1
|
Wedmark YK, Vik JO, Øyås O. A hierarchy of metabolite exchanges in metabolic models of microbial species and communities. PLoS Comput Biol 2024; 20:e1012472. [PMID: 39325831 PMCID: PMC11460683 DOI: 10.1371/journal.pcbi.1012472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The metabolic network of an organism can be analyzed as a constraint-based model. This analysis can be biased, optimizing an objective such as growth rate, or unbiased, aiming to describe the full feasible space of metabolic fluxes through pathway analysis or random flux sampling. In particular, pathway analysis can decompose the flux space into fundamental and formally defined metabolic pathways. Unbiased methods scale poorly with network size due to combinatorial explosion, but a promising approach to improve scalability is to focus on metabolic subnetworks, e.g., cells' metabolite exchanges with each other and the environment, rather than the full metabolic networks. Here, we applied pathway enumeration and flux sampling to metabolite exchanges in microbial species and a microbial community, using models ranging from central carbon metabolism to genome-scale and focusing on pathway definitions that allow direct targeting of subnetworks such as metabolite exchanges (elementary conversion modes, elementary flux patterns, and minimal pathways). Enumerating growth-supporting metabolite exchanges, we found that metabolite exchanges from different pathway definitions were related through a hierarchy, and we show that this hierarchical relationship between pathways holds for metabolic networks and subnetworks more generally. Metabolite exchange frequencies, defined as the fraction of pathways in which each metabolite was exchanged, were similar across pathway definitions, with a few specific exchanges explaining large differences in pathway counts. This indicates that biological interpretation of predicted metabolite exchanges is robust to the choice of pathway definition, and it suggests strategies for more scalable pathway analysis. Our results also signal wider biological implications, facilitating detailed and interpretable analysis of metabolite exchanges and other subnetworks in fields such as metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Ylva Katarina Wedmark
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, NMBU, Ås, Norway
| | - Jon Olav Vik
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, NMBU, Ås, Norway
| | - Ove Øyås
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, NMBU, Ås, Norway
| |
Collapse
|
2
|
Guil F, Hidalgo JF, García JM. On the representativeness and stability of a set of EFMs. BIOINFORMATICS (OXFORD, ENGLAND) 2023; 39:btad356. [PMID: 37252834 PMCID: PMC10264373 DOI: 10.1093/bioinformatics/btad356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
MOTIVATION Elementary flux modes are a well-known tool for analyzing metabolic networks. The whole set of elementary flux modes (EFMs) cannot be computed in most genome-scale networks due to their large cardinality. Therefore, different methods have been proposed to compute a smaller subset of EFMs that can be used for studying the structure of the network. These latter methods pose the problem of studying the representativeness of the calculated subset. In this article, we present a methodology to tackle this problem. RESULTS We have introduced the concept of stability for a particular network parameter and its relation to the representativeness of the EFM extraction method studied. We have also defined several metrics to study and compare the EFM biases. We have applied these techniques to compare the relative behavior of previously proposed methods in two case studies. Furthermore, we have presented a new method for the EFM computation (PiEFM), which is more stable (less biased) than previous ones, has suitable representativeness measures, and exhibits better variability in the extracted EFMs. AVAILABILITY AND IMPLEMENTATION Software and additional material are freely available at https://github.com/biogacop/PiEFM.
Collapse
Affiliation(s)
- Francisco Guil
- Grupo de Arquitectura y Computación Paralela, Departamento de Ingeniería y Tecnología de Computadores, Facultad de Informática, Universidad de Murcia, Campus de Espinardo, Murcia 30100, Spain
| | - José F Hidalgo
- Grupo de Arquitectura y Computación Paralela, Departamento de Ingeniería y Tecnología de Computadores, Facultad de Informática, Universidad de Murcia, Campus de Espinardo, Murcia 30100, Spain
| | - José M García
- Grupo de Arquitectura y Computación Paralela, Departamento de Ingeniería y Tecnología de Computadores, Facultad de Informática, Universidad de Murcia, Campus de Espinardo, Murcia 30100, Spain
| |
Collapse
|
3
|
Ng RH, Lee JW, Baloni P, Diener C, Heath JR, Su Y. Constraint-Based Reconstruction and Analyses of Metabolic Models: Open-Source Python Tools and Applications to Cancer. Front Oncol 2022; 12:914594. [PMID: 35875150 PMCID: PMC9303011 DOI: 10.3389/fonc.2022.914594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The influence of metabolism on signaling, epigenetic markers, and transcription is highly complex yet important for understanding cancer physiology. Despite the development of high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these indirect measurements. Fortunately, genome-scale metabolic models and constraint-based modeling provide a systems biology framework to investigate the metabolic states and define the genotype-phenotype associations by integrations of multi-omics data. Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and simulate metabolic networks using mathematical representations of biochemical reactions, gene-protein reaction associations, and physiological and biochemical constraints. These methods have led to advancements in metabolic reconstruction, network analysis, perturbation studies as well as prediction of metabolic state. Most computational tools for performing these analyses are written for MATLAB, a proprietary software. In order to increase accessibility and handle more complex datasets and models, community efforts have started to develop similar open-source tools in Python. To date there is a comprehensive set of tools in Python to perform various flux analyses and visualizations; however, there are still missing algorithms in some key areas. This review summarizes the availability of Python software for several components of COBRA methods and their applications in cancer metabolism. These tools are evolving rapidly and should offer a readily accessible, versatile way to model the intricacies of cancer metabolism for identifying cancer-specific metabolic features that constitute potential drug targets.
Collapse
Affiliation(s)
- Rachel H. Ng
- Institute for Systems Biology, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jihoon W. Lee
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | | | - James R. Heath
- Institute for Systems Biology, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Yapeng Su
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
4
|
Ullah E, Yosafshahi M, Hassoun S. Towards scaling elementary flux mode computation. Brief Bioinform 2019; 21:1875-1885. [PMID: 31745550 DOI: 10.1093/bib/bbz094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/05/2023] Open
Abstract
While elementary flux mode (EFM) analysis is now recognized as a cornerstone computational technique for cellular pathway analysis and engineering, EFM application to genome-scale models remains computationally prohibitive. This article provides a review of aspects of EFM computation that elucidates bottlenecks in scaling EFM computation. First, algorithms for computing EFMs are reviewed. Next, the impact of redundant constraints, sensitivity to constraint ordering and network compression are evaluated. Then, the advantages and limitations of recent parallelization and GPU-based efforts are highlighted. The article then reviews alternative pathway analysis approaches that aim to reduce the EFM solution space. Despite advances in EFM computation, our review concludes that continued scaling of EFM computation is necessary to apply EFM to genome-scale models. Further, our review concludes that pathway analysis methods that target specific pathway properties can provide powerful alternatives to EFM analysis.
Collapse
Affiliation(s)
- Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Mona Yosafshahi
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford MA 02155, USA
| |
Collapse
|
5
|
Röhl A, Bockmayr A. Finding MEMo: minimum sets of elementary flux modes. J Math Biol 2019; 79:1749-1777. [PMID: 31388689 DOI: 10.1007/s00285-019-01409-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/15/2019] [Indexed: 10/26/2022]
Abstract
Metabolic network reconstructions are widely used in computational systems biology for in silico studies of cellular metabolism. A common approach to analyse these models are elementary flux modes (EFMs), which correspond to minimal functional units in the network. Already for medium-sized networks, it is often impossible to compute the set of all EFMs, due to their huge number. From a practical point of view, this might also not be necessary because a subset of EFMs may already be sufficient to answer relevant biological questions. In this article, we study MEMos or minimum sets of EFMs that can generate all possible steady-state behaviours of a metabolic network. The number of EFMs in a MEMo may be by several orders of magnitude smaller than the total number of EFMs. Using MEMos, we can compute generating sets of EFMs in metabolic networks where the whole set of EFMs is too large to be enumerated.
Collapse
Affiliation(s)
- Annika Röhl
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Alexander Bockmayr
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany
| |
Collapse
|
6
|
Vijayakumar S, Conway M, Lió P, Angione C. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Brief Bioinform 2019; 19:1218-1235. [PMID: 28575143 DOI: 10.1093/bib/bbx053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolic modelling has entered a mature phase with dozens of methods and software implementations available to the practitioner and the theoretician. It is not easy for a modeller to be able to see the wood (or the forest) for the trees. Driven by this analogy, we here present a 'forest' of principal methods used for constraint-based modelling in systems biology. This provides a tree-based view of methods available to prospective modellers, also available in interactive version at http://modellingmetabolism.net, where it will be kept updated with new methods after the publication of the present manuscript. Our updated classification of existing methods and tools highlights the most promising in the different branches, with the aim to develop a vision of how existing methods could hybridize and become more complex. We then provide the first hands-on tutorial for multi-objective optimization of metabolic models in R. We finally discuss the implementation of multi-view machine learning approaches in poly-omic integration. Throughout this work, we demonstrate the optimization of trade-offs between multiple metabolic objectives, with a focus on omic data integration through machine learning. We anticipate that the combination of a survey, a perspective on multi-view machine learning and a step-by-step R tutorial should be of interest for both the beginner and the advanced user.
Collapse
Affiliation(s)
| | - Max Conway
- Computer Laboratory, University of Cambridge, UK
| | - Pietro Lió
- Computer Laboratory, University of Cambridge, UK
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, UK
| |
Collapse
|
7
|
Andersen JL, Flamm C, Merkle D, Stadler PF. Chemical Transformation Motifs-Modelling Pathways as Integer Hyperflows. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:510-523. [PMID: 29990045 DOI: 10.1109/tcbb.2017.2781724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present an elaborate framework for formally modelling pathways in chemical reaction networks on a mechanistic level. Networks are modelled mathematically as directed multi-hypergraphs, with vertices corresponding to molecules and hyperedges to reactions. Pathways are modelled as integer hyperflows and we expand the network model by detailed routing constraints. In contrast to the more traditional approaches like Flux Balance Analysis or Elementary Mode analysis we insist on integer-valued flows. While this choice makes it necessary to solve possibly hard integer linear programs, it has the advantage that more detailed mechanistic questions can be formulated. It is thus possible to query networks for general transformation motifs, and to automatically enumerate optimal and near-optimal pathways. Similarities and differences between our work and traditional approaches in metabolic network analysis are discussed in detail. To demonstrate the applicability of the mathematical framework to real-life problems we first explore the design space of possible non-oxidative glycolysis pathways and show that recent manually designed pathways can be further optimized. We then use a model of sugar chemistry to investigate pathways in the autocatalytic formose process. A graph transformation-based approach is used to automatically generate the reaction networks of interest.
Collapse
|
8
|
Xi Y, Wang F. Extreme pathway analysis reveals the organizing rules of metabolic regulation. PLoS One 2019; 14:e0210539. [PMID: 30721240 PMCID: PMC6363282 DOI: 10.1371/journal.pone.0210539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Cellular systems shift metabolic states by adjusting gene expression and enzyme activities to adapt to physiological and environmental changes. Biochemical and genetic studies are identifying how metabolic regulation affects the selection of metabolic phenotypes. However, how metabolism influences its regulatory architecture still remains unexplored. We present a new method of extreme pathway analysis (the minimal set of conically independent metabolic pathways) to deduce regulatory structures from pure pathway information. Applying our method to metabolic networks of human red blood cells and Escherichia coli, we shed light on how metabolic regulation are organized by showing which reactions within metabolic networks are more prone to transcriptional or allosteric regulation. Applied to a human genome-scale metabolic system, our method detects disease-associated reactions. Thus, our study deepens the understanding of the organizing principle of cellular metabolic regulation and may contribute to metabolic engineering, synthetic biology, and disease treatment.
Collapse
Affiliation(s)
- Yanping Xi
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China
- School of Computer Science and Technology, Fudan University, Shanghai, China
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fei Wang
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China
- School of Computer Science and Technology, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Hagrot E, Oddsdóttir HÆ, Mäkinen M, Forsgren A, Chotteau V. Novel column generation-based optimization approach for poly-pathway kinetic model applied to CHO cell culture. Metab Eng Commun 2018; 8:e00083. [PMID: 30809468 PMCID: PMC6376161 DOI: 10.1016/j.mec.2018.e00083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 10/30/2018] [Accepted: 12/08/2018] [Indexed: 11/26/2022] Open
Abstract
Mathematical modelling can provide precious tools for bioprocess simulation, prediction, control and optimization of mammalian cell-based cultures. In this paper we present a novel method to generate kinetic models of such cultures, rendering complex metabolic networks in a poly-pathway kinetic model. The model is based on subsets of elementary flux modes (EFMs) to generate macro-reactions. Thanks to our column generation-based optimization algorithm, the experimental data are used to identify the EFMs, which are relevant to the data. Here the systematic enumeration of all the EFMs is eliminated and a network including a large number of reactions can be considered. In particular, the poly-pathway model can simulate multiple metabolic behaviors in response to changes in the culture conditions. We apply the method to a network of 126 metabolic reactions describing cultures of antibody-producing Chinese hamster ovary cells, and generate a poly-pathway model that simulates multiple experimental conditions obtained in response to variations in amino acid availability. A good fit between simulated and experimental data is obtained, rendering the variations in the growth, product, and metabolite uptake/secretion rates. The intracellular reaction fluxes simulated by the model are explored, linking variations in metabolic behavior to adaptations of the intracellular metabolism. Novel method to model multiple states by a poly-pathway kinetic model. EFMs relevant to data identified by column generation (CG)-based optimization. CG optimization enables use of networks much larger than systematic enumeration. A kinetic model simulates changes in metabolic rates linked to available amino acids. The flux distribution of each metabolic state is visualized in the original network.
Collapse
Affiliation(s)
- Erika Hagrot
- Cell Technology Group, Department of Industrial Biotechnology/Bioprocess Design, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Sweden
| | - Hildur Æsa Oddsdóttir
- Department of Mathematics, Division of Optimization and Systems Theory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Meeri Mäkinen
- Cell Technology Group, Department of Industrial Biotechnology/Bioprocess Design, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Sweden
| | - Anders Forsgren
- Department of Mathematics, Division of Optimization and Systems Theory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Véronique Chotteau
- Cell Technology Group, Department of Industrial Biotechnology/Bioprocess Design, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Sweden.,WCPR, Wallenberg Centre for Protein Research, Sweden
| |
Collapse
|
10
|
Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc Natl Acad Sci U S A 2018; 115:E1578-E1587. [PMID: 29382755 DOI: 10.1073/pnas.1714645115] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.
Collapse
|
11
|
Poly-pathway model, a novel approach to simulate multiple metabolic states by reaction network-based model – Application to amino acid depletion in CHO cell culture. J Biotechnol 2017; 259:235-247. [DOI: 10.1016/j.jbiotec.2017.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/10/2023]
|
12
|
Hagrot E, Oddsdóttir HÆ, Hosta JG, Jacobsen EW, Chotteau V. RETRACTED: Poly-pathway model, a novel approach to simulate multiple metabolic states by reaction network-based model – Application to amino acid depletion in CHO cell culture. J Biotechnol 2016; 228:37-49. [DOI: 10.1016/j.jbiotec.2016.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
|
13
|
von Stosch M, Rodrigues de Azevedo C, Luis M, Feyo de Azevedo S, Oliveira R. A principal components method constrained by elementary flux modes: analysis of flux data sets. BMC Bioinformatics 2016; 17:200. [PMID: 27146133 PMCID: PMC4855838 DOI: 10.1186/s12859-016-1063-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Background Non-negative linear combinations of elementary flux modes (EMs) describe all feasible reaction flux distributions for a given metabolic network under the quasi steady state assumption. However, only a small subset of EMs contribute to the physiological state of a given cell. Results In this paper, a method is proposed that identifies the subset of EMs that best explain the physiological state captured in reaction flux data, referred to as principal EMs (PEMs), given a pre-specified universe of EM candidates. The method avoids the evaluation of all possible combinations of EMs by using a branch and bound approach which is computationally very efficient. The performance of the method is assessed using simulated and experimental data of Pichia pastoris and experimental fluxome data of Saccharomyces cerevisiae. The proposed method is benchmarked against principal component analysis (PCA), commonly used to study the structure of metabolic flux data sets. Conclusions The overall results show that the proposed method is computationally very effective in identifying the subset of PEMs within a large set of EM candidates (cases with ~100 and ~1000 EMs were studied). In contrast to the principal components in PCA, the identified PEMs have a biological meaning enabling identification of the key active pathways in a cell as well as the conditions under which the pathways are activated. This method clearly outperforms PCA in the interpretability of flux data providing additional insights into the underlying regulatory mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1063-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moritz von Stosch
- REQUIMTE/DQ, Faculty of Science and Technology, University Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Cristiana Rodrigues de Azevedo
- REQUIMTE/DQ, Faculty of Science and Technology, University Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Mauro Luis
- REQUIMTE/DQ, Faculty of Science and Technology, University Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Sebastiao Feyo de Azevedo
- DEQ, Faculty of Engineering, University do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Rui Oliveira
- REQUIMTE/DQ, Faculty of Science and Technology, University Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
14
|
Ullah E, Aeron S, Hassoun S. gEFM: An Algorithm for Computing Elementary Flux Modes Using Graph Traversal. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:122-134. [PMID: 26886737 DOI: 10.1109/tcbb.2015.2430344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Computational methods to engineer cellular metabolism promise to play a critical role in producing pharmaceutical, repairing defective genes, destroying cancer cells, and generating biofuels. Elementary Flux Mode (EFM) analysis is one such powerful technique that has elucidated cell growth and regulation, predicted product yield, and analyzed network robustness. EFM analysis, however, is a computationally daunting task because it requires the enumeration of all independent and stoichiometrically balanced pathways within a cellular network. We present in this paper an EFM enumeration algorithm, termed graphical EFM or gEFM. The algorithm is based on graph traversal, an approach previously assumed unsuitable for enumerating EFMs. The approach is derived from a pathway synthesis method proposed by Mavrovouniotis et al. The algorithm is described and proved correct. We apply gEFM to several networks and report runtimes in comparison with other EFM computation tools. We show how gEFM benefits from network compression. Like other EFM computational techniques, gEFM is sensitive to constraint ordering; however, we are able to demonstrate that knowledge of the underlying network structure leads to better constraint ordering. gEFM is shown to be competitive with state-of-the-art EFM computational techniques for several networks, but less so for networks with a larger number of EFMs.
Collapse
|
15
|
In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories. Microbiol Mol Biol Rev 2015; 80:45-67. [PMID: 26609052 DOI: 10.1128/mmbr.00014-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.
Collapse
|
16
|
Nicolae A, Wahrheit J, Nonnenmacher Y, Weyler C, Heinzle E. Identification of active elementary flux modes in mitochondria using selectively permeabilized CHO cells. Metab Eng 2015; 32:95-105. [PMID: 26417715 DOI: 10.1016/j.ymben.2015.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/23/2022]
Abstract
Metabolic compartmentation is a key feature of mammalian cells. Mitochondria are the powerhouse of eukaryotic cells, responsible for respiration and the TCA cycle. We accessed the mitochondrial metabolism of the economically important Chinese hamster ovary (CHO) cells using selective permeabilization. We tested key substrates without and with addition of ADP. Based on quantified uptake and production rates, we could determine the contribution of different elementary flux modes to the metabolism of a substrate or substrate combination. ADP stimulated the uptake of most metabolites, directly by serving as substrate for the respiratory chain, thus removing the inhibitory effect of NADH, or as allosteric effector. Addition of ADP favored substrate metabolization to CO2 and did not enhance the production of other metabolites. The controlling effect of ADP was more pronounced when we supplied metabolites to the first part of the TCA cycle: pyruvate, citrate, α-ketoglutarate and glutamine. In the second part of the TCA cycle, the rates were primarily controlled by the concentrations of C4-dicarboxylates. Without ADP addition, the activity of the pyruvate carboxylase-malate dehydrogenase-malic enzyme cycle consumed the ATP produced by oxidative phosphorylation, preventing its accumulation and maintaining metabolic steady state conditions. Aspartate was taken up only in combination with pyruvate, whose uptake also increased, a fact explained by complex regulatory effects. Isocitrate dehydrogenase and α-ketoglutarate dehydrogenase were identified as the key regulators of the TCA cycle, confirming existent knowledge from other cells. We have shown that selectively permeabilized cells combined with elementary mode analysis allow in-depth studying of the mitochondrial metabolism and regulation.
Collapse
Affiliation(s)
- Averina Nicolae
- Universität des Saarlandes, Technische Biochemie, Campus A 1.5, Saarbrücken D-66123, Germany
| | - Judith Wahrheit
- Universität des Saarlandes, Technische Biochemie, Campus A 1.5, Saarbrücken D-66123, Germany
| | - Yannic Nonnenmacher
- Universität des Saarlandes, Technische Biochemie, Campus A 1.5, Saarbrücken D-66123, Germany
| | - Christian Weyler
- Universität des Saarlandes, Technische Biochemie, Campus A 1.5, Saarbrücken D-66123, Germany
| | - Elmar Heinzle
- Universität des Saarlandes, Technische Biochemie, Campus A 1.5, Saarbrücken D-66123, Germany.
| |
Collapse
|
17
|
Jungreuthmayer C, Ruckerbauer DE, Gerstl MP, Hanscho M, Zanghellini J. Avoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs. PLoS One 2015; 10:e0129840. [PMID: 26091045 PMCID: PMC4475075 DOI: 10.1371/journal.pone.0129840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 05/13/2015] [Indexed: 01/12/2023] Open
Abstract
Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic networks. Taking into account gene regulation dramatically reduces the solution space and allows the presented algorithm to constantly eliminate biologically infeasible modes at an early stage of the computation procedure. Thereby, computational costs, such as runtime, memory usage, and disk space, are extremely reduced. Moreover, we show that the application of transcriptional rules identifies non-trivial system-wide effects on metabolism. Using the presented algorithm pushes the size of metabolic networks that can be studied by elementary flux modes to new and much higher limits without the loss of predictive quality. This makes unbiased, system-wide predictions in large scale metabolic networks possible without resorting to any optimization principle.
Collapse
Affiliation(s)
- Christian Jungreuthmayer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
- * E-mail: (CJ); (JZ)
| | - David E. Ruckerbauer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
| | - Matthias P. Gerstl
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
| | - Michael Hanscho
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
| | - Jürgen Zanghellini
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
- * E-mail: (CJ); (JZ)
| |
Collapse
|
18
|
Horvat P, Koller M, Braunegg G. Recent advances in elementary flux modes and yield space analysis as useful tools in metabolic network studies. World J Microbiol Biotechnol 2015; 31:1315-28. [DOI: 10.1007/s11274-015-1887-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/05/2015] [Indexed: 11/25/2022]
|
19
|
Sridharan GV, Ullah E, Hassoun S, Lee K. Discovery of substrate cycles in large scale metabolic networks using hierarchical modularity. BMC SYSTEMS BIOLOGY 2015; 9:5. [PMID: 25884368 PMCID: PMC4349670 DOI: 10.1186/s12918-015-0146-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/26/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND A substrate cycle is a set of metabolic reactions, arranged in a loop, which does not result in net consumption or production of the metabolites. The cycle operates by transforming a cofactor, e.g. oxidizing a reducing equivalent. Substrate cycles have been found experimentally in many parts of metabolism; however, their physiological roles remain unclear. As genome-scale metabolic models become increasingly available, there is now the opportunity to comprehensively catalogue substrate cycles, and gain additional insight into this potentially important motif of metabolic networks. RESULTS We present a method to identify substrate cycles in the context of metabolic modules, which facilitates functional analysis. This method utilizes elementary flux mode (EFM) analysis to find potential substrate cycles in the form of cyclical EFMs, and combines this analysis with network partition based on retroactive (cyclical) interactions between reactions. In addition to providing functional context, partitioning the network into modules allowed exhaustive EFM calculations on smaller, tractable subnetworks that are enriched in metabolic cycles. Applied to a large-scale model of human liver metabolism (HepatoNet1), our method found not only well-known substrate cycles involving ATP hydrolysis, but also potentially novel substrate cycles involving the transformation of other cofactors. A key characteristic of the substrate cycles identified in this study is that the lengths are relatively short (2-13 reactions), comparable to many experimentally observed substrate cycles. CONCLUSIONS EFM computation for large scale networks remains computationally intractable for exhaustive substrate cycle enumeration. Our algorithm utilizes a 'divide and conquer' strategy where EFM analysis is performed on systematically identified network modules that are designed to be enriched in cyclical interactions. We find that several substrate cycles uncovered using our approach are not identified when the network is partitioned in a more generic manner based solely on connectivity rather than cycles, demonstrating the value of targeting motif searches to sub-networks replete with a topological feature that resembles the desired motif itself.
Collapse
Affiliation(s)
- Gautham Vivek Sridharan
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| | - Ehsan Ullah
- Department of Computer Science, Tufts University, 161 College Avenue, Medford, MA, 02155, USA.
| | - Soha Hassoun
- Department of Computer Science, Tufts University, 161 College Avenue, Medford, MA, 02155, USA.
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
20
|
Ingalls BP, Bembenek E. Exploiting stoichiometric redundancies for computational efficiency and network reduction. In Silico Biol 2014; 12:55-67. [PMID: 25547516 PMCID: PMC4923743 DOI: 10.3233/isb-140464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Analysis of metabolic networks typically begins with construction of the stoichiometry matrix, which characterizes the network topology. This matrix provides, via the balance equation, a description of the potential steady-state flow distribution. This paper begins with the observation that the balance equation depends only on the structure of linear redundancies in the network, and so can be stated in a succinct manner, leading to computational efficiencies in steady-state analysis. This alternative description of steady-state behaviour is then used to provide a novel method for network reduction, which complements existing algorithms for describing intracellular networks in terms of input-output macro-reactions (to facilitate bioprocess optimization and control). Finally, it is demonstrated that this novel reduction method can be used to address elementary mode analysis of large networks: the modes supported by a reduced network can capture the input-output modes of a metabolic module with significantly reduced computational effort.
Collapse
Affiliation(s)
- Brian P. Ingalls
- Correspondence to: Brian P. Ingalls, Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. Tel.: +1 519 888 4567/Ext. 35457; Fax: +1 519 746 4319;
| | | |
Collapse
|
21
|
Meyer P, Cecchi G, Stolovitzky G. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria. BMC SYSTEMS BIOLOGY 2014; 8:131. [PMID: 25495800 PMCID: PMC4279816 DOI: 10.1186/s12918-014-0131-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023]
Abstract
Background Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. Results We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli’s metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. Conclusions We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell’s metabolic network. Electronic supplementary material The online version of this article (doi:10.1186/s12918-014-0131-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Meyer
- IBM Computational Biology Center, Yorktown Heights, NY, USA.
| | | | | |
Collapse
|
22
|
David L, Bockmayr A. Computing Elementary Flux Modes Involving a Set of Target Reactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:1099-1107. [PMID: 26357047 DOI: 10.1109/tcbb.2014.2343964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Elementary flux mode (EM) computation is an important tool in the constraint-based analysis of genome-scale metabolic networks. Due to the combinatorial complexity of these networks, as well as the advances in the level of detail to which they can be reconstructed, an exhaustive enumeration of all EMs is often not practical. Therefore, in recent years interest has shifted towards searching EMs with specific properties. We present a novel method that allows computing EMs containing a given set of target reactions. This generalizes previous algorithms where the set of target reactions consists of a single reaction. In the one-reaction case, our method compares favorably to the previous approaches. In addition, we present several applications of our algorithm for computing EMs containing two target reactions in genome-scale metabolic networks. A software tool implementing the algorithms described in this paper is available at https://sourceforge.net/projects/caefm.
Collapse
|
23
|
Rezola A, Pey J, Rubio Á, Planes FJ. In-silico prediction of key metabolic differences between two non-small cell lung cancer subtypes. PLoS One 2014; 9:e103998. [PMID: 25093336 PMCID: PMC4122379 DOI: 10.1371/journal.pone.0103998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023] Open
Abstract
Metabolism expresses the phenotype of living cells and understanding it is crucial for different applications in biotechnology and health. With the increasing availability of metabolomic, proteomic and, to a larger extent, transcriptomic data, the elucidation of specific metabolic properties in different scenarios and cell types is a key topic in systems biology. Despite the potential of the elementary flux mode (EFM) concept for this purpose, its use has been limited so far, mainly because their computation has been infeasible for genome-scale metabolic networks. In a recent work, we determined a subset of EFMs in human metabolism and proposed a new protocol to integrate gene expression data, spotting key 'characteristic EFMs' in different scenarios. Our approach was successfully applied to identify metabolic differences among several human healthy tissues. In this article, we evaluated the performance of our approach in clinically interesting situation. In particular, we identified key EFMs and metabolites in adenocarcinoma and squamous-cell carcinoma subtypes of non-small cell lung cancers. Results are consistent with previous knowledge of these major subtypes of lung cancer in the medical literature. Therefore, this work constitutes the starting point to establish a new methodology that could lead to distinguish key metabolic processes among different clinical outcomes.
Collapse
Affiliation(s)
- Alberto Rezola
- Department of Bioinformatics, CEIT and TECNUN, University of Navarra, San Sebastián, Spain
| | - Jon Pey
- Department of Bioinformatics, CEIT and TECNUN, University of Navarra, San Sebastián, Spain
| | - Ángel Rubio
- Department of Bioinformatics, CEIT and TECNUN, University of Navarra, San Sebastián, Spain
| | - Francisco J. Planes
- Department of Bioinformatics, CEIT and TECNUN, University of Navarra, San Sebastián, Spain
- * E-mail:
| |
Collapse
|
24
|
Bordbar A, Nagarajan H, Lewis NE, Latif H, Ebrahim A, Federowicz S, Schellenberger J, Palsson BO. Minimal metabolic pathway structure is consistent with associated biomolecular interactions. Mol Syst Biol 2014; 10:737. [PMID: 24987116 PMCID: PMC4299494 DOI: 10.15252/msb.20145243] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated.
Collapse
Affiliation(s)
- Aarash Bordbar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Harish Nagarajan
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA Wyss Institute for Biologically Inspired Engineering and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Haythem Latif
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Ali Ebrahim
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Stephen Federowicz
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Jan Schellenberger
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
25
|
Tabe-Bordbar S, Marashi SA. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism. Biotechnol Lett 2014; 35:2039-44. [PMID: 24078125 DOI: 10.1007/s10529-013-1328-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.
Collapse
|
26
|
Bazzani S. Promise and reality in the expanding field of network interaction analysis: metabolic networks. Bioinform Biol Insights 2014; 8:83-91. [PMID: 24812497 PMCID: PMC3999820 DOI: 10.4137/bbi.s12466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 12/25/2022] Open
Abstract
In the last few decades, metabolic networks revealed their capabilities as powerful tools to analyze the cellular metabolism. Many research fields (eg, metabolic engineering, diagnostic medicine, pharmacology, biochemistry, biology and physiology) improved the understanding of the cell combining experimental assays and metabolic network-based computations. This process led to the rise of the “systems biology” approach, where the theory meets experiments and where two complementary perspectives cooperate in the study of biological phenomena. Here, the reconstruction of metabolic networks is presented, along with established and new algorithms to improve the description of cellular metabolism. Then, advantages and limitations of modeling algorithms and network reconstruction are discussed.
Collapse
Affiliation(s)
- Susanna Bazzani
- PhD candidate in Biophysics. Former laboratory: Computational Systems Biochemistry Group, Charitè Universitätsmedizin, Berlin, Germany
| |
Collapse
|
27
|
Rezola A, Pey J, Tobalina L, Rubio A, Beasley JE, Planes FJ. Advances in network-based metabolic pathway analysis and gene expression data integration. Brief Bioinform 2014; 16:265-79. [DOI: 10.1093/bib/bbu009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Hunt KA, Folsom JP, Taffs RL, Carlson RP. Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition. ACTA ACUST UNITED AC 2014; 30:1569-78. [PMID: 24497502 DOI: 10.1093/bioinformatics/btu021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
MOTIVATION Elementary flux mode analysis (EFMA) decomposes complex metabolic network models into tractable biochemical pathways, which have been used for rational design and analysis of metabolic and regulatory networks. However, application of EFMA has often been limited to targeted or simplified metabolic network representations due to computational demands of the method. RESULTS Division of biological networks into subnetworks enables the complete enumeration of elementary flux modes (EFMs) for metabolic models of a broad range of complexities, including genome-scale. Here, subnetworks are defined using serial dichotomous suppression and enforcement of flux through model reactions. Rules for selecting appropriate reactions to generate subnetworks are proposed and tested; three test cases, including both prokaryotic and eukaryotic network models, verify the efficacy of these rules and demonstrate completeness and reproducibility of EFM enumeration. Division of models into subnetworks is demand-based and automated; computationally intractable subnetworks are further divided until the entire solution space is enumerated. To demonstrate the strategy's scalability, the splitting algorithm was implemented using an EFMA software package (EFMTool) and Windows PowerShell on a 50 node Microsoft high performance computing cluster. Enumeration of the EFMs in a genome-scale metabolic model of a diatom, Phaeodactylum tricornutum, identified ∼2 billion EFMs. The output represents an order of magnitude increase in EFMs computed compared with other published algorithms and demonstrates a scalable framework for EFMA of most systems.
Collapse
Affiliation(s)
- Kristopher A Hunt
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USACenter for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USA
| | - James P Folsom
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USACenter for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USA
| | - Reed L Taffs
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USACenter for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USA
| | - Ross P Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USACenter for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717-3920, USA
| |
Collapse
|
29
|
Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 2014; 15:107-20. [PMID: 24430943 DOI: 10.1038/nrg3643] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prediction of cellular function from a genotype is a fundamental goal in biology. For metabolism, constraint-based modelling methods systematize biochemical, genetic and genomic knowledge into a mathematical framework that enables a mechanistic description of metabolic physiology. The use of constraint-based approaches has evolved over ~30 years, and an increasing number of studies have recently combined models with high-throughput data sets for prospective experimentation. These studies have led to validation of increasingly important and relevant biological predictions. As reviewed here, these recent successes have tangible implications in the fields of microbial evolution, interaction networks, genetic engineering and drug discovery.
Collapse
Affiliation(s)
- Aarash Bordbar
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, California 92093-0412, USA
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, California 92093-0412, USA
| | - Zachary A King
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, California 92093-0412, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, California 92093-0412, USA
| |
Collapse
|
30
|
Abstract
Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic information. Here, we introduce structural metabolic control as a framework to examine individual reactions' potential to control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a metabolic function is determined using flux balance analysis (FBA). We examine structural metabolic control on the example of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC). This framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to assign “share of control” to individual reactions with respect to metabolic functions and environmental conditions. A comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate and ATP under various respiratory conditions. Insight into the functioning of metabolic control to meet changing demands is a first step in rational engineering of biological systems towards a desired behavior. Metabolic control analysis provides the means to examine the impact of change of reaction fluxes on a specific target flux based on kinetic modeling, but suffers from limitations of the kinetic approach. Here, we introduce and analyze structural metabolic control as a framework to overcome these limitations. We utilize functional centrality, a framework based on the Shapley value from cooperative game theory and flux balance analysis, to determine the contribution of individual reactions to the functions accomplished by a metabolic network. These contributions, in turn, depend on the control exerted on the remaining network. Functional centrality provides the mathematical means to gain further understanding of metabolic control. The potential applications range from facilitating strategies of rational strain design to drug target identification.
Collapse
|
31
|
Pey J, Valgepea K, Rubio A, Beasley JE, Planes FJ. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways. BMC SYSTEMS BIOLOGY 2013; 7:134. [PMID: 24314206 PMCID: PMC3878952 DOI: 10.1186/1752-0509-7-134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/27/2013] [Indexed: 12/26/2022]
Abstract
Background The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. Results We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. Conclusions A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.
Collapse
Affiliation(s)
| | | | | | - John E Beasley
- CEIT and TECNUN, University of Navarra, Manuel de Lardizabal 15, 20018 San Sebastian, Spain.
| | | |
Collapse
|
32
|
On functional module detection in metabolic networks. Metabolites 2013; 3:673-700. [PMID: 24958145 PMCID: PMC3901286 DOI: 10.3390/metabo3030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022] Open
Abstract
Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models.
Collapse
|
33
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1062] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
34
|
Zanghellini J, Ruckerbauer DE, Hanscho M, Jungreuthmayer C. Elementary flux modes in a nutshell: properties, calculation and applications. Biotechnol J 2013; 8:1009-16. [PMID: 23788432 DOI: 10.1002/biot.201200269] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/26/2013] [Accepted: 05/08/2013] [Indexed: 02/04/2023]
Abstract
Elementary flux mode (EFM) analysis allows the unbiased decomposition of a metabolic network into minimal functional units, making it a powerful tool for metabolic engineering. While the use of EFM analysis (EFMA) is still limited by the size of the models it can handle, EFMA has been successfully applied to solve real-world metabolic engineering problems. Here we provide a user-oriented introduction to EFMA, provide examples of recent applications, analyze current research strategies to overcome the computational restrictions and give an overview over current approaches, which aim to identify and calculate only biologically relevant EFMs.
Collapse
Affiliation(s)
- Jürgen Zanghellini
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | | | | | | |
Collapse
|
35
|
Rezola A, Pey J, de Figueiredo LF, Podhorski A, Schuster S, Rubio A, Planes FJ. Selection of human tissue-specific elementary flux modes using gene expression data. ACTA ACUST UNITED AC 2013; 29:2009-16. [PMID: 23742984 DOI: 10.1093/bioinformatics/btt328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The analysis of high-throughput molecular data in the context of metabolic pathways is essential to uncover their underlying functional structure. Among different metabolic pathway concepts in systems biology, elementary flux modes (EFMs) hold a predominant place, as they naturally capture the complexity and plasticity of cellular metabolism and go beyond predefined metabolic maps. However, their use to interpret high-throughput data has been limited so far, mainly because their computation in genome-scale metabolic networks has been unfeasible. To face this issue, different optimization-based techniques have been recently introduced and their application to human metabolism is promising. RESULTS In this article, we exploit and generalize the K-shortest EFM algorithm to determine a subset of EFMs in a human genome-scale metabolic network. This subset of EFMs involves a wide number of reported human metabolic pathways, as well as potential novel routes, and constitutes a valuable database where high-throughput data can be mapped and contextualized from a metabolic perspective. To illustrate this, we took expression data of 10 healthy human tissues from a previous study and predicted their characteristic EFMs based on enrichment analysis. We used a multivariate hypergeometric test and showed that it leads to more biologically meaningful results than standard hypergeometric. Finally, a biological discussion on the characteristic EFMs obtained in liver is conducted, finding a high level of agreement when compared with the literature.
Collapse
Affiliation(s)
- Alberto Rezola
- Biomedical Engineering Department, CEIT and Tecnun, University of Navarra, San Sebastian, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
De Filippo C, Ramazzotti M, Fontana P, Cavalieri D. Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Brief Bioinform 2013; 13:696-710. [PMID: 23175748 PMCID: PMC3505041 DOI: 10.1093/bib/bbs070] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metagenomic approaches are increasingly recognized as a baseline for understanding the
ecology and evolution of microbial ecosystems. The development of methods for pathway
inference from metagenomics data is of paramount importance to link a phenotype to a
cascade of events stemming from a series of connected sets of genes or proteins.
Biochemical and regulatory pathways have until recently been thought and modelled within
one cell type, one organism, one species. This vision is being dramatically changed by the
advent of whole microbiome sequencing studies, revealing the role of symbiotic microbial
populations in fundamental biochemical functions. The new landscape we face requires a
clear picture of the potentialities of existing tools and development of new tools to
characterize, reconstruct and model biochemical and regulatory pathways as the result of
integration of function in complex symbiotic interactions of ontologically and
evolutionary distinct cell types.
Collapse
|
37
|
Abstract
MOTIVATION Flux variability analysis (FVA) is an important tool to further analyse the results obtained by flux balance analysis (FBA) on genome-scale metabolic networks. For many constraint-based models, FVA identifies unboundedness of the optimal flux space. This reveals that optimal flux solutions with net flux through internal biochemical loops are feasible, which violates the second law of thermodynamics. Such unbounded fluxes may be eliminated by extending FVA with thermodynamic constraints. RESULTS We present a new algorithm for efficient flux variability (and flux balance) analysis with thermodynamic constraints, suitable for analysing genome-scale metabolic networks. We first show that FBA with thermodynamic constraints is NP-hard. Then we derive a theoretical tractability result, which can be applied to metabolic networks in practice. We use this result to develop a new constraint programming algorithm Fast-tFVA for fast FVA with thermodynamic constraints (tFVA). Computational comparisons with previous methods demonstrate the efficiency of the new method. For tFVA, a speed-up of factor 30-300 is achieved. In an analysis of genome-scale metabolic networks in the BioModels database, we found that in 485 of 716 networks, additional irreversible or fixed reactions could be detected. AVAILABILITY AND IMPLEMENTATION Fast-tFVA is written in C++ and published under GPL. It uses the open source software SCIP and libSBML. There also exists a Matlab interface for easy integration into Matlab. Fast-tFVA is available from page.mi.fu-berlin.de/arnem/fast-tfva.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Arne C Müller
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany.
| | | |
Collapse
|
38
|
A Lattice-Theoretic Framework for Metabolic Pathway Analysis. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY 2013. [DOI: 10.1007/978-3-642-40708-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Töpfer N, Jozefczuk S, Nikoloski Z. Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli. BMC SYSTEMS BIOLOGY 2012. [PMID: 23194026 PMCID: PMC3576321 DOI: 10.1186/1752-0509-6-148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Changes in environmental conditions require temporal effectuation of different metabolic pathways in order to maintain the organisms’ viability but also to enable the settling into newly arising conditions. While analyses of robustness in biological systems have resulted in the characterization of reactions that facilitate homeostasis, temporal adaptation-related processes and the role of cellular pathways in the metabolic response to changing conditions remain elusive. Results Here we develop a flux-based approach that allows the integration of time-resolved transcriptomics data with genome-scale metabolic networks. Our framework uses bilevel optimization to extract temporal minimal operating networks from a given large-scale metabolic model. The minimality of the extracted networks enables the computation of elementary flux modes for each time point, which are in turn used to characterize the transitional behavior of the network as well as of individual reactions. Application of the approach to the metabolic network of Escherichia coli in conjunction with time-series gene expression data from cold and heat stress results in two distinct time-resolved modes for reaction utilization—constantly active and temporally (de)activated reactions. These patterns contrast the processes for the maintenance of basic cellular functioning and those required for adaptation. They also allow the prediction of reactions involved in time- and stress-specific metabolic response and are verified with respect to existing experimental studies. Conclusions Altogether, our findings pinpoint the inherent relation between the systemic properties of robustness and adaptability arising from the interplay of metabolic network structure and changing environment.
Collapse
Affiliation(s)
- Nadine Töpfer
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | | |
Collapse
|
40
|
Krüger B, Liang C, Prell F, Fieselmann A, Moya A, Schuster S, Völker U, Dandekar T. Metabolic adaptation and protein complexes in prokaryotes. Metabolites 2012; 2:940-58. [PMID: 24957769 PMCID: PMC3901225 DOI: 10.3390/metabo2040940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 02/07/2023] Open
Abstract
Protein complexes are classified and have been charted in several large-scale screening studies in prokaryotes. These complexes are organized in a factory-like fashion to optimize protein production and metabolism. Central components are conserved between different prokaryotes; major complexes involve carbohydrate, amino acid, fatty acid and nucleotide metabolism. Metabolic adaptation changes protein complexes according to environmental conditions. Protein modification depends on specific modifying enzymes. Proteins such as trigger enzymes display condition-dependent adaptation to different functions by participating in several complexes. Several bacterial pathogens adapt rapidly to intracellular survival with concomitant changes in protein complexes in central metabolism and optimize utilization of their favorite available nutrient source. Regulation optimizes protein costs. Master regulators lead to up- and downregulation in specific subnetworks and all involved complexes. Long protein half-life and low level expression detaches protein levels from gene expression levels. However, under optimal growth conditions, metabolite fluxes through central carbohydrate pathways correlate well with gene expression. In a system-wide view, major metabolic changes lead to rapid adaptation of complexes and feedback or feedforward regulation. Finally, prokaryotic enzyme complexes are involved in crowding and substrate channeling. This depends on detailed structural interactions and is verified for specific effects by experiments and simulations.
Collapse
Affiliation(s)
- Beate Krüger
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
| | - Florian Prell
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
| | - Astrid Fieselmann
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
| | - Andres Moya
- Unidad Mixta de Investigación en Genómica y Salud CSISP-UVEG, University of València José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17487, Greifswald, Germany.
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
41
|
Dandekar T, Fieselmann A, Majeed S, Ahmed Z. Software applications toward quantitative metabolic flux analysis and modeling. Brief Bioinform 2012; 15:91-107. [PMID: 23142828 DOI: 10.1093/bib/bbs065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolites and their pathways are central for adaptation and survival. Metabolic modeling elucidates in silico all the possible flux pathways (flux balance analysis, FBA) and predicts the actual fluxes under a given situation, further refinement of these models is possible by including experimental isotopologue data. In this review, we initially introduce the key theoretical concepts and different analysis steps in the modeling process before comparing flux calculation and metabolite analysis programs such as C13, BioOpt, COBRA toolbox, Metatool, efmtool, FiatFlux, ReMatch, VANTED, iMAT and YANA. Their respective strengths and limitations are discussed and compared to alternative software. While data analysis of metabolites, calculation of metabolic fluxes, pathways and their condition-specific changes are all possible, we highlight the considerations that need to be taken into account before deciding on a specific software. Current challenges in the field include the computation of large-scale networks (in elementary mode analysis), regulatory interactions and detailed kinetics, and these are discussed in the light of powerful new approaches.
Collapse
Affiliation(s)
- Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wüerzburg, Am Hubland, 97074 Wuerzburg, Germany. Tel.: +49-931-318-4551; Fax: +49-931-318-4552;
| | | | | | | |
Collapse
|
42
|
Machado D, Soons Z, Patil KR, Ferreira EC, Rocha I. Random sampling of elementary flux modes in large-scale metabolic networks. Bioinformatics 2012; 28:i515-i521. [PMID: 22962475 PMCID: PMC3436828 DOI: 10.1093/bioinformatics/bts401] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. RESULTS Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. AVAILABILITY Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. CONTACT dmachado@deb.uminho.pt SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Daniel Machado
- IBB-Institute for Biotechnology and Bioengineering/Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
43
|
Ackermann J, Einloft J, Nöthen J, Koch I. Reduction techniques for network validation in systems biology. J Theor Biol 2012; 315:71-80. [PMID: 22982289 DOI: 10.1016/j.jtbi.2012.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
The rapidly increasing amount of experimental biological data enables the development of large and complex, often genome-scale models of molecular systems. The simulation and analysis of these computer models of metabolism, signal transduction, and gene regulation are standard applications in systems biology, but size and complexity of the networks limit the feasibility of many methods. Reduction of networks provides a hierarchical view of complex networks and gives insight knowledge into their coarse-grained structural properties. Although network reduction has been extensively studied in computer science, adaptation and exploration of these concepts are still lacking for the analysis of biochemical reaction systems. Using the Petri net formalism, we describe two local network structures, common transition pairs and minimal transition invariants. We apply these two structural elements for network reduction. The reduction preserves the CTI-property (covered by transition invariants), which is an important feature for completeness of biological models. We demonstrate this concept for a selection of metabolic networks including a benchmark network of Saccharomyces cerevisiae whose straightforward treatment is not yet feasible even on modern supercomputers.
Collapse
Affiliation(s)
- J Ackermann
- Department of Molecular Bioinformatics, Johann Wolfgang Goethe-University Frankfurt am Main, Institute of Computer Science, Robert-Mayer-Str. 11-15, 60325 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
44
|
Wang Z, Liu J, Yu Y, Chen Y, Wang Y. Modular pharmacology: the next paradigm in drug discovery. Expert Opin Drug Discov 2012; 7:667-77. [DOI: 10.1517/17460441.2012.692673] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Marashi SA, David L, Bockmayr A. On flux coupling analysis of metabolic subsystems. J Theor Biol 2012; 302:62-9. [DOI: 10.1016/j.jtbi.2012.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/23/2012] [Accepted: 02/21/2012] [Indexed: 01/04/2023]
|
46
|
Marashi SA, David L, Bockmayr A. Analysis of metabolic subnetworks by flux cone projection. Algorithms Mol Biol 2012; 7:17. [PMID: 22642830 PMCID: PMC3408373 DOI: 10.1186/1748-7188-7-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/29/2012] [Indexed: 12/05/2022] Open
Abstract
Background Analysis of elementary modes (EMs) is proven to be a powerful constraint-based method in the study of metabolic networks. However, enumeration of EMs is a hard computational task. Additionally, due to their large number, EMs cannot be simply used as an input for subsequent analysis. One possibility is to limit the analysis to a subset of interesting reactions. However, analysing an isolated subnetwork can result in finding incorrect EMs which are not part of any steady-state flux distribution of the original network. The ideal set to describe the reaction activity in a subnetwork would be the set of all EMs projected to the reactions of interest. Recently, the concept of "elementary flux patterns" (EFPs) has been proposed. Each EFP is a subset of the support (i.e., non-zero elements) of at least one EM. Results We introduce the concept of ProCEMs (Projected Cone Elementary Modes). The ProCEM set can be computed by projecting the flux cone onto a lower-dimensional subspace and enumerating the extreme rays of the projected cone. In contrast to EFPs, ProCEMs are not merely a set of reactions, but projected EMs. We additionally prove that the set of EFPs is included in the set of ProCEM supports. Finally, ProCEMs and EFPs are compared for studying substructures of biological networks. Conclusions We introduce the concept of ProCEMs and recommend its use for the analysis of substructures of metabolic networks for which the set of EMs cannot be computed.
Collapse
|
47
|
Dandekar T, Astrid F, Jasmin P, Hensel M. Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front Microbiol 2012; 3:164. [PMID: 22563326 PMCID: PMC3342586 DOI: 10.3389/fmicb.2012.00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/12/2012] [Indexed: 11/15/2022] Open
Abstract
The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole (SCV) in host cells. We summarize latest results on metabolic requirements for Salmonella during infection. This includes intracellular phenotypes of mutant strains based on metabolic modeling and experimental tests, isotopolog profiling using 13C-compounds in intracellular Salmonella, and complementation of metabolic defects for attenuated mutant strains towards a comprehensive understanding of the metabolic requirements of the intracellular lifestyle of Salmonella. Helpful for this are also genomic comparisons. We outline further recent studies and which analyses of intracellular phenotypes and improved metabolic simulations were done and comment on technical required steps as well as progress involved in the iterative refinement of metabolic flux models, analyses of mutant phenotypes, and isotopolog analyses. Salmonella lifestyle is well-adapted to the SCV and its specific metabolic requirements. Salmonella metabolism adapts rapidly to SCV conditions, the metabolic generalist Salmonella is quite successful in host infection.
Collapse
Affiliation(s)
- Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
48
|
Jol SJ, Kümmel A, Terzer M, Stelling J, Heinemann M. System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Comput Biol 2012; 8:e1002415. [PMID: 22416224 PMCID: PMC3296127 DOI: 10.1371/journal.pcbi.1002415] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/20/2012] [Indexed: 11/29/2022] Open
Abstract
One of the most obvious phenotypes of a cell is its metabolic activity, which is defined by the fluxes in the metabolic network. Although experimental methods to determine intracellular fluxes are well established, only a limited number of fluxes can be resolved. Especially in eukaryotes such as yeast, compartmentalization and the existence of many parallel routes render exact flux analysis impossible using current methods. To gain more insight into the metabolic operation of S. cerevisiae we developed a new computational approach where we characterize the flux solution space by determining elementary flux modes (EFMs) that are subsequently classified as thermodynamically feasible or infeasible on the basis of experimental metabolome data. This allows us to provably rule out the contribution of certain EFMs to the in vivo flux distribution. From the 71 million EFMs in a medium size metabolic network of S. cerevisiae, we classified 54% as thermodynamically feasible. By comparing the thermodynamically feasible and infeasible EFMs, we could identify reaction combinations that span the cytosol and mitochondrion and, as a system, cannot operate under the investigated glucose batch conditions. Besides conclusions on single reactions, we found that thermodynamic constraints prevent the import of redox cofactor equivalents into the mitochondrion due to limits on compartmental cofactor concentrations. Our novel approach of incorporating quantitative metabolite concentrations into the analysis of the space of all stoichiometrically feasible flux distributions allows generating new insights into the system-level operation of the intracellular fluxes without making assumptions on metabolic objectives of the cell. Fluxes in metabolic pathways are a highly informative aspect of an organism's phenotype. The experimental determination of such fluxes is well established and has proven very useful. To address some of the limitations of experimental flux analysis, such as when the cell is divided in multiple compartments, stoichiometric modeling provides a valuable addition. The approach that we take is based on stoichiometric modeling where we consider the thermodynamic feasibility of many different possible routes through the metabolic network of Saccharomyces cerevisiae using experimentally determined metabolite concentrations. We show that next to conclusions on single biochemical reactions in the metabolic network, we obtain system-level insights on thermodynamically infeasible flux patterns. We found that the compartmental concentrations of and NADH are the causes for the system-level infeasibilities. With the current advances in quantitative metabolomics and biochemical thermodynamics, we envision that the presented method will help gaining more insight into complex metabolic systems.
Collapse
Affiliation(s)
- Stefan J. Jol
- Life Science Zurich PhD Program on Systems Biology of Complex Diseases, ETH Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Anne Kümmel
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Marco Terzer
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Matthias Heinemann
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, AG Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 2012; 10:291-305. [PMID: 22367118 DOI: 10.1038/nrmicro2737] [Citation(s) in RCA: 537] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reconstructed microbial metabolic networks facilitate a mechanistic description of the genotype-phenotype relationship through the deployment of constraint-based reconstruction and analysis (COBRA) methods. As reconstructed networks leverage genomic data for insight and phenotype prediction, the development of COBRA methods has accelerated following the advent of whole-genome sequencing. Here, we describe a phylogeny of COBRA methods that has rapidly evolved from the few early methods, such as flux balance analysis and elementary flux mode analysis, into a repertoire of more than 100 methods. These methods have enabled genome-scale analysis of microbial metabolism for numerous basic and applied uses, including antibiotic discovery, metabolic engineering and modelling of microbial community behaviour.
Collapse
Affiliation(s)
- Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, USA
| | | | | |
Collapse
|
50
|
Trinh CT, Thompson RA. Elementary mode analysis: a useful metabolic pathway analysis tool for reprograming microbial metabolic pathways. Subcell Biochem 2012; 64:21-42. [PMID: 23080244 DOI: 10.1007/978-94-007-5055-5_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elementary mode analysis is a useful metabolic pathway analysis tool to characterize cellular metabolism. It can identify all feasible metabolic pathways known as elementary modes that are inherent to a metabolic network. Each elementary mode contains a minimal and unique set of enzymatic reactions that can support cellular functions at steady state. Knowledge of all these pathway options enables systematic characterization of cellular phenotypes, analysis of metabolic network properties (e.g. structure, regulation, robustness, and fragility), phenotypic behavior discovery, and rational strain design for metabolic engineering application. This chapter focuses on the application of elementary mode analysis to reprogram microbial metabolic pathways for rational strain design and the metabolic pathway evolution of designed strains.
Collapse
Affiliation(s)
- Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA,
| | | |
Collapse
|