1
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
2
|
Munk M, Villalobo E, Villalobo A, Berchtold MW. Differential expression of the three independent CaM genes coding for an identical protein: Potential relevance of distinct mRNA stability by different codon usage. Cell Calcium 2022; 107:102656. [DOI: 10.1016/j.ceca.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
3
|
Young RS, Talmane L, Marion de Procé S, Taylor MS. The contribution of evolutionarily volatile promoters to molecular phenotypes and human trait variation. Genome Biol 2022; 23:89. [PMID: 35379293 PMCID: PMC8978360 DOI: 10.1186/s13059-022-02634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoters are sites of transcription initiation that harbour a high concentration of phenotype-associated genetic variation. The evolutionary gain and loss of promoters between species (collectively, termed turnover) is pervasive across mammalian genomes and may play a prominent role in driving human phenotypic diversity. RESULTS We classified human promoters by their evolutionary history during the divergence of mouse and human lineages from a common ancestor. This defined conserved, human-inserted and mouse-deleted promoters, and a class of functional-turnover promoters that align between species but are only active in humans. We show that promoters of all evolutionary categories are hotspots for substitution and often, insertion mutations. Loci with a history of insertion and deletion continue that mode of evolution within contemporary humans. The presence of an evolutionary volatile promoter within a gene is associated with increased expression variance between individuals, but only in the case of human-inserted and mouse-deleted promoters does that correspond to an enrichment of promoter-proximal genetic effects. Despite the enrichment of these molecular quantitative trait loci (QTL) at evolutionarily volatile promoters, this does not translate into a corresponding enrichment of phenotypic traits mapping to these loci. CONCLUSIONS Promoter turnover is pervasive in the human genome, and these promoters are rich in molecularly quantifiable but phenotypically inconsequential variation in gene expression. However, since evolutionarily volatile promoters show evidence of selection, coupled with high mutation rates and enrichment of QTLs, this implicates them as a source of evolutionary innovation and phenotypic variation, albeit with a high background of selectively neutral expression variation.
Collapse
Affiliation(s)
- Robert S Young
- Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK. .,Zhejiang University - University of Edinburgh Institute, Zhejiang University, 718 East Haizhou Road, 314400, Haining, China. .,MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Lana Talmane
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie Marion de Procé
- Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK.,MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
4
|
Santos-Rodriguez G, Voineagu I, Weatheritt RJ. Evolutionary dynamics of circular RNAs in primates. eLife 2021; 10:e69148. [PMID: 34542404 PMCID: PMC8516421 DOI: 10.7554/elife.69148] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Many primate genes produce circular RNAs (circRNAs). However, the extent of circRNA conservation between closely related species remains unclear. By comparing tissue-specific transcriptomes across over 70 million years of primate evolution, we identify that within 3 million years circRNA expression profiles diverged such that they are more related to species identity than organ type. However, our analysis also revealed a subset of circRNAs with conserved neural expression across tens of millions of years of evolution. By comparing to species-specific circRNAs, we identified that the downstream intron of the conserved circRNAs display a dramatic lengthening during evolution due to the insertion of novel retrotransposons. Our work provides comparative analyses of the mechanisms promoting circRNAs to generate increased transcriptomic complexity in primates.
Collapse
Affiliation(s)
- Gabriela Santos-Rodriguez
- EMBL Australia, Garvan Institute of Medical ResearchDarlinghurstAustralia
- St. Vincent Clinical School, University of New South WalesDarlinghurstAustralia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical ResearchDarlinghurstAustralia
- St. Vincent Clinical School, University of New South WalesDarlinghurstAustralia
| |
Collapse
|
5
|
Tomko EJ, Luyties O, Rimel JK, Tsai CL, Fuss JO, Fishburn J, Hahn S, Tsutakawa SE, Taatjes DJ, Galburt EA. The Role of XPB/Ssl2 dsDNA Translocase Processivity in Transcription Start-site Scanning. J Mol Biol 2021; 433:166813. [PMID: 33453189 PMCID: PMC8327364 DOI: 10.1016/j.jmb.2021.166813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.
Collapse
Affiliation(s)
- Eric J Tomko
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia Luyties
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Jenna K Rimel
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jill O Fuss
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Fishburn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Hata T, Satoh S, Takada N, Matsuo M, Obokata J. Kozak Sequence Acts as a Negative Regulator for De Novo Transcription Initiation of Newborn Coding Sequences in the Plant Genome. Mol Biol Evol 2021; 38:2791-2803. [PMID: 33705557 PMCID: PMC8233501 DOI: 10.1093/molbev/msab069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The manner in which newborn coding sequences and their transcriptional competency emerge during the process of gene evolution remains unclear. Here, we experimentally simulated eukaryotic gene origination processes by mimicking horizontal gene transfer events in the plant genome. We mapped the precise position of the transcription start sites (TSSs) of hundreds of newly introduced promoterless firefly luciferase (LUC) coding sequences in the genome of Arabidopsis thaliana cultured cells. The systematic characterization of the LUC-TSSs revealed that 80% of them occurred under the influence of endogenous promoters, while the remainder underwent de novo activation in the intergenic regions, starting from pyrimidine-purine dinucleotides. These de novo TSSs obeyed unexpected rules; they predominantly occurred ∼100 bp upstream of the LUC inserts and did not overlap with Kozak-containing putative open reading frames (ORFs). These features were the output of the immediate responses to the sequence insertions, rather than a bias in the screening of the LUC gene function. Regarding the wild-type genic TSSs, they appeared to have evolved to lack any ORFs in their vicinities. Therefore, the repulsion by the de novo TSSs of Kozak-containing ORFs described above might be the first selection gate for the occurrence and evolution of TSSs in the plant genome. Based on these results, we characterized the de novo type of TSS identified in the plant genome and discuss its significance in genome evolution.
Collapse
Affiliation(s)
- Takayuki Hata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto, Japan
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Naoto Takada
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Mitsuhiro Matsuo
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Junichi Obokata
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
7
|
Hata T, Takada N, Hayakawa C, Kazama M, Uchikoba T, Tachikawa M, Matsuo M, Satoh S, Obokata J. De novo activated transcription of inserted foreign coding sequences is inheritable in the plant genome. PLoS One 2021; 16:e0252674. [PMID: 34111139 PMCID: PMC8191969 DOI: 10.1371/journal.pone.0252674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/19/2021] [Indexed: 01/16/2023] Open
Abstract
The manner in which inserted foreign coding sequences become transcriptionally activated and fixed in the plant genome is poorly understood. To examine such processes of gene evolution, we performed an artificial evolutionary experiment in Arabidopsis thaliana. As a model of gene-birth events, we introduced a promoterless coding sequence of the firefly luciferase (LUC) gene and established 386 T2-generation transgenic lines. Among them, we determined the individual LUC insertion loci in 76 lines and found that one-third of them were transcribed de novo even in the intergenic or inherently unexpressed regions. In the transcribed lines, transcription-related chromatin marks were detected across the newly activated transcribed regions. These results agreed with our previous findings in A. thaliana cultured cells under a similar experimental scheme. A comparison of the results of the T2-plant and cultured cell experiments revealed that the de novo-activated transcription concomitant with local chromatin remodelling was inheritable. During one-generation inheritance, it seems likely that the transcription activities of the LUC inserts trapped by the endogenous genes/transcripts became stronger, while those of de novo transcription in the intergenic/untranscribed regions became weaker. These findings may offer a clue for the elucidation of the mechanism by which inserted foreign coding sequences become transcriptionally activated and fixed in the plant genome.
Collapse
Affiliation(s)
- Takayuki Hata
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka, Japan
| | - Naoto Takada
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Chihiro Hayakawa
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Mei Kazama
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Tomohiro Uchikoba
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Makoto Tachikawa
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Mitsuhiro Matsuo
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Junichi Obokata
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka, Japan
| |
Collapse
|
8
|
Lu Z, Lin Z. The origin and evolution of a distinct mechanism of transcription initiation in yeasts. Genome Res 2020; 31:51-63. [PMID: 33219055 PMCID: PMC7849388 DOI: 10.1101/gr.264325.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
The molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). A distinct way of locating transcription start sites (TSSs) has been identified in a budding yeast Saccharomyces cerevisiae (“scanning model”). Herein, we applied genomic approaches to elucidate the origin of the scanning model and its underlying genetic mechanisms. We first identified TSSs at single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5′ boundaries for protein-coding genes. We then inferred the initiation mechanism of each species based on its TSS maps and genome sequences. We discovered that the scanning model likely originated after the split of Yarrowia lipolytica and the other budding yeasts. Species that use the scanning model showed an adenine-rich region immediately upstream of the TSS that might facilitate TSS selection. Both initiation mechanisms share a strong preference for pyrimidine–purine dinucleotides surrounding the TSS. Our results suggest that the purine is required to accurately recruit the first nucleotide, thereby increasing the chances of a messenger RNA of being capped during mRNA maturation, which is critical for efficient translation initiation during protein biosynthesis. Based on our findings, we propose a model for TSS selection in the scanning-model species, as well as a model for the stepwise process responsible for the origin and evolution of the scanning model.
Collapse
Affiliation(s)
- Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| |
Collapse
|
9
|
Zhang XO, Gingeras TR, Weng Z. Genome-wide analysis of polymerase III-transcribed Alu elements suggests cell-type-specific enhancer function. Genome Res 2019; 29:1402-1414. [PMID: 31413151 PMCID: PMC6724667 DOI: 10.1101/gr.249789.119] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023]
Abstract
Alu elements are one of the most successful families of transposons in the human genome. A portion of Alu elements is transcribed by RNA Pol III, whereas the remaining ones are part of Pol II transcripts. Because Alu elements are highly repetitive, it has been difficult to identify the Pol III-transcribed elements and quantify their expression levels. In this study, we generated high-resolution, long-genomic-span RAMPAGE data in 155 biosamples all with matching RNA-seq data and built an atlas of 17,249 Pol III-transcribed Alu elements. We further performed an integrative analysis on the ChIP-seq data of 10 histone marks and hundreds of transcription factors, whole-genome bisulfite sequencing data, ChIA-PET data, and functional data in several biosamples, and our results revealed that although the human-specific Alu elements are transcriptionally repressed, the older, expressed Alu elements may be exapted by the human host to function as cell-type-specific enhancers for their nearby protein-coding genes.
Collapse
Affiliation(s)
- Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Thomas R Gingeras
- Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
10
|
Attig J, Ule J. Genomic Accumulation of Retrotransposons Was Facilitated by Repressive RNA-Binding Proteins: A Hypothesis. Bioessays 2019; 41:e1800132. [DOI: 10.1002/bies.201800132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jan Attig
- Dr. J. Attig, Prof. J. Ule; The Francis Crick Institute; 1 Midland Road London NW1 1AT UK
| | - Jernej Ule
- Dr. J. Attig, Prof. J. Ule; The Francis Crick Institute; 1 Midland Road London NW1 1AT UK
- Prof. J. Ule; Department of Molecular Neuroscience; UCL Institute of Neurology; Queen Square London WC1N 3BG UK
| |
Collapse
|
11
|
Arabfard M, Kavousi K, Delbari A, Ohadi M. Link between short tandem repeats and translation initiation site selection. Hum Genomics 2018; 12:47. [PMID: 30373661 PMCID: PMC6206671 DOI: 10.1186/s40246-018-0181-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Despite their vast biological implication, the relevance of short tandem repeats (STRs)/microsatellites to the protein-coding gene translation initiation sites (TISs) remains largely unknown. METHODS We performed an Ensembl-based comparative genomics study of all annotated orthologous TIS-flanking sequences in human and 46 other species across vertebrates, on the genomic DNA and cDNA platforms (755,956 TISs), aimed at identifying human-specific STRs in this interval. The collected data were used to examine the hypothesis of a link between STRs and TISs. BLAST was used to compare the initial five amino acids (excluding the initial methionine), codons of which were flanked by STRs in human, with the initial five amino acids of all annotated proteins for the orthologous genes in other vertebrates (total of 5,314,979 pair-wise TIS comparisons on the genomic DNA and cDNA platforms) in order to compare the number of events in which human-specific and non-specific STRs occurred with homologous and non-homologous TISs (i.e., ≥ 50% and < 50% similarity of the five amino acids). RESULTS We detected differential distribution of the human-specific STRs in comparison to the overall distribution of STRs on the genomic DNA and cDNA platforms (Mann Whitney U test p = 1.4 × 10-11 and p < 7.9 × 10-11, respectively). We also found excess occurrence of non-homologous TISs with human-specific STRs and excess occurrence of homologous TISs with non-specific STRs on both platforms (p < 0.00001). CONCLUSION We propose a link between STRs and TIS selection, based on the differential co-occurrence rate of human-specific STRs with non-homologous TISs and non-specific STRs with homologous TISs.
Collapse
Affiliation(s)
- Masoud Arabfard
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
12
|
Carelli FN, Liechti A, Halbert J, Warnefors M, Kaessmann H. Repurposing of promoters and enhancers during mammalian evolution. Nat Commun 2018; 9:4066. [PMID: 30287902 PMCID: PMC6172195 DOI: 10.1038/s41467-018-06544-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023] Open
Abstract
Promoters and enhancers-key controllers of gene expression-have long been distinguished from each other based on their function. However, recent work suggested that common architectural and functional features might have facilitated the conversion of one type of element into the other during evolution. Here, based on cross-mammalian analyses of epigenome and transcriptome data, we provide support for this hypothesis by detecting 445 regulatory elements with signatures of activity turnover (termed P/E elements). Most events represent transformations of putative ancestral enhancers into promoters, leading to the emergence of species-specific transcribed loci or 5' exons. Distinct GC sequence compositions and stabilizing 5' splicing (U1) regulatory motif patterns may have predisposed P/E elements to regulatory repurposing, and changes in the U1 and polyadenylation signal densities and distributions likely drove the evolutionary activity switches. Our work suggests that regulatory repurposing facilitated regulatory innovation and the origination of new genes and exons during evolution.
Collapse
Affiliation(s)
- Francesco N Carelli
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland.
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom.
| | - Angélica Liechti
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jean Halbert
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Maria Warnefors
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Valadkhan S, Plasek LM. Long Non-Coding RNA-Mediated Regulation of the Interferon Response: A New Perspective on a Familiar Theme. Pathog Immun 2018. [PMID: 30135954 PMCID: PMC6101671 DOI: 10.20411/pai.v3i1.252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interferon (IFN) response is a critical and ubiquitous component of the innate immune response to pathogens. Detailed studies in the last decades have elucidated the function of a large number of proteins that mediate the complex signaling pathways and gene expression programs involved in the interferon response. The recent discovery of the long non-coding RNAs (lncRNAs) as a new category of cellular effectors has led to studies aiming to understand the role of these transcripts in the IFN response. Several high throughput studies have shown that a large number of lncRNAs are differentially expressed following IFN stimulation and/or viral infections. In-depth study of a very small fraction of the identified lncRNAs has revealed critical roles for this class of transcripts in the regulation of multiple steps of the IFN response, and pointed to the presence of an extensive RNA-mediated regulatory network during the antiviral response. As the vast majority of the identified potential regulatory lncRNAs remain unstudied, it is highly likely that future studies will reveal a completely new perspective on the regulation of the IFN response, with lncRNA- and protein-mediated regulatory networks coordinating the duration, magnitude, and character of this aspect of the innate immune response. In addition to providing a more complete picture of the IFN response, these studies will likely identify new therapeutic targets that in the long term may impact the therapeutic options available against microbial infections and diseases of the immune system.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Leah M Plasek
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
14
|
Skewing of the genetic architecture at the ZMYM3 human-specific 5' UTR short tandem repeat in schizophrenia. Mol Genet Genomics 2018; 293:747-752. [PMID: 29332164 DOI: 10.1007/s00438-018-1415-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Differential expansion of a number of human short tandem repeats (STRs) at the critical core promoter and 5' untranslated region (UTR) support the hypothesis that at least some of these STRs may provide a selective advantage in human evolution. Following a genome-wide screen of all human protein-coding gene 5' UTRs based on the Ensembl database ( http://www.ensembl.org ), we previously reported that the longest STR in this interval is a (GA)32, which belongs to the X-linked zinc finger MYM-type containing 3 (ZMYM3) gene. In the present study, we analyzed the evolutionary implication of this region across evolution and examined the allele and genotype distribution of the "exceptionally long" STR by direct sequencing of 486 Iranian unrelated male subjects consisting of 196 cases of schizophrenia (SCZ) and 290 controls. We found that the ZMYM3 transcript containing the STR is human-specific (ENST00000373998.5). A significant allele variance difference was observed between the cases and controls (Levene's test for equality of variances F = 4.00, p < 0.03). In addition, six alleles were observed in the SCZ patients that were not detected in the control group ("disease-only" alleles) (mid p exact < 0.0003). Those alleles were at the extreme short and long ends of the allele distribution curve and composed 4% of the genotypes in the SCZ group. In conclusion, we found skewing of the genetic architecture at the ZMYM3 STR in SCZ. Further, we found a bell-shaped distribution of alleles and selection against alleles at the extreme ends of this STR. The ZMYM3 STR sets a prototype, the evolutionary course of which determines the range of alleles in a particular species. Extreme "disease-only" alleles and genotypes may change our perspective of adaptive evolution and complex disorders. The ZMYM3 gene "exceptionally long" STR should be sequenced in SCZ and other human-specific phenotypes/characteristics.
Collapse
|