1
|
Banerjee D, Menasalvas J, Chen Y, Gin JW, Baidoo EEK, Petzold CJ, Eng T, Mukhopadhyay A. Addressing genome scale design tradeoffs in Pseudomonas putida for bioconversion of an aromatic carbon source. NPJ Syst Biol Appl 2025; 11:8. [PMID: 39809795 PMCID: PMC11732973 DOI: 10.1038/s41540-024-00480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement. We examine the performance of the fully implemented design for p-coumarate to glutamine, a useful biomanufacturing intermediate. In this study glutamine is then converted to indigoidine, an alternative sustainable pigment and a model heterologous product that is commonly used to colorimetrically quantify glutamine concentration. Through proteomics, promoter-variation, and growth characterization of a fully implemented gene deletion design, we provide evidence that aromatic catabolism in the completed design is rate-limited by fumarase hydratase (FUM) enzyme activity in the citrate cycle and requires careful optimization of another fumarate hydratase protein (PP_0897) expression to achieve growth and production. A double sensitivity analysis also confirmed a strict requirement for fumarate hydratase activity in the strain where all genes in the growth coupling design have been implemented. Metabolic cross-feeding experiments were used to examine the impact of complete removal of the fumarase hydratase reaction and revealed an unanticipated nutrient requirement, suggesting additional functions for this enzyme. While a complete implementation of the design was achieved, this study highlights the challenge of completely inactivating metabolic reactions encoded by under-characterized proteins, especially in the context of multi-gene edits.
Collapse
Affiliation(s)
- Deepanwita Banerjee
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Menasalvas
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Eng
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Headrick J, Ohayon A, Elliott S, Schultz J, Mills E, Petersen E. Biomolecule screen identifies several inhibitors of Salmonella enterica surface colonization. Front Bioeng Biotechnol 2025; 12:1467511. [PMID: 39830689 PMCID: PMC11738630 DOI: 10.3389/fbioe.2024.1467511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025] Open
Abstract
Salmonella enterica is a foodborne pathogen commonly found in agricultural facilities; its prevalence, as well as increasing levels of disinfectant- and antibiotic-resistance, has significant costs for agriculture as well as human health. In an effort to identify potential new inhibitors of S. enterica on abiotic surfaces, we developed a biomolecule screen of nutrient-type compounds because nutrients would have lower toxicity in animal facilities and bacterial nutrient utilization pathways might prove less susceptible to the development of bacterial resistance. After screening 285 nutrient-type compounds, we identified ten that significantly inhibited the ability of S. enterica to colonize a plastic surface. After conducting a dose-response curve, salicylic acid was selected for further testing due to its low minimal inhibitory concentration (62.5 μM) as well as a low total inhibitory concentration (250 μM). Salicylic acid was also able to inhibit surface colonization of a wide range of bacterial pathogens, suggesting that our biomolecule screen might have broader application beyond S. enterica. Finally, we determined that salicylic acid was also able to inhibit S. enterica colonization of an organic surface on eggshells. Together, these results suggest that nutrient-type biomolecules may provide an avenue for preventing resistant bacteria from contaminating surfaces.
Collapse
Affiliation(s)
- Joseph Headrick
- Department of Biomedical Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Amital Ohayon
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shannon Elliott
- Department of Biomedical Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Jacob Schultz
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Erez Mills
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Erik Petersen
- Department of Biomedical Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
3
|
Neal M, Brakewood W, Betenbaugh M, Zengler K. Pan-genome-scale metabolic modeling of Bacillus subtilis reveals functionally distinct groups. mSystems 2024; 9:e0092324. [PMID: 39365060 PMCID: PMC11575223 DOI: 10.1128/msystems.00923-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Bacillus subtilis is an important industrial and environmental microorganism known to occupy many niches and produce many compounds of interest. Although it is one of the best-studied organisms, much of this focus including the reconstruction of genome-scale metabolic models has been placed on a few key laboratory strains. Here, we substantially expand these prior models to pan-genome-scale, representing 481 genomes of B. subtilis with 2,315 orthologous gene clusters, 1,874 metabolites, and 2,239 reactions. Furthermore, we incorporate data from carbon utilization experiments for eight strains to refine and validate its metabolic predictions. This comprehensive pan-genome model enables the assessment of strain-to-strain differences related to nutrient utilization, fermentation outputs, robustness, and other metabolic aspects. Using the model and phenotypic predictions, we divide B. subtilis strains into five groups with distinct patterns of behavior that correlate across these features. The pan-genome model offers deep insights into B. subtilis' metabolism as it varies across environments and provides an understanding as to how different strains have adapted to dynamic habitats. IMPORTANCE As the volume of genomic data and computational power have increased, so has the number of genome-scale metabolic models. These models encapsulate the totality of metabolic functions for a given organism. Bacillus subtilis strain 168 is one of the first bacteria for which a metabolic network was reconstructed. Since then, several updated reconstructions have been generated for this model microorganism. Here, we expand the metabolic model for a single strain into a pan-genome-scale model, which consists of individual models for 481 B. subtilis strains. By evaluating differences between these strains, we identified five distinct groups of strains, allowing for the rapid classification of any particular strain. Furthermore, this classification into five groups aids the rapid identification of suitable strains for any application.
Collapse
Affiliation(s)
- Maxwell Neal
- Department of Bioengineering, University of California, San Diego, California, USA
| | - William Brakewood
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, California, USA
- Department of Pediatrics, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Blanco P, Trigo da Roza F, Toribio-Celestino L, García-Pastor L, Caselli N, Morón Á, Ojeda F, Darracq B, Vergara E, Amaro F, San Millán Á, Skovgaard O, Mazel D, Loot C, Escudero J. Chromosomal integrons are genetically and functionally isolated units of genomes. Nucleic Acids Res 2024; 52:12565-12581. [PMID: 39385642 PMCID: PMC11551772 DOI: 10.1093/nar/gkae866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Integrons are genetic elements that increase the evolvability of bacteria by capturing new genes and stockpiling them in arrays. Sedentary chromosomal integrons (SCIs) can be massive and highly stabilized structures encoding hundreds of genes, whose function remains generally unknown. SCIs have co-evolved with the host for aeons and are highly intertwined with their physiology from a mechanistic point of view. But, paradoxically, other aspects, like their variable content and location within the genome, suggest a high genetic and functional independence. In this work, we have explored the connection of SCIs to their host genome using as a model the Superintegron (SI), a 179-cassette long SCI in the genome of Vibrio cholerae N16961. We have relocated and deleted the SI using SeqDelTA, a novel method that allows to counteract the strong stabilization conferred by toxin-antitoxin systems within the array. We have characterized in depth the impact in V. cholerae's physiology, measuring fitness, chromosome replication dynamics, persistence, transcriptomics, phenomics, natural competence, virulence and resistance against protist grazing. The deletion of the SI did not produce detectable effects in any condition, proving that-despite millions of years of co-evolution-SCIs are genetically and functionally isolated units of genomes.
Collapse
Affiliation(s)
- Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Niccolò Caselli
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro Morón
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Ojeda
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Ester Vergara
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Amaro
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
5
|
Pauly R, Iqbal M, Lee N, Moffitt BA, Sarasua SM, Li L, Hubig NC, Boccuto L. PhenoMetaboDiff: R Package for Analysis and Visualization of Phenotype Microarray Data. Genes (Basel) 2024; 15:1362. [PMID: 39596562 PMCID: PMC11593505 DOI: 10.3390/genes15111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND PhenoMetaboDiff is a novel R package for computational analysis and visualization of data generated by Biolog Phenotype Mammalian Microarrays (PM-Ms). These arrays measure the energy production of mammalian cells in different metabolic environments, assess the metabolic activity of cells exposed to various drugs or energy sources, and compare the metabolic profiles of cells from individuals affected by specific disorders versus healthy controls. METHODS PhenoMetaboDiff has several modules that facilitate statistical analysis by sample comparisons using non-parametric Mann-Whitney U-test, the integration of the OPM package (an R package for analysing OmniLog® phenotype microarray data) for robust file conversion, and calculation of slope and area under the curve (AUC). In addition, the built-in visualization allows specific wells to be visualized in selected pathways for a particular time slice. RESULTS Compared to the standard OPM package, the features developed in PhenoMetaboDiff assess metabolic profiles by employing statistical tests and visualize the dynamic nature of the energy production in several conditions. Examples of how this package can be used are demonstrated for several rare disease conditions. The incorporation of a graphical user interface expands the utility of this program to both expert and novice users of R. CONCLUSIONS PhenoMetaboDiff makes the deployment of the cutting-edge Biolog system available to any researcher.
Collapse
Affiliation(s)
- Rini Pauly
- JC Self Research Institute, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA (L.B.)
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Mehtab Iqbal
- School of Computing, Clemson University, 821 McMillan Rd, Clemson, SC 29634, USA (N.C.H.)
| | - Narae Lee
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | | | - Sara Moir Sarasua
- School of Nursinghl, Clemson University, 414 Edwards, Clemson, SC 29634, USA
| | - Luyi Li
- School of Computing, Clemson University, 821 McMillan Rd, Clemson, SC 29634, USA (N.C.H.)
| | - Nina Christine Hubig
- School of Computing, Clemson University, 821 McMillan Rd, Clemson, SC 29634, USA (N.C.H.)
| | - Luigi Boccuto
- JC Self Research Institute, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA (L.B.)
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
- School of Nursinghl, Clemson University, 414 Edwards, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Hirose Y, Zielinski DC, Poudel S, Rychel K, Baker JL, Toya Y, Yamaguchi M, Heinken A, Thiele I, Kawabata S, Palsson BO, Nizet V. A genome-scale metabolic model of a globally disseminated hyperinvasive M1 strain of Streptococcus pyogenes. mSystems 2024; 9:e0073624. [PMID: 39158303 PMCID: PMC11406949 DOI: 10.1128/msystems.00736-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Streptococcus pyogenes is responsible for a range of diseases in humans contributing significantly to morbidity and mortality. Among more than 200 serotypes of S. pyogenes, serotype M1 strains hold the greatest clinical relevance due to their high prevalence in severe human infections. To enhance our understanding of pathogenesis and discovery of potential therapeutic approaches, we have developed the first genome-scale metabolic model (GEM) for a serotype M1 S. pyogenes strain, which we name iYH543. The curation of iYH543 involved cross-referencing a draft GEM of S. pyogenes serotype M1 from the AGORA2 database with gene essentiality and autotrophy data obtained from transposon mutagenesis-based and growth screens. We achieved a 92.6% (503/543 genes) accuracy in predicting gene essentiality and a 95% (19/20 amino acids) accuracy in predicting amino acid auxotrophy. Additionally, Biolog Phenotype microarrays were employed to examine the growth phenotypes of S. pyogenes, which further contributed to the refinement of iYH543. Notably, iYH543 demonstrated 88% accuracy (168/190 carbon sources) in predicting growth on various sole carbon sources. Discrepancies observed between iYH543 and the actual behavior of living S. pyogenes highlighted areas of uncertainty in the current understanding of S. pyogenes metabolism. iYH543 offers novel insights and hypotheses that can guide future research efforts and ultimately inform novel therapeutic strategies.IMPORTANCEGenome-scale models (GEMs) play a crucial role in investigating bacterial metabolism, predicting the effects of inhibiting specific metabolic genes and pathways, and aiding in the identification of potential drug targets. Here, we have developed the first GEM for the S. pyogenes highly virulent serotype, M1, which we name iYH543. The iYH543 achieved high accuracy in predicting gene essentiality. We also show that the knowledge obtained by substituting actual measurement values for iYH543 helps us gain insights that connect metabolism and virulence. iYH543 will serve as a useful tool for rational drug design targeting S. pyogenes metabolism and computational screening to investigate the interplay between inhibiting virulence factor synthesis and growth.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Saugat Poudel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jonathon L. Baker
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
- Department of Oral Rehabilitation & Biosciences, OHSU School of Dentistry, Portland, Oregon, USA
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Masaya Yamaguchi
- Department of Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Bioinformatics Research Unit, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
| | - Almut Heinken
- School of Medicine, National University of Galway, Galway, Ireland
- Ryan Institute, University of Galway, Galway, Ireland
- Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France
| | - Ines Thiele
- School of Medicine, National University of Galway, Galway, Ireland
- Division of Microbiology, National University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Feng R, Wang H, Zhang X, Li T, Huang C, Zhang S, Sun M, Shi C, Hu J, Gou J. Characteristics of Corynespora cassiicola, the causal agent of tobacco Corynespora leaf spot, revealed by genomic and metabolic phenomic analysis. Sci Rep 2024; 14:18326. [PMID: 39112526 PMCID: PMC11306238 DOI: 10.1038/s41598-024-67510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Corynespora cassiicola is a highly diverse fungal pathogen that commonly occurs in tropical, subtropical, and greenhouse environments worldwide. In this study, the isolates were identified as C. cassiicola, and the optimum growth and sporulation were studied. The phenotypic characteristics of C. cassiicola, concerning 950 different growth conditions, were tested using Biolog PM plates 1-10. In addition, the strain of C. cassiicola DWZ from tobacco hosts was sequenced for the using Illumina PE150 and Pacbio technologies. The host resistance of tobacco Yunyan 87 with different maturity levels was investigated. In addition, the resistance evaluation of 10 common tobacco varieties was investigated. The results showed that C. cassiicola metabolized 89.47% of the tested carbon source, 100% of the nitrogen source, 100% of the phosphorus source, and 97.14% of the sulfur source. It can adapt to a variety of different osmotic pressure and pH environments, and has good decarboxylase and deaminase activities. The optimum conditions for pathogen growth and sporulation were 25-30 °C, and the growth was better on AEA and OA medium. The total length of the genome was 45.9 Mbp, the GC content was 51.23%, and a total of 13,061 protein-coding genes, 202 non-coding RNAs and 2801 and repeat sequences were predicted. Mature leaves were more susceptible than proper mature and immature leaves, and the average diameter of diseased spots reached 17.74 mm at 12 days. None of the tested ten cultivars exhibited obvious resistance to Corynespora leaf spot of tobacco, whereby all disease spot diameters reached > 10 mm and > 30 mm when at 5 and 10 days after inoculation, respectively. The phenotypic characteristics, genomic analysis of C. cassiicola and the cultivar resistance assessment of this pathogen have increased our understanding of Corynespora leaf spot of tobacco.
Collapse
Affiliation(s)
- Ruichao Feng
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China.
| | - Xinghong Zhang
- College of Agricultural Sciences, Guizhou University, Guiyang, 550081, People's Republic of China
| | - Tong Li
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Chunyang Huang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi Guizhou, 564200, People's Republic of China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Meili Sun
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Caihua Shi
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, People's Republic of China
| | - Jingrong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, People's Republic of China
| | - Jianyu Gou
- Zunyi Branch of Guizhou Tobacco Company, Zunyi Guizhou, 564200, People's Republic of China.
| |
Collapse
|
8
|
Foo M, Frietze LR, Enghiad B, Yuan Y, Katanski CD, Zhao H, Pan T. Prokaryotic RNA N1-Methyladenosine Erasers Maintain tRNA m1A Modification Levels in Streptomyces venezuelae. ACS Chem Biol 2024; 19:1616-1625. [PMID: 38912606 DOI: 10.1021/acschembio.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
tRNA modifications help maintain tRNA structure and facilitate translation and stress response. Found in all three kingdoms of life, m1A tRNA modification occurs in the T loop of many tRNAs, stabilizes tertiary tRNA structure, and impacts translation. M1A in the T loop is reversible by three mammalian demethylase enzymes, which bypasses the need of turning over the tRNA molecule to adjust its m1A levels in cells. However, no prokaryotic tRNA demethylase enzyme has been identified that acts on endogenous RNA modifications. Using Streptomyces venezuelae as a model organism, we confirmed the presence and quantitative m1A tRNA signatures using mass spectrometry and high-throughput tRNA sequencing. We identified two RNA demethylases that can remove m1A in tRNA and validated the activity of a previously annotated tRNA m1A writer. Using single-gene knockouts of these erasers and the m1A writer, we found dynamic changes of m1A levels in many tRNAs under stress conditions. Phenotypic characterization highlighted changes in their growth and altered antibiotic production. Our identification of the first prokaryotic tRNA demethylase enzyme paves the way for investigating new mechanisms of translational regulation in bacteria.
Collapse
Affiliation(s)
- Marcus Foo
- Committee on Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Luke R Frietze
- Department of Biochemistry & Molecular Biology,, The University of Chicago, Chicago, Illinois60637, United States
| | - Behnam Enghiad
- Department of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yujie Yuan
- Department of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Christopher D Katanski
- Department of Biochemistry & Molecular Biology,, The University of Chicago, Chicago, Illinois60637, United States
| | - Huimin Zhao
- Department of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Tao Pan
- Committee on Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Biochemistry & Molecular Biology,, The University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
9
|
Chen S, Yang H, Chen M, Liu W, Tian S, Mu R, Jia F, Liu C, Ma G, Sun X, Chen G. Inhibition of Monilinia fructicola sporulation and pathogenicity through eucalyptol-mediated targeting of MfCat2 by Streptomyces lincolnensis strain JCP1-7. MOLECULAR PLANT PATHOLOGY 2024; 25:e13484. [PMID: 38973095 PMCID: PMC11227988 DOI: 10.1111/mpp.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024]
Abstract
Peach brown rot, attributed to Monilinia fructicola, presents a significant threat to postharvest peach cultivation, causing losses of up to 80%. With an increasing number of countries, spearheaded by the European Union, imposing bans on chemical agents in fruit production, there is a growing interest in mining highly active antibacterial compounds from biological control strains for postharvest disease management. In this study, we highlight the unique ability of Streptomyces lincolnensis strain JCP1-7 to inhibit M. fructicola sporulation, despite its limited antimicrobial efficacy. Through GC-MS analysis, eucalyptol was identified as the key compound. Fumigation of diseased fruits with eucalyptol at a concentration of 0.0335 μg cm-3 demonstrated an in vivo inhibition rate against M. fructicola of 93.13%, completely suppressing spore formation. Transcriptome analysis revealed the impact of eucalyptol on multiple pathogenesis-related pathways, particularly through the inhibition of catalase 2 (Cat2) expression. Experiments with a MfCat2 knockout strain (ΔMfCat2) showed reduced pathogenicity and sensitivity to JCP1-7 and eucalyptol, suggesting MfCat2 as a potential target of JCP1-7 and eucalyptol against M. fructicola. Our findings elucidate that eucalyptol produced by S. lincolnensis JCP1-7 inhibits M. fructicola sporulation by regulating MfCat2, thereby effectively reducing postharvest peach brown rot occurrence. The use of fumigation of eucalyptol offers insights into peach brown rot management on a large scale, thus making a significant contribution to agricultural research.
Collapse
Affiliation(s)
- Shan Chen
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Haorong Yang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Meijun Chen
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Scientific Research Base of Pest and Mold Control of Heritage CollectionChongqing China Three Gorges Museum, State Administration of Cultural HeritageChongqingChina
| | - Weina Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze RiverMinistry of EducationChongqingChina
| | - Shaorui Tian
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze RiverMinistry of EducationChongqingChina
| | - Rong Mu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Fan Jia
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Changyun Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze RiverMinistry of EducationChongqingChina
| | - Guanhua Ma
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze RiverMinistry of EducationChongqingChina
| | - Guokang Chen
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
10
|
Sun M, Wang H, Ye G, Zhang S, Li Z, Cai L, Wang F. Biological characteristics and metabolic phenotypes of different anastomosis groups of Rhizoctonia solani strains. BMC Microbiol 2024; 24:217. [PMID: 38902632 PMCID: PMC11188240 DOI: 10.1186/s12866-024-03363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Rhizoctonia solani is an important plant pathogen worldwide, and causes serious tobacco target spot in tobacco in the last five years. This research studied the biological characteristics of four different anastomosis groups strains (AG-3, AG-5, AG-6, AG-1-IB) of R. solani from tobacco. Using metabolic phenotype technology analyzed the metabolic phenotype differences of these strains. RESULTS The results showed that the suitable temperature for mycelial growth of four anastomosis group strains were from 20 to 30oC, and for sclerotia formation were from 20 to 25oC. Under different lighting conditions, R. solani AG-6 strains produced the most sclerotium, followed by R. solani AG-3, R. solani AG-5 and R. solani AG-1-IB. All strains had strong oligotrophic survivability, and can grow on water agar medium without any nitrutions. They exhibited three types of sclerotia distribution form, including dispersed type (R. solani AG-5 and AG-6), peripheral type (R. solani AG-1-IB), and central type (R. solani AG-3). They all presented different pathogenicities in tobacco leaves, with the most virulent was noted by R. solani AG-6, followed by R. solani AG-5 and AG-1-IB, finally was R. solani AG-3. R. solani AG-1-IB strains firstly present symptom after inoculation. Metabolic fingerprints of four anastomosis groups were different to each other. R. solani AG-3, AG-6, AG-5 and AG-1-IB strains efficiently metabolized 88, 94, 71 and 92 carbon substrates, respectively. Nitrogen substrates of amino acids and peptides were the significant utilization patterns for R. solani AG-3. R. solani AG-3 and AG-6 showed a large range of adaptabilities and were still able to metabolize substrates in the presence of the osmolytes, including up to 8% sodium lactate. Four anastomosis groups all showed active metabolism in environments with pH values from 4 to 6 and exhibited decarboxylase activities. CONCLUSIONS The biological characteristics of different anastomosis group strains varies, and there were significant differences in the metabolic phenotype characteristics of different anastomosis group strains towards carbon source, nitrogen source, pH, and osmotic pressure.
Collapse
Affiliation(s)
- Meili Sun
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, 434025, People's Republic of China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, P. R. China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, P. R. China.
| | - Guo Ye
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, 434025, People's Republic of China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, 434025, People's Republic of China.
| | - Zhen Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, 434025, People's Republic of China
| | - Liuti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, P. R. China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, P. R. China.
| |
Collapse
|
11
|
Leonidou N, Ostyn L, Coenye T, Crabbé A, Dräger A. Genome-scale model of Rothia mucilaginosa predicts gene essentialities and reveals metabolic capabilities. Microbiol Spectr 2024; 12:e0400623. [PMID: 38652457 PMCID: PMC11237427 DOI: 10.1128/spectrum.04006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Cystic fibrosis (CF), an inherited genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, results in sticky and thick mucosal fluids. This environment facilitates the colonization of various microorganisms, some of which can cause acute and chronic lung infections, while others may positively impact the disease. Rothia mucilaginosa, an oral commensal, is relatively abundant in the lungs of CF patients. Recent studies have unveiled its anti-inflammatory properties using in vitro three-dimensional lung epithelial cell cultures and in vivo mouse models relevant to chronic lung diseases. Apart from this, R. mucilaginosa has been associated with severe infections. However, its metabolic capabilities and genotype-phenotype relationships remain largely unknown. To gain insights into its cellular metabolism and genetic content, we developed the first manually curated genome-scale metabolic model, iRM23NL. Through growth kinetics and high-throughput phenotypic microarray testings, we defined its complete catabolic phenome. Subsequently, we assessed the model's effectiveness in accurately predicting growth behaviors and utilizing multiple substrates. We used constraint-based modeling techniques to formulate novel hypotheses that could expedite the development of antimicrobial strategies. More specifically, we detected putative essential genes and assessed their effect on metabolism under varying nutritional conditions. These predictions could offer novel potential antimicrobial targets without laborious large-scale screening of knockouts and mutant transposon libraries. Overall, iRM23NL demonstrates a solid capability to predict cellular phenotypes and holds immense potential as a valuable resource for accurate predictions in advancing antimicrobial therapies. Moreover, it can guide metabolic engineering to tailor R. mucilaginosa's metabolism for desired performance.IMPORTANCECystic fibrosis (CF) is a genetic disorder characterized by thick mucosal secretions, leading to chronic lung infections. Rothia mucilaginosa is a common bacterium found in various parts of the human body, acting as a normal part of the flora. In people with weakened immune systems, it can become an opportunistic pathogen, while it is prevalent and active in CF airways. Recent studies have highlighted its anti-inflammatory properties in the lower pulmonary system, indicating the intricate relationship between microbes and human health. Herein, we have developed the first manually curated metabolic model of R. mucilaginosa. Our study examined the previously unknown relationships between the bacterium's genotype and phenotype and identified essential genes that impact the metabolism under various conditions. With this, we opt for paving the way for developing new strategies in antimicrobial therapy and metabolic engineering, leading to enhanced therapeutic outcomes in cystic fibrosis and related conditions.
Collapse
Affiliation(s)
- Nantia Leonidou
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
12
|
Rai LS, Chauvel M, Sanchez H, van Wijlick L, Maufrais C, Cokelaer T, Sertour N, Legrand M, Sanyal K, Andes DR, Bachellier-Bassi S, d’Enfert C. Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26. PLoS Biol 2024; 22:e3002693. [PMID: 38905306 PMCID: PMC11221756 DOI: 10.1371/journal.pbio.3002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/03/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Department of Life Sciences, GITAM University, Bengaluru, Karnataka 561203, India
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Lasse van Wijlick
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Mélanie Legrand
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN-80, Sector-V, Salt Lake City, Kolkata, India
| | - David R. Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
13
|
Ma T, Yan C, Zhang S, Liang D, Mao C, Zhang C. High-quality genome assembly and genetic transformation system of Lasiodiplodia theobromae strain LTTK16-3, a fungal pathogen of Chinese hickory. Microbiol Spectr 2024; 12:e0331123. [PMID: 38349153 PMCID: PMC10913528 DOI: 10.1128/spectrum.03311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Lasiodiplodia theobromae, as one of the causative agents associated with Chinese hickory trunk cankers, has caused huge economic losses to the Chinese hickory industry. Although the biological characteristics of this pathogen and the occurrence pattern of this disease have been well studied, few studies have addressed the related mechanisms due to the poor molecular and genetic study basis of this fungus. In this study, we sequenced and assembled L. theobromae strain LTTK16-3, isolated from a Chinese hickory tree (cultivar of Linan) in Linan, Zhejiang province, China. Phylogenetic analysis and comparative genomics analysis presented crucial cues in the prediction of LTTK16-3, which shared similar regulatory mechanisms of transcription, DNA replication, and DNA damage response with the other four Chinese hickory trunk canker-associated Botryosphaeria strains including, Botryosphaeria dothidea, Botryosphaeria fabicerciana, Botryosphaeria qingyuanensis, and Botryosphaeria corticis. Moreover, it contained 18 strain-specific protein clusters (not conserved in the other L. theobromae strains, AM2As and CITRA15), with potential roles in specific host-pathogen interactions during the Chinese hickory infection. Additionally, an efficient system for L. theobromae protoplast preparation and polyethylene glycol (PEG) -mediated genetic transformation was firstly established as the foundation for its future mechanisms study. Collectively, the high-quality genome data and the efficient transformation system of L. theobromae here set up the possibility of targeted molecular improvements for Chinese hickory canker control.IMPORTANCEFungi with disparate genomic features are physiologically diverse, possessing species-specific survival strategies and environmental adaptation mechanisms. The high-quality genome data and related molecular genetic studies are the basis for revealing the mechanisms behind the physiological traits that are responsible for their environmental fitness. In this study, we sequenced and assembled the LTTK16-3 strain, the genome of Lasiodiplodia theobromae first obtained from a diseased Chinese hickory tree (cultivar of Linan) in Linan, Zhejiang province, China. Further phylogenetic analysis and comparative genomics analysis provide crucial cues in the prediction of the proteins with potential roles in specific host-pathogen interactions during the Chinese hickory infection. An efficient PEG-mediated genetic transformation system of L. theobromae was established as the foundation for the future mechanisms exploration. The above genetic information and tools set up valuable clues to study L. theobromae pathogenesis and assist in Chinese hickory canker control.
Collapse
Affiliation(s)
- Tianling Ma
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Chenyi Yan
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Shuya Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Dong Liang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Chengxin Mao
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Chuanqing Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| |
Collapse
|
14
|
Han S, Kim D, Kim Y, Yoon SH. Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12. BMC Genomics 2024; 25:63. [PMID: 38229031 DOI: 10.1186/s12864-023-09940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic solvents and metabolic versatility, making it attractive for various applications, including bioremediation and the production of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 has yet to be developed. RESULTS In this study, we present a comprehensive and highly curated genome-scale metabolic network model of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately represents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoretical metabolic capacity of S12 growing on toxic organic solvents. CONCLUSIONS iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identified the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate the development of this versatile organism as an efficient cell factory for various biotechnological applications.
Collapse
Affiliation(s)
- Sol Han
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Kabtani J, Boulanouar F, Gaye PM, Militello M, Ranque S. Syncephalastrum massiliense sp. nov. and Syncephalastrum timoneanum sp. nov. Isolated from Clinical Samples. J Fungi (Basel) 2024; 10:64. [PMID: 38248973 PMCID: PMC10820596 DOI: 10.3390/jof10010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Mucormycosis is known to be a rare opportunistic infection caused by fungal organisms belonging to the Mucorales order, which includes the Syncephalastrum species. These moulds are rarely involved in clinical diseases and are generally seen as contaminants in clinical laboratories. However, in recent years, case reports of human infections due to Syncephalastrum have increased, especially in immunocompromised hosts. In this study, we described two new Syncephalastrum species, which were isolated from human nails and sputum samples from two different patients. We used several methods for genomic and phenotypic characterisation. The phenotypic analysis relied on the morphological features, analysed both by optical and scanning electron microscopy. We used matrix-assisted laser desorption-ionization time-of-flight mass spectrometry, energy-dispersive X-ray spectroscopy, and BiologTM technology to characterise the proteomic, chemical mapping, and carbon source assimilation profiles, respectively. The genomic analysis relied on a multilocus DNA sequence analysis of the rRNA internal transcribed spacers and D1/D2 large subunit domains, fragments of the translation elongation factor-1 alpha, and the β-tubulin genes. The two novel species in the genus Syncephalastrum, namely S. massiliense PMMF0073 and S. timoneanum PMMF0107, presented a similar morphology: irregular branched and aseptate hyphae with ribbon-like aspects and terminal vesicles at the apices all surrounded by cylindrical merosporangia. However, each species displayed distinct phenotypic and genotypic features. For example, S. timoneanum PMMF0107 was able to assimilate more carbon sources than S. massiliense PMMF0073, such as adonitol, α-methyl-D-glucoside, trehalose, turanose, succinic acid mono-methyl ester, and alaninamide. The polyphasic approach, combining the results of complementary phenotypic and genomic assays, was instrumental for describing and characterising these two new Syncephalastrum species.
Collapse
Affiliation(s)
- Jihane Kabtani
- IHU Méditerranée Infection, 13005 Marseille, France (P.M.G.)
| | | | | | - Muriel Militello
- IHU Méditerranée Infection, 13005 Marseille, France (P.M.G.)
- MEPHI, SSA, IRD, AP-HM, Aix-Marseille Université, 13005 Marseille, France
| | - Stéphane Ranque
- IHU Méditerranée Infection, 13005 Marseille, France (P.M.G.)
- VITROME, SSA, IRD, AP-HM, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
16
|
Shukla S, Chauhan P, Gaur P, Rana P, Patel SK, Chopra D, Vikram A, Prajapati G, Yadav AK, Kotian SY, Bala L, Dwivedi A, Mishra A. Toxic potential assessment of hair dye developer 2,4,5,6-tetraaminopyrimidine sulfate exposed under ambient UVB radiation. Toxicol Ind Health 2024; 40:1-8. [PMID: 37876040 DOI: 10.1177/07482337231209352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Synthetic cosmetics, particularly hair dyes, are becoming increasingly popular among people of all ages and genders. 2,4,5,6-tetraaminopyrimidine sulfate (TAPS) is a key component of oxidative hair dyes and is used as a developer in several hair dyes. TAPS has previously been shown to absorb UVB strongly and degrade in a time-dependent manner, causing phototoxicity in human skin cells. However, the toxic effects of UVB-degraded TAPS are not explored in comparison to parent TAPS. Therefore, this research work aims to assess the toxicity of UVB-degraded TAPS than TAPS on two different test systems, that is, HaCaT (mammalian cell) and Staphylococcus aureus (a bacterial cell). Our result on HaCaT has illustrated that UVB-degraded TAPS is less toxic than parent TAPS. Additionally, UVB-exposed TAPS and parent TAPS were given to S. aureus, and the bacterial growth and their metabolic activity were assessed via CFU and phenotype microarray. The findings demonstrated that parent TAPS reduced bacterial growth via decreased metabolic activity; however, bacteria easily utilized the degraded TAPS. Thus, this study suggests that the products generated after UVB irradiation of TAPS is considered to be safer than their parent TAPS.
Collapse
Affiliation(s)
- Saumya Shukla
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute Lucknow, India
| | - Prakriti Gaur
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Priyanka Rana
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Gaurav Prajapati
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Akhilesh Kumar Yadav
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research(CSIR-IITR), Lucknow, India
| | - Sumana Y Kotian
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research(CSIR-IITR), Lucknow, India
| | - Lakshmi Bala
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Aradhana Mishra
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute Lucknow, India
| |
Collapse
|
17
|
Keshri J, Smith KM, Svendsen MK, Keillor HR, Moss ML, Jordan HJ, Larkin AM, Garrish JK, Line JE, Ball PN, Oakley BB, Seal BS. Phenotypic Characterization and Draft Genome Sequence Analyses of Two Novel Endospore-Forming Sporosarcina spp. Isolated from Canada Goose ( Branta canadensis) Feces. Microorganisms 2023; 12:70. [PMID: 38257897 PMCID: PMC10818898 DOI: 10.3390/microorganisms12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
In an attempt to isolate new probiotic bacteria, two Gram-variable, spore-forming, rod-shaped aerobic bacteria designated as strain A4 and A15 were isolated from the feces of Canada geese (Branta canadensis). Strain A4 was able to grow in high salt levels and exhibited lipase activity, while A15 did not propagate under these conditions. Both were positive for starch hydrolysis, and they inhibited the growth of Staphylococcus aureus. The strains of the 16S rRNA sequence shared only 94% similarity to previously identified Sporosarcina spp. The ANI (78.08%) and AAI (82.35%) between the two strains were less than the species threshold. Searches for the most similar genomes using the Mash/Minhash algorithm showed the nearest genome to strain A4 and A15 as Sporosarcina sp. P13 (distance of 21%) and S. newyorkensis (distance of 17%), respectively. Sporosarcina spp. strains A4 and A15 contain urease genes, and a fibronectin-binding protein gene indicates that these bacteria may bind to eukaryotic cells in host gastrointestinal tracts. Phenotypic and phylogenetic data, along with low dDDH, ANI, and AAI values for strains A4 and A15, indicate these bacteria are two novel isolates of the Sporosarcina genus: Sporosarcina sp. A4 sp. nov., type strain as Sporosarcina cascadiensis and Sporosarcina sp. A15 sp. nov., type strain Sporosarcina obsidiansis.
Collapse
Affiliation(s)
- Jitendra Keshri
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kristina M. Smith
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Molly K. Svendsen
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Haley R. Keillor
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Madeline L. Moss
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Haley J. Jordan
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Abigail M. Larkin
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Johnna K. Garrish
- Poultry Microbiological Safety & Processing Research Unit, U.S. National Poultry Research Center, Athens, GA 30605, USA; (J.K.G.); (J.E.L.)
| | - John Eric Line
- Poultry Microbiological Safety & Processing Research Unit, U.S. National Poultry Research Center, Athens, GA 30605, USA; (J.K.G.); (J.E.L.)
| | - Patrick N. Ball
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Brian B. Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Bruce S. Seal
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| |
Collapse
|
18
|
Sun X, Xie J, Zheng D, Xia R, Wang W, Xun W, Huang Q, Zhang R, Kovács ÁT, Xu Z, Shen Q. Metabolic interactions affect the biomass of synthetic bacterial biofilm communities. mSystems 2023; 8:e0104523. [PMID: 37971263 PMCID: PMC10734490 DOI: 10.1128/msystems.01045-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Co-occurrence network analysis is an effective tool for predicting complex networks of microbial interactions in the natural environment. Using isolates from a rhizosphere, we constructed multi-species biofilm communities and investigated co-occurrence patterns between microbial species in genome-scale metabolic models and in vitro experiments. According to our results, metabolic exchanges and resource competition may partially explain the co-occurrence network analysis results found in synthetic bacterial biofilm communities.
Collapse
Affiliation(s)
- Xinli Sun
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jiyu Xie
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daoyue Zheng
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Riyan Xia
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Wang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weibing Xun
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiwei Huang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruifu Zhang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Zhihui Xu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qirong Shen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Fu Y, Liu X, Su Z, Wang P, Guo Q, Ma P. Arabinose Plays an Important Role in Regulating the Growth and Sporulation of Bacillus subtilis NCD-2. Int J Mol Sci 2023; 24:17472. [PMID: 38139303 PMCID: PMC10744016 DOI: 10.3390/ijms242417472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
A microbial fungicide developed from Bacillus subtilis NCD-2 has been registered for suppressing verticillium wilt in crops in China. Spores are the main ingredient of this fungicide and play a crucial role in suppressing plant disease. Therefore, increasing the number of spores of strain NCD-2 during fermentation is important for reducing the cost of the fungicide. In this study, five kinds of carbon sources were found to promote the metabolism of strain NCD-2 revealed via Biolog Phenotype MicroArray (PM) technology. L-arabinose showed the strongest ability to promote the growth and sporulation of strain NCD-2. L-arabinose increased the bacterial concentration and the sporulation efficiency of strain NCD-2 by 2.04 times and 1.99 times compared with D-glucose, respectively. Moreover, L-arabinose significantly decreased the autolysis of strain NCD-2. Genes associated with arabinose metabolism, sporulation, spore resistance to heat, and spore coat formation were significantly up-regulated, and genes associated with sporulation-delaying protein were significantly down-regulated under L-arabinose treatment. The deletion of msmX, which is involved in arabinose transport in the Bacillus genus, decreased growth and sporulation by 53.71% and 86.46% compared with wild-type strain NCD-2, respectively. Complementing the mutant strain by importing an intact msmX gene restored the strain's growth and sporulation.
Collapse
Affiliation(s)
- Yifan Fu
- College of Plant Protection, Agricultural University of Hebei, Baoding 071000, China;
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Xiaomeng Liu
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Zhenhe Su
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Peipei Wang
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Qinggang Guo
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Ping Ma
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| |
Collapse
|
20
|
Karp PD, Paley S, Caspi R, Kothari A, Krummenacker M, Midford PE, Moore LR, Subhraveti P, Gama-Castro S, Tierrafria VH, Lara P, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Sun G, Ahn-Horst TA, Choi H, Covert MW, Collado-Vides J, Paulsen I. The EcoCyc Database (2023). EcoSal Plus 2023; 11:eesp00022023. [PMID: 37220074 PMCID: PMC10729931 DOI: 10.1128/ecosalplus.esp-0002-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 01/28/2024]
Abstract
EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.
Collapse
Affiliation(s)
- Peter D. Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Ron Caspi
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Anamika Kothari
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Markus Krummenacker
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Peter E. Midford
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Lisa R. Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Pallavi Subhraveti
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Victor H. Tierrafria
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Paloma Lara
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - César Bonavides-Martinez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gwanggyu Sun
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Travis A. Ahn-Horst
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Heejo Choi
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Markus W. Covert
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ian Paulsen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Petrosino A, Saporetti R, Starinieri F, Sarti E, Ulfo L, Boselli L, Cantelli A, Morini A, Zadran SK, Zuccheri G, Pasquini Z, Di Giosia M, Prodi L, Pompa PP, Costantini PE, Calvaresi M, Danielli A. A modular phage vector platform for targeted photodynamic therapy of Gram-negative bacterial pathogens. iScience 2023; 26:108032. [PMID: 37822492 PMCID: PMC10563061 DOI: 10.1016/j.isci.2023.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Growing antibiotic resistance has encouraged the revival of phage-inspired antimicrobial approaches. On the other hand, photodynamic therapy (PDT) is considered a very promising research domain for the protection against infectious diseases. Yet, very few efforts have been made to combine the advantages of both approaches in a modular, retargetable platform. Here, we foster the M13 bacteriophage as a multifunctional scaffold, enabling the selective photodynamic killing of bacteria. We took advantage of the well-defined molecular biology of M13 to functionalize its capsid with hundreds of photo-activable Rose Bengal sensitizers and contemporarily target this light-triggerable nanobot to specific bacterial species by phage display of peptide targeting moieties fused to the minor coat protein pIII of the phage. Upon light irradiation of the specimen, the targeted killing of diverse Gram(-) pathogens occurred at subnanomolar concentrations of the phage vector. Our findings contribute to the development of antimicrobials based on targeted and triggerable phage-based nanobiotherapeutics.
Collapse
Affiliation(s)
- Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Edoardo Sarti
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Boselli
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Andrea Cantelli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Morini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Zeno Pasquini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Pier Paolo Pompa
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
22
|
Li Z, Hu JR, Li WH, Wang HC, Guo ZN, Cheng X, Cai LT, Shi CH. Characteristics of Epicoccum latusicollum as revealed by genomic and metabolic phenomic analysis, the causal agent of tobacco Epicoccus leaf spot. FRONTIERS IN PLANT SCIENCE 2023; 14:1199956. [PMID: 37828924 PMCID: PMC10565823 DOI: 10.3389/fpls.2023.1199956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 10/14/2023]
Abstract
Epicoccum latusicollum is a fungus that causes a severe foliar disease on flue-cured tobacco in southwest China, resulting in significant losses in tobacco yield and quality. To better understand the organism, researchers investigated its optimal growth conditions and metabolic versatility using a combination of traditional methods and the Biolog Phenotype MicroArray technique. The study found that E. latusicollum exhibited impressive metabolic versatility, being able to metabolize a majority of carbon, nitrogen, sulfur, and phosphorus sources tested, as well as adapt to different environmental conditions, including broad pH ranges and various osmolytes. The optimal medium for mycelial growth was alkyl ester agar medium, while oatmeal agar medium was optimal for sporulation, and the optimum temperature for mycelial growth was 25°C. The lethal temperature was 40°C. The study also identified arbutin and amygdalin as optimal carbon sources and Ala-Asp and Ala-Glu as optimal nitrogen sources for E. latusicollum. Furthermore, the genome of E. latusicollum strain T41 was sequenced using Illumina HiSeq and Pacific Biosciences technologies, with 10,821 genes predicted using Nonredundant, Gene Ontology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and SWISS-PROT databases. Analysis of the metabolic functions of phyllosphere microorganisms on diseased tobacco leaves affected by E. latusicollum using the Biolog Eco microplate revealed an inability to efficiently metabolize a total of 29 carbon sources, with only tween 40 showing some metabolizing ability. The study provides new insights into the structure and function of phyllosphere microbiota and highlights important challenges for future research, as well as a theoretical basis for the integrated control and breeding for disease resistance of tobacco Epicoccus leaf spot. This information can be useful in developing new strategies for disease control and management, as well as enhancing crop productivity and quality.
Collapse
Affiliation(s)
- Zhen Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Jing-rong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wen-hong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Zhen-ni Guo
- MGI Tech Co., Ltd Research and Development Centre for Laboratory Automation, Shenzhen, Guangzhou, China
| | - Xing Cheng
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Liu-ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Cai-hua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
23
|
Ragunathan PT, Ng Kwan Lim E, Ma X, Massé E, Vanderpool CK. Mechanisms of Regulation of Cryptic Prophage-Encoded Gene Products in Escherichia coli. J Bacteriol 2023; 205:e0012923. [PMID: 37439671 PMCID: PMC10448788 DOI: 10.1128/jb.00129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
The dicBF operon of Qin cryptic prophage in Escherichia coli K-12 encodes the small RNA (sRNA) DicF and small protein DicB, which regulate host cell division and are toxic when overexpressed. While new functions of DicB and DicF have been identified in recent years, the mechanisms controlling the expression of the dicBF operon have remained unclear. Transcription from dicBp, the major promoter of the dicBF operon, is repressed by DicA. In this study, we discovered that transcription of the dicBF operon and processing of the polycistronic mRNA is regulated by multiple mechanisms. DicF sRNA accumulates during stationary phase and is processed from the polycistronic dicBF mRNA by the action of both RNase III and RNase E. DicA-mediated transcriptional repression of dicBp can be relieved by an antirepressor protein, Rem, encoded on the Qin prophage. Ectopic production of Rem results in cell filamentation due to strong induction of the dicBF operon, and filamentation is mediated by DicF and DicB. Spontaneous derepression of dicBp occurs in a subpopulation of cells independent of the antirepressor. This phenomenon is reminiscent of the bistable switch of λ phage with DicA and DicC performing functions similar to those of CI and Cro, respectively. Additional experiments demonstrate stress-dependent induction of the dicBF operon. Collectively, our results illustrate that toxic genes carried on cryptic prophages are subject to layered mechanisms of control, some that are derived from the ancestral phage and some that are likely later adaptations. IMPORTANCE Cryptic or defective prophages have lost genes necessary to excise from the bacterial chromosome and produce phage progeny. In recent years, studies have found that cryptic prophage gene products influence diverse aspects of bacterial host cell physiology. However, to obtain a complete understanding of the relationship between cryptic prophages and the host bacterium, identification of the environmental, host, or prophage-encoded factors that induce the expression of cryptic prophage genes is crucial. In this study, we examined the regulation of a cryptic prophage operon in Escherichia coli encoding a small RNA and a small protein that are involved in inhibiting bacterial cell division, altering host metabolism, and protecting the host bacterium from phage infections.
Collapse
Affiliation(s)
- Preethi T. Ragunathan
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Evelyne Ng Kwan Lim
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Xiangqian Ma
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Borer B, Magnúsdóttir S. The media composition as a crucial element in high-throughput metabolic network reconstruction. Interface Focus 2023; 13:20220070. [PMID: 36789238 PMCID: PMC9912011 DOI: 10.1098/rsfs.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
In recent years, metagenome-assembled genomes (MAGs) have provided glimpses into the intra- and interspecies genetic diversity and interactions that form the bases of complex microbial communities. High-throughput reconstruction of genome-scale metabolic networks (GEMs) from MAGs is a promising avenue to disentangle the myriad trophic interactions stabilizing these communities. However, high-throughput reconstruction of GEMs relies on accurate gap filling of metabolic pathways using automated algorithms. Here, we systematically explore how the composition of the media (specification of the available nutrients and metabolites) during gap filling influences the resulting GEMs concerning predicted auxotrophies for fully sequenced model organisms and environmental isolates. We expand this analysis by using 106 MAGs from the same species with differing quality. We find that although the completeness of MAGs influences the fraction of gap-filled reactions, the composition of the media plays the dominant role in the accurate prediction of auxotrophies that form the basis of myriad community interactions. We propose that constraining the media composition for gap filling through both experimental approaches and computational approaches will increase the reliability of high-throughput reconstruction of genome-scale metabolic models from MAGs and paves the way for culture independent prediction of trophic interactions in complex microbial communities.
Collapse
Affiliation(s)
- Benedict Borer
- Earth, Atmospheric and Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefanía Magnúsdóttir
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| |
Collapse
|
25
|
Louiz S, Lahbib K, Abderrahim R. Synthesis and Characterization of New
N
‐Pyrazol‐5‐yl) amidine Derivatives: X‐Ray Structure Hirshfeld Surface, and DFT Analyses together with Antibacterial and Antifungal Activity Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Sonia Louiz
- Laboratory Resources materials and ecosystems of Physics Lamellaires Materials and Hybrids Nanomaterials Department of Chemistry Faculty of Sciences of Bizerte University of Carthage 7021 Zarzouna Bizerte Tunisia
| | - Karima Lahbib
- Department of Biology University of Carthage Faculty of Sciences of Bizerte 7021 Zarzouna Bizerte Tunisia
| | - Raoudha Abderrahim
- Laboratory Resources materials and ecosystems of Physics Lamellaires Materials and Hybrids Nanomaterials Department of Chemistry Faculty of Sciences of Bizerte University of Carthage 7021 Zarzouna Bizerte Tunisia
| |
Collapse
|
26
|
Coppens L, Tschirhart T, Leary DH, Colston SM, Compton JR, Hervey WJ, Dana KL, Vora GJ, Bordel S, Ledesma-Amaro R. Vibrio natriegens genome-scale modeling reveals insights into halophilic adaptations and resource allocation. Mol Syst Biol 2023; 19:e10523. [PMID: 36847213 PMCID: PMC10090949 DOI: 10.15252/msb.202110523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Vibrio natriegens is a Gram-negative bacterium with an exceptional growth rate that has the potential to become a standard biotechnological host for laboratory and industrial bioproduction. Despite this burgeoning interest, the current lack of organism-specific qualitative and quantitative computational tools has hampered the community's ability to rationally engineer this bacterium. In this study, we present the first genome-scale metabolic model (GSMM) of V. natriegens. The GSMM (iLC858) was developed using an automated draft assembly and extensive manual curation and was validated by comparing predicted yields, central metabolic fluxes, viable carbon substrates, and essential genes with empirical data. Mass spectrometry-based proteomics data confirmed the translation of at least 76% of the enzyme-encoding genes predicted to be expressed by the model during aerobic growth in a minimal medium. iLC858 was subsequently used to carry out a metabolic comparison between the model organism Escherichia coli and V. natriegens, leading to an analysis of the model architecture of V. natriegens' respiratory and ATP-generating system and the discovery of a role for a sodium-dependent oxaloacetate decarboxylase pump. The proteomics data were further used to investigate additional halophilic adaptations of V. natriegens. Finally, iLC858 was utilized to create a Resource Balance Analysis model to study the allocation of carbon resources. Taken together, the models presented provide useful computational tools to guide metabolic engineering efforts in V. natriegens.
Collapse
Affiliation(s)
- Lucas Coppens
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Tanya Tschirhart
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Dagmar H Leary
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Sophie M Colston
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Jaimee R Compton
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - William Judson Hervey
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | | | - Gary J Vora
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
27
|
Semenec L, Cain AK, Dawson CJ, Liu Q, Dinh H, Lott H, Penesyan A, Maharjan R, Short FL, Hassan KA, Paulsen IT. Cross-protection and cross-feeding between Klebsiella pneumoniae and Acinetobacter baumannii promotes their co-existence. Nat Commun 2023; 14:702. [PMID: 36759602 PMCID: PMC9911699 DOI: 10.1038/s41467-023-36252-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Acinetobacter baumannii and Klebsiella pneumoniae are opportunistic pathogens frequently co-isolated from polymicrobial infections. The infections where these pathogens co-exist can be more severe and recalcitrant to therapy than infections caused by either species alone, however there is a lack of knowledge on their potential synergistic interactions. In this study we characterise the genomes of A. baumannii and K. pneumoniae strains co-isolated from a single human lung infection. We examine various aspects of their interactions through transcriptomic, phenomic and phenotypic assays that form a basis for understanding their effects on antimicrobial resistance and virulence during co-infection. Using co-culturing and analyses of secreted metabolites, we discover the ability of K. pneumoniae to cross-feed A. baumannii by-products of sugar fermentation. Minimum inhibitory concentration testing of mono- and co-cultures reveals the ability for A. baumannii to cross-protect K. pneumoniae against the cephalosporin, cefotaxime. Our study demonstrates distinct syntrophic interactions occur between A. baumannii and K. pneumoniae, helping to elucidate the basis for their co-existence in polymicrobial infections.
Collapse
Affiliation(s)
- Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Qi Liu
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Hannah Lott
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Anahit Penesyan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Ram Maharjan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Francesca L Short
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Karl A Hassan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
| |
Collapse
|
28
|
Ma T, Zhang Y, Yan C, Zhang C. Phenotypic and Genomic Difference among Four Botryosphaeria Pathogens in Chinese Hickory Trunk Canker. J Fungi (Basel) 2023; 9:204. [PMID: 36836318 PMCID: PMC9963396 DOI: 10.3390/jof9020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Botryosphaeria species are amongst the most widespread and important canker and dieback pathogens of trees worldwide, with B. dothidea as one of the most common Botryosphaeria species. However, the information related to the widespread incidence and aggressiveness of B. dothidea among various Botryosphaeria species causing trunk cankers is still poorly investigated. In this study, the metabolic phenotypic diversity and genomic differences of four Chinese hickory canker-related Botryosphaeria pathogens, including B. dothidea, B. qingyuanensis, B. fabicerciana, and B. corticis, were systematically studied to address the competitive fitness of B. dothidea. Large-scale screening of physiologic traits using a phenotypic MicroArray/OmniLog system (PMs) found B. dothidea has a broader spectrum of nitrogen source and greater tolerance toward osmotic pressure (sodium benzoate) and alkali stress among Botryosphaeria species. Moreover, the annotation of B. dothidea species-specific genomic information via a comparative genomics analysis found 143 B. dothidea species-specific genes that not only provides crucial cues in the prediction of B. dothidea species-specific function but also give a basis for the development of a B. dothidea molecular identification method. A species-specific primer set Bd_11F/Bd_11R has been designed based on the sequence of B. dothidea species-specific gene jg11 for the accurate identification of B. dothidea in disease diagnoses. Overall, this study deepens the understanding in the widespread incidence and aggressiveness of B. dothidea among various Botryosphaeria species, providing valuable clues to assist in trunk cankers management.
Collapse
Affiliation(s)
| | | | | | - Chuanqing Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
29
|
Grant TA, Jayakumar JM, López-Pérez M, Almagro-Moreno S. Vibrio floridensis sp. nov., a novel species closely related to the human pathogen Vibrio vulnificus isolated from a cyanobacterial bloom. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749680 DOI: 10.1099/ijsem.0.005675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A Gram-stain-negative, rod-shaped bacterial strain, designated Vibrio floridensis IRLE0018 (=NRRL B-65642=NCTC 14661), was isolated from a cyanobacterial bloom along the Indian River Lagoon (IRL), a large and highly biodiverse estuary in eastern Florida (USA). The results of phylogenetic, biochemical, and phenotypic analyses indicate that this isolate is distinct from species of the genus Vibrio with validly published names and is the closest relative to the emergent human pathogen, Vibrio vulnificus. Here, we present the complete genome sequence of V. floridensis strain IRLE0018 (4 535 135 bp). On the basis of the established average nucleotide identity (ANI) values for the determination of different species (ANI <95 %), strain IRLE0018, with an ANI of approximately 92 % compared with its closest relative, V. vulnificus, represents a novel species within the genus Vibrio. To our knowledge, this represents the first time this species has been described. The results of genomic analyses of V. floridensis IRLE0018 indicate the presence of antibiotic resistance genes and several known virulence factors, however, its pathogenicity profile (e.g. survival in serum, phagocytosis avoidance) reveals limited virulence potential of this species in contrast to V. vulnificus.
Collapse
Affiliation(s)
- Trudy-Ann Grant
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| | - Jane M Jayakumar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| | - Mario López-Pérez
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
30
|
Zhang R, Zhao J, Li L. Metabolic phenotype analysis of Trichophyton rubrum after laser irradiation. BMC Microbiol 2023; 23:24. [PMID: 36681800 PMCID: PMC9862980 DOI: 10.1186/s12866-023-02759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Biological phenotypes are important characteristics of microorganisms, and often reflect their genotype and genotype changes. Traditionally, Trichophyton rubrum (T. rubrum) phenotypes were detected using carbon source assimilation tests, during which the types of tested substances are limited. In addition, the operation is complicated, and only one substance can be tested at once. To observe the changes of the metabolic phenotype of T. rubrum after laser irradiation, a high-throughput phenotype microarray system was used to analyze the metabolism of different carbon, nitrogen, phosphorus and sulfur source substrates in a Biolog metabolic phenotyping system. RESULTS The strain of T. rubrum used in this study can effectively utilize 33 carbon, 20 nitrogen, 16 phosphorus, and 13 sulfur source substrates prior to laser irradiation. After laser irradiation, the strain was able to utilize 10 carbon, 12 nitrogen, 12 phosphorus, and 8 sulfur source substrates. The degree of utilization was significantly decreased compared with the control. Both groups efficiently utilized saccharides and organic acids as carbon sources as well as some amino acids as nitrogen sources for growth. The number of substrates utilized by T. rubrum after laser irradiation were significantly reduced, especially carbon substrates. Some substrates utilization degree in the laser treated group was higher than control, such as D-glucosamine, L-glutamine, D-2-Phospho-Glyceric Acid, D-glucosamine-6-phosphate, and D-methionine. CONCLUSION Laser irradiation of T. rubrum may lead to changes in the metabolic substrate and metabolic pathway, thus weakening the activity of the strain.
Collapse
Affiliation(s)
- Ruina Zhang
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, 100050, Beijing, China
| | - Junying Zhao
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, 100050, Beijing, China.
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, 100050, Beijing, China.
| |
Collapse
|
31
|
Microbial-Based Products to Control Soil-Borne Pathogens: Methods to Improve Efficacy and to Assess Impacts on Microbiome. Microorganisms 2023; 11:microorganisms11010224. [PMID: 36677516 PMCID: PMC9867489 DOI: 10.3390/microorganisms11010224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Microbial-based products (either as biopesticide or biofertilizers) have a long history of application, though their use is still limited, mainly due to a perceived low and inconsistent efficacy under field conditions. However, their efficacy has always been compared to chemical products, which have a completely different mechanism of action and production process, following the chemical paradigm of agricultural production. This paradigm has also been applied to regulatory processes, particularly for biopesticides, making the marketing of microbial-based formulations difficult. Increased knowledge about bioinocula behavior after application to the soil and their impact on soil microbiome should foster better exploitation of microbial-based products in a complex environment such as the soil. Moreover, the multifunctional capacity of microbial strains with regard to plant growth promotion and protection should also be considered in this respect. Therefore, the methods utilized for these studies are key to improving the knowledge and understanding of microbial-based product activity and improving their efficacy, which, from farmers' point of view, is the parameter to assess the usefulness of a treatment. In this review, we are thus addressing aspects related to the production and formulation process, highlighting the methods that can be used to evaluate the functioning and impact of microbial-based products on soil microbiome, as tools supporting their use and marketing.
Collapse
|
32
|
Li Z, Shi CH, Huang Y, Wang HC, Li WH, Cai LT. Phenotypic analysis and genome sequence of Rhizopus oryzae strain Y5, the causal agent of tobacco pole rot. Front Microbiol 2023; 13:1031023. [PMID: 36687611 PMCID: PMC9846616 DOI: 10.3389/fmicb.2022.1031023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Rhizopus oryzae is a destructive pathogen that frequently causes tobacco pole rot in curing chambers. Phenotypic characterization of the pathogen was conducted to provide basic biological and pathological information using Biolog Phenotype MicroArray (PM). In addition, the Y5 strain of R. oryzae was sequenced using Illumina HiSeq and Pacific Biosciences (PacBio) technologies. Using PM plates 1-8, 758 growth conditions were tested. Results indicated that R. oryzae could metabolize 54.21% of tested carbon sources, 86.84% of nitrogen sources, 100% of sulfur sources, and 98.31% of phosphorus sources. About 37 carbon compounds, including D-xylose, N-acetyl-D-glucosamine, D-sorbitol, β-methyl-D-glucoside, D-galactose, L-arabinose, and D-cellobiose, significantly supported the growth of the pathogen. PM 3 indicated the active nitrogen sources, including Gly-Asn, Ala-Asp., Ala-Gln, and uric acid. PM 6-8 showed 285 different nitrogen pathways, indicating that different combinations of different amino acids support the growth of the pathogen. Genome sequencing results showed that the R. oryzae Y5 strain had raw data assembled into 2,271 Mbp with an N50 value of 10,563 bp. A genome sequence of 50.3 Mb was polished and assembled into 53 contigs with an N50 length of 1,785,794 bp, maximum contig length of 3,223,184 bp, and a sum of contig lengths of 51,182,778 bp. A total of 12,680 protein-coding genes were predicted using the Nonredundant, Gene Ontology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and SWISS-PROT databases. The genome sequence and annotation resources of R. oryzae provided a reference for studying its biological characteristics, trait-specific genes, pathogen-host interaction, pathogen evolution, and population genetic diversity. The phenomics and genome of R. oryzae will provide insights into microfungal biology, pathogen evolution, and the genetic diversity of epidemics.
Collapse
Affiliation(s)
- Zhen Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Cai-hua Shi
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China,School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China,*Correspondence: Cai-hua Shi,
| | - Yang Huang
- China Tobacco Sichuan Industrial Corporation Technical Centre, Chengdu, China
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China,Han-cheng Wang,
| | - Wen-hong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Liu-ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| |
Collapse
|
33
|
van ‘t Hof M, Mohite OS, Monk JM, Weber T, Palsson BO, Sommer MOA. High-quality genome-scale metabolic network reconstruction of probiotic bacterium Escherichia coli Nissle 1917. BMC Bioinformatics 2022; 23:566. [PMID: 36585633 PMCID: PMC9801561 DOI: 10.1186/s12859-022-05108-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Escherichia coli Nissle 1917 (EcN) is a probiotic bacterium used to treat various gastrointestinal diseases. EcN is increasingly being used as a chassis for the engineering of advanced microbiome therapeutics. To aid in future engineering efforts, our aim was to construct an updated metabolic model of EcN with extended secondary metabolite representation. RESULTS An updated high-quality genome-scale metabolic model of EcN, iHM1533, was developed based on comparison with 55 E. coli/Shigella reference GEMs and manual curation, including expanded secondary metabolite pathways (enterobactin, salmochelins, aerobactin, yersiniabactin, and colibactin). The model was validated and improved using phenotype microarray data, resulting in an 82.3% accuracy in predicting growth phenotypes on various nutrition sources. Flux variability analysis with previously published 13C fluxomics data validated prediction of the internal central carbon fluxes. A standardised test suite called Memote assessed the quality of iHM1533 to have an overall score of 89%. The model was applied by using constraint-based flux analysis to predict targets for optimisation of secondary metabolite production. Modelling predicted design targets from across amino acid metabolism, carbon metabolism, and other subsystems that are common or unique for influencing the production of various secondary metabolites. CONCLUSION iHM1533 represents a well-annotated metabolic model of EcN with extended secondary metabolite representation. Phenotype characterisation and the iHM1533 model provide a better understanding of the metabolic capabilities of EcN and will help future metabolic engineering efforts.
Collapse
Affiliation(s)
- Max van ‘t Hof
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Omkar S. Mohite
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan M. Monk
- grid.266100.30000 0001 2107 4242Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Tilmann Weber
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Bernhard O. Palsson
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark ,grid.266100.30000 0001 2107 4242Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Morten O. A. Sommer
- grid.5170.30000 0001 2181 8870The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Sikdar R, Elias MH. Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0126922. [PMID: 36314960 PMCID: PMC9769976 DOI: 10.1128/spectrum.01269-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Quorum sensing (QS) is a cell-density-dependent, intercellular communication system mediated by small diffusible signaling molecules. QS regulates a range of bacterial behaviors, including biofilm formation, virulence, drug resistance mechanisms, and antibiotic tolerance. Enzymes capable of degrading signaling molecules can interfere in QS-a process termed as quorum quenching (QQ). Remarkably, previous work reported some cases where enzymatic interference in QS was synergistic to antibiotics against Pseudomonas aeruginosa. The premise of combination therapy is attractive to fight against multidrug-resistant bacteria, yet comprehensive studies are lacking. Here, we evaluate the effects of QS signal disruption on the antibiotic resistance profile of P. aeruginosa by testing 222 antibiotics and antibacterial compounds from 15 different classes. We found compelling evidence that QS signal disruption does indeed affect antibiotic resistance (40% of all tested compounds; 89/222), albeit not always synergistically (not synergistic for 19% of compounds; 43/222). For some tested antibiotics, such as sulfathiazole and trimethoprim, we were able to relate the changes in resistance caused by QS signal disruption to the modulation of the expression of key genes of the folate biosynthetic pathway. Moreover, using a P. aeruginosa-based Caenorhabditis elegans killing model, we confirmed that enzymatic QQ modulates the effects of antibiotics on P. aeruginosa's pathogenicity in vivo. Altogether, these results show that signal disruption has profound and complex effects on the antibiotic resistance profile of P. aeruginosa. This work suggests that combination therapy including QQ and antibiotics should be discussed not globally but, rather, in case-by-case studies. IMPORTANCE Quorum sensing (QS) is a cell-density-dependent communication system used by a wide range of bacteria to coordinate behaviors. Strategies pertaining to the interference in QS are appealing approaches to control microbial behaviors that depend on QS, including virulence and biofilms. Interference in QS was previously reported to be synergistic with antibiotics, yet no systematic assessment exists. Here, we evaluate the potential of combination treatments using the model opportunistic human pathogen Pseudomonas aeruginosa PA14. In this model, collected data demonstrate that QS largely modulates the antibiotic resistance profile of PA14 (for more than 40% of the tested drugs). However, the outcome of combination treatments is synergistic for only 19% of them. This research demonstrates the complex relationship between QS and antibiotic resistance and suggests that combination therapy including QS inhibitors and antibiotics should be discussed not globally but, rather, in case-by-case studies.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
35
|
Advanced prokaryotic systematics: the modern face of an ancient science. New Microbes New Infect 2022; 49-50:101036. [DOI: 10.1016/j.nmni.2022.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
|
36
|
Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli. Nat Commun 2022; 13:5904. [PMID: 36202805 PMCID: PMC9537139 DOI: 10.1038/s41467-022-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Recent experiments show that adaptive Darwinian evolution in one environment can lead to the emergence of multiple new traits that provide no immediate benefit in this environment. Such latent non-adaptive traits, however, can become adaptive in future environments. We do not know whether mutation or environment-driven selection is more important for the emergence of such traits. To find out, we evolve multiple wild-type and mutator E. coli populations under two mutation rates in simple (single antibiotic) environments and in complex (multi-antibiotic) environments. We then assay the viability of evolved populations in dozens of new environments and show that all populations become viable in multiple new environments different from those they had evolved in. The number of these new environments increases with environmental complexity but not with the mutation rate. Genome sequencing demonstrates the reason: Different environments affect pleiotropic mutations differently. Our experiments show that the selection pressure provided by an environment can be more important for the evolution of novel traits than the mutational supply experienced by a wild-type and a mutator strain of E. coli. Novel traits without immediate fitness benefit evolve frequently but we don’t know whether mutation or environment-driven selection drives this evolution. Here, using experimental evolution of E. coli populations, the authors demonstrate the importance of selection in the evolution of latent novel traits.
Collapse
|
37
|
Kabtani J, Militello M, Ranque S. Coniochaeta massiliensis sp. nov. Isolated from a Clinical Sampl28. J Fungi (Basel) 2022; 8:jof8100999. [PMID: 36294564 PMCID: PMC9605391 DOI: 10.3390/jof8100999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
The genus Coniochaeta belongs to the class Ascomycota and the family Coniochaetaceae. Some of the Coniochaeta species are plant and animal pathogens, while others are known to be primarily involved in human diseases. In the last few decades, case reports of human infections with Coniochaeta have increased, mainly in immunocompromised hosts. We have described and characterised a new species in the genus Coniochaeta, here named Coniochaeta massiliensis (PMML0158), which was isolated from a clinical sample. Species identification and thorough description were based on apposite and reliable phylogenetic and phenotypic approaches. The phylogenetic methods included multilocus phylogenetic analyses of four genomic regions: ITS (rRNA Internal Transcribed Spacers 1 and 2), TEF-1α (Translation Elongation Factor-1alpha), B-tub2 (β-tubulin2), and D1/D2 domains (28S large subunit rRNA). The phenotypic characterisation consisted, first, of a physiological analysis using both EDX (energy-dispersive X-ray spectroscopy) and BiologTM advanced phenotypic technology for fixing the chemical mapping and carbon-source oxidation/assimilation profiles. Afterwards, morphological characteristics were highlighted by optical microscopy and scanning electron microscopy. The in vitro antifungal susceptibility profile was characterised using the E-testTM exponential gradient method. The molecular analysis revealed the genetic distance between the novel species Coniochaeta massiliensis (PMML0158) and other known taxa, and the phenotypic analysis confirmed its unique chemical and physiological profile when compared with all other species of this genus.
Collapse
Affiliation(s)
- Jihane Kabtani
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Muriel Militello
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Faculty of Medical and Paramedical Sciences, Aix-Marseille Université, AP-HM, IRD, SSA, MEPHI, 13005 Marseille, France
| | - Stéphane Ranque
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Department of Mycology and Parasitology, Aix-Marseille Université, AP-HM, IRD, SSA, VITROME, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
38
|
Coastal Transient Niches Shape the Microdiversity Pattern of a Bacterioplankton Population with Reduced Genomes. mBio 2022; 13:e0057122. [PMID: 35880883 PMCID: PMC9426536 DOI: 10.1128/mbio.00571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Globally dominant marine bacterioplankton lineages are often limited in metabolic versatility, owing to their extensive genome reductions, and thus cannot take advantage of transient nutrient patches. It is therefore perplexing how the nutrient-poor bulk seawater sustains the pelagic streamlined lineages, each containing numerous populations. Here, we sequenced the genomes of 33 isolates of the recently discovered CHUG lineage (~2.6 Mbp), which have some of the smallest genomes in the globally abundant Roseobacter group (commonly over 4 Mbp). These genome-reduced bacteria were isolated from a transient habitat: seawater surrounding the brown alga, Sargassum hemiphyllum. Population genomic analyses showed that: (i) these isolates, despite sharing identical 16S rRNA genes, were differentiated into several genetically isolated populations through successive speciation events; (ii) only the first speciation event led to the genetic separation of both core and accessory genomes; and (iii) populations resulting from this event are differentiated at many loci involved in carbon utilization and oxygen respiration, corroborated by BiOLOG phenotype microarray assays and oxygen uptake kinetics experiments, respectively. These differentiated traits match well with the dynamic nature of the macroalgal seawater, in which the quantity and quality of carbon sources and the concentration of oxygen likely vary spatially and temporally, though other habitats, like fresh organic aggregates, cannot be ruled out. Our study implies that transient habitats in the overall nutrient-poor ocean can shape the microdiversity and population structure of genome-reduced bacterioplankton lineages.
Collapse
|
39
|
Gao Y, Ma L, Su J. Host and microbial-derived metabolites for Clostridioides difficile infection: Contributions, mechanisms and potential applications. Microbiol Res 2022; 263:127113. [PMID: 35841835 DOI: 10.1016/j.micres.2022.127113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022]
Abstract
Clostridioides difficile infection (CDI), which mostly occurs in hospitalized patients, is the most common and costly health care-associated disease. However, the biology of C. difficile remains incompletely understood. Current therapeutics are still challenged by the frequent recurrence of CDI. Advances in metabolomics facilitate our understanding of the etiology of CDI, which is not merely an alteration in the structure of the gut microbial community but also a dysbiosis metabolic setting promoting the germination, expansion and virulence of C. difficile. Therefore, we summarized the gut microbial and metabolic profiles for CDI under different conditions, such as those of postantibiotic treatment and postfecal microbiota transplantation. The current understanding of the role of host and gut microbial-derived metabolites as well as other nutrients in preventing or alleviating the disease symptoms of CDI will also be provided in this review. We hope that a specific nutrient-centric dietary strategy or the administration of certain nutrients to the colon could serve as an alternate line of investigation for the prophylaxis and mitigation of CDI in the future. Nevertheless, rigorously designed basic studies and randomized controlled trials need to be conducted to assess the functional mechanisms and effects of such therapeutics.
Collapse
Affiliation(s)
- Yan Gao
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liyan Ma
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianrong Su
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
40
|
Stoakes E, Savva GM, Coates R, Tejera N, Poolman MG, Grant AJ, Wain J, Singh D. Substrate Utilisation and Energy Metabolism in Non-Growing Campylobacter jejuni M1cam. Microorganisms 2022; 10:1355. [PMID: 35889074 PMCID: PMC9318392 DOI: 10.3390/microorganisms10071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Campylobacter jejuni, the major cause of bacterial foodborne illness, is also a fastidious organism that requires strict growth requirements in the laboratory. Our aim was to study substrate utilisation and energy metabolism in non-growing C. jejuni to investigate the ability of these bacteria to survive so effectively in the food chain. We integrated phenotypic microarrays and genome-scale metabolic modelling (GSM) to investigate the survival of C. jejuni on 95 substrates. We further investigated the underlying metabolic re-adjustment associated with varying energy demands on each substrate. We identified amino acids, organic acids and H2, as single substrates supporting survival without growth. We identified several different mechanisms, which were used alone or in combination, for ATP production: substrate-level phosphorylation via acetate kinase, the TCA cycle, and oxidative phosphorylation via the electron transport chain that utilised alternative electron donors and acceptors. The benefit of ATP production through each of these mechanisms was associated with the cost of enzyme investment, nutrient availability and/or O2 utilisation. C. jejuni can utilise a wide range of substrates as energy sources, including organic acids commonly used for marination or preservation of ingredients, which might contribute to the success of their survival in changing environments.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - George M. Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Ruby Coates
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - Noemi Tejera
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Mark G. Poolman
- Cell System Modelling Group, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Dipali Singh
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| |
Collapse
|
41
|
Chung CH, Chandrasekaran S. A flux-based machine learning model to simulate the impact of pathogen metabolic heterogeneity on drug interactions. PNAS NEXUS 2022; 1:pgac132. [PMID: 36016709 PMCID: PMC9396445 DOI: 10.1093/pnasnexus/pgac132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Drug combinations are a promising strategy to counter antibiotic resistance. However, current experimental and computational approaches do not account for the entire complexity involved in combination therapy design, such as the effect of pathogen metabolic heterogeneity, changes in the growth environment, drug treatment order, and time interval. To address these limitations, we present a comprehensive approach that uses genome-scale metabolic modeling and machine learning to guide combination therapy design. Our mechanistic approach (a) accommodates diverse data types, (b) accounts for time- and order-specific interactions, and (c) accurately predicts drug interactions in various growth conditions and their robustness to pathogen metabolic heterogeneity. Our approach achieved high accuracy (area under the receiver operating curve (AUROC) = 0.83 for synergy, AUROC = 0.98 for antagonism) in predicting drug interactions for Escherichia coli cultured in 57 metabolic conditions based on experimental validation. The entropy in bacterial metabolic response was predictive of combination therapy outcomes across time scales and growth conditions. Simulation of metabolic heterogeneity using population FBA identified two subpopulations of E. coli cells defined by the levels of three proteins (eno, fadB, and fabD) in glycolysis and lipid metabolism that influence cell tolerance to a broad range of antibiotic combinations. Analysis of the vast landscape of condition-specific drug interactions revealed a set of 24 robustly synergistic drug combinations with potential for clinical use.
Collapse
Affiliation(s)
- Carolina H Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Khilyas IV, Markelova MI, Valeeva LR, Gritseva AS, Sorokina AV, Shafigullina LT, Tukhbatova RI, Shagimardanova EI, Berkutova ES, Sharipova MR, Lochnit G, Cohen MF. Genomic and metabolomic profiling of endolithic Rhodococcus fascians strain S11 isolated from an arid serpentine environment. Arch Microbiol 2022; 204:336. [PMID: 35587838 DOI: 10.1007/s00203-022-02955-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Genomic and metabolomic studies of endolithic bacteria are essential for understanding their adaptations to extreme conditions of the rock environment and their contributions to mineralization and weathering processes. The endoliths of arid serpentine rocks are exposed to different environmental stresses, including desiccation and re-hydration, temperature fluctuations, oligotrophy, and high concentrations of heavy metals. Bacteria of the genus Rhodococcus commonly inhabit endolithic environments. Here, we describe genomic and metabolomic analyses of the non-pathogenic wild-type Rhodococcus fascians strain S11, isolated from weathered serpentine rock at the arid Khalilovsky massif, Russia. We found that strain S11 lacks the virulence plasmid that functions in the phytopathogenecity of some R. fascians strains. Phenotypic profiling revealed a high pH tolerance, phytase activity and siderophore production. A widely untargeted metabolome analysis performed using an Orbitrap LC-MS/MS method demonstrated the presence of chrysobactin-type siderophores in the culture medium of strain S11. The natural variation of secondary metabolites produced by strain S11 might provide a practical basis for revealing antibacterial, fungicide or insecticidal activities. Finally, plant infection and plant growth stimulation studies showed no observable effect of exposure strain S11 bacteria on the aerial and root parts of Arabidopsis thaliana plants. Based on our findings, R. fascians strain S11 might be promising tool for investigations of organo-mineral interactions, heavy metal bioremediation, and mechanisms of bacterial mediated weathering of plant-free serpentine rock to soil.
Collapse
Affiliation(s)
- Irina V Khilyas
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.
| | - Maria I Markelova
- Laboratory of Omics Technologies, Institute Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Lia R Valeeva
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Anastasia S Gritseva
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Alyona V Sorokina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Lilia T Shafigullina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Rezeda I Tukhbatova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Elena I Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Ekaterina S Berkutova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Margarita R Sharipova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Guenter Lochnit
- Faculty of Medicine Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Michael F Cohen
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| |
Collapse
|
43
|
In-Human Multiyear Evolution of Carbapenem-Resistant Klebsiella pneumoniae Causing Chronic Colonization and Intermittent Urinary Tract Infections: A Case Study. mSphere 2022; 7:e0019022. [PMID: 35531657 PMCID: PMC9241548 DOI: 10.1128/msphere.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a frequent pathogen of the urinary tract, but how CRKP adapts in vivo over time is unclear. We examined 10 CRKP strains from a patient who experienced chronic colonization and recurrent urinary tract infections over a period of 4.5 years. We performed whole-genome sequencing and phenotypic assays to compare isolates that had evolved relative to the first isolate collected and to correlate genetic and phenotypic changes over time with the meropenem-containing regimen received. Phylogenetic analysis indicated that all 10 strains originated from the same sequence type 258 (ST258) clone and that three sublineages (SL) evolved over time; strains from two dominant sublineages were selected for detailed analysis. Up to 60 new mutations were acquired progressively in genes related to antibiotic resistance, cell metabolism, and biofilm production over time. Doubling of meropenem MICs, increases in biofilm production and blaKPC expression, and altered carbon metabolism occurred in the latter strains from the last sublineage compared to the initial strain. Subinhibitory meropenem exposure in vitro significantly induced or maintained high levels of biofilm production in colonizing isolates, but isolates causing infection were unaffected. Despite acquiring different mutations that affect carbon metabolism, overall carbon utilization was maintained across different strains. Together, these data showed that isolated urinary CRKP evolved through multiple adaptations affecting carbon metabolism, carbapenem resistance, and biofilm production to support chronic colonization and intermittent urinary tract infections. Our findings highlight the pliability of CRKP in adapting to repeated antibiotic exposure and should be considered when developing novel therapeutic and stewardship strategies. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) can cause a variety of infections such as recurrent urinary tract infections (rUTI) with the ability to change with the host environment over time. However, it is unclear how CRKP adapts to the urinary tract during chronic infections and colonization. Here, we studied the evolution of CRKP strains from a patient who experienced chronic colonization and recurrent UTIs over a period of 4.5 years despite multiple treatment courses with meropenem-containing regimens. Our findings show the flexibility of CRKP strains in developing changes in carbapenem resistance, biofilm production, and carbon metabolism over time, which could facilitate their persistence in the human body for long periods of time in spite of repeated antibiotic therapy.
Collapse
|
44
|
Krieger MC, Merritt J, Raghavan R. Genome-Wide Identification of Novel sRNAs in Streptococcus mutans. J Bacteriol 2022; 204:e0057721. [PMID: 35285723 PMCID: PMC9017351 DOI: 10.1128/jb.00577-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a major pathobiont involved in the development of dental caries. Its ability to utilize numerous sugars and to effectively respond to environmental stress promotes S. mutans proliferation in oral biofilms. Because of their quick action and low energetic cost, noncoding small RNAs (sRNAs) represent an ideal mode of gene regulation in stress response networks, yet their roles in oral pathogens have remained largely unexplored. We identified 15 novel sRNAs in S. mutans and show that they respond to four stress-inducing conditions commonly encountered by the pathogen in human mouth: sugar-phosphate stress, hydrogen peroxide exposure, high temperature, and low pH. To better understand the role of sRNAs in S. mutans, we further explored the function of the novel sRNA SmsR4. Our data demonstrate that SmsR4 regulates the enzyme IIA (EIIA) component of the sorbitol phosphotransferase system, which transports and phosphorylates the sugar alcohol sorbitol. The fine-tuning of EIIA availability by SmsR4 likely promotes S. mutans growth while using sorbitol as the main carbon source. Our work lays a foundation for understanding the role of sRNAs in regulating gene expression in stress response networks in S. mutans and highlights the importance of the underexplored phenomenon of posttranscriptional gene regulation in oral bacteria. IMPORTANCE Small RNAs (sRNAs) are important gene regulators in bacteria, but the identities and functions of sRNAs in Streptococcus mutans, the principal bacterium involved in the formation of dental caries, are unknown. In this study, we identified 15 putative sRNAs in S. mutans and show that they respond to four common stress-inducing conditions present in human mouth: sugar-phosphate stress, hydrogen peroxide exposure, high temperature, and low pH. We further show that the novel sRNA SmsR4 likely modulates sorbitol transport into the cell by regulating SMU_313 mRNA, which encodes the EIIA subunit of the sorbitol phosphotransferase system. Gaining a better understanding of sRNA-based gene regulation may provide new opportunities to develop specific inhibitors of S. mutans growth, thereby improving oral health.
Collapse
Affiliation(s)
- Madeline C Krieger
- Department of Biology, Portland State University, Portland, Oregon, USA
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antoniogrid.215352.2, San Antonio, Texas, USA
| |
Collapse
|
45
|
Hu S, Zhang Y, Yu H, Zhou J, Hu M, Liu A, Wu J, Wang H, Zhang C. Colletotrichum Spp. Diversity Between Leaf Anthracnose and Crown Rot From the Same Strawberry Plant. Front Microbiol 2022; 13:860694. [PMID: 35495690 PMCID: PMC9048825 DOI: 10.3389/fmicb.2022.860694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Leaf anthracnose (LA) and anthracnose crown rot (ACR) represent serious fungal diseases that pose significant threats to strawberry production. To characterize the pathogen diversity associated with above diseases, 100 strawberry plants, including varieties of "Hongjia," "Zhangji," and "Tianxianzui," were sampled from Jiande and Zhoushan, the primary plantation regions of Zhejiang province, China. A total of 309 Colletotrichum isolates were isolated from crown (150 isolates) and leaves (159 isolates) of affected samples. Among these, 100 isolates obtained from the plants showing both LA and CR symptoms were selected randomly for further characterization. Based on the morphological observations combined with phylogenetic analysis of multiple genes (ACT, ITS, CAL, GAPDH, and CHS), all the 100 tested isolates were identified as C. gloeosporioides species complex, including 91 isolates of C. siamense, 8 isolates of C. fructicola causing both LA and ACR, and one isolate of C. aenigma causing ACR. The phenotypic characteristics of these isolated species were investigated using the BIOLOG phenotype MicroArray (PM) and a total of 950 different metabolic phenotype were tested, showing the characteristics among these isolates and providing the theoretical basis for pathogenic biochemistry and metabolism. The pathogenicity tests showed that even the same Colletotrichum species isolated from different diseased tissues (leaves or crowns) had significantly different pathogenicity toward strawberry leaves and crown. C. siamense isolated from diseased leaves (CSLA) was more aggressive than C. siamense isolated from rotted crown (CSCR) during the infection on "Zhangji" leaves. Additionally, C. fructicola isolated from affected leaf (CFLA) caused more severe symptoms on the leaves of four strawberry varieties compared to C. fructicola isolated from diseased crown (CFCR). For crown rot, the pathogenicity of CSCR was higher than that of CSLA.
Collapse
Affiliation(s)
- Shuodan Hu
- College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yanting Zhang
- College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hong Yu
- Research Institute for the Agriculture Science of Hangzhou, Hangzhou, China
| | - Jiayan Zhou
- Agricultural Technology Extension Center of Zhejiang Province, Hangzhou, China
| | - Meihua Hu
- Agricultural Technology Extension Center of Zhejiang Province, Hangzhou, China
| | - Aichun Liu
- Research Institute for the Agriculture Science of Hangzhou, Hangzhou, China
| | - Jianyan Wu
- College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | | | - Chuanqing Zhang
- College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
46
|
Collado-Vides J, Gaudet P, de Lorenzo V. Missing Links Between Gene Function and Physiology in Genomics. Front Physiol 2022; 13:815874. [PMID: 35295568 PMCID: PMC8918662 DOI: 10.3389/fphys.2022.815874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Knowledge of biological organisms at the molecular level that has been gathered is now organized into databases, often within ontological frameworks. To enable computational comparisons of annotations across different genomes and organisms, controlled vocabularies have been essential, as is the case in the functional annotation classifications used for bacteria, such as MultiFun and the more widely used Gene Ontology. The function of individual gene products as well as the processes in which collections of them participate constitute a wealth of classes that describe the biological role of gene products in a large number of organisms in the three kingdoms of life. In this contribution, we highlight from a qualitative perspective some limitations of these frameworks and discuss challenges that need to be addressed to bridge the gap between annotation as currently captured by ontologies and databases and our understanding of the basic principles in the organization and functioning of organisms; we illustrate these challenges with some examples in bacteria. We hope that raising awareness of these issues will encourage users of Gene Ontology and similar ontologies to be careful about data interpretation and lead to improved data representation.
Collapse
Affiliation(s)
- Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, Geneva, Switzerland
| | - Víctor de Lorenzo
- Department of Systems Biology, Centro Nacional de Biotecnología CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
47
|
A single exposure to a sublethal concentration of Origanum vulgare essential oil initiates response against food stressors and restoration of antibiotic susceptibility in Listeria monocytogenes. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Touchette D, Altshuler I, Raymond-Bouchard I, Fernández-Martínez MÁ, Bourdages LJ, O'Connor B, Ricco AJ, Whyte LG. Microfluidics Microbial Activity MicroAssay: An Automated In Situ Microbial Metabolic Detection System. ASTROBIOLOGY 2022; 22:158-170. [PMID: 35049343 DOI: 10.1089/ast.2021.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With no direct extant-life detection instrumentation included in a space mission since the 1970s, the advancement of new technologies to be included in future space missions is imperative. We developed, optimized, and tested a semi-automated prototype, the microfluidics Microbial Activity MicroAssay (μMAMA). This system metabolically characterizes and detects extant microbial life by way of metabolism-indicator redox dyes. We first evaluated the robustness and sensitivity of six redox dye/buffer combinations, and we then tested their responses to metabolic activity in astrobiological analog high-Arctic samples. We determined that the Biolog Inoculating Fluid (IF)-C and AlamarBlue buffered in IF-0a (aB-IF0a) dye/buffer combinations were optimal, as they detected metabolic activity from the fewest microbial cells (102 cells/mL) while maintaining efficacy over a broad physiochemical range of pH (0-13), temperature (-10°C to 37°C), salinity and perchlorate (tested up to 30%), and in the presence of a Mars regolith simulant (MMS-2). The μMAMA, which incorporated these redox dyes, detected extant active cold-adapted microbial life from high Arctic analog sites, including samples amended with substrates targeting chemolithoautotrophic metabolisms. Given μMAMA's small size (we estimate a complete planetary instrument could occupy as little as 3 L) and potential for automation, it could easily be incorporated into almost any landed platform for life detection missions.
Collapse
Affiliation(s)
- David Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Miguel Ángel Fernández-Martínez
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada
| | - Brady O'Connor
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | | | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| |
Collapse
|
49
|
Liu X, Moshiri H, He Q, Sahoo A, Walker SE. Deletion of the N-Terminal Domain of Yeast Eukaryotic Initiation Factor 4B Reprograms Translation and Reduces Growth in Urea. Front Mol Biosci 2022; 8:787781. [PMID: 35047555 PMCID: PMC8762332 DOI: 10.3389/fmolb.2021.787781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
The yeast eukaryotic initiation factor 4B binds the 40S subunit in translation preinitiation complexes (PICs), promoting mRNA recruitment. Recent evidence indicates yeast mRNAs have variable dependence on eIF4B under optimal growth conditions. Given the ability of eIF4B to promote translation as a function of nutrient conditions in mammalian cells, we wondered if eIF4B activities in translation could alter phenotypes in yeast through differential mRNA selection for translation. Here we compared the effects of disrupting yeast eIF4B RNA- and 40S-binding motifs under ∼1400 growth conditions. The RNA-Recognition Motif (RRM) was dispensable for stress responses, but the 40S-binding N-terminal Domain (NTD) promoted growth in response to stressors requiring robust cellular integrity. In particular, the NTD conferred a strong growth advantage in the presence of urea, which may be important for pathogenesis of related fungal species. Ribosome profiling indicated that similar to complete eIF4B deletion, deletion of the NTD dramatically reduced translation, particularly of those mRNAs with long and highly structured 5-prime untranslated regions. This behavior was observed both with and without urea exposure, but the specific mRNA pool associated with ribosomes in response to urea differed. Deletion of the NTD led to relative increases in ribosome association of shorter transcripts with higher dependence on eIF4G, as was noted previously for eIF4B deletion. Gene ontology analysis indicated that proteins encoded by eIF4B NTD-dependent transcripts were associated with the cellular membrane system and the cell wall, while NTD-independent transcripts encoded proteins associated with cytoplasmic proteins and protein synthesis. This analysis highlighted the difference in structure content of mRNAs encoding membrane versus cytoplasmic housekeeping proteins and the variable reliance of specific gene ontology classes on various initiation factors promoting otherwise similar functions. Together our analyses suggest that deletion of the eIF4B NTD prevents cellular stress responses by affecting the capacity to translate a diverse mRNA pool.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Houtan Moshiri
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Qian He
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Ansuman Sahoo
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Sarah E Walker
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| |
Collapse
|
50
|
Abstract
Biological nitrogen fixation in rhizobium-legume symbioses is of major importance for sustainable agricultural practices. To establish a mutualistic relationship with their plant host, rhizobia transition from free-living bacteria in soil to growth down infection threads inside plant roots and finally differentiate into nitrogen-fixing bacteroids. We reconstructed a genome-scale metabolic model for Rhizobium leguminosarum and integrated the model with transcriptome, proteome, metabolome, and gene essentiality data to investigate nutrient uptake and metabolic fluxes characteristic of these different lifestyles. Synthesis of leucine, polyphosphate, and AICAR is predicted to be important in the rhizosphere, while myo-inositol catabolism is active in undifferentiated nodule bacteria in agreement with experimental evidence. The model indicates that bacteroids utilize xylose and glycolate in addition to dicarboxylates, which could explain previously described gene expression patterns. Histidine is predicted to be actively synthesized in bacteroids, consistent with transcriptome and proteome data for several rhizobial species. These results provide the basis for targeted experimental investigation of metabolic processes specific to the different stages of the rhizobium-legume symbioses. IMPORTANCE Rhizobia are soil bacteria that induce nodule formation on plant roots and differentiate into nitrogen-fixing bacteroids. A detailed understanding of this complex symbiosis is essential for advancing ongoing efforts to engineer novel symbioses with cereal crops for sustainable agriculture. Here, we reconstruct and validate a genome-scale metabolic model for Rhizobium leguminosarum bv. viciae 3841. By integrating the model with various experimental data sets specific to different stages of symbiosis formation, we elucidate the metabolic characteristics of rhizosphere bacteria, undifferentiated bacteria inside root nodules, and nitrogen-fixing bacteroids. Our model predicts metabolic flux patterns for these three distinct lifestyles, thus providing a framework for the interpretation of genome-scale experimental data sets and identifying targets for future experimental studies.
Collapse
|