine, Institute of Genomic Medicine, and Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA,Correspondence:
| |
Collapse
|
33
|
Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021; 12:561-592. [PMID: 34139166 PMCID: PMC8261833 DOI: 10.1016/j.cels.2021.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Domitilla Del Vecchio
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Patel YD, Brown AJ, Zhu J, Rosignoli G, Gibson SJ, Hatton D, James DC. Control of Multigene Expression Stoichiometry in Mammalian Cells Using Synthetic Promoters. ACS Synth Biol 2021; 10:1155-1165. [PMID: 33939428 PMCID: PMC8296667 DOI: 10.1021/acssynbio.0c00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/22/2023]
Abstract
To successfully engineer mammalian cells for a desired purpose, multiple recombinant genes are required to be coexpressed at a specific and optimal ratio. In this study, we hypothesized that synthetic promoters varying in transcriptional activity could be used to create single multigene expression vectors coexpressing recombinant genes at a predictable relative stoichiometry. A library of 27 multigene constructs was created comprising three discrete fluorescent reporter gene transcriptional units in fixed series, each under the control of either a relatively low, medium, or high transcriptional strength synthetic promoter in every possible combination. Expression of each reporter gene was determined by absolute quantitation qRT-PCR in CHO cells. The synthetic promoters did generally function as designed within a multigene vector context; however, significant divergences from predicted promoter-mediated transcriptional activity were observed. First, expression of all three genes within a multigene vector was repressed at varying levels relative to coexpression of identical reporter genes on separate single gene vectors at equivalent gene copies. Second, gene positional effects were evident across all constructs where expression of the reporter genes in positions 2 and 3 was generally reduced relative to position 1. Finally, after accounting for general repression, synthetic promoter transcriptional activity within a local multigene vector format deviated from that expected. Taken together, our data reveal that mammalian synthetic promoters can be employed in vectors to mediate expression of multiple genes at predictable relative stoichiometries. However, empirical validation of functional performance is a necessary prerequisite, as vector and promoter design features can significantly impact performance.
Collapse
Affiliation(s)
- Yash D. Patel
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Adam J. Brown
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Jie Zhu
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Guglielmo Rosignoli
- Dynamic
Omics, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Suzanne J. Gibson
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Diane Hatton
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - David C. James
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| |
Collapse
|
35
|
Parisi C, Vashisht S, Winata CL. Fish-Ing for Enhancers in the Heart. Int J Mol Sci 2021; 22:3914. [PMID: 33920121 PMCID: PMC8069060 DOI: 10.3390/ijms22083914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precise control of gene expression is crucial to ensure proper development and biological functioning of an organism. Enhancers are non-coding DNA elements which play an essential role in regulating gene expression. They contain specific sequence motifs serving as binding sites for transcription factors which interact with the basal transcription machinery at their target genes. Heart development is regulated by intricate gene regulatory network ensuring precise spatiotemporal gene expression program. Mutations affecting enhancers have been shown to result in devastating forms of congenital heart defect. Therefore, identifying enhancers implicated in heart biology and understanding their mechanism is key to improve diagnosis and therapeutic options. Despite their crucial role, enhancers are poorly studied, mainly due to a lack of reliable way to identify them and determine their function. Nevertheless, recent technological advances have allowed rapid progress in enhancer discovery. Model organisms such as the zebrafish have contributed significant insights into the genetics of heart development through enabling functional analyses of genes and their regulatory elements in vivo. Here, we summarize the current state of knowledge on heart enhancers gained through studies in model organisms, discuss various approaches to discover and study their function, and finally suggest methods that could further advance research in this field.
Collapse
Affiliation(s)
- Costantino Parisi
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Shikha Vashisht
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
| | - Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland; (C.P.); (S.V.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
36
|
Lee BH, Rhie SK. Molecular and computational approaches to map regulatory elements in 3D chromatin structure. Epigenetics Chromatin 2021; 14:14. [PMID: 33741028 PMCID: PMC7980343 DOI: 10.1186/s13072-021-00390-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetic marks do not change the sequence of DNA but affect gene expression in a cell-type specific manner by altering the activities of regulatory elements. Development of new molecular biology assays, sequencing technologies, and computational approaches enables us to profile the human epigenome in three-dimensional structure genome-wide. Here we describe various molecular biology techniques and bioinformatic tools that have been developed to measure the activities of regulatory elements and their chromatin interactions. Moreover, we list currently available three-dimensional epigenomic data sets that are generated in various human cell types and tissues to assist in the design and analysis of research projects.
Collapse
Affiliation(s)
- Beoung Hun Lee
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Suhn K Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
37
|
Treen N, Shimobayashi SF, Eeftens J, Brangwynne CP, Levine M. Properties of repression condensates in living Ciona embryos. Nat Commun 2021; 12:1561. [PMID: 33692345 PMCID: PMC7946874 DOI: 10.1038/s41467-021-21606-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Recent studies suggest that transcriptional activators and components of the pre-initiation complex (PIC) form higher order associations-clusters or condensates-at active loci. Considerably less is known about the distribution of repressor proteins responsible for gene silencing. Here, we develop an expression assay in living Ciona embryos that captures the liquid behavior of individual nucleoli undergoing dynamic fusion events. The assay is used to visualize puncta of Hes repressors, along with the Groucho/TLE corepressor. We observe that Hes.a/Gro puncta have the properties of viscous liquid droplets that undergo limited fusion events due to association with DNA. Hes.a mutants that are unable to bind DNA display hallmarks of liquid-liquid phase separation, including dynamic fusions of individual condensates to produce large droplets. We propose that the DNA template serves as a scaffold for the formation of Hes condensates, but limits the spread of transcriptional repressors to unwanted regions of the genome.
Collapse
Affiliation(s)
- Nicholas Treen
- grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Shunsuke F. Shimobayashi
- grid.16750.350000 0001 2097 5006Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| | - Jorine Eeftens
- grid.16750.350000 0001 2097 5006Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| | - Clifford P. Brangwynne
- grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Michael Levine
- grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ USA
| |
Collapse
|
38
|
Clauvelin N, Olson WK. Synergy between Protein Positioning and DNA Elasticity: Energy Minimization of Protein-Decorated DNA Minicircles. J Phys Chem B 2021; 125:2277-2287. [DOI: 10.1021/acs.jpcb.0c11612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Clauvelin
- Center for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Wilma K. Olson
- Center for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
39
|
Palazzo A, Marsano RM. Transposable elements: a jump toward the future of expression vectors. Crit Rev Biotechnol 2021; 41:792-808. [PMID: 33622117 DOI: 10.1080/07388551.2021.1888067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expression vectors (EVs) are artificial nucleic acid molecules with a modular structure that allows for the transcription of DNA sequences of interest in either cellular or cell-free environments. These vectors have emerged as cross-disciplinary tools with multiple applications in an expanding Life Sciences market. The cis-regulatory sequences (CRSs) that control the transcription in EVs are typically sourced from either viruses or from characterized genes. However, the recent advancement in transposable elements (TEs) technology provides attractive alternatives that may enable a significant improvement in the design of EVs. Commonly known as "jumping genes," due to their ability to move between genetic loci, TEs are constitutive components of both eukaryotic and prokaryotic genomes. TEs harbor native CRSs that allow the regulated transcription of transposition-related genes. However, some TE-related CRSs display striking characteristics, which provides the opportunity to reconsider TEs as lead actors in the design of EVs. In this article, we provide a synopsis of the transcriptional control elements commonly found in EVs together with an extensive discussion of their advantages and limitations. We also highlight the latest findings that may allow for the implementation of TE-derived sequences in the EVs feasible, possibly improving existing vectors. By introducing this new concept of TEs as a source of regulatory sequences, we aim to stimulate a profitable discussion of the potential advantages and benefits of developing a new generation of EVs based on the use of TE-derived control sequences.
Collapse
Affiliation(s)
- Antonio Palazzo
- Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S, Bari, Italy
| | | |
Collapse
|
40
|
Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD, Twell D, Berger F. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 2021; 10:e61894. [PMID: 33491647 PMCID: PMC7920552 DOI: 10.7554/elife.61894] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilisation. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganisation of the regulatory epigenome to guide the alternation of generations in flowering plants.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | | | - Rodolphe Dombey
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - David Twell
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
- Department of Genetics, University of LeicesterLeicesterUnited Kingdom
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| |
Collapse
|
41
|
Establishment of a Cre-rat resource for creating conditional and physiological relevant models of human diseases. Transgenic Res 2021; 30:91-104. [PMID: 33481207 PMCID: PMC7854434 DOI: 10.1007/s11248-020-00226-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/28/2020] [Indexed: 10/25/2022]
Abstract
The goal of this study is to establish a Cre/loxP rat resource for conditional and physiologically predictive rat models of human diseases. The laboratory rat (R. norvegicus) is a central experimental animal in several fields of biomedical research, such as cardiovascular diseases, aging, infectious diseases, autoimmunity, cancer models, transplantation biology, inflammation, cancer risk assessment, industrial toxicology, pharmacology, behavioral and addiction studies, and neurobiology. Up till recently, the ability of creating genetically modified rats has been limited compared to that in the mouse mainly due to lack of genetic manipulation tools and technologies in the rat. Recent advances in nucleases, such as CRISPR/Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR associated protein 9), as well as TARGATT™ integrase system enables fast, efficient and site-specific introduction of exogenous genetic elements into the rat genome. Here, we report the generation of a collection of tissue-specific, inducible transgenic Cre rats as tool models using TARGATT™, CRISPR/Cas9 and random transgenic approach. More specifically, we generated Cre driver rat models that allow controlled gene expression or knockout (conditional models) both temporally and spatially through the Cre-ERT2/loxP system. A total of 10 Cre rat lines and one Cre reporter/test line were generated, including eight (8) Cre lines for neural specific and two (2) lines for cardiovascular specific Cre expression. All of these lines have been deposited with the Rat Resource and Research Center and provide a much-needed resource for the bio-medical community who employ rat models for their studies of human diseases.
Collapse
|
42
|
Gödecke N, Herrmann S, Hauser H, Mayer-Bartschmid A, Trautwein M, Wirth D. Rational Design of Single Copy Expression Cassettes in Defined Chromosomal Sites Overcomes Intraclonal Cell-to-Cell Expression Heterogeneity and Ensures Robust Antibody Production. ACS Synth Biol 2021; 10:145-157. [PMID: 33382574 DOI: 10.1021/acssynbio.0c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of endogenous genes as well as transgenes depends on regulatory elements within and surrounding genes as well as their epigenetic modifications. Members of a cloned cell population often show pronounced cell-to-cell heterogeneity with respect to the expression of a certain gene. To investigate the heterogeneity of recombinant protein expression we targeted cassettes into two preselected chromosomal hot-spots in Chinese hamster ovary (CHO) cells. Depending on the gene of interest and the design of the expression cassette, we found strong expression variability that could be reduced by epigenetic modifiers, but not by site-specific recruitment of the modulator dCas9-VPR. In particular, the implementation of ubiquitous chromatin opening elements (UCOEs) reduced cell-to-cell heterogeneity and concomitantly increased expression. The application of this method to recombinant antibody expression confirmed that rational design of cell lines for production of transgenes with predictable and high titers is a promising approach.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Sabrina Herrmann
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Hansjörg Hauser
- Staff Unit Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | | | | | - Dagmar Wirth
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
- Institute of Experimental Hematology, Medical University Hannover, Hannover 30625, Germany
| |
Collapse
|
43
|
Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP, Noguera AS, Welin B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:768609. [PMID: 34858464 PMCID: PMC8632530 DOI: 10.3389/fpls.2021.768609] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) is a tropical and sub-tropical, vegetative-propagated crop that contributes to approximately 80% of the sugar and 40% of the world's biofuel production. Modern sugarcane cultivars are highly polyploid and aneuploid hybrids with extremely large genomes (>10 Gigabases), that have originated from artificial crosses between the two species, Saccharum officinarum and S. spontaneum. The genetic complexity and low fertility of sugarcane under natural growing conditions make traditional breeding improvement extremely laborious, costly and time-consuming. This, together with its vegetative propagation, which allows for stable transfer and multiplication of transgenes, make sugarcane a good candidate for crop improvement through genetic engineering. Genetic transformation has the potential to improve economically important properties in sugarcane as well as diversify sugarcane beyond traditional applications, such as sucrose production. Traits such as herbicide, disease and insect resistance, improved tolerance to cold, salt and drought and accumulation of sugar and biomass have been some of the areas of interest as far as the application of transgenic sugarcane is concerned. Although there have been much interest in developing transgenic sugarcane there are only three officially approved varieties for commercialization, all of them expressing insect-resistance and recently released in Brazil. Since the early 1990's, different genetic transformation systems have been successfully developed in sugarcane, including electroporation, Agrobacterium tumefaciens and biobalistics. However, genetic transformation of sugarcane is a very laborious process, which relies heavily on intensive and sophisticated tissue culture and plant generation procedures that must be optimized for each new genotype to be transformed. Therefore, it remains a great technical challenge to develop an efficient transformation protocol for any sugarcane variety that has not been previously transformed. Additionally, once a transgenic event is obtained, molecular studies required for a commercial release by regulatory authorities, which include transgene insertion site, number of transgenes and gene expression levels, are all hindered by the genomic complexity and the lack of a complete sequenced reference genome for this crop. The objective of this review is to summarize current techniques and state of the art in sugarcane transformation and provide information on existing and future sugarcane improvement by genetic engineering.
Collapse
Affiliation(s)
- Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Ramón Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - María Francisca Perera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Josefina Racedo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- Centro Cientifico Tecnológico (CCT) CONICET NOA Sur, San Miguel de Tucumán, Argentina
| | - Aldo Sergio Noguera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Bjorn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- *Correspondence: Bjorn Welin,
| |
Collapse
|
44
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
45
|
Bizhanova A, Kaufman PD. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194666. [PMID: 33307247 PMCID: PMC7855492 DOI: 10.1016/j.bbagrm.2020.194666] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.
Collapse
Affiliation(s)
- Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
46
|
Mills C, Muruganujan A, Ebert D, Marconett CN, Lewinger JP, Thomas PD, Mi H. PEREGRINE: A genome-wide prediction of enhancer to gene relationships supported by experimental evidence. PLoS One 2020; 15:e0243791. [PMID: 33320871 PMCID: PMC7737992 DOI: 10.1371/journal.pone.0243791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
Enhancers are powerful and versatile agents of cell-type specific gene regulation, which are thought to play key roles in human disease. Enhancers are short DNA elements that function primarily as clusters of transcription factor binding sites that are spatially coordinated to regulate expression of one or more specific target genes. These regulatory connections between enhancers and target genes can therefore be characterized as enhancer-gene links that can affect development, disease, and homeostatic cellular processes. Despite their implication in disease and the establishment of cell identity during development, most enhancer-gene links remain unknown. Here we introduce a new, publicly accessible database of predicted enhancer-gene links, PEREGRINE. The PEREGRINE human enhancer-gene links interactive web interface incorporates publicly available experimental data from ChIA-PET, eQTL, and Hi-C assays across 78 cell and tissue types to link 449,627 enhancers to 17,643 protein-coding genes. These enhancer-gene links are made available through the new Enhancer module of the PANTHER database and website where the user may easily access the evidence for each enhancer-gene link, as well as query by target gene and enhancer location.
Collapse
Affiliation(s)
- Caitlin Mills
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Anushya Muruganujan
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Dustin Ebert
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine USC, Los Angeles, CA, United States of America
- Norris Cancer Center, Keck School of Medicine USC, Los Angeles, CA, United States of America
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Paul D. Thomas
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
47
|
Thonsri U, Wongkham S, Wongkham C, Hino S, Nakao M, Roytrakul S, Koga T, Seubwai W. High glucose-ROS conditions enhance the progression in cholangiocarcinoma via upregulation of MAN2A2 and CHD8. Cancer Sci 2020; 112:254-264. [PMID: 33141432 PMCID: PMC7780024 DOI: 10.1111/cas.14719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetes is a major risk factor in the development and progression of several cancers including cholangiocarcinoma (CCA). However, the molecular mechanism by which hyperglycemia potentiates progression of CCA is not clearly understood. Here, we showed that a high glucose condition significantly increased reactive oxygen species (ROS) production and promoted aggressive phenotypes of CCA cells, including proliferation and migration activities. Mannosidase alpha class 2a member 2 (MAN2A2), was upregulated at both mRNA and protein levels in a high glucose‐ and ROS‐dependent manner. In addition, cell proliferation and migration were significantly reduced by MAN2A2 knockdown. Based on our proteome and in silico analyses, we further found that chromodomain helicase DNA‐binding protein 8 (CHD8) was induced by ROS signaling and regulated MAN2A2 expression. Overexpression of CHD8 increased MAN2A2 expression, while CHD8 knockdown dramatically reduced proliferation and migration as well as MAN2A2 expression in CCA cells. Moreover, both MAN2A2 and CHD8 were highly expressed with positive correlation in CCA tumor tissues. Collectively, these data suggested that high glucose conditions promote CCA progression through ROS‐mediated upregulation of MAN2A2 and CHD8. Thus, glucose metabolism is a promising therapeutic target to control tumor progression in patients with CCA and diabetes.
Collapse
Affiliation(s)
- Unchalee Thonsri
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medicine, Department of Forensic Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
48
|
Hsu SJ, Stow EC, Simmons JR, Wallace HA, Lopez AM, Stroud S, Labrador M. Mutations in the insulator protein Suppressor of Hairy wing induce genome instability. Chromosoma 2020; 129:255-274. [PMID: 33140220 DOI: 10.1007/s00412-020-00743-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Insulator proteins orchestrate the three-dimensional organization of the genome. Insulators function by facilitating communications between regulatory sequences and gene promoters, allowing accurate gene transcription regulation during embryo development and cell differentiation. However, the role of insulator proteins beyond genome organization and transcription regulation remains unclear. Suppressor of Hairy wing [Su(Hw)] is a Drosophila insulator protein that plays an important function in female oogenesis. Here we find that su(Hw) has an unsuspected role in genome stability during cell differentiation. We show that su(Hw) mutant developing egg chambers have poorly formed microtubule organization centers (MTOCs) in the germarium and display mislocalization of the anterior/posterior axis specification factor gurken in later oogenesis stages. Additionally, eggshells from partially rescued su(Hw) mutant female germline exhibit dorsoventral patterning defects. These phenotypes are very similar to phenotypes found in the important class of spindle mutants or in piRNA pathway mutants in Drosophila, in which defects generally result from the failure of germ cells to repair DNA damage. Similarities between mutations in su(Hw) and spindle and piRNA mutants are further supported by an excess of DNA damage in nurse cells, and because Gurken localization defects are partially rescued by mutations in the ATR (mei-41) and Chk1 (grapes) DNA damage response genes. Finally, we also show that su(Hw) mutants produce an elevated number of chromosome breaks in dividing neuroblasts from larval brains. Together, these findings suggest that Su(Hw) is necessary for the maintenance of genome integrity during Drosophila development, in both germline and dividing somatic cells.
Collapse
Affiliation(s)
- Shih-Jui Hsu
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Emily C Stow
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Heather A Wallace
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Andrea Mancheno Lopez
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Shannon Stroud
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
49
|
Quarton T, Kang T, Papakis V, Nguyen K, Nowak C, Li Y, Bleris L. Uncoupling gene expression noise along the central dogma using genome engineered human cell lines. Nucleic Acids Res 2020; 48:9406-9413. [PMID: 32810265 PMCID: PMC7498316 DOI: 10.1093/nar/gkaa668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic protein synthesis is an inherently stochastic process. This stochasticity stems not only from variations in cell content between cells but also from thermodynamic fluctuations in a single cell. Ultimately, these inherently stochastic processes manifest as noise in gene expression, where even genetically identical cells in the same environment exhibit variation in their protein abundances. In order to elucidate the underlying sources that contribute to gene expression noise, we quantify the contribution of each step within the process of protein synthesis along the central dogma. We uncouple gene expression at the transcriptional, translational, and post-translational level using custom engineered circuits stably integrated in human cells using CRISPR. We provide a generalized framework to approximate intrinsic and extrinsic noise in a population of cells expressing an unbalanced two-reporter system. Our decomposition shows that the majority of intrinsic fluctuations stem from transcription and that coupling the two genes along the central dogma forces the fluctuations to propagate and accumulate along the same path, resulting in increased observed global correlation between the products.
Collapse
Affiliation(s)
- Tyler Quarton
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA
| | - Taek Kang
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA
| | - Vasileios Papakis
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Khai Nguyen
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Chance Nowak
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, Richardson, TX, USA.,Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
50
|
Paredes O, Romo-Vázquez R, Román-Godínez I, Vélez-Pérez H, Salido-Ruiz RA, Morales JA. Frequency spectra characterization of noncoding human genomic sequences. Genes Genomics 2020; 42:1215-1226. [DOI: 10.1007/s13258-020-00980-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
|