1
|
El-Nagish A, Liedtke S, Breitenbach S, Heitkam T. Preparing high-quality chromosome spreads from Crocus species for karyotyping and FISH. Mol Cytogenet 2025; 18:2. [PMID: 39980057 DOI: 10.1186/s13039-025-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The saffron-producing Crocus sativus (L.) and its wild relative C. cartwrightianus (Herb.) are key species for understanding genetic evolution in this genus. Molecular-cytogenetic methods, especially fluorescent in situ hybridization (FISH), are essential for exploring the genetic relationships in this genus. Yet, preparing high-quality chromosomes for FISH analysis across Crocus species remains difficult. A standardized protocol for achieving clear and well-separated mitotic chromosomes is still lacking. This study aimed to assess the effectiveness of pretreatments with four chromosome synchronization methods for optimal chromosome spread preparation in Crocus. Root tips of different Crocus species were treated with four chromosome preparation methods namely hydroxyurea-colchicine (HC), nitrous oxide (NO), hydroxyquinoline (HQ), and ice water (IW) pretreatments to investigate their effectiveness in producing high-quality mitotic chromosome spreads. Metaphases obtained by the four methods were analyzed to assess their quality and metaphase index. RESULTS Evaluation of 22,507 cells allowed us to confidently recommend a protocol for Crocus chromosome preparation. Among the methods, ice water pretreatment yielded the highest metaphase index (2.05%), more than doubling the results of HC (1.08%), NO (1.15%), and HQ (1.16%). Ice water-treated chromosomes exhibited better chromosome morphology, with relatively proper size, and non-overlapping chromosomes that were optimal for FISH analysis. Ice water pretreatment was also applied to C. cartwrightianus, the diploid progenitor of C. sativus, where it demonstrated similar efficacy. DAPI staining of chromosomes in both species allowed for clear visualization of intercalary and terminal heterochromatin. FISH analysis using 18S-5.8S-25S and 5S rDNA probes confirmed the utility of IW-prepared chromosome spreads for cytogenetic studies. CONCLUSIONS We strongly recommend ice water pretreatment as a suitable and effective method for obtaining many metaphase spreads of high-quality in C. sativus and related species, particularly for applications involving a detailed cytogenetic analysis.
Collapse
Affiliation(s)
- Abdullah El-Nagish
- Department of Biology, Institute of Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sarah Breitenbach
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Tony Heitkam
- Department of Biology, Institute of Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
2
|
Schmidt N, Maiwald S, Mann L, Weber B, Seibt KM, Breitenbach S, Liedtke S, Menzel G, Weisshaar B, Holtgräwe D, Heitkam T. BeetRepeats: reference sequences for genome and polymorphism annotation in sugar beet and wild relatives. BMC Res Notes 2024; 17:351. [PMID: 39605057 PMCID: PMC11603912 DOI: 10.1186/s13104-024-06993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Despite the advances in genomics, repetitive DNAs (repeats) are still difficult to sequence, assemble, and identify. This is due to their high abundance and diversity, with many repeat families being unique to the organisms in which they were described. In sugar beet, repeats make up a significant portion of the genome (at least 53%), with many repeats being restricted to the beet genera, Beta and Patellifolia. Over the course of over 30 years and many repeat-based studies, over a thousand reference repeat sequences for beet genomes have been identified and many experimentally characterized (e.g. physically located on the chromosomes). Here, we present the collection of these reference repeat sequences for beets. DATA DESCRIPTION The BeetRepeats_v1.0 resource is a comprehensive compilation of all characterized repeat families, including satellite DNAs, ribosomal DNAs, transposable elements and endogenous viruses. The genomes covered are those of sugar beet and closely related wild beets (genera Beta and Patellifolia) as well as Chenopodium quinoa and Spinacia oleracea (all belonging to the Amaranthaceae). The reference sequences are in fasta format and comprise well-characterized repeats from both repeat categories (dispersed/mobile as well as tandemly arranged). The database is suitable for the RepeatMasker and RepeatExplorer2 pipelines and can be used directly for any repeat annotation and repeat polymorphism detection purposes.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sarah Breitenbach
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Gerhard Menzel
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Bernd Weisshaar
- Fakulty of Biology & CeBiTec, Universität Bielefeld, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Fakulty of Biology & CeBiTec, Universität Bielefeld, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany.
- Institute of Biology I, RWTH Aachen University, 52056, Aachen, Germany.
| |
Collapse
|
3
|
Dias Y, Mata-Sucre Y, Thangavel G, Costa L, Báez M, Houben A, Marques A, Pedrosa-Harand A. How diverse a monocentric chromosome can be? Repeatome and centromeric organization of Juncus effusus (Juncaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1832-1847. [PMID: 38461471 DOI: 10.1111/tpj.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Juncus is the largest genus of Juncaceae and was considered holocentric for a long time. Recent findings, however, indicated that 11 species from different clades of the genus have monocentric chromosomes. Thus, the Juncus centromere organization and evolution need to be reassessed. We aimed to investigate the major repetitive DNA sequences of two accessions of Juncus effusus and its centromeric structure by employing whole-genome analyses, fluorescent in situ hybridization, CENH3 immunodetection, and chromatin immunoprecipitation sequencing. We showed that the repetitive fraction of the small J. effusus genome (~270 Mbp/1C) is mainly composed of Class I and Class II transposable elements (TEs) and satellite DNAs. Three identified satellite DNA families were mainly (peri)centromeric, with two being associated with the centromeric protein CENH3, but not strictly centromeric. Two types of centromere organization were discerned in J. effusus: type 1 was characterized by a single CENH3 domain enriched with JefSAT1-155 or JefSAT2-180, whereas type 2 showed multiple CENH3 domains interrupted by other satellites, TEs or genes. Furthermore, while type 1 centromeres showed a higher degree of satellite identity along the array, type 2 centromeres had less homogenized arrays along the multiple CENH3 domains per chromosome. Although the analyses confirmed the monocentric organization of J. effusus chromosomes, our data indicate a more dynamic arrangement of J. effusus centromeres than observed for other plant species, suggesting it may constitute a transient state between mono- and holocentricity.
Collapse
Affiliation(s)
- Yhanndra Dias
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
| | - Yennifer Mata-Sucre
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Gokilavani Thangavel
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Lucas Costa
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Mariana Báez
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Plant Breeding Department, University of Bonn, Bonn, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
4
|
Schmidt N, Sielemann K, Breitenbach S, Fuchs J, Pucker B, Weisshaar B, Holtgräwe D, Heitkam T. Repeat turnover meets stable chromosomes: repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:171-190. [PMID: 38128038 DOI: 10.1111/tpj.16599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Sarah Breitenbach
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Graz, Austria
| |
Collapse
|
5
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
6
|
Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. Chromosomal Locations of a Non-LTR Retrotransposon, Menolird18, in Cucumis melo and Cucumis sativus, and Its Implication on Genome Evolution of Cucumis Species. Cytogenet Genome Res 2020; 160:554-564. [DOI: 10.1159/000511119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that <i>Menolird18</i>, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in <i>Cucumis melo</i>, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, <i>Menolird18</i> was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of <i>Menolird18</i> were found in centromeric and rDNA regions of mitotic chromosomes suggests that <i>Menolird18</i> is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of <i>Menolird18</i> in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (<i>C. melo</i>) and cucumber (<i>C. sativus</i>) genomes.
Collapse
|
7
|
Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. Centromeres of Cucumis melo L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189. PLoS One 2020; 15:e0227578. [PMID: 31945109 PMCID: PMC6964814 DOI: 10.1371/journal.pone.0227578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Centromeres are prerequisite for accurate segregation and are landmarks of primary constrictions of metaphase chromosomes in eukaryotes. In melon, high-copy-number satellite DNAs (SatDNAs) were found at various chromosomal locations such as centromeric, pericentromeric, and subtelomeric regions. In the present study, utilizing the published draft genome sequence of melon, two new SatDNAs (CmSat162 and CmSat189) of melon were identified and their chromosomal distributions were confirmed using fluorescence in situ hybridization. DNA probes prepared from these SatDNAs were successfully hybridized to melon somatic and meiotic chromosomes. CmSat162 was located on 12 pairs of melon chromosomes and co-localized with the centromeric repeat, Cmcent, at the centromeric regions. In contrast, CmSat189 was found to be located not only on centromeric regions but also on specific regions of the chromosomes, allowing the characterization of individual chromosomes of melon. It was also shown that these SatDNAs were transcribed in melon. These results suggest that CmSat162 and CmSat189 might have some functions at the centromeric regions.
Collapse
Affiliation(s)
- Agus Budi Setiawan
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Chee How Teo
- Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Shinji Kikuchi
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hidenori Sassa
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan
| | - Takato Koba
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- * E-mail:
| |
Collapse
|
8
|
Schmidt T, Heitkam T, Liedtke S, Schubert V, Menzel G. Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. THE NEW PHYTOLOGIST 2019; 222:1965-1980. [PMID: 30690735 DOI: 10.1111/nph.15715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/20/2019] [Indexed: 05/25/2023]
Abstract
Saffron crocus (Crocus sativus) is the source of the most expensive spice of the world, produced from manually harvested stigmas, thus serving as a cash crop for rural communities. However, despite its economic importance, its genome and chromosomes are poorly studied. C. sativus is a sterile triploid species harboring eight chromosome triplets, and propagated only as a clonal lineage by corms. Saffron's evolutionary origin, parental species and allo- or autotriploidy has been a matter of discussion for almost a century. We performed a survey sequencing of the saffron genome and selected cytogenetic landmark sequences consisting of major tandem repeats, which we used as probes in comparative multicolor fluorescent in situ hybridization (FISH). We tagged 92 chromosomal positions and resolved the chromosomal composition of saffron triplets. By comparative FISH of six Crocus species from 11 accessions, we demonstrate that C. sativus is an autotriploid hybrid derived from heterogeneous Crocus cartwrightianus cytotypes. The FISH reference karyotype of saffron is crucial for integrating genome sequencing data with chromosomes and for investigating the relationship among Crocus species. We provide an evolutionary model of the saffron emergence; the knowledge of the parental origin offers a route towards the resynthesis of C. sativus from C. cartwrightianus to broaden saffron's gene pool.
Collapse
Affiliation(s)
- Thomas Schmidt
- Faculty of Biology, Technische Universität Dresden, Dresden, D-01062, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, Dresden, D-01062, Germany
| | - Susan Liedtke
- Faculty of Biology, Technische Universität Dresden, Dresden, D-01062, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Seeland, D-06466, Germany
| | - Gerhard Menzel
- Faculty of Biology, Technische Universität Dresden, Dresden, D-01062, Germany
| |
Collapse
|
9
|
Bačovský V, Hobza R, Vyskot B. Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes. Methods Mol Biol 2018; 1675:509-535. [PMID: 29052211 DOI: 10.1007/978-1-4939-7318-7_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Significant advances in chromosome preparation and other techniques have greatly increased the potential of plant cytogenetics in recent years. Increase in longitudinal resolution using DNA extended fibers as well as new developments in imaging and signal amplification technologies have enhanced the ability of FISH to detect small gene targets. The combination of fluorescence in situ hybridization with immunocytochemistry allows the investigation of cell events, chromosomal rearrangements and chromatin features typical for plant nuclei. Chromosome manipulation techniques using microdissection and flow sorting have accelerated the analysis of complex plant genomes. Together, the different cytogenetic approaches are invaluable for the unravelling of detailed structures of plant chromosomes, which are of utmost importance for the study of genome properties, DNA replication and gene regulation. In this technical review, different cytogenetic approaches are discussed for the analysis of plant chromosomes, with a focus on mitotic chromosomes.
Collapse
Affiliation(s)
- Václaclav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
10
|
Han H, Liu W, Lu Y, Zhang J, Yang X, Li X, Hu Z, Li L. Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. PLANTA 2017; 245:425-437. [PMID: 27832372 DOI: 10.1007/s00425-016-2616-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/31/2016] [Indexed: 05/21/2023]
Abstract
Different types of P genome sequences and markers were developed, which could be used to analyze the evolution of P genome in Triticeae and identify precisely wheat- A. cristatum introgression lines. P genome of Agropyron Gaertn. plays an important role in Triticeae and could provide many desirable genes conferring high yield, disease resistance, and stress tolerance for wheat genetic improvement. Therefore, it is significant to develop specific sequences and functional markers of P genome. In this study, 126 sequences were isolated from the degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) products of microdissected chromosome 6PS. Forty-eight sequences were identified as P genome-specific sequences by dot-blot hybridization and DNA sequences analysis. Among these sequences, 22 displayed the characteristics of retrotransposons, nine and one displayed the characteristics of DNA transposons and tandem repetitive sequence, respectively. Fourteen of 48 sequences were determined to distribute on different regions of P genome chromosomes by fluorescence in situ hybridization, and the distributing regions were as following: all over P genome chromosomes, centromeres, pericentromeric regions, distal regions, and terminal regions. We compared the P genome sequences with other genome sequences of Triticeae and found that the similar sequences of the P genome sequences were widespread in Triticeae, but differentiation occurred to various extents. Additionally, thirty-four molecular markers were developed from the P genome sequences, which could be used for analyzing the evolutionary relationship among 16 genomes of 18 species in Triticeae and identifying P genome chromatin in wheat-A. cristatum introgression lines. These results will not only facilitate the study of structure and evolution of P genome chromosomes, but also provide a rapid detecting tool for effective utilization of desirable genes of P genome in wheat improvement.
Collapse
Affiliation(s)
- Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
11
|
Seijo G, Samoluk SS, Ortiz AM, Silvestri MC, Chalup L, Robledo G, Lavia GI. Cytological Features of Peanut Genome. COMPENDIUM OF PLANT GENOMES 2017. [DOI: 10.1007/978-3-319-63935-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Samoluk SS, Robledo G, Bertioli D, Seijo JG. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Mol Genet Genomics 2016; 292:283-296. [DOI: 10.1007/s00438-016-1271-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022]
|
13
|
Zheng JS, Sun CZ, Zhang SN, Hou XL, Bonnema G. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis. FRONTIERS IN PLANT SCIENCE 2016; 7:1049. [PMID: 27507974 PMCID: PMC4961004 DOI: 10.3389/fpls.2016.01049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/04/2016] [Indexed: 05/29/2023]
Abstract
A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.
Collapse
Affiliation(s)
- Jin-shuang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Horticulture, Nanjing Agricultural University, NanjingChina
- Hebei Normal University of Science and Technology, QinhuangdaoChina
| | - Cheng-zhen Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Horticulture, Nanjing Agricultural University, NanjingChina
- Hebei Normal University of Science and Technology, QinhuangdaoChina
| | - Shu-ning Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Horticulture, Nanjing Agricultural University, NanjingChina
| | - Xi-lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Horticulture, Nanjing Agricultural University, NanjingChina
| | - Guusje Bonnema
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, WageningenNetherlands
| |
Collapse
|
14
|
Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T. Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 2015; 23:791-806. [DOI: 10.1007/s10577-015-9500-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
|
15
|
Silkova OG, Loginova DB. Structural and functional organization of centromeres in plant chromosomes. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414120114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhang W, Cao Y, Wang K, Zhao T, Chen J, Pan M, Wang Q, Feng S, Guo W, Zhou B, Zhang T. Identification of centromeric regions on the linkage map of cotton using centromere-related repeats. Genomics 2014; 104:587-93. [PMID: 25238895 DOI: 10.1016/j.ygeno.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/16/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
Centromere usually contains high-copy-number retrotransposons and satellite repeats, which are difficult to map, clone and sequence. Currently, very little is known about the centromere in cotton. Here, we sequenced a bacterial artificial chromosome (BAC) mapping to the centromeric region and predicted four long-terminal-repeat (LTR) retrotransposons. They were located in the heterochromatic centromeric regions of all 52 pachytene chromosomes in Gossypium hirsutum. Fiber-FISH mapping revealed that these retrotransposons span an area of at least 1.8Mb in the centromeric region. Comparative analysis showed that these retrotransposons generated similar, strong fluorescent signals in the D progenitor Gossypium raimondii but not in the A progenitor Gossypium herbaceum, suggesting that the centromere sequence of tetraploid cotton might be derived from the D progenitor. Centromeric regions were anchored on 13 chromosomes of D-genome sequence. Characterization of these centromere-related repeats and regions will enhance cotton centromere mapping, sequencing and evolutionary studies.
Collapse
Affiliation(s)
- Wenpan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiedan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqiao Pan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiong Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Shouli Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Centromere identity from the DNA point of view. Chromosoma 2014; 123:313-25. [PMID: 24763964 PMCID: PMC4107277 DOI: 10.1007/s00412-014-0462-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 02/05/2023]
Abstract
The centromere is a chromosomal locus responsible for the faithful segregation of genetic material during cell division. It has become evident that centromeres can be established literally on any DNA sequence, and the possible synergy between DNA sequences and the most prominent centromere identifiers, protein components, and epigenetic marks remains uncertain. However, some evolutionary preferences seem to exist, and long-term established centromeres are frequently formed on long arrays of satellite DNAs and/or transposable elements. Recent progress in understanding functional centromere sequences is based largely on the high-resolution DNA mapping of sequences that interact with the centromere-specific histone H3 variant, the most reliable marker of active centromeres. In addition, sequence assembly and mapping of large repetitive centromeric regions, as well as comparative genome analyses offer insight into their complex organization and evolution. The rapidly advancing field of transcription in centromere regions highlights the functional importance of centromeric transcripts. Here, we comprehensively review the current state of knowledge on the composition and functionality of DNA sequences underlying active centromeres and discuss their contribution to the functioning of different centromere types in higher eukaryotes.
Collapse
|
18
|
Kolano B, Bednara E, Weiss-Schneeweiss H. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae). PLANT CELL REPORTS 2013; 32:1575-1588. [PMID: 23754338 PMCID: PMC3778962 DOI: 10.1007/s00299-013-1468-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/30/2013] [Accepted: 05/28/2013] [Indexed: 05/29/2023]
Abstract
High heterogeneity was observed among conserved domains of reverse transcriptase ( rt ) isolated from quinoa. Only one Ty1- copia rt was highly amplified. Reverse transcriptase sequences were located predominantly in pericentromeric region of quinoa chromosomes. The heterogeneity, genomic abundance, and chromosomal distribution of reverse transcriptase (rt)-coding fragments of Ty1-copia and Ty3-gypsy long terminal repeat retrotransposons were analyzed in the Chenopodium quinoa genome. Conserved domains of the rt gene were amplified and characterized using degenerate oligonucleotide primer pairs. Sequence analyses indicated that half of Ty1-copia rt (51 %) and 39 % of Ty3-gypsy rt fragments contained intact reading frames. High heterogeneity among rt sequences was observed for both Ty1-copia and Ty3-gypsy rt amplicons, with Ty1-copia more heterogeneous than Ty3-gypsy. Most of the isolated rt fragments were present in quinoa genome in low copy numbers, with only one highly amplified Ty1-copia rt sequence family. The gypsy-like RNase H fragments co-amplified with Ty1-copia-degenerate primers were shown to be highly amplified in the quinoa genome indicating either higher abundance of some gypsy families of which rt domains could not be amplified, or independent evolution of this gypsy-region in quinoa. Both Ty1-copia and Ty3-gypsy retrotransposons were preferentially located in pericentromeric heterochromatin of quinoa chromosomes. Phylogenetic analyses of newly amplified rt fragments together with well-characterized retrotransposon families from other organisms allowed identification of major lineages of retroelements in the genome of quinoa and provided preliminary insight into their evolutionary dynamics.
Collapse
Affiliation(s)
- Bozena Kolano
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland,
| | | | | |
Collapse
|
19
|
Wei L, Xiao M, An Z, Ma B, Mason AS, Qian W, Li J, Fu D. New insights into nested long terminal repeat retrotransposons in Brassica species. MOLECULAR PLANT 2013; 6:470-482. [PMID: 22930733 DOI: 10.1093/mp/sss081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs preferentially insert within other LTR-TEs, but the cause and evolutionary significance of these nested LTR-TEs are not well understood. In this study, a total of 1.52Gb of Brassica sequence containing 2020 bacterial artificial chromosomes (BACs) was scanned, and six bacterial artificial chromosome (BAC) clones with extremely nested LTR-TEs (LTR-TEs density: 7.24/kb) were selected for further analysis. The majority of the LTR-TEs in four of the six BACs were found to be derived from the rapid proliferation of retrotransposons originating within the BAC regions, with only a few LTR-TEs originating from the proliferation and insertion of retrotransposons from outside the BAC regions approximately 5-23Mya. LTR-TEs also preferably inserted into TA-rich repeat regions. Gene prediction by Genescan identified 207 genes in the 0.84Mb of total BAC sequences. Only a few genes (3/207) could be matched to the Brassica expressed sequence tag (EST) database, indicating that most genes were inactive after retrotransposon insertion. Five of the six BACs were putatively centromeric. Hence, nested LTR-TEs in centromere regions are rapidly duplicated, repeatedly inserted, and act to suppress activity of genes and to reshuffle the structure of the centromeric sequences. Our results suggest that LTR-TEs burst and proliferate on a local scale to create nested LTR-TE regions, and that these nested LTR-TEs play a role in the formation of centromeres.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Čížková J, Hřibová E, Humplíková L, Christelová P, Suchánková P, Doležel J. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS One 2013; 8:e54808. [PMID: 23372772 PMCID: PMC3553004 DOI: 10.1371/journal.pone.0054808] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/17/2012] [Indexed: 02/03/2023] Open
Abstract
Satellite DNA sequences consist of tandemly arranged repetitive units up to thousands nucleotides long in head-to-tail orientation. The evolutionary processes by which satellites arise and evolve include unequal crossing over, gene conversion, transposition and extra chromosomal circular DNA formation. Large blocks of satellite DNA are often observed in heterochromatic regions of chromosomes and are a typical component of centromeric and telomeric regions. Satellite-rich loci may show specific banding patterns and facilitate chromosome identification and analysis of structural chromosome changes. Unlike many other genomes, nuclear genomes of banana (Musa spp.) are poor in satellite DNA and the information on this class of DNA remains limited. The banana cultivars are seed sterile clones originating mostly from natural intra-specific crosses within M. acuminata (A genome) and inter-specific crosses between M. acuminata and M. balbisiana (B genome). Previous studies revealed the closely related nature of the A and B genomes, including similarities in repetitive DNA. In this study we focused on two main banana DNA satellites, which were previously identified in silico. Their genomic organization and molecular diversity was analyzed in a set of nineteen Musa accessions, including representatives of A, B and S (M. schizocarpa) genomes and their inter-specific hybrids. The two DNA satellites showed a high level of sequence conservation within, and a high homology between Musa species. FISH with probes for the satellite DNA sequences, rRNA genes and a single-copy BAC clone 2G17 resulted in characteristic chromosome banding patterns in M. acuminata and M. balbisiana which may aid in determining genomic constitution in interspecific hybrids. In addition to improving the knowledge on Musa satellite DNA, our study increases the number of cytogenetic markers and the number of individual chromosomes, which can be identified in Musa.
Collapse
Affiliation(s)
- Jana Čížková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Lenka Humplíková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pavla Christelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pavla Suchánková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
21
|
Luo S, Mach J, Abramson B, Ramirez R, Schurr R, Barone P, Copenhaver G, Folkerts O. The cotton centromere contains a Ty3-gypsy-like LTR retroelement. PLoS One 2012; 7:e35261. [PMID: 22536361 DOI: 10.1371/journal.pone.0035261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/13/2012] [Indexed: 01/16/2023] Open
Abstract
The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum) we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG) that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species.
Collapse
Affiliation(s)
- Song Luo
- Chromatin, Inc., Chicago, Illinois, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kolano B, Gardunia BW, Michalska M, Bonifacio A, Fairbanks D, Maughan PJ, Coleman CE, Stevens MR, Jellen EN, Maluszynska J. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome 2011; 54:710-7. [PMID: 21848446 DOI: 10.1139/g11-035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.
Collapse
Affiliation(s)
- B Kolano
- Department of Plant Anatomy and Cytology, University of Silesia, Katowice, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dhar MK, Kaul S, Kour J. Towards the development of better crops by genetic transformation using engineered plant chromosomes. PLANT CELL REPORTS 2011; 30:799-806. [PMID: 21249368 DOI: 10.1007/s00299-011-1001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, "top-down" or "bottom-up" have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals.
Collapse
Affiliation(s)
- Manoj K Dhar
- Plant Genomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| | | | | |
Collapse
|
24
|
Heslop-Harrison JSP, Schwarzacher T. Organisation of the plant genome in chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:18-33. [PMID: 21443620 DOI: 10.1111/j.1365-313x.2011.04544.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production.
Collapse
|
25
|
Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2011; 2:4. [PMID: 21371312 PMCID: PMC3059260 DOI: 10.1186/1759-8753-2-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/03/2011] [Indexed: 12/12/2022] Open
Abstract
Background The centromeric and pericentromeric regions of plant chromosomes are colonized by Ty3/gypsy retrotransposons, which, on the basis of their reverse transcriptase sequences, form the chromovirus CRM clade. Despite their potential importance for centromere evolution and function, they have remained poorly characterized. In this work, we aimed to carry out a comprehensive survey of CRM clade elements with an emphasis on their diversity, structure, chromosomal distribution and transcriptional activity. Results We have surveyed a set of 190 CRM elements belonging to 81 different retrotransposon families, derived from 33 host species and falling into 12 plant families. The sequences at the C-terminus of their integrases were unexpectedly heterogeneous, despite the understanding that they are responsible for targeting to the centromere. This variation allowed the division of the CRM clade into the three groups A, B and C, and the members of each differed considerably with respect to their chromosomal distribution. The differences in chromosomal distribution coincided with variation in the integrase C-terminus sequences possessing a putative targeting domain (PTD). A majority of the group A elements possess the CR motif and are concentrated in the centromeric region, while members of group C have the type II chromodomain and are dispersed throughout the genome. Although representatives of the group B lack a PTD of any type, they appeared to be localized preferentially in the centromeres of tested species. All tested elements were found to be transcriptionally active. Conclusions Comprehensive analysis of the CRM clade elements showed that genuinely centromeric retrotransposons represent only a fraction of the CRM clade (group A). These centromeric retrotransposons represent an active component of centromeres of a wide range of angiosperm species, implying that they play an important role in plant centromere evolution. In addition, their transcriptional activity is consistent with the notion that the transcription of centromeric retrotransposons has a role in normal centromere function.
Collapse
|
26
|
Tek AL, Kashihara K, Murata M, Nagaki K. Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res 2010; 18:337-47. [PMID: 20204495 DOI: 10.1007/s10577-010-9119-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
The centromere as a kinetochore assembly site is fundamental to the partitioning of genetic material during cell division. In order to determine the functional centromeres of soybean, we characterized the soybean centromere-specific histone H3 (GmCENH3) protein and developed an antibody against the N-terminal end. Using this antibody, we cloned centromere-associated DNA sequences by chromatin immunoprecipitation. Our analyses indicate that soybean centromeres are composed of two distinct satellite repeats (GmCent-1 and GmCent-4) and retrotransposon-related sequences (GmCR). The possible allopolyploid origin of the soybean genome is discussed in view of the centromeric satellite sequences present.
Collapse
Affiliation(s)
- Ahmet L Tek
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
| | | | | | | |
Collapse
|
27
|
[Detection of maize centromeric repeats in the relatives of maize using fluorescence in situ hybridization]. YI CHUAN = HEREDITAS 2010; 32:264-70. [PMID: 20233704 DOI: 10.3724/sp.j.1005.2010.00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to analyze the conservation of maize centromeric satellite DNA (CentC) and centromeric retrotransposon (CRM) in the subspecies and relatives of Zea mays, dual fluorescence in situ hybridization (FISH) was used to detect the existence and distribution of the above two repetitive sequences in Zea mays ssp. mexicana, Z. diploperennis, Z. perennis, Tripsacum dactyloides, Coix lacryma-jobi, and Sorghum bicolor. In Z. mays ssp. mexicana, Z. diploperennis, and Z. perennis, both CentC and CRM probes produced strong or relatively strong signals in the centromeric regions of all chromosomes. There was an obvious variation in the intensity of hybridization signals on different chromosomes, indicating that different centromeres have different amounts of CentC and CRM sequences. In some centromeres, the intensity of CentC signals differed from that of CRM signals and was free from overlapping. In T. dactyloides, only weak CentC and CRM signals were detected in the centromeric regions of most chromosomes, while in C. lacryma-jobi and S. bicolor only relatively strong or strong CRM signals primarily located in the centromeric regions were detected. This result indicates that CentC is highly conserved among the subspecies of Z. mays and the species of Zea, and has high conservation in Tripsacum, a genus that is most closely related to Zea, and CRM is conserved among the species of grass family either closely or distantly related to Zea.
Collapse
|
28
|
Cavallini A, Natali L, Zuccolo A, Giordani T, Jurman I, Ferrillo V, Vitacolonna N, Sarri V, Cattonaro F, Ceccarelli M, Cionini PG, Morgante M. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:491-508. [PMID: 19826774 DOI: 10.1007/s00122-009-1170-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 09/27/2009] [Indexed: 05/25/2023]
Abstract
A sample-sequencing strategy combined with slot-blot hybridization and FISH was used to study the composition of the repetitive component of the sunflower genome. One thousand six hundred thirty-eight sequences for a total of 954,517 bp were analyzed. The fraction of sequences that can be classified as repetitive using computational and hybridization approaches amounts to 62% in total. Almost two thirds remain as yet uncharacterized in nature. Of those characterized, most belong to the gypsy superfamily of LTR-retrotransposons. Unlike in other species, where single families can account for large fractions of the genome, it appears that no transposon family has been amplified to very high levels in sunflower. All other known classes of transposable elements were also found. One family of unknown nature (contig 61) was the most repeated in the sunflower genome. The evolution of the repetitive component in the Helianthus genus and in other Asteraceae was studied by comparative analysis of the hybridization of total genomic DNAs from these species to the sunflower small-insert library and compared to gene-based phylogeny. Very little similarity is observed between Helianthus species and two related Asteraceae species outside of the genus. Most repetitive elements are similar in annual and perennial Helianthus species indicating that sequence amplification largely predates such divergence. Gypsy-like elements are more represented in the annuals than in the perennials, while copia-like elements are similarly represented, attesting a different amplification history of the two superfamilies of LTR-retrotransposons in the Helianthus genus.
Collapse
Affiliation(s)
- Andrea Cavallini
- Genetics Section, Department of Crop Plant Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T. The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosome Res 2009; 18:247-63. [DOI: 10.1007/s10577-009-9104-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/25/2009] [Indexed: 01/22/2023]
|
30
|
Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosome Res 2009; 17:379-96. [PMID: 19322668 DOI: 10.1007/s10577-009-9029-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 12/18/2022]
Abstract
LTR retrotransposons belong to a major group of DNA sequences that are often localized in plant centromeres. Using BAC inserts originating from the centromere of a monosomic wild beet (Beta procumbens) chromosome fragment in Beta vulgaris, two complete LTR retrotransposons were identified. Both elements, designated Beetle1 and Beetle2, possess a coding region with genes in the order characteristic for Ty3-gypsy retrotransposons. Beetle1 and Beetle2 have a chromodomain in the C-terminus of the integrase gene and are highly similar to the centromeric retrotransposons (CRs) of rice, maize, and barley. Both retroelements were localized in the centromeric region of B. procumbens chromosomes by fluorescence in-situ hybridization. They can therefore be classified as centromere-specific chromoviruses. PCR analysis using RNA as template indicated that Beetle1 and Beetle2 are transcriptionally active. On the basis of the sequence diversity between the LTR sequences, it was estimated that Beetle1 and Beetle2 transposed within the last 60,000 years and 130,000 years, respectively. The centromeric localization of Beetle1 and Beetle2 and their transcriptional activity combined with high sequence conservation within each family play an important structural role in the centromeres of B. procumbens chromosomes.
Collapse
|
31
|
Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM. Evolution of genome size and complexity in Pinus. PLoS One 2009; 4:e4332. [PMID: 19194510 PMCID: PMC2633040 DOI: 10.1371/journal.pone.0004332] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/24/2008] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.
Collapse
Affiliation(s)
- Alison M. Morse
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Daniel G. Peterson
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - M. Nurul Islam-Faridi
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Katherine E. Smith
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Zenaida Magbanua
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Saul A. Garcia
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Thomas L. Kubisiak
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Henry V. Amerson
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - John E. Carlson
- School of Forest Resources, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - C. Dana Nelson
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - John M. Davis
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
32
|
Nagaki K, Walling J, Hirsch C, Jiang J, Murata M. Structure and evolution of plant centromeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:153-79. [PMID: 19521815 DOI: 10.1007/978-3-642-00182-6_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Investigations of centromeric DNA and proteins and centromere structures in plants have lagged behind those conducted with yeasts and animals; however, many attractive results have been obtained from plants during this decade. In particular, intensive investigations have been conducted in Arabidopsis and Gramineae species. We will review our understanding of centromeric components, centromere structures, and the evolution of these attributes of centromeres among plants using data mainly from Arabidopsis and Gramineae species.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | | | | | | | | |
Collapse
|
33
|
Artificial chromosome formation in maize (Zea mays L.). Chromosoma 2008; 118:157-77. [DOI: 10.1007/s00412-008-0191-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/11/2022]
|
34
|
Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). ANNALS OF BOTANY 2008; 102:521-30. [PMID: 18682437 PMCID: PMC2701778 DOI: 10.1093/aob/mcn131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The aim of this work was the identification and molecular characterization of novel sugar beet (Beta vulgaris) repetitive sequences to unravel the impact of repetitive DNA on size and evolution of Beta genomes via amplification and diversification. METHODS Genomic DNA and a pool of B. vulgaris repetitive sequences were separately used as probes for a screening of high-density filters from a B. vulgaris plasmid library. Novel repetitive motifs were identified by sequencing and further used as probes for Southern analyses in the genus Beta. Chromosomal localization of the repeats was analysed by fluorescent in situ hybridization on chromosomes of B. vulgaris and two other species of the section Beta. KEY RESULTS Two dispersed repetitive families pDvul1 and pDvul2 and the tandemly arranged repeat family pRv1 were isolated from a sugar beet plasmid library. The dispersed repetitive families pDvul1 and pDvul2 were identified in all four sections of the genus Beta. The members of the pDvul1 and pDvul2 family are scattered over all B. vulgaris chromosomes, although amplified to a different extent. The pRv1 satellite repeat is exclusively present in species of the section Beta. The centromeric satellite pBV1 by structural variations of the monomer and interspersion of pRv1 units forms complex satellite structures, which are amplified in different degrees on the centromeres of 12 chromosomes of the three species of the Beta section. CONCLUSIONS The complexity of the pBV1 satellite family observed in the section Beta of the genus Beta and, in particular, the strong amplification of the pBV1/pRv1 satellite in the domesticated B. vulgaris indicates the dynamics of centromeric satellite evolution during species radiation within the genus. The dispersed repeat families pDvul1 and pDvul2 might represent derivatives of transposable elements.
Collapse
Affiliation(s)
- Gerhard Menzel
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daryna Dechyeva
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Torsten Wenke
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daniela Holtgräwe
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Bernd Weisshaar
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Thomas Schmidt
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
- For correspondence. E-mail
| |
Collapse
|
35
|
Cuadrado A, Cardoso M, Jouve N. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 2008; 120:210-9. [PMID: 18504349 DOI: 10.1159/000121069] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2007] [Indexed: 11/19/2022] Open
Abstract
A significant fraction of the nuclear DNA of all eukaryotes is occupied by simple sequence repeats (SSRs) or microsatellites. This type of sequence has sparked great interest as a means of studying genetic variation, linkage mapping, gene tagging and evolution. Although SSRs at different positions in a gene help determine the regulation of expression and the function of the protein produced, little attention has been paid to the chromosomal organisation and distribution of these sequences, even in model species. This review discusses the main achievements in the characterisation of long-range SSR organisation in the chromosomes of Triticum aestivum L., Secale cereale L., and Hordeum vulgare L. (all members of Triticeae). We have detected SSRs using an improved FISH technique based on the random primer labelling of synthetic oligonucleotides (15-24 bases) in multi-colour experiments. Detailed information on the presence and distribution of AC, AG and all the possible classes of trinucleotide repeats has been acquired. These data have revealed the motif-dependent and non-random chromosome distributions of SSRs in the different genomes, and allowed the correlation of particular SSRs with chromosome areas characterised by specific features (e.g., heterochromatin, euchromatin and centromeres) in all three species. The present review provides a detailed comparative study of the distribution of these SSRs in each of the seven chromosomes of the genomes A, B and D of wheat, H of barley and R of rye. The importance of SSRs in plant breeding and their possible role in chromosome structure, function and evolution is discussed.
Collapse
Affiliation(s)
- A Cuadrado
- Department of Cell Biology and Genetics, University of Alcala, Madrid, Spain.
| | | | | |
Collapse
|
36
|
A BAC library of Beta vulgaris L. for the targeted isolation of centromeric DNA and molecular cytogenetics of Beta species. Genetica 2008; 135:157-67. [DOI: 10.1007/s10709-008-9265-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
37
|
Plohl M, Luchetti A, Mestrović N, Mantovani B. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 2007; 409:72-82. [PMID: 18182173 DOI: 10.1016/j.gene.2007.11.013] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/08/2007] [Accepted: 11/20/2007] [Indexed: 12/21/2022]
Abstract
Satellite DNAs (tandemly repeated, non-coding DNA sequences) stretch over almost all native centromeres and surrounding pericentromeric heterochromatin. Once considered as inert by-products of genome dynamics in heterochromatic regions, recent studies showed that satellite DNA evolution is interplay of stochastic events and selective pressure. This points to a functional significance of satellite sequences, which in (peri)centromeres may play some fundamental functional roles. First, specific interactions with DNA-binding proteins are proposed to complement sequence-independent epigenetic processes. The second role is achieved through RNAi mechanism, in which transcripts of satellite sequences initialize heterochromatin formation. In addition, satellite DNAs in (peri)centromeric regions affect chromosomal dynamics and genome plasticity. Paradoxically, while centromeric function is conserved through eukaryotes, the profile of satellite DNAs in this region is almost always species-specific. We argue that tandem repeats may be advantageous forms of DNA sequences in (peri)centromeres due to concerted evolution, which maintains high intra-array and intrapopulation sequence homogeneity of satellite arrays, while allowing rapid changes in nucleotide sequence and/or composition of satellite repeats. This feature may be crucial for long-term stability of DNA-protein interactions in centromeric regions.
Collapse
Affiliation(s)
- Miroslav Plohl
- Department of Molecular Genetics, Ruder Bosković Institute, Bijenicka 54, HR-10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|
38
|
Telgmann-Rauber A, Jamsari A, Kinney MS, Pires JC, Jung C. Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus. Mol Genet Genomics 2007; 278:221-34. [PMID: 17609979 DOI: 10.1007/s00438-007-0235-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/26/2007] [Indexed: 11/30/2022]
Abstract
Asparagus officinalis L. is a dioecious plant. A region called the M-locus located on a pair of homomorphic sex chromosomes controls the sexual dimorphism in asparagus. The aim of this work was to clone the region determining sex in asparagus from its position in the genome. The structure of the region encompassing M should be investigated and compared to the sex-determining regions in other dioecious model species. To establish an improved basis for physical mapping, a high-resolution genetic map was enriched with AFLP markers closely linked to the target locus by carrying out a bulked segregant analysis. By screening a BAC library with AFLP- and STS-markers followed by chromosome walking, a physical map with eight contigs could be established. However, the gaps between the contigs could not be closed due to a plethora of repetitive elements. Surprisingly, two of the contigs on one side of the M-locus did not overlap although they have been established with two markers, which mapped in a distance as low as 0.25 cM flanking the sex locus. Thus, the clustering of the markers indicates a reduced recombination frequency within the M-region. On the opposite side of the M-locus, a contig was mapped in a distance of 0.38 cM. Four closely linked BAC clones were partially sequenced and 64 putative ORFs were identified. Interestingly, only 25% of the ORFs showed sequence similarity to known proteins and ESTs. In addition, an accumulation of repetitive sequences and a low gene density was revealed in the sex-determining region of asparagus. Molecular cytogenetic and sequence analysis of BACs flanking the M-locus indicate that the BACs contain highly repetitive sequences that localize to centromeric and pericentromeric locations on all asparagus chromosomes, which hindered the localization of the M-locus to the single pair of sex chromosomes. We speculate that dioecious Silene, papaya and Asparagus species may represent three stages in the evolution of XX, XY sex determination systems. Given that asparagus still rarely produces hermaphroditic flowers and has homomorphic sex chromosomes, this species may be an ideal system to further investigates early sex chromosome evolution and the origins of dioecy.
Collapse
Affiliation(s)
- Alexa Telgmann-Rauber
- Plant Breeding Institute, Christian-Albrechts-University Kiel, Olshausenstr. 40, Kiel 24098, Germany
| | | | | | | | | |
Collapse
|
39
|
Ge Y, He G, Wang Z, Guo D, Qin R, Li R. GISH and BAC-FISH study of apomictic Beta M14. ACTA ACUST UNITED AC 2007; 50:242-50. [PMID: 17447032 DOI: 10.1007/s11427-007-0018-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/30/2006] [Indexed: 11/30/2022]
Abstract
Apomixis is a means of asexual reproduction by which plants produce embryos without fertilization and meiosis, therefore the embryo is of clonal and maternal origin. Interspecific hybrids between diploid B. vulgaris (2n=2x=18) and tetraploid B. corolliflora (2n=4x=36) were established, and then back-crossed with B. vulgaris. Among their offspring, monosomic addition line M14 (2n=2x=18+1) was selected because of the apomictic phenotype. We documented chromosome transmission from B. corolliflora into M14 by using genomic in situ hybridization (GISH). Suppression of cross-hybridization by blocking DNA was not necessary, indicating that the investigated Beta genome contains sufficient species-specific DNA, thus enabling the determination of genomic composition of the hybrids. We analyzed BAC microarrays of B. corolliflora chromosome 9 by using fluorescence-specific mRNA of B. vulgaris and Beta M14. BAC clones 16-M11 and 26-L15 were detected as fluorescence-specifics of BAC DNA of Beta M14. Then both BAC clones 16-M11 and 26-L15 were in situ hybridized to M14 chromosomes. The two hybridized BAC clones were located close to the telomere region of the long arm of a single chromosome 9, and showed hemizygosity. The results of BAC microarrays showed that these developments of embryo and endosperm have conservative expression patterns, indicating that sexual reproduction and apomixis have an interrelated pathway with common regulatory components and that the induction of a modified sexual reproduction program may enable the manifestation of apomixis in Beta species. It would be sufficient for the expression of apomixes with those apomictic-specific genes on chromosome 9 of B. corolliflora.
Collapse
Affiliation(s)
- Yan Ge
- Key Laboratory of Biochemistry and Molecular Biology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Two novel repetitive sequence families were isolated from Turritis glabra (2n = 2x = 12). These two repeat families are similar to those of centromeric repeats in Arabidopsis thaliana, are co-localized on one chromosome pair, and differ by about 20% from each other. Phylogenetic analysis revealed that the two repeat families of T. glabra are more similar to each other than to the centromeric repeat families of other Arabidopsis and related species. The relationships of satellite sequences reflected the species phylogeny, indicating that the replacement of satellite sequences has occurred in each species lineage independently, and shared variants could not have existed for a long time between species.
Collapse
Affiliation(s)
- Akira Kawabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
41
|
Dechyeva D, Schmidt T. Molecular organization of terminal repetitive DNA in Beta species. Chromosome Res 2007; 14:881-97. [PMID: 17195925 DOI: 10.1007/s10577-006-1096-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/19/2007] [Accepted: 10/19/2006] [Indexed: 09/29/2022]
Abstract
We have isolated families of subtelomeric satellite DNA sequences from species of four sections of the genus Beta and from spinach, a related Chenopodiaceae. Twenty-five clones were sequenced and representative repeats of each family were characterized by Southern blotting and FISH. The families of ApaI restriction satellite repeats were designated pAv34, pAc34, the families of RsaI repeats pRp34, pRn34 and pRs34. The repeating units are 344-362 bp long and 45.7-98.8% homologous with a clear species-specific divergence. Each satellite monomer consists of two subrepeats SR1 and SR2 of 165-184 bp, respectively. The repeats of each subrepeat group are highly identical across species, but share only a homology of 40.8-54.8% with members of the other subrepeat group. Two evolutionary steps could be supposed in the phylogeny of the subtelomeric satellite family: the diversification of an ancestor satellite into groups representing SR1 and SR2 in the progenitor of Beta and Spinacea species, followed by the dimerization and diversification of the resulting 360 bp repeats into section-specific satellite DNA families during species radiation. The chromosomal localization of telomeric, subtelomeric and rDNA tandem repeats was investigated by multi-colour FISH. High-resolution analysis by fibre FISH revealed a unique physical organization of B. vulgaris chromosome ends with telomeric DNA and subtelomeric satellites extending over a maximum of 63 kb and 125 kb, respectively.
Collapse
Affiliation(s)
- Daryna Dechyeva
- Institute of Botany, Dresden University of Technology, Zellescher Weg 20b, 01062 Dresden, Germany
| | | |
Collapse
|
42
|
Kawabe A, Charlesworth D. Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata. J Mol Evol 2006; 64:237-47. [PMID: 17160639 DOI: 10.1007/s00239-006-0097-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 10/03/2006] [Indexed: 11/28/2022]
Abstract
We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK.
| | | |
Collapse
|
43
|
Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. PLANT METHODS 2006; 2:18. [PMID: 17081287 PMCID: PMC1635696 DOI: 10.1186/1746-4811-2-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 11/02/2006] [Indexed: 05/08/2023]
Abstract
Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene) expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes) and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.
Collapse
Affiliation(s)
- Ana Paula Santos
- Plant Genetic Engineering Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| | - Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - George C Allen
- Plant Transformation Laboratory (PTL), Departments of Crop Science and Horticultural Science, Campus Box 7550, North Carolina State University, Raleigh, NC 27695, USA
| | - William F Thompson
- Plant Gene Expression Laboratory, Campus Box 7550, North Carolina State University Raleigh, NC 27695, USA
| | - Eva Stoger
- Institute for Molecular Biotechnology, RWTH Aachen, 52074 Aachen, Germany
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| |
Collapse
|
44
|
Jiang J, Gill BS. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 2006; 49:1057-68. [PMID: 17110986 DOI: 10.1139/g06-076] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence in situ hybridization (FISH), which allows direct mapping of DNA sequences on chromosomes, has become the most important technique in plant molecular cytogenetics research. Repetitive DNA sequence can generate unique FISH patterns on individual chromosomes for karyotyping and phylogenetic analysis. FISH on meiotic pachytene chromosomes coupled with digital imaging systems has become an efficient method to develop physical maps in plant species. FISH on extended DNA fibers provides a high-resolution mapping approach to analyze large DNA molecules and to characterize large genomic loci. FISH-based physical mapping provides a valuable complementary approach in genome sequencing and map-based cloning research. We expect that FISH will continue to play an important role in relating DNA sequence information to chromosome biology. FISH coupled with immunoassays will be increasingly used to study features of chromatin at the cytological level that control expression and regulation of genes.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
45
|
Murata M, Shibata F, Yokota E. The origin, meiotic behavior, and transmission of a novel minichromosome in Arabidopsis thaliana. Chromosoma 2006; 115:311-9. [PMID: 16607510 DOI: 10.1007/s00412-005-0045-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
A plant carrying a small extra chromosome was found in Landsberg erecta ecotype of Arabidopsis thaliana. Fluorescence in situ hybridization revealed that this minichromosome was derived from the short arm of chromosome 4. The size of this "mini4S" chromosome was estimated to be approximately 7.5 Mb on the basis of previously reported data and the amount of the centromeric major satellite (180-bp family) present, which was determined to be about 1 Mb, or about one third of that in the normal chromosome 4. No pairing between mini4S and its original chromosome 4 was observed at pachytene and metaphase I stages. The transmission of mini4S through pollen was limited, but about 30% of selfed progeny carried the mini4S chromosomes. The transmission rates considerably increased when the mini4S chromosomes were transferred to plants with a Columbia background by successive backcrosses. This suggests that the stability of the minichromosomes is controlled genetically by factors that can vary between ecotypes.
Collapse
Affiliation(s)
- Minoru Murata
- Research Institute for Bioresources, Okayama University, Kurashiki, 710-0046, Japan.
| | | | | |
Collapse
|
46
|
Schulte D, Cai D, Kleine M, Fan L, Wang S, Jung C. A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Mol Genet Genomics 2006; 275:504-11. [PMID: 16496176 DOI: 10.1007/s00438-006-0108-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 01/28/2006] [Indexed: 10/25/2022]
Abstract
Two sugar beet lines carry homologous translocations of the wild beet Beta procumbens. Long-range restriction mapping with rare cutting enzymes revealed that both translocations are different in size, however, an overlapping region of about 350 kb could be identified. Both lines are resistant to the beet cyst nematode but only TR520 carries the previously cloned resistance gene Hs1pro-1. Hence, a second gene for nematode resistance (Hs1-1) must be located within this region. A bacterial artificial chromosome (BAC) library was constructed from line TR520. The library was screened with a number of B. procumbens specific probes and 61 BAC clones were identified. Five BAC clones formed a minimal tiling path of 580 kb to cover the overlapping region between both translocations including the translocation breakpoint. The five BACs from the overlapping region and one additional BAC distal from that contig were sequenced. The total sequence length from the five BACs of the overlapping region amounted to 524 kb which is 74.35% of the total insert size of these BACs. The frequency of retrotransposon sequences ranged between 14.7 and 43.3%. A total of 133 ORFs were identified, none of these showed similarity to known disease resistance genes. Of these, 12 ORFs showed homology to genes involved in biotic stress resistance reactions or to transcription factors. This paper demonstrates how genome specific probes can be employed for cloning an alien gene introgression into a cultivated species.
Collapse
Affiliation(s)
- Daniela Schulte
- Plant Breeding Institute, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Natali L, Santini S, Giordani T, Minelli S, Maestrini P, Cionini PG, Cavallini A. Distribution of Ty3-gypsy- and Ty1-copia-like DNA sequences in the genus Helianthus and other Asteraceae. Genome 2006; 49:64-72. [PMID: 16462902 DOI: 10.1139/g05-058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two repeated DNA sequences, pHaS13 and pHaS211, which revealed similarity to the int gene of Ty3-gypsy retrotransposons and the RNAse-H gene of Ty1-copia retroelements, respectively, were surveyed in Asteraceae species and within the genus Helianthus. Southern analysis of the genome of selected Asteraceae that belong to different tribes showed that pHaS13- and pHaS211-related subfamilies of gypsy- and copia-like retroelements are highly redundant only in Helianthus and, to a lesser extent, in Tithonia, a Helianthus strict relative. However, under low stringency posthybridization washes, bands were observed in almost all the other Asteraceae tested when pHaS13 was used as a probe, and in several species when pHaS211 was hybridized. FISH analysis of pHaS13 or pHaS211 probes was performed in species in which labelling was observed in Southern hybridizations carried out under high stringency conditions (Helianthus annuus, Tithonia rotundifolia, Ageratum spp., Leontopodium spp., Senecio vulgaris for pHaS13, and H. annuus, Tithonia rotundifolia, and S. vulgaris for pHaS211). Scattered labelling was observed over all metaphase chromosomes, indicating a large dispersal of both Ty3-gypsy- and Ty1-copia-like retroelements. However, preferential localization of Ty3-gypsy-like sequences at centromeric chromosome regions was observed in all of the species studies but one, even in species in which pHaS13-related elements are poorly represented. Ty1-copia -like sequences showed preferential localization at the chromosome ends only in H. annuus. To study the evolution of gypsy- and copia-like retrotransposons in Helianthus, cladograms were built based on the Southern blot hybridization patterns of pHaS13 or pHaS211 sequences to DNA digests of several species of this genus. Both cladograms agree in splitting the genomes studied into annuals and perennials. Differences that occurred within the clades of perennial and annual species between gypsy- and copia-like retroelements indicated that these retrotransposons were differentially active during Helianthus speciation, suggesting that the evolution of the 2 retroelement families was, within limits, independent.Key words: Asteraceae, FISH, genome evolution, Helianthus, retrotransposons, Ty1-copia, Ty3-gypsy.
Collapse
Affiliation(s)
- L Natali
- Dipartimento de Biologia della Piante Agrarie, Sezione de Genetica, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Sharma S, Raina SN. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 2005; 109:15-26. [PMID: 15753554 DOI: 10.1159/000082377] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/14/2004] [Indexed: 11/19/2022] Open
Abstract
A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive".
Collapse
Affiliation(s)
- S Sharma
- Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi, India.
| | | |
Collapse
|
49
|
Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A 2005; 102:11793-8. [PMID: 16040802 PMCID: PMC1187982 DOI: 10.1073/pnas.0503863102] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The functional centromeres of rice (Oryza sativa, AA genome) chromosomes contain two key DNA components: the CRR centromeric retrotransposons and a 155-bp satellite repeat, CentO. However, several wild Oryza species lack the CentO repeat. We developed a chromatin immunoprecipitation-based technique to clone DNA fragments derived from chromatin containing the centromeric histone H3 variant CenH3. Chromatin immunoprecipitation cloning was carried out in the CentO-less species Oryza rhizomatis (CC genome) and Oryza brachyantha (FF genome). Three previously uncharacterized genome-specific satellite repeats, CentO-C1, CentO-C2, and CentO-F, were discovered in the centromeres of these two species. An 80-bp DNA region was found to be conserved in CentO-C1, CentO, and centromeric satellite repeats from maize and pearl millet, species which diverged from rice many millions of years ago. In contrast, the CentO-F repeat shows no sequence similarity to other centromeric repeats but has almost completely replaced other centromeric sequences in O. brachyantha, including the CRR-related sequences that normally constitute a significant fraction of the centromeric DNA in grass species.
Collapse
Affiliation(s)
- Hye-Ran Lee
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR. Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 2005; 102:9842-7. [PMID: 15998740 PMCID: PMC1175009 DOI: 10.1073/pnas.0504235102] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Indexed: 11/18/2022] Open
Abstract
The satellite sequences (AGGGAG)(n) and Ty3/gypsy-like retrotransposons are known to localize at the barley centromeres. Using a gametocidal system, which induces chromosomal mutations in barley chromosomes added to common wheat, we obtained an isochromosome for the short arm of barley chromosome 7H (7HS) that lacked the barley-specific satellite sequence (AGGGAG)(n). Two telocentric derivatives of the isochromosome arose in the progeny: 7HS* with and 7HS** without the pericentromeric C-band. FISH analysis demonstrated that both telosomes lacked not only the barley-specific centromeric (AGGGAG)(n) repeats and retroelements but also any of the known wheat centromeric tandem repeats, including the 192-bp, 250-bp, and TaiI sequences. Although they lacked these centromeric repeats, 7HS* and 7HS** both showed normal mitotic and meiotic transmission. Translocation of barley centromeric repeats to a wheat chromosome 4A did not generate a dicentric chromosome. Indirect immunostaining revealed that all tested centromere-specific proteins (rice CENH3, maize CENP-C, and putative barley homologues of the yeast kinetochore proteins CBF5 and SKP1) and histone H3 phosphorylated at serines 10 and 28 localized at the centromeric region of 7HS*. We conclude that the barley centromeric repeats are neither sufficient nor obligatory to assemble kinetochores, and we discuss the possible formation of a novel centromere in a barley chromosome.
Collapse
Affiliation(s)
- S Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|