1
|
Raitoharju E, Rajić S, Marttila S. Non-coding 886 ( nc886/ vtRNA2-1), the epigenetic odd duck - implications for future studies. Epigenetics 2024; 19:2332819. [PMID: 38525792 DOI: 10.1080/15592294.2024.2332819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding 886 (nc886, vtRNA2-1) is the only human polymorphically imprinted gene, in which the methylation status is not determined by genetics. Existing literature regarding the establishment, stability and consequences of the methylation pattern, as well as the nature and function of the nc886 RNAs transcribed from the locus, are contradictory. For example, the methylation status of the locus has been reported to be stable through life and across somatic tissues, but also susceptible to environmental effects. The nature of the produced nc886 RNA(s) has been redefined multiple times, and in carcinogenesis, these RNAs have been reported to have conflicting roles. In addition, due to the bimodal methylation pattern of the nc886 locus, traditional genome-wide methylation analyses can lead to false-positive results, especially in smaller datasets. Herein, we aim to summarize the existing literature regarding nc886, discuss how the characteristics of nc886 give rise to contradictory results, as well as to reinterpret, reanalyse and, where possible, replicate the results presented in the current literature. We also introduce novel findings on how the distribution of the nc886 methylation pattern is associated with the geographical origins of the population and describe the methylation changes in a large variety of human tumours. Through the example of this one peculiar genetic locus and RNA, we aim to highlight issues in the analysis of DNA methylation and non-coding RNAs in general and offer our suggestions for what should be taken into consideration in future analyses.
Collapse
Affiliation(s)
- Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
K C R, Cheng R, Zhou S, Lizarazo S, Smith DJ, Van Bortle K. Evidence of RNA polymerase III recruitment and transcription at protein-coding gene promoters. Mol Cell 2024:S1097-2765(24)00771-8. [PMID: 39393362 DOI: 10.1016/j.molcel.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
The transcriptional interplay of human RNA polymerase I (RNA Pol I), RNA Pol II, and RNA Pol III remains largely uncharacterized due to limited integrative genomic analyses for all three enzymes. To address this gap, we applied a uniform framework to quantify global RNA Pol I, RNA Pol II, and RNA Pol III occupancies and identify both canonical and noncanonical patterns of gene localization. Most notably, our survey captures unexpected RNA Pol III recruitment at promoters of specific protein-coding genes. We show that such RNA Pol III-occupied promoters are enriched for small nascent RNAs terminating in a run of 4 Ts-a hallmark of RNA Pol III termination indicative of constrained RNA Pol III transcription. Taken further, RNA Pol III disruption generally reduces the expression of RNA Pol III-occupied protein-coding genes, suggesting RNA Pol III recruitment and transcription enhance RNA Pol II activity. These findings resemble analogous patterns of RNA Pol II activity at RNA Pol III-transcribed genes, altogether uncovering a reciprocal form of crosstalk between RNA Pol II and RNA Pol III.
Collapse
Affiliation(s)
- Rajendra K C
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruiying Cheng
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
4
|
Gao L, Behrens A, Rodschinka G, Forcelloni S, Wani S, Strasser K, Nedialkova DD. Selective gene expression maintains human tRNA anticodon pools during differentiation. Nat Cell Biol 2024; 26:100-112. [PMID: 38191669 PMCID: PMC10791582 DOI: 10.1038/s41556-023-01317-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024]
Abstract
Transfer RNAs are essential for translating genetic information into proteins. The human genome contains hundreds of predicted tRNA genes, many in multiple copies. How their expression is regulated to control tRNA repertoires is unknown. Here we combined quantitative tRNA profiling and chromatin immunoprecipitation with sequencing to measure tRNA expression following the differentiation of human induced pluripotent stem cells into neuronal and cardiac cells. We find that tRNA transcript levels vary substantially, whereas tRNA anticodon pools, which govern decoding rates, are more stable among cell types. Mechanistically, RNA polymerase III transcribes a wide range of tRNA genes in human induced pluripotent stem cells but on differentiation becomes constrained to a subset we define as housekeeping tRNAs. This shift is mediated by decreased mTORC1 signalling, which activates the RNA polymerase III repressor MAF1. Our data explain how tRNA anticodon pools are buffered to maintain decoding speed across cell types and reveal that mTORC1 drives selective tRNA expression during differentiation.
Collapse
Affiliation(s)
- Lexi Gao
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Geraldine Rodschinka
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sascha Wani
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katrin Strasser
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
5
|
Willemin G, Mange F, Praz V, Lorrain S, Cousin P, Roger C, Willis IM, Hernandez N. Contrasting effects of whole-body and hepatocyte-specific deletion of the RNA polymerase III repressor Maf1 in the mouse. Front Mol Biosci 2023; 10:1297800. [PMID: 38143800 PMCID: PMC10746880 DOI: 10.3389/fmolb.2023.1297800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
MAF1 is a nutrient-sensitive, TORC1-regulated repressor of RNA polymerase III (Pol III). MAF1 downregulation leads to increased lipogenesis in Drosophila melanogaster, Caenorhabditis elegans, and mice. However, Maf1 -/- mice are lean as increased lipogenesis is counterbalanced by futile pre-tRNA synthesis and degradation, resulting in increased energy expenditure. We compared Chow-fed Maf1 -/- mice with Chow- or High Fat (HF)-fed Maf1 hep-/- mice that lack MAF1 specifically in hepatocytes. Unlike Maf1 -/- mice, Maf1 hep-/- mice become heavier and fattier than control mice with old age and much earlier under a HF diet. Liver ChIPseq, RNAseq and proteomics analyses indicate increased Pol III occupancy at Pol III genes, very few differences in mRNA accumulation, and protein accumulation changes consistent with increased lipogenesis. Futile pre-tRNA synthesis and degradation in the liver, as likely occurs in Maf1 hep-/- mice, thus seems insufficient to counteract increased lipogenesis. Indeed, RNAseq and metabolite profiling indicate that liver phenotypes of Maf1 -/- mice are strongly influenced by systemic inter-organ communication. Among common changes in the three phenotypically distinct cohorts, Angiogenin downregulation is likely linked to increased Pol III occupancy of tRNA genes in the Angiogenin promoter.
Collapse
Affiliation(s)
- Gilles Willemin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - François Mange
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Lausanne Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Séverine Lorrain
- Protein Analysis Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Catherine Roger
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Sachs P, Bergmaier P, Treutwein K, Mermoud JE. The Conserved Chromatin Remodeler SMARCAD1 Interacts with TFIIIC and Architectural Proteins in Human and Mouse. Genes (Basel) 2023; 14:1793. [PMID: 37761933 PMCID: PMC10530723 DOI: 10.3390/genes14091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vertebrates, SMARCAD1 participates in transcriptional regulation, heterochromatin maintenance, DNA repair, and replication. The molecular basis underlying its involvement in these processes is not well understood. We identified the RNA polymerase III general transcription factor TFIIIC as an interaction partner of native SMARCAD1 in mouse and human models using endogenous co-immunoprecipitations. TFIIIC has dual functionality, acting as a general transcription factor and as a genome organizer separating chromatin domains. We found that its partnership with SMARCAD1 is conserved across different mammalian cell types, from somatic to pluripotent cells. Using purified proteins, we confirmed that their interaction is direct. A gene expression analysis suggested that SMARCAD1 is dispensable for TFIIIC function as an RNA polymerase III transcription factor in mouse ESCs. The distribution of TFIIIC and SMARCAD1 in the ESC genome is distinct, and unlike in yeast, SMARCAD1 is not enriched at active tRNA genes. Further analysis of SMARCAD1-binding partners in pluripotent and differentiated mammalian cells reveals that SMARCAD1 associates with several factors that have key regulatory roles in chromatin organization, such as cohesin, laminB, and DDX5. Together, our work suggests for the first time that the SMARCAD1 enzyme participates in genome organization in mammalian nuclei through interactions with architectural proteins.
Collapse
Affiliation(s)
- Parysatis Sachs
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- CMC Development, R&D, Sanofi, 65926 Frankfurt, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- Global Development Operations, R&D, Merck Healthcare, 64293 Darmstadt, Germany
| | - Katrin Treutwein
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| | - Jacqueline E. Mermoud
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
7
|
Barcons-Simon A, Carrington M, Siegel TN. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat Microbiol 2023; 8:1408-1418. [PMID: 37524976 DOI: 10.1038/s41564-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the impact of nuclear organization on antigenic variation in the protozoan pathogens Trypanosoma brucei and Plasmodium falciparum. In particular, we highlight the relevance of nuclear organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation.
Collapse
Affiliation(s)
- Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Butterfield SP, Sizer RE, Rand E, White RJ. Selection of tRNA Genes in Human Breast Tumours Varies Substantially between Individuals. Cancers (Basel) 2023; 15:3576. [PMID: 37509247 PMCID: PMC10377016 DOI: 10.3390/cancers15143576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Abnormally elevated expression of tRNA is a common feature of breast tumours. Rather than a uniform increase in all tRNAs, some are deregulated more strongly than others. Elevation of particular tRNAs has been associated with poor prognosis for patients, and experimental models have demonstrated the ability of some tRNAs to promote proliferation or metastasis. Each tRNA isoacceptor is encoded redundantly by multiple genes, which are commonly dispersed across several chromosomes. An unanswered question is whether the consistently high expression of a tRNA in a cancer type reflects the consistent activation of the same members of a gene family, or whether different family members are activated from one patient to the next. To address this question, we interrogated ChIP-seq data to determine which tRNA genes were active in individual breast tumours. This revealed that distinct sets of tRNA genes become activated in individual cancers, whereas there is much less variation in the expression patterns of families. Several pathways have been described that are likely to contribute to increases in tRNA gene transcription in breast tumours, but none of these can adequately explain the observed variation in the choice of genes between tumours. Current models may therefore lack at least one level of regulation.
Collapse
Affiliation(s)
| | - Rebecca E Sizer
- Department of Biology, University of York, York YO10 5DD, UK
| | - Emma Rand
- Department of Biology, University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
9
|
Lee YS, Lee YS. nc886, an RNA Polymerase III-Transcribed Noncoding RNA Whose Expression Is Dynamic and Regulated by Intriguing Mechanisms. Int J Mol Sci 2023; 24:ijms24108533. [PMID: 37239877 DOI: 10.3390/ijms24108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
nc886 is a medium-sized non-coding RNA that is transcribed by RNA polymerase III (Pol III) and plays diverse roles in tumorigenesis, innate immunity, and other cellular processes. Although Pol III-transcribed ncRNAs were previously thought to be expressed constitutively, this concept is evolving, and nc886 is the most notable example. The transcription of nc886 in a cell, as well as in human individuals, is controlled by multiple mechanisms, including its promoter CpG DNA methylation and transcription factor activity. Additionally, the RNA instability of nc886 contributes to its highly variable steady-state expression levels in a given situation. This comprehensive review discusses nc886's variable expression in physiological and pathological conditions and critically examines the regulatory factors that determine its expression levels.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
10
|
Pekarsky Y, Balatti V, Croce CM. tRNA-derived fragments (tRFs) in cancer. J Cell Commun Signal 2023; 17:47-54. [PMID: 36036848 PMCID: PMC10030754 DOI: 10.1007/s12079-022-00690-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022] Open
Abstract
tRNA fragments (tRNA derived fragments or tRFs) are small single stranded RNA molecules derived from pre-tRNAs and mature tRNAs. tRFs have been known for a number of years, but previously they were believed to be not important products of tRNA degradation. tRFs can be unique, like tRF-1 s, or redundant, like tRF-3 s and tRF-5 s. Scientific interest in tRFs has drastically increased in the last 5 years. Many studies have found that tRFs are differentially expressed in many normal cellular processes as well as in transformed cancer cells. Dysregulation of tRFs expression have been reported in multiple major types of cancer including solid cancers and lymphoid malignancies. However the exact molecular role of these molecules is not entirely clear. A number of studies proposed that tRFs can work as microRNAs by targeting gene expression. Here we discuss recent studies showing differential expression of tRFs in many cancers as well as what is currently known about tRFs biological functions in cancer cells.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Biomedical Research Tower, Room 1082, 460 West 12th Avenue, Columbus, OH, 43210, USA.
| | - Veronica Balatti
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Biomedical Research Tower, Room 1082, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Biomedical Research Tower, Room 1082, 460 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Watt KE, Macintosh J, Bernard G, Trainor PA. RNA Polymerases I and III in development and disease. Semin Cell Dev Biol 2023; 136:49-63. [PMID: 35422389 PMCID: PMC9550887 DOI: 10.1016/j.semcdb.2022.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.
Collapse
Affiliation(s)
- Kristin En Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
12
|
Abstract
tRNAs are key adaptor molecules that decipher the genetic code during translation of mRNAs in protein synthesis. In contrast to the traditional view of tRNAs as ubiquitously expressed housekeeping molecules, awareness is now growing that tRNA-encoding genes display tissue-specific and cell type-specific patterns of expression, and that tRNA gene expression and function are both dynamically regulated by post-transcriptional RNA modifications. Moreover, dysregulation of tRNAs, mediated by alterations in either their abundance or function, can have deleterious consequences that contribute to several distinct human diseases, including neurological disorders and cancer. Accumulating evidence shows that reprogramming of mRNA translation through altered tRNA activity can drive pathological processes in a codon-dependent manner. This Review considers the emerging evidence in support of the precise control of functional tRNA levels as an important regulatory mechanism that coordinates mRNA translation and protein expression in physiological cell homeostasis, and highlights key examples of human diseases that are linked directly to tRNA dysregulation.
Collapse
Affiliation(s)
- Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Siegal
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Initiative for RNA Medicine, Harvard University, Boston, MA, USA.
| |
Collapse
|
13
|
Zeng X, Li J, Yang F, Xia R. The effect of narcotics on ferroptosis-related molecular mechanisms and signalling pathways. Front Pharmacol 2022; 13:1020447. [PMID: 36313359 PMCID: PMC9606818 DOI: 10.3389/fphar.2022.1020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ferroptosis is a novel programmed cell death form characterized by iron-mediated reactive oxygen species-induced lipid peroxidation and subsequent cell damage that is distinct from apoptosis, necroptosis, pyroptosis, and autophagy. Most studies on ferroptosis are based on its function and mechanism, but there have been relatively few studies on the effects of drugs, especially anaesthetics, on ferroptosis. Therefore, we summarized the recent literature on the effects of anaesthetics on ferroptosis to understand the underlying mechanism. In particular, we focused on the targets of various anaesthetics in different mechanisms of ferroptosis and the effects of ferroptosis induction or inhibition by narcotics on various diseases. The aims of this review are to provide a relatively reasonable drug regimen for clinicians, to explore potential ferroptosis protection drugs and targets, to reduce perioperative complications and to improve the postoperative performance of patients, especially those who are critically ill.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jingda Li
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| | - Rui Xia
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| |
Collapse
|
14
|
Vabret N, Najburg V, Solovyov A, Gopal R, McClain C, Šulc P, Balan S, Rahou Y, Beauclair G, Chazal M, Varet H, Legendre R, Sismeiro O, Sanchez David RY, Chauveau L, Jouvenet N, Markowitz M, van der Werf S, Schwartz O, Tangy F, Bhardwaj N, Greenbaum BD, Komarova AV. Y RNAs are conserved endogenous RIG-I ligands across RNA virus infection and are targeted by HIV-1. iScience 2022; 25:104599. [PMID: 35789859 PMCID: PMC9250025 DOI: 10.1016/j.isci.2022.104599] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) protect against microbial invasion by detecting specific molecular patterns found in pathogens and initiating an immune response. Although microbial-derived PRR ligands have been extensively characterized, the contribution and relevance of endogenous ligands to PRR activation remains overlooked. Here, we characterize the landscape of endogenous ligands that engage RIG-I-like receptors (RLRs) upon infection by different RNA viruses. In each infection, several RNAs transcribed by RNA polymerase III (Pol3) specifically engaged RLRs, particularly the family of Y RNAs. Sensing of Y RNAs was dependent on their mimicking of viral secondary structure and their 5'-triphosphate extremity. Further, we found that HIV-1 triggered a VPR-dependent downregulation of RNA triphosphatase DUSP11 in vitro and in vivo, inducing a transcriptome-wide change of cellular RNA 5'-triphosphorylation that licenses Y RNA immunogenicity. Overall, our work uncovers the contribution of endogenous RNAs to antiviral immunity and demonstrates the importance of this pathway in HIV-1 infection.
Collapse
Affiliation(s)
- Nicolas Vabret
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Valérie Najburg
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Alexander Solovyov
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ramya Gopal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher McClain
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Petr Šulc
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sreekumar Balan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yannis Rahou
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Guillaume Beauclair
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Maxime Chazal
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Hugo Varet
- Transcriptome and EpiGenome Platform, BioMics, Center of Innovation and Technological Research, Institut Pasteur, Université de Paris, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
- Hub Informatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP-CNRS), Institut Pasteur, Université de Paris, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Rachel Legendre
- Transcriptome and EpiGenome Platform, BioMics, Center of Innovation and Technological Research, Institut Pasteur, Université de Paris, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
- Hub Informatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP-CNRS), Institut Pasteur, Université de Paris, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Odile Sismeiro
- Transcriptome and EpiGenome Platform, BioMics, Center of Innovation and Technological Research, Institut Pasteur, Université de Paris, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Raul Y. Sanchez David
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Lise Chauveau
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Nolwenn Jouvenet
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, USA
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Extra-mural Member, Parker Institute of Cancer Immunotherapy, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Physiology, Biophysics, & Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anastassia V. Komarova
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université de Paris, CNRS UMR-3569, 75015 Paris, France
| |
Collapse
|
15
|
Van Bortle K, Marciano DP, Liu Q, Chou T, Lipchik AM, Gollapudi S, Geller BS, Monte E, Kamakaka RT, Snyder MP. A cancer-associated RNA polymerase III identity drives robust transcription and expression of snaR-A noncoding RNA. Nat Commun 2022; 13:3007. [PMID: 35637192 PMCID: PMC9151912 DOI: 10.1038/s41467-022-30323-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase III (Pol III) includes two alternate isoforms, defined by mutually exclusive incorporation of subunit POLR3G (RPC7α) or POLR3GL (RPC7β), in mammals. The contributions of POLR3G and POLR3GL to transcription potential has remained poorly defined. Here, we discover that loss of subunit POLR3G is accompanied by a restricted repertoire of genes transcribed by Pol III. Particularly sensitive is snaR-A, a small noncoding RNA implicated in cancer proliferation and metastasis. Analysis of Pol III isoform biases and downstream chromatin features identifies loss of POLR3G and snaR-A during differentiation, and conversely, re-establishment of POLR3G gene expression and SNAR-A gene features in cancer contexts. Our results support a model in which Pol III identity functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease factor. RNA polymerase III changes its subunit composition during mammalian development. Here the authors report that loss of subunit POLR3G, which re-emerges in cancer, promotes expression of small NF90-associated RNA (snaR-A), a noncoding RNA implicated in cell proliferation and metastasis.
Collapse
|
16
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
17
|
Lee YS. Are We Studying Non-Coding RNAs Correctly? Lessons from nc886. Int J Mol Sci 2022; 23:ijms23084251. [PMID: 35457068 PMCID: PMC9027504 DOI: 10.3390/ijms23084251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNAs (ncRNAs), such as microRNAs or long ncRNAs, have brought about a new paradigm in the regulation of gene expression. Sequencing technologies have detected transcripts with tremendous sensitivity and throughput and revealed that the majority of them lack protein-coding potential. Myriad articles have investigated numerous ncRNAs and many of them claim that ncRNAs play gene-regulatory roles. However, it is questionable whether all these articles draw conclusions through cautious gain- and loss-of function experiments whose design was reasonably based on an ncRNA's correct identity and features. In this review, these issues are discussed with a regulatory ncRNA, nc886, as an example case to represent cautions and guidelines when studying ncRNAs.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
18
|
Epigenetic regulation of human non-coding RNA gene transcription. Biochem Soc Trans 2022; 50:723-736. [PMID: 35285478 DOI: 10.1042/bst20210860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Recent investigations on the non-protein-coding transcriptome of human cells have revealed previously hidden layers of gene regulation relying on regulatory non-protein-coding (nc) RNAs, including the widespread ncRNA-dependent regulation of epigenetic chromatin states and of mRNA translation and stability. However, despite its centrality, the epigenetic regulation of ncRNA genes has received relatively little attention. In this mini-review, we attempt to provide a synthetic account of recent literature suggesting an unexpected complexity in chromatin-dependent regulation of ncRNA gene transcription by the three human nuclear RNA polymerases. Emerging common features, like the heterogeneity of chromatin states within ncRNA multigene families and their influence on 3D genome organization, point to unexplored issues whose investigation could lead to a better understanding of the whole human epigenomic network.
Collapse
|
19
|
Saponaro M. Transcription-Replication Coordination. Life (Basel) 2022; 12:108. [PMID: 35054503 PMCID: PMC8781949 DOI: 10.3390/life12010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
Transcription and replication are the two most essential processes that a cell does with its DNA: they allow cells to express the genomic content that is required for their functions and to create a perfect copy of this genomic information to pass on to the daughter cells. Nevertheless, these two processes are in a constant ambivalent relationship. When transcription and replication occupy the same regions, there is the possibility of conflicts between transcription and replication as transcription can impair DNA replication progression leading to increased DNA damage. Nevertheless, DNA replication origins are preferentially located in open chromatin next to actively transcribed regions, meaning that the possibility of conflicts is potentially an accepted incident for cells. Data in the literature point both towards the existence or not of coordination between these two processes to avoid the danger of collisions. Several reviews have been published on transcription-replication conflicts, but we focus here on the most recent findings that relate to how these two processes are coordinated in eukaryotes, considering advantages and disadvantages from coordination, how likely conflicts are at any given time, and which are their potential hotspots in the genome.
Collapse
Affiliation(s)
- Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
21
|
Yan B, Tzertzinis G, Schildkraut I, Ettwiller L. Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Res 2021; 32:162-174. [PMID: 34815308 PMCID: PMC8744680 DOI: 10.1101/gr.275784.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Determination of eukaryotic transcription start sites (TSSs) has been based on methods that require the cap structure at the 5' end of transcripts derived from Pol II RNA polymerase. Consequently, these methods do not reveal TSSs derived from the other RNA polymerases that also play critical roles in various cell functions. To address this limitation, we developed ReCappable-seq, which comprehensively identifies TSS for both Pol II and non-Pol II transcripts at single-nucleotide resolution. The method relies on specific enzymatic exchange of 5' m7G caps and 5' triphosphates with a selectable tag. When applied to human transcriptomes, ReCappable-seq identifies Pol II TSSs that are in agreement with orthogonal methods such as CAGE. Additionally, ReCappable-seq reveals a rich landscape of TSSs associated with Pol III transcripts that have not previously been amenable to study at genome-wide scale. Novel TSS from non-Pol II transcription can be located in the nuclear and mitochondrial genomes. ReCappable-seq interrogates the regulatory landscape of coding and noncoding RNA concurrently and enables the classification of epigenetic profiles associated with Pol II and non-Pol II TSS.
Collapse
Affiliation(s)
- Bo Yan
- New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Ira Schildkraut
- New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
22
|
Lin Y, Cai J, Huang D, Zhou B, Luo Z, Yu S, Lu J. Effects of dexmedetomidine on the expression profile of tsRNAs in LPS-induced acute lung injury. J Clin Lab Anal 2021; 36:e24115. [PMID: 34811808 PMCID: PMC8761442 DOI: 10.1002/jcla.24115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is characterized by impaired alveolar function and excessive inflammation, which is commonly seen in clinical anesthesia and intensive care units. tRNA-derived small RNA (tsRNA) is a non-coding RNA that can be used as a potential disease diagnostic biomarker. The connection between ALI and tsRNA remains unknown. We aimed to explore the possible regulatory functions and mechanisms of tsRNAs in ALI treated with DEX. METHODS Firstly, we established the ALI model by LPS injection and explored the effect of dexmedetomidine (DEX) treatment on lung damage. Then, the lung tissues were obtained from the LPS and LPS + DEX group for small RNA sequencing. RESULTS We proved that DEX could ameliorate pulmonary injury, and decreased inflammation, pulmonary edema, and ferroptosis (MDA down-regulation and GPX4 up-regulation) in ALI. Furthermore, in the tsRNA expression profile, the top 10 down-regulated tsRNAs were tsRNA-1018, tsRNA-3045b, tsRNA-5021a, tsRNA-1020, tsRNA-5002b, tsRNA-3045b, tsRNA-1026, tsRNA-5004a, tsRNA-5005b and tsRNA-1009, and the top 10 up-regulated tsRNAs were tsRNA-3025b, tsRNA-3025a, tsRNA-5016b, tsRNA-3042b, tsRNA-3029b, tsRNA-3028b, tsRNA-5006a, tsRNA-3027b, tsRNA-3027a, and tsRNA-5009b. The enrichment analysis of GO terms and KEGG pathways pointed that target genes of DE-tsRNAs were mainly enriched in regulation of transcription-associated GO terms, NF-kappa B signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. The RT-qPCR results of tsRNA-1020 and tsRNA-1018 were in accordance with small RNA sequencing data. CONCLUSION DEX affected the abnormal expression of tsRNAs in ALI. These aberrantly expressed tsRNAs and enriched physiological processes provide a scientific basis for the diagnosis and treatment of ALI.
Collapse
Affiliation(s)
- Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Junying Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Dan Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Jun Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| |
Collapse
|
23
|
Lant JT, Kiri R, Duennwald ML, O'Donoghue P. Formation and persistence of polyglutamine aggregates in mistranslating cells. Nucleic Acids Res 2021; 49:11883-11899. [PMID: 34718744 PMCID: PMC8599886 DOI: 10.1093/nar/gkab898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T Lant
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rashmi Kiri
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Martin L Duennwald
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
24
|
Cai L, Xuan J, Lin Q, Wang J, Liu S, Xie F, Zheng L, Li B, Qu L, Yang J. Pol3Base: a resource for decoding the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs. Nucleic Acids Res 2021; 50:D279-D286. [PMID: 34747466 PMCID: PMC8728242 DOI: 10.1093/nar/gkab1033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes hundreds of non-coding RNA genes (ncRNAs), which involve in a variety of cellular processes. However, the expression, functions, regulatory networks and evolution of these Pol III-transcribed ncRNAs are still largely unknown. In this study, we developed a novel resource, Pol3Base (http://rna.sysu.edu.cn/pol3base/), to decode the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs. The current release of Pol3Base includes thousands of regulatory relationships between ∼79 000 ncRNAs and transcription factors by mining 56 ChIP-seq datasets. By integrating CLIP-seq datasets, we deciphered the interactions of these ncRNAs with >240 RNA binding proteins. Moreover, Pol3Base contains ∼9700 RNA modifications located within thousands of Pol III-transcribed ncRNAs. Importantly, we characterized expression profiles of ncRNAs in >70 tissues and 28 different tumor types. In addition, by comparing these ncRNAs from human and mouse, we revealed about 4000 evolutionary conserved ncRNAs. We also identified ∼11 403 tRNA-derived small RNAs (tsRNAs) in 32 different tumor types. Finally, by analyzing somatic mutation data, we investigated the mutation map of these ncRNAs to help uncover their potential roles in diverse diseases. This resource will help expand our understanding of potential functions and regulatory networks of Pol III-transcribed ncRNAs.
Collapse
Affiliation(s)
- Li Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Jiajia Xuan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Qiao Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Junhao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Fangzhou Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510275, P.R. China
| |
Collapse
|
25
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
26
|
Acton RJ, Yuan W, Gao F, Xia Y, Bourne E, Wozniak E, Bell J, Lillycrop K, Wang J, Dennison E, Harvey NC, Mein CA, Spector TD, Hysi PG, Cooper C, Bell CG. The genomic loci of specific human tRNA genes exhibit ageing-related DNA hypermethylation. Nat Commun 2021; 12:2655. [PMID: 33976121 PMCID: PMC8113476 DOI: 10.1038/s41467-021-22639-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/05/2021] [Indexed: 02/03/2023] Open
Abstract
The epigenome has been shown to deteriorate with age, potentially impacting on ageing-related disease. tRNA, while arising from only ˜46 kb (<0.002% genome), is the second most abundant cellular transcript. tRNAs also control metabolic processes known to affect ageing, through core translational and additional regulatory roles. Here, we interrogate the DNA methylation state of the genomic loci of human tRNA. We identify a genomic enrichment for age-related DNA hypermethylation at tRNA loci. Analysis in 4,350 MeDIP-seq peripheral-blood DNA methylomes (16-82 years), identifies 44 and 21 hypermethylating specific tRNAs at study-and genome-wide significance, respectively, contrasting with none hypomethylating. Validation and replication (450k array and independent targeted Bisuphite-sequencing) supported the hypermethylation of this functional unit. Tissue-specificity is a significant driver, although the strongest consistent signals, also independent of major cell-type change, occur in tRNA-iMet-CAT-1-4 and tRNA-Ser-AGA-2-6. This study presents a comprehensive evaluation of the genomic DNA methylation state of human tRNA genes and reveals a discreet hypermethylation with advancing age.
Collapse
Affiliation(s)
- Richard J Acton
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Charterhouse Square, Queen Mary University of London, London, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Wei Yuan
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital, King's College London, London, UK
- Institute of Cancer Research, Sutton, UK
| | - Fei Gao
- BGI-Shenzhen, Shenzhen, China
| | | | - Emma Bourne
- Barts & The London Genome Centre, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eva Wozniak
- Barts & The London Genome Centre, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jordana Bell
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital, King's College London, London, UK
| | - Karen Lillycrop
- Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Jun Wang
- Shenzhen Digital Life Institute, Shenzhen, Guangdong, China
- iCarbonX, Zhuhai, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Charles A Mein
- Barts & The London Genome Centre, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital, King's College London, London, UK
| | - Pirro G Hysi
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital, King's College London, London, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
27
|
Yukimoto A, Watanabe T, Sunago K, Nakamura Y, Tanaka T, Koizumi Y, Yoshida O, Tokumoto Y, Hirooka M, Abe M, Hiasa Y. The long noncoding RNA of RMRP is downregulated by PERK, which induces apoptosis in hepatocellular carcinoma cells. Sci Rep 2021; 11:7926. [PMID: 33846370 PMCID: PMC8041825 DOI: 10.1038/s41598-021-86592-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays an important role in hepatocyte degeneration, especially in patients with chronic liver injury. Protein kinase R-like endoplasmic reticulum kinase (PERK) is a key molecule in ER stress. PERK may contribute to apoptotic cell death in HCC, however the details of the mechanism are not clear. In this study, we identified PERK-associated molecules using transcriptome analysis. We modulated PERK expression using a plasmid, tunicamycin and siRNA against PERK, and then confirmed the target gene expression with real-time PCR and Northern blotting. We further analyzed the apoptotic function. Transcriptome analysis revealed that expression of the RNA component of mitochondrial RNA processing endoribonuclease (RMRP), which is a long noncoding RNA, was strongly correlated with the function of PERK. The expression of RMRP was correlated with the expression of PERK in experiments with the siRNA and PERK plasmid in both HCC cell lines and human HCC tissue. Furthermore, RMRP downregulation induced apoptotic cell death. RMRP is downregulated by PERK, which induces apoptosis in HCC. RMRP could be a new therapeutic target to regulate HCC in patients with chronic liver diseases associated with ER stress.
Collapse
Affiliation(s)
- Atsushi Yukimoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Kotaro Sunago
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Takaaki Tanaka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
28
|
Fort RS, Duhagon MA. Pan-cancer chromatin analysis of the human vtRNA genes uncovers their association with cancer biology. F1000Res 2021; 10:182. [PMID: 34354812 PMCID: PMC8287541 DOI: 10.12688/f1000research.28510.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The vault RNAs (vtRNAs) are a class of 84-141-nt eukaryotic non-coding RNAs transcribed by RNA polymerase III, associated to the ribonucleoprotein complex known as vault particle. Of the four human vtRNA genes, vtRNA1-1, vtRNA1-2 and vtRNA1-3, clustered at locus 1, are integral components of the vault particle, while vtRNA2-1 is a more divergent homologue located in a second locus. Gene expression studies of vtRNAs in large cohorts have been hindered by their unsuccessful sequencing using conventional transcriptomic approaches. Methods: VtRNA expression in The Cancer Genome Atlas (TCGA) Pan-Cancer cohort was estimated using the genome-wide DNA methylation and chromatin accessibility data (ATAC-seq) of their genes as surrogate variables. The association between vtRNA expression and patient clinical outcome, immune subtypes and transcriptionally co-regulated gene programs was analyzed in the dataset. Results: VtRNAs promoters are enriched in transcription factors related to viral infection. VtRNA2-1 is likely the most independently regulated homologue. VtRNA1-1 has the most accessible chromatin, followed by vtRNA1-2, vtRNA2-1 and vtRNA1-3. VtRNA1-1 and vtRNA1-3 chromatin status does not significantly change in cancer tissues. Meanwhile, vtRNA2-1 and vtRNA1-2 expression is widely deregulated in neoplastic tissues and its alteration is compatible with a broad oncogenic role for vtRNA1-2, and both tumor suppressor and oncogenic functions for vtRNA2-1. Yet, vtRNA1-1, vtRNA1-2 and vtRNA2-1 promoter DNA methylation predicts a shorter patient overall survival cancer-wide. In addition, gene ontology analyses of vtRNAs co-regulated genes identify a chromosome regulatory domain, epithelial differentiation, immune and thyroid cancer gene sets for specific vtRNAs. Furthermore, vtRNA expression patterns are associated with cancer immune subtypes and vtRNA1-2 expression is positively associated with cell proliferation and wound healing. Conclusions: Our study presents the landscape of vtRNA chromatin status cancer-wide, identifying co-regulated gene networks and ontological pathways associated with the different vtRNA genes that may account for their diverse roles in cancer.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay.,Depto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Montevideo, 11600, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay.,Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay
| |
Collapse
|
29
|
Abstract
Viral infection can dramatically change the gene expression landscape of the host cell, yet little is known regarding changes in noncoding gene transcription by RNA polymerase III (RNAPIII). Among these are transfer RNAs (tRNAs), which are fundamental in protein translation, yet whose gene regulatory features remain largely undefined in mammalian cells. Transfer RNAs (tRNAs) are transcribed by RNA polymerase III (RNAPIII) and play a central role in decoding our genome, yet their expression and noncanonical function remain understudied. Many DNA tumor viruses enhance the activity of RNAPIII, yet whether infection alters tRNA expression is largely unknown. Here, we present the first genome-wide analysis of how viral infection alters the tRNAome. Using a tRNA-specific sequencing method (DM-tRNA-seq), we find that the murine gammaherpesvirus MHV68 induces global changes in premature tRNA (pre-tRNA) expression, with 14% of tRNA genes upregulated more than 3-fold, indicating that differential tRNA gene induction is a characteristic of DNA virus infection. Elevated pre-tRNA expression corresponds to increased RNAPIII occupancy for the subset of tRNA genes tested; additionally, posttranscriptional mechanisms contribute to the accumulation of pre-tRNA species. We find increased abundance of tRNA fragments derived from pre-tRNAs upregulated by viral infection, suggesting that noncanonical tRNA cleavage is also affected. Furthermore, pre-tRNA accumulation, but not RNAPIII recruitment, requires gammaherpesvirus-induced degradation of host mRNAs by the virally encoded mRNA endonuclease muSOX. We hypothesize that depletion of pre-tRNA maturation or turnover machinery contributes to robust accumulation of full-length pre-tRNAs in infected cells. Collectively, these findings reveal pervasive changes to tRNA expression during DNA virus infection and highlight the potential of using viruses to explore tRNA biology.
Collapse
|
30
|
Moir RD, Lavados C, Lee J, Willis IM. Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160. Gene 2020; 768:145259. [PMID: 33148458 DOI: 10.1016/j.gene.2020.145259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Mutations in RNA polymerase III (Pol III) cause hypomeylinating leukodystrophy (HLD) and neurodegeneration in humans. POLR3A and POLR3B, the two largest Pol III subunits, together form the catalytic center and carry the majority of disease alleles. Disease-causing mutations include invariant and highly conserved residues that are predicted to negatively affect Pol III activity and decrease transcriptional output. A subset of HLD missense mutations in POLR3A cluster in the pore region that provides nucleotide access to the Pol III active site. These mutations were engineered at the corresponding positions in the Saccharomyces cerevisiae homolog, Rpc160, to evaluate their functional deficits. None of the mutations caused a growth or transcription phenotype in yeast. Each mutation was combined with a frequently occurring pore mutation, POLR3A G672E, which was also wild-type for growth and transcription. The double mutants showed a spectrum of phenotypes from wild-type to lethal, with only the least fit combinations showing an effect on Pol III transcription. In one slow-growing temperature-sensitive mutant the steady-state level of tRNAs was unaffected, however global tRNA synthesis was compromised, as was the synthesis of RPR1 and SNR52 RNAs. Affinity-purified mutant Pol III was broadly defective in both factor-independent and factor-dependent transcription in vitro across genes that represent the yeast Pol III transcriptome. Thus, the robustness of yeast Rpc160 to single Pol III leukodystrophy mutations in the pore domain can be overcome by a second mutation in the domain.
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Christian Lavados
- Graduate Program in Biomedical Science, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - JaeHoon Lee
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ian M Willis
- Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Báez-Becerra CT, Valencia-Rincón E, Velásquez-Méndez K, Ramírez-Suárez NJ, Guevara C, Sandoval-Hernandez A, Arboleda-Bustos CE, Olivos-Cisneros L, Gutiérrez-Ospina G, Arboleda H, Arboleda G. Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mech Ageing Dev 2020; 192:111360. [PMID: 32976914 DOI: 10.1016/j.mad.2020.111360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Recently, mutations in the RNA polymerase III subunit A (POLR3A) have been described as the cause of the neonatal progeria or Wiedemann-Rautenstrauch syndrome (WRS). POLR3A has important roles in transcription regulation of small RNAs, including tRNA, 5S rRNA, and 7SK rRNA. We aim to describe the cellular and molecular features of WRS fibroblasts. Cultures of primary fibroblasts from one WRS patient [monoallelic POLR3A variant c.3772_3773delCT (p.Leu1258Glyfs*12)] and one control patient were cultured in vitro. The mutation caused a decrease in the expression of wildtype POLR3A mRNA and POLR3A protein and a sharp increase in mutant protein expression. In addition, there was an increase in the nuclear localization of the mutant protein. These changes were associated with an increase in the number and area of nucleoli and to a high increase in the expression of pP53 and pH2AX. All these changes were associated with premature senescence. The present observations add to our understanding of the differences between Hutchinson-Gilford progeria syndrome and WRS and opens new alternatives to study cell senesce and human aging.
Collapse
Affiliation(s)
- Cindy Tatiana Báez-Becerra
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Estefania Valencia-Rincón
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Karen Velásquez-Méndez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nelson J Ramírez-Suárez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Claudia Guevara
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adrian Sandoval-Hernandez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E Arboleda-Bustos
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Leonora Olivos-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Humberto Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Pediatría, Facultad de Medicina, Universidad Nacional de Colombia Bogotá, Colombia
| | - Gonzalo Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
32
|
Täuber H, Hüttelmaier S, Köhn M. POLIII-derived non-coding RNAs acting as scaffolds and decoys. J Mol Cell Biol 2020; 11:880-885. [PMID: 31152666 PMCID: PMC6884708 DOI: 10.1093/jmcb/mjz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 04/14/2019] [Indexed: 12/17/2022] Open
Abstract
A large variety of eukaryotic small structured POLIII-derived non-coding RNAs (ncRNAs) have been described in the past. However, for only few, e.g. 7SL and H1/MRP families, cellular functions are well understood. For the vast majority of these transcripts, cellular functions remain unknown. Recent findings on the role of Y RNAs and other POLIII-derived ncRNAs suggest an evolutionarily conserved function of these ncRNAs in the assembly and function of ribonucleoprotein complexes (RNPs). These RNPs provide cellular `machineries’, which are essential for guiding the fate and function of a variety of RNAs. In this review, we summarize current knowledge on the role of POLIII-derived ncRNAs in the assembly and function of RNPs. We propose that these ncRNAs serve as scaffolding factors that `chaperone’ RNA-binding proteins (RBPs) to form functional RNPs. In addition or associated with this role, some small ncRNAs act as molecular decoys impairing the RBP-guided control of RNA fate by competing with other RNA substrates. This suggests that POLIII-derived ncRNAs serve essential and conserved roles in the assembly of larger RNPs and thus the control of gene expression by indirectly guiding the fate of mRNAs and lncRNAs.
Collapse
Affiliation(s)
- Hendrik Täuber
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Marcel Köhn
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany.,Julius Bernstein Institute of Physiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
33
|
MAF1 is a chronic repressor of RNA polymerase III transcription in the mouse. Sci Rep 2020; 10:11956. [PMID: 32686713 PMCID: PMC7371695 DOI: 10.1038/s41598-020-68665-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Maf1−/− mice are lean, obesity-resistant and metabolically inefficient. Their increased energy expenditure is thought to be driven by a futile RNA cycle that reprograms metabolism to meet an increased demand for nucleotides stemming from the deregulation of RNA polymerase (pol) III transcription. Metabolic changes consistent with this model have been reported in both fasted and refed mice, however the impact of the fasting-refeeding-cycle on pol III function has not been examined. Here we show that changes in pol III occupancy in the liver of fasted versus refed wild-type mice are largely confined to low and intermediate occupancy genes; high occupancy genes are unchanged. However, in Maf1−/− mice, pol III occupancy of the vast majority of active loci in liver and the levels of specific precursor tRNAs in this tissue and other organs are higher than wild-type in both fasted and refed conditions. Thus, MAF1 functions as a chronic repressor of active pol III loci and can modulate transcription under different conditions. Our findings support the futile RNA cycle hypothesis, elaborate the mechanism of pol III repression by MAF1 and demonstrate a modest effect of MAF1 on global translation via reduced mRNA levels and translation efficiencies for several ribosomal proteins.
Collapse
|
34
|
Functions of paralogous RNA polymerase III subunits POLR3G and POLR3GL in mouse development. Proc Natl Acad Sci U S A 2020; 117:15702-15711. [PMID: 32576691 DOI: 10.1073/pnas.1922821117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells contain two isoforms of RNA polymerase III (Pol III) that differ in only a single subunit, with POLR3G in one form (Pol IIIα) and the related POLR3GL in the other form (Pol IIIβ). Previous research indicates that POLR3G and POLR3GL are differentially expressed, with POLR3G expression being highly enriched in embryonic stem cells (ESCs) and tumor cells relative to the ubiquitously expressed POLR3GL. To date, the functional differences between these two subunits remain largely unexplored, especially in vivo. Here, we show that POLR3G and POLR3GL containing Pol III complexes bind the same target genes and assume the same functions both in vitro and in vivo and, to a significant degree, can compensate for each other in vivo. Notably, an observed defect in the differentiation ability of POLR3G knockout ESCs can be rescued by exogenous expression of POLR3GL. Moreover, whereas POLR3G knockout mice die at a very early embryonic stage, POLR3GL knockout mice complete embryonic development without noticeable defects but die at about 3 wk after birth with signs of both general growth defects and potential cerebellum-related neuronal defects. The different phenotypes of the knockout mice likely reflect differential expression levels of POLR3G and POLR3GL across developmental stages and between tissues and insufficient amounts of total Pol III in vivo.
Collapse
|
35
|
Boivin V, Reulet G, Boisvert O, Couture S, Elela SA, Scott MS. Reducing the structure bias of RNA-Seq reveals a large number of non-annotated non-coding RNA. Nucleic Acids Res 2020; 48:2271-2286. [PMID: 31980822 PMCID: PMC7049693 DOI: 10.1093/nar/gkaa028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The study of RNA expression is the fastest growing area of genomic research. However, despite the dramatic increase in the number of sequenced transcriptomes, we still do not have accurate estimates of the number and expression levels of non-coding RNA genes. Non-coding transcripts are often overlooked due to incomplete genome annotation. In this study, we use annotation-independent detection of RNA reads generated using a reverse transcriptase with low structure bias to identify non-coding RNA. Transcripts between 20 and 500 nucleotides were filtered and crosschecked with non-coding RNA annotations revealing 111 non-annotated non-coding RNAs expressed in different cell lines and tissues. Inspecting the sequence and structural features of these transcripts indicated that 60% of these transcripts correspond to new snoRNA and tRNA-like genes. The identified genes exhibited features of their respective families in terms of structure, expression, conservation and response to depletion of interacting proteins. Together, our data reveal a new group of RNA that are difficult to detect using standard gene prediction and RNA sequencing techniques, suggesting that reliance on actual gene annotation and sequencing techniques distorts the perceived architecture of the human transcriptome.
Collapse
Affiliation(s)
- Vincent Boivin
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Gaspard Reulet
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Olivier Boisvert
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sonia Couture
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
36
|
Yasukawa M, Ando Y, Yamashita T, Matsuda Y, Shoji S, Morioka MS, Kawaji H, Shiozawa K, Machitani M, Abe T, Yamada S, Kaneko MK, Kato Y, Furuta Y, Kondo T, Shirouzu M, Hayashizaki Y, Kaneko S, Masutomi K. CDK1 dependent phosphorylation of hTERT contributes to cancer progression. Nat Commun 2020; 11:1557. [PMID: 32214089 PMCID: PMC7096428 DOI: 10.1038/s41467-020-15289-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
The telomerase reverse transcriptase is upregulated in the majority of human cancers and contributes directly to cell transformation. Here we report that hTERT is phosphorylated at threonine 249 during mitosis by the serine/threonine kinase CDK1. Clinicopathological analyses reveal that phosphorylation of hTERT at threonine 249 occurs more frequently in aggressive cancers. Using CRISPR/Cas9 genome editing, we introduce substitution mutations at threonine 249 in the endogenous hTERT locus and find that phosphorylation of threonine 249 is necessary for hTERT-mediated RNA dependent RNA polymerase (RdRP) activity but dispensable for reverse transcriptase and terminal transferase activities. Cap Analysis of Gene Expression (CAGE) demonstrates that hTERT phosphorylation at 249 regulates the expression of specific genes that are necessary for cancer cell proliferation and tumor formation. These observations indicate that phosphorylation at threonine 249 regulates hTERT RdRP and contributes to cancer progression in a telomere independent manner. Regulated telomerase reverse transcriptase (hTERT) activity is common in human tumors. Here, the authors show that hTERT is phosphorylated by CDK1 and that this event is necessary for hTERT-mediated RNA dependent RNA polymerase activity but not for reverse transcriptase and terminal transferase activities.
Collapse
Affiliation(s)
- Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yoshinari Ando
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8641, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan.,Oncology Pathology, Department of Pathology and Host-Defense, Kagawa University, Kagawa, 761-0793, Japan
| | - Shisako Shoji
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Masaki Suimye Morioka
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, 351-0198, Japan
| | - Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Mitsuhiro Machitani
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takaya Abe
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | | | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8641, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
| |
Collapse
|
37
|
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Herrera LA. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:409-420. [PMID: 32244168 PMCID: PMC7118281 DOI: 10.1016/j.omtn.2020.03.003] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding transcripts that posttranscriptionally regulate gene expression via base-pairing complementarity. Their role in cancer can be related to tumor suppression or oncogenic function. Moreover, they have been linked to processes recognized as hallmarks of cancer, such as apoptosis, invasion, metastasis, and proliferation. Particularly, one of the first oncomiRs found upregulated in a variety of cancers, such as gliomas, breast cancer, and colorectal cancer, was microRNA-21 (miR-21). Some of its target genes associated with cancer are PTEN (phosphatase and tensin homolog), PDCD4 (programmed cell death protein 4), RECK (reversion-inducing cysteine-rich protein with Kazal motifs), and STAT3 (signal transducer activator of transcription 3). As a result, miR-21 has been proposed as a plausible diagnostic and prognostic biomarker, as well as a therapeutic target for several types of cancer. Currently, research and clinical trials to inhibit miR-21 through anti-miR-21 oligonucleotides and ADM-21 are being conducted. As all of the evidence suggests, miR-21 is involved in carcinogenic processes; therefore, inhibiting it could have effects on more than one type of cancer. However, whether miR-21 can be used as a tissue-specific biomarker should be analyzed with caution. Consequently, the purpose of this review is to outline the available information and recent advances regarding miR-21 as a potential biomarker in the clinical setting and as a therapeutic target in cancer to highlight its importance in the era of precision medicine.
Collapse
Affiliation(s)
- Diana Bautista-Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- CONACYT-Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | | | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Verónica Fragoso-Ontiveros
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico; Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico.
| |
Collapse
|
38
|
Liapi E, van Bilsen M, Verjans R, Schroen B. tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118465. [DOI: 10.1016/j.bbamcr.2019.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
|
39
|
Ferrari R, de Llobet Cucalon LI, Di Vona C, Le Dilly F, Vidal E, Lioutas A, Oliete JQ, Jochem L, Cutts E, Dieci G, Vannini A, Teichmann M, de la Luna S, Beato M. TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Mol Cell 2020; 77:475-487.e11. [PMID: 31759822 PMCID: PMC7014570 DOI: 10.1016/j.molcel.2019.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/20/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.
Collapse
Affiliation(s)
- Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Lara Isabel de Llobet Cucalon
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chiara Di Vona
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - François Le Dilly
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Vidal
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Antonios Lioutas
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Javier Quilez Oliete
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Laura Jochem
- The Institute of Cancer Research (ICR), London, UK
| | - Erin Cutts
- The Institute of Cancer Research (ICR), London, UK
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessandro Vannini
- The Institute of Cancer Research (ICR), London, UK; Human Technopole. Via Cristina Belgioioso, 171, 20157 Milano MI, Italy
| | - Martin Teichmann
- Université de Bordeaux, INSERM U1212 CNRS UMR 5320 146, Bordeaux, France
| | - Susana de la Luna
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
40
|
Puigdelloses M, González-Huárriz M, García-Moure M, Martínez-Vélez N, Esparragosa Vázquez I, Bruna J, Zandio B, Agirre A, Marigil M, Petrirena G, Nuñez-Córdoba JM, Tejada-Solís S, Díez-Valle R, Gállego-Culleré J, Martínez-Vila E, Patiño-García A, Alonso MM, Gállego Pérez-Larraya J. RNU6-1 in circulating exosomes differentiates GBM from non-neoplastic brain lesions and PCNSL but not from brain metastases. Neurooncol Adv 2020; 2:vdaa010. [PMID: 32642678 PMCID: PMC7212908 DOI: 10.1093/noajnl/vdaa010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Circulating biomarkers may assist in the processes of differential diagnosis and response assessment. GBM cells release extracellular vesicles containing a subset of proteins and nucleic acids. We previously demonstrated that exosomes isolated from the serum of GBM patients had an increased expression of RNU6-1 compared to healthy subjects. In this exploratory study, we investigated the role of this small noncoding RNA as a diagnostic biomarker for GBM versus other brain lesions with some potential radiological similarities. Methods We analyzed the expression of RNU6-1 in circulating exosomes of GBM patients (n = 18), healthy controls (n = 30), and patients with subacute stroke (n = 30), acute/subacute hemorrhage (n = 30), acute demyelinating lesions (n = 18), brain metastases (n = 21), and primary central nervous system lymphoma (PCNSL; n = 12) using digital droplet PCR. Results Expression of RNU6-1 was significantly higher in GBM patients than in healthy controls (P = .002). RNU6-1 levels were also significantly higher in exosomes from GBM patients than from patients with non-neoplastic lesions (stroke [P = .05], hemorrhage [P = .01], demyelinating lesions [P = .019]) and PCNSL (P = .004). In contrast, no significant differences were found between patients with GBM and brain metastases (P = .573). Receiver operator characteristic curve analyses supported the role of this biomarker in differentiating GBM from subacute stroke, acute/subacute hemorrhage, acute demyelinating lesions, and PCNSL (P < .05), but again not from brain metastases (P = .575). Conclusions Our data suggest that the expression of RNU6-1 in circulating exosomes could be useful for the differentiation of GBM from non-neoplastic brain lesions and PCNSL, but not from brain metastases.
Collapse
Affiliation(s)
- Montserrat Puigdelloses
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marisol González-Huárriz
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marc García-Moure
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Naiara Martínez-Vélez
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Inés Esparragosa Vázquez
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jordi Bruna
- Department of Neurology, Hospital de Bellvitge, Barcelona, Spain
| | - Beatriz Zandio
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Amaia Agirre
- POLYMAT, University of the Basque Country, San Sebastian, Spain
| | - Miguel Marigil
- Division of Neurosurgery, Lariboisière University Hospital, Paris, France
| | | | - Jorge M Nuñez-Córdoba
- Research Support Service, Central Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Preventive Medicine and Public Health, Medical School, Universidad de Navarra, Pamplona, Spain
| | - Sonia Tejada-Solís
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Department of Neurosurgery, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ricardo Díez-Valle
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Department of Neurosurgery, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | | | - Eduardo Martínez-Vila
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana Patiño-García
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M Alonso
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jaime Gállego Pérez-Larraya
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors, Center for the Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
41
|
Thornlow BP, Armstrong J, Holmes AD, Howard JM, Corbett-Detig RB, Lowe TM. Predicting transfer RNA gene activity from sequence and genome context. Genome Res 2020; 30:85-94. [PMID: 31857444 PMCID: PMC6961574 DOI: 10.1101/gr.256164.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/12/2019] [Indexed: 01/25/2023]
Abstract
Transfer RNA (tRNA) genes are among the most highly transcribed genes in the genome owing to their central role in protein synthesis. However, there is evidence for a broad range of gene expression across tRNA loci. This complexity, combined with difficulty in measuring transcript abundance and high sequence identity across transcripts, has severely limited our collective understanding of tRNA gene expression regulation and evolution. We establish sequence-based correlates to tRNA gene expression and develop a tRNA gene classification method that does not require, but benefits from, comparative genomic information and achieves accuracy comparable to molecular assays. We observe that guanine + cytosine (G + C) content and CpG density surrounding tRNA loci is exceptionally well correlated with tRNA gene activity, supporting a prominent regulatory role of the local genomic context in combination with internal sequence features. We use our tRNA gene activity predictions in conjunction with a comprehensive tRNA gene ortholog set spanning 29 placental mammals to estimate the evolutionary rate of functional changes among orthologs. Our method adds a new dimension to large-scale tRNA functional prediction and will help prioritize characterization of functional tRNA variants. Its simplicity and robustness should enable development of similar approaches for other clades, as well as exploration of functional diversification of members of large gene families.
Collapse
Affiliation(s)
- Bryan P Thornlow
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Joel Armstrong
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, California 95064, USA
| | - Andrew D Holmes
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Jonathan M Howard
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, California 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
42
|
Petrie JL, Swan C, Ingram RM, Frame FM, Collins AT, Dumay-Odelot H, Teichmann M, Maitland NJ, White RJ. Effects on prostate cancer cells of targeting RNA polymerase III. Nucleic Acids Res 2019; 47:3937-3956. [PMID: 30820548 PMCID: PMC6486637 DOI: 10.1093/nar/gkz128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.
Collapse
Affiliation(s)
- John L Petrie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Caroline Swan
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard M Ingram
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Fiona M Frame
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Anne T Collins
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hélène Dumay-Odelot
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Martin Teichmann
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
43
|
Yeganeh M, Praz V, Carmeli C, Villeneuve D, Rib L, Guex N, Herr W, Delorenzi M, Hernandez N. Differential regulation of RNA polymerase III genes during liver regeneration. Nucleic Acids Res 2019; 47:1786-1796. [PMID: 30597109 PMCID: PMC6393285 DOI: 10.1093/nar/gky1282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
Mouse liver regeneration after partial hepatectomy involves cells in the remaining tissue synchronously entering the cell division cycle. We have used this system and H3K4me3, Pol II and Pol III profiling to characterize adaptations in Pol III transcription. Our results broadly define a class of genes close to H3K4me3 and Pol II peaks, whose Pol III occupancy is high and stable, and another class, distant from Pol II peaks, whose Pol III occupancy strongly increases after partial hepatectomy. Pol III regulation in the liver thus entails both highly expressed housekeeping genes and genes whose expression can adapt to increased demand.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Cristian Carmeli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Dominic Villeneuve
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Leonor Rib
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Fundamental Oncology and the Ludwig Center for Cancer research, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
44
|
Berg MD, Giguere DJ, Dron JS, Lant JT, Genereaux J, Liao C, Wang J, Robinson JF, Gloor GB, Hegele RA, O'Donoghue P, Brandl CJ. Targeted sequencing reveals expanded genetic diversity of human transfer RNAs. RNA Biol 2019; 16:1574-1585. [PMID: 31407949 PMCID: PMC6779403 DOI: 10.1080/15476286.2019.1646079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transfer RNAs are required to translate genetic information into proteins as well as regulate other cellular processes. Nucleotide changes in tRNAs can result in loss or gain of function that impact the composition and fidelity of the proteome. Despite links between tRNA variation and disease, the importance of cytoplasmic tRNA variation has been overlooked. Using a custom capture panel, we sequenced 605 human tRNA-encoding genes from 84 individuals. We developed a bioinformatic pipeline that allows more accurate tRNA read mapping and identifies multiple polymorphisms occurring within the same variant. Our analysis identified 522 unique tRNA-encoding sequences that differed from the reference genome from 84 individuals. Each individual had ~66 tRNA variants including nine variants found in less than 5% of our sample group. Variants were identified throughout the tRNA structure with 17% predicted to enhance function. Eighteen anticodon mutants were identified including potentially mistranslating tRNAs; e.g., a tRNASer that decodes Phe codons. Similar engineered tRNA variants were previously shown to inhibit cell growth, increase apoptosis and induce the unfolded protein response in mammalian cell cultures and chick embryos. Our analysis shows that human tRNA variation has been underestimated. We conclude that the large number of tRNA genes provides a buffer enabling the emergence of variants, some of which could contribute to disease.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Daniel J Giguere
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Jacqueline S Dron
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada.,Robarts Research Institute, The University of Western Ontario , London , ON , Canada
| | - Jeremy T Lant
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Calwing Liao
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada.,Robarts Research Institute, The University of Western Ontario , London , ON , Canada
| | - Jian Wang
- Robarts Research Institute, The University of Western Ontario , London , ON , Canada
| | - John F Robinson
- Robarts Research Institute, The University of Western Ontario , London , ON , Canada
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Robert A Hegele
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada.,Robarts Research Institute, The University of Western Ontario , London , ON , Canada.,Department of Medicine, The University of Western Ontario , London , ON , Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada.,Department of Chemistry, The University of Western Ontario , London , ON , Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| |
Collapse
|
45
|
Torres AG. Enjoy the Silence: Nearly Half of Human tRNA Genes Are Silent. Bioinform Biol Insights 2019; 13:1177932219868454. [PMID: 31447549 PMCID: PMC6688141 DOI: 10.1177/1177932219868454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
Abstract
Transfer RNAs (tRNAs) are key components of the translation machinery. They read codons on messenger RNAs (mRNAs) and deliver the appropriate amino acid to the ribosome for protein synthesis. The human genome encodes more than 500 tRNA genes but their individual contribution to the cellular tRNA pool is unclear. In recent years, novel methods were developed to improve the quantification of tRNA gene expression, most of which rely on next-generation sequencing such as small RNA-Seq applied to tRNAs (tRNA-Seq). In a previous study, we presented a bioinformatics strategy to analyse tRNA-Seq datasets that we named 'isodecoder-specific tRNA gene contribution profiling' (Iso-tRNA-CP). Using Iso-tRNA-CP, we showed that tRNA gene expression is cell type- and tissue-specific and that this process can regulate tRNA-derived fragments abundance. An additional observation that stems from that work is that approximately half of human tRNA genes appeared silent or poorly expressed. In this commentary, I discuss this finding in light of the current literature and speculate on potential functions that transcriptionally silent tRNA genes may play. Studying silent tRNA genes may offer a unique opportunity to unravel novel mechanisms of cell regulation associated to tRNA biology.
Collapse
Affiliation(s)
- Adrian Gabriel Torres
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
46
|
Bhuiyan T, Timmers HTM. Promoter Recognition: Putting TFIID on the Spot. Trends Cell Biol 2019; 29:752-763. [PMID: 31300188 DOI: 10.1016/j.tcb.2019.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022]
Abstract
Basal transcription factor TFIID connects transcription activation to the assembly of the RNA polymerase II preinitiation complex at the core promoter of genes. The mechanistic understanding of TFIID function and dynamics has been limited by the lack of high-resolution structures of the holo-TFIID complex. Recent cryo-electron microscopy studies of yeast and human TFIID complexes provide insight into the molecular organization and structural dynamics of this highly conserved transcription factor. Here, we discuss how these TFIID structures provide new paradigms for: (i) the dynamic recruitment of TFIID; (ii) the binding of TATA-binding protein (TBP) to promoter DNA; (iii) the multivalency of TFIID interactions with (co)activators, nucleosomes, or promoter DNA; and (iv) the opportunities for regulation of TBP turnover and promoter dynamics.
Collapse
Affiliation(s)
- Tanja Bhuiyan
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; German Cancer Consortium (DKTK) partner site Freiburg, 79106, Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Medical Faculty, Breisacher Straße 66, 79106, Freiburg, Germany
| | - H Th Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; German Cancer Consortium (DKTK) partner site Freiburg, 79106, Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Medical Faculty, Breisacher Straße 66, 79106, Freiburg, Germany. @dkfz-heidelberg.de
| |
Collapse
|
47
|
Di Pascale F, Nama S, Muhuri M, Quah S, Ismail HM, Chan XHD, Sundaram GM, Ramalingam R, Burke B, Sampath P. C/EBPβ mediates RNA polymerase III-driven transcription of oncomiR-138 in malignant gliomas. Nucleic Acids Res 2019; 46:336-349. [PMID: 29136251 PMCID: PMC5758869 DOI: 10.1093/nar/gkx1105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-138 (miR-138) is a pro-survival oncomiR for glioma stem cells. In malignant gliomas, dysregulated expression of microRNAs, such as miR-138, promotes Tumour initiation and progression. Here, we identify the ancillary role of the CCAAT/enhancer binding protein β (C/EBPβ) as a transcriptional activator of miR-138. We demonstrate that a short 158 bp DNA sequence encoding the precursor of miR-138-2 is essential and sufficient for transcription of miR-138. This short sequence includes the A-box and B-box elements characteristic of RNA Polymerase III (Pol III) promoters, and is also directly bound by C/EBPβ via an embedded 'C/EBPβ responsive element' (CRE). CRE and the Pol III B-box element overlap, suggesting that C/EBPβ and transcription factor 3C (TFIIIC) interact at the miR-138-2 locus. We propose that this interaction is essential for the recruitment of the RNA Pol III initiation complex and associated transcription of the oncomiR, miR-138 in malignant gliomas.
Collapse
Affiliation(s)
- Federica Di Pascale
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Srikanth Nama
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Manish Muhuri
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Shan Quah
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Hisyam M Ismail
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Xin Hui Derryn Chan
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Gopinath M Sundaram
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Rajkumar Ramalingam
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Brian Burke
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore 138648, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
48
|
Abugessaisa I, Noguchi S, Hasegawa A, Kondo A, Kawaji H, Carninci P, Kasukawa T. refTSS: A Reference Data Set for Human and Mouse Transcription Start Sites. J Mol Biol 2019; 431:2407-2422. [DOI: 10.1016/j.jmb.2019.04.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/22/2023]
|
49
|
Knocking in Multifunctional Gene Tags into SMC Complex Subunits Using Gene Editing. Methods Mol Biol 2019. [PMID: 31147912 DOI: 10.1007/978-1-4939-9520-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Condensin, a highly conserved pentameric chromosome complex, is required for the correct organization and folding of the genome. Here, we highlight how to knock protein tags into endogenous loci to faithfully study the condensin complex in vertebrates and dissect its multiple functions. These include using the streptavidin binding peptide (SBP) to create the first genome-wide map of condensin and perform varied applications in proteomics and enzymology of the complex. The revolution in gene editing using CRISPR/Cas9 has made it possible to insert tags into endogenous loci with relative ease, allowing physiological and fully functional tagged protein to be analyzed biochemically (affinity tags), microscopically (fluorescent tags) or both purified and localized (multifunctional tags). In this chapter, we detail how to engineer vertebrate cells using CRISPR/Cas9 to provide researchers powerful tools to obtain greater precision than ever to understand how the complex interacts and behaves in cells.
Collapse
|
50
|
Zhou J, Wan F, Wang Y, Long J, Zhu X. Small RNA sequencing reveals a novel tsRNA-26576 mediating tumorigenesis of breast cancer. Cancer Manag Res 2019; 11:3945-3956. [PMID: 31118807 PMCID: PMC6504554 DOI: 10.2147/cmar.s199281] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/24/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: As a malignancy that develops from breast tissue, breast cancer has been widely regarded as the most common type of cancer threatening the health of women worldwide. Emerging evidence has demonstrated that tsRNAs might play a vital part in the tumorigenesis and progression of several types of cancers. However, the functions of tsRNAs in breast cancer remain largely unknown. Here, we investigated the functions of tsRNA-26576 in tumorigenesis of breast cancer. Patients and methods: In this study, the tsRNA deregulation states in breast cancer patients (four cancer tissues and four adjacent normal tissues) were evaluated using small RNA sequencing. And then, RT-PCR was used to detected the tsRNA-26576 expression level in breast cancer patients. Results: A total of 263 tsRNAs were identified as significantly differentially expressed, of which 75 were upregulated, and 188 were downregulated. The functional classification through KEGG pathway database illustrated that the most significant pathway enriched by the targets of differentially expressed tsRNAs was the pathway in cancer. Among these differently expressed tsRNAs, we found that tsRNA-26576 was remarkably upregulated in cancer tissue in comparison with adjacent normal tissue. Meanwhile, RT-PCR results verified that tsRNA-26576 expression level was highly upregulated in 10 paired samples from breast cancer patients. Besides, tsRNA-26576 was found to motivate cellular multiplication and migration while suppressing cellular apoptosis in MDA-MB-231 cells. Moreover, mRNA sequencing results showed that several tumor suppressor genes, including FAT4 and SPEN, were upregulated after delivering tsRNA-26576 inhibitor in MDA-MB-231 cells. Conclusion: We found tsRNA-26576 was upregulated in breast cancer tissue, and it could promote the cell growth while inhibite cell apoptosis. Therefore, tsRNA-26576 might serve as a potential clinical therapy target and a predictive marker for breast cancer.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Surgery, The Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fang Wan
- Department of Surgery, The Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yike Wang
- Department of Surgery, The Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinpei Long
- Department of Surgery, The Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xuan Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|