1
|
Wolff R, Garud NR. Pervasive selective sweeps across human gut microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573162. [PMID: 38187688 PMCID: PMC10769429 DOI: 10.1101/2023.12.22.573162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human gut microbiome is composed of a highly diverse consortia of species which are continually evolving within and across hosts. The ability to identify adaptations common to many human gut microbiomes would not only reveal shared selection pressures across hosts, but also key drivers of functional differentiation of the microbiome that may affect community structure and host traits. However, to date there has not been a systematic scan for adaptations that have spread across human gut microbiomes. Here, we develop a novel selection scan statistic named the integrated Linkage Disequilibrium Score (iLDS) that can detect the spread of adaptive haplotypes across host microbiomes via migration and horizontal gene transfer. Specifically, iLDS leverages signals of hitchhiking of deleterious variants with the beneficial variant. Application of the statistic to ~30 of the most prevalent commensal gut species from 24 populations around the world revealed more than 300 selective sweeps across species. We find an enrichment for selective sweeps at loci involved in carbohydrate metabolism-potentially indicative of adaptation to features of host diet-and we find that the targets of selection significantly differ between Westernized and non-Westernized populations. Underscoring the potential role of diet in driving selection, we find a selective sweep absent from non-Westernized populations but ubiquitous in Westernized populations at a locus known to be involved in the metabolism of maltodextrin, a synthetic starch that has recently become a widespread component of Western diets. In summary, we demonstrate that selective sweeps across host microbiomes are a common feature of the evolution of the human gut microbiome, and that targets of selection may be strongly impacted by host diet.
Collapse
Affiliation(s)
- Richard Wolff
- Department of Ecology and Evolutionary Biology, UCLA
| | - Nandita R. Garud
- Department of Ecology and Evolutionary Biology, UCLA
- Department of Human Genetics, UCLA
| |
Collapse
|
2
|
Fischer MT, Xue KS, Costello EK, Dvorak M, Raboisson G, Robaczewska A, Caty SN, Relman DA, O’Connell LA. Effects of parental care on skin microbial community composition in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612488. [PMID: 39314287 PMCID: PMC11419107 DOI: 10.1101/2024.09.11.612488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Parent-offspring interactions constitute the first contact of many newborns with their environment, priming community assembly of microbes through priority effects. Early exposure to microbes can have lasting influences on the assembly and functionality of the host's microbiota, leaving a life-long imprint on host health and disease. Studies of the role played by parental care in microbial acquisition have primarily focused on humans and hosts with agricultural relevance. Anuran vertebrates offer the opportunity to examine microbial community composition across life stages as a function of parental investment. In this study, we investigate vertical transmission of microbiota during parental care in a poison frog (Family Dendrobatidae), where fathers transport their offspring piggyback-style from terrestrial clutches to aquatic nurseries. We found that substantial bacterial colonization of the embryo begins after hatching from the vitelline envelope, emphasizing its potential role as microbial barrier during early development. Using a laboratory cross-foster experiment, we demonstrated that poison frogs performing tadpole transport serve as a source of skin microbes for tadpoles on their back. To study how transport impacts the microbial skin communities of tadpoles in an ecologically relevant setting, we sampled frogs and tadpoles of sympatric species that do or do not exhibit tadpole transport in their natural habitat. We found more diverse microbial communities associated with tadpoles of transporting species compared to a non-transporting frog. However, we detected no difference in the degree of similarity between adult and tadpole skin microbiotas, based on whether the frog species exhibits transporting behavior or not. Using a field experiment, we confirmed that tadpole transport can result in the persistent colonization of tadpoles by isolated microbial taxa associated with the caregiver's skin, albeit often at low prevalence. This is the first study to describe vertical transmission of skin microbes in anuran amphibians, showing that offspring transport may serve as a mechanism for transmission of parental skin microbes. Overall, these findings provide a foundation for further research on how vertical transmission in this order impacts host-associated microbiota and physiology.
Collapse
Affiliation(s)
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth K. Costello
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gaëlle Raboisson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anna Robaczewska
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - David A. Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Trueba G, Cardenas P, Romo G, Gutierrez B. Reevaluating human-microbiota symbiosis: Strain-level insights and evolutionary perspectives across animal species. Biosystems 2024; 244:105283. [PMID: 39103138 DOI: 10.1016/j.biosystems.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The prevailing consensus in scientific literature underscores the mutualistic bond between the microbiota and the human host, suggesting a finely tuned coevolutionary partnership that enhances the fitness of both parties. This symbiotic relationship has been extensively studied, with certain bacterial attributes being construed as hallmarks of natural selection favoring the benefit of the human host. Some scholars go as far as equating the intricate interplay between humans and their intestinal microbiota to that of endosymbiotic relationships, even conceptualizing microbiota as an integral human organ. However, amidst the prevailing narrative of bacterial species being categorized as beneficial or detrimental to human health, a critical oversight often emerges - the inherent functional diversity within bacterial strains. Such reductionist perspectives risk oversimplifying the complex dynamics at play within the microbiome. Recent genomic analysis at the strain level is highly limited, which is surprising given that strain information provides critical data about selective pressures in the intestine. These pressures appear to focus more on the well-being of bacteria rather than human health. Connected to this is the extent to which animals depend on metabolic activity from intestinal bacteria, which varies widely across species. While omnivores like humans exhibit lower dependency, certain herbivores rely entirely on bacterial activity and have developed specialized compartments to house these bacteria.
Collapse
Affiliation(s)
- Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Paul Cardenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - German Romo
- Escuela de Medicina Veterinaria, Universidad San Francisco de Quito, Quito, Ecuador
| | - Bernardo Gutierrez
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador; Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
4
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. eLife 2024; 13:e93146. [PMID: 39240756 PMCID: PMC11379459 DOI: 10.7554/elife.93146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024] Open
Abstract
When examining bacterial genomes for evidence of past selection, the results depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed by dN/dS, the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with opposite implications for dynamical intuition and applications of dN/dS. Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain the dN/dS decay given only dozens of locally fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values of dN/dS obtained from long timescales with caution as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short timescales.
Collapse
Affiliation(s)
- Paul A Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tami D Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
5
|
Xu X, Feng Q, Zhang T, Gao Y, Cheng Q, Zhang W, Wu Q, Xu K, Li Y, Nguyen N, Taft DH, Mills DA, Lemay DG, Zhu W, Mao S, Zhang A, Xu K, Liu J. Infant age inversely correlates with gut carriage of resistance genes, reflecting modifications in microbial carbohydrate metabolism during early life. IMETA 2024; 3:e169. [PMID: 38882494 PMCID: PMC11170968 DOI: 10.1002/imt2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 06/18/2024]
Abstract
The infant gut microbiome is increasingly recognized as a reservoir of antibiotic resistance genes, yet the assembly of gut resistome in infants and its influencing factors remain largely unknown. We characterized resistome in 4132 metagenomes from 963 infants in six countries and 4285 resistance genes were observed. The inherent resistome pattern of healthy infants (N = 272) could be distinguished by two stages: a multicompound resistance phase (Months 0-7) and a tetracycline-mupirocin-β-lactam-dominant phase (Months 8-14). Microbial taxonomy explained 40.7% of the gut resistome of healthy infants, with Escherichia (25.5%) harboring the most resistance genes. In a further analysis with all available infants (N = 963), we found age was the strongest influencer on the resistome and was negatively correlated with the overall resistance during the first 3 years (p < 0.001). Using a random-forest approach, a set of 34 resistance genes could be used to predict age (R 2 = 68.0%). Leveraging microbial host inference analyses, we inferred the age-dependent assembly of infant resistome was a result of shifts in the gut microbiome, primarily driven by changes in taxa that disproportionately harbor resistance genes across taxa (e.g., Escherichia coli more frequently harbored resistance genes than other taxa). We performed metagenomic functional profiling and metagenomic assembled genome analyses whose results indicate that the development of gut resistome was driven by changes in microbial carbohydrate metabolism, with an increasing need for carbohydrate-active enzymes from Bacteroidota and a decreasing need for Pseudomonadota during infancy. Importantly, we observed increased acquired resistance genes over time, which was related to increased horizontal gene transfer in the developing infant gut microbiome. In summary, infant age was negatively correlated with antimicrobial resistance gene levels, reflecting a composition shift in the gut microbiome, likely driven by the changing need for microbial carbohydrate metabolism during early life.
Collapse
Affiliation(s)
- Xinming Xu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition Fudan University Shanghai China
| | - Qingying Feng
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
- Biological Engineering Division Massachusetts Institute of Technology (MIT) Cambridge Massachusetts USA
| | - Tao Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Yunlong Gao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Qu Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wanqiu Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Qinglong Wu
- Department of Pathology and Immunology Baylor College of Medicine Houston Texas USA
| | - Ke Xu
- Department of Statistics University of Chicago Chicago Illinois
| | - Yucan Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute Fudan University Shanghai China
| | - Nhu Nguyen
- Department of Food Science and Technology University of California, Davis Davis California USA
| | - Diana H Taft
- Department of Food Science and Technology University of California, Davis Davis California USA
| | - David A Mills
- Department of Food Science and Technology University of California, Davis Davis California USA
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science University of California, Davis Davis California USA
| | - Danielle G Lemay
- USDA ARS Western Human Nutrition Research Center Davis California USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu China
| | - Kelin Xu
- Department of Biostatistics, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health Fudan University Shanghai China
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| |
Collapse
|
6
|
Baker JS, Qu E, Mancuso CP, Tripp AD, Conwill A, Lieberman TD. Highly-resolved within-species dynamics in the human facial skin microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575018. [PMID: 38260404 PMCID: PMC10802602 DOI: 10.1101/2024.01.10.575018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human facial skin microbiomes (FSMs) on adults are dominated by just two bacterial species, Cutibacterium acnes and Staphylococcus epidermidis. Underlying this apparent simplicity, each FSM harbors multiple strains of both species whose assembly dynamics on individuals are unknown. Here, we use 4,055 isolate genomes and 360 metagenomes to trace the dynamics of strains on individuals and their transmission. Strains are shared amongst family members of all ages, but each individual harbors unique strain consortia. Strain stability changes upon formation of the adult-type FSM: S. epidermidis lineage turnover slows, and the rate of C. acnes colonization increases before stabilizing, suggesting this transitional window could facilitate engraftment of therapeutic strains. Our work reveals previously undetectable community dynamics and informs the design of therapeutic interventions.
Collapse
Affiliation(s)
- Jacob S. Baker
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Evan Qu
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Christopher P. Mancuso
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - A. Delphine Tripp
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Systems Biology, Harvard University; Cambridge, MA 02138, USA
| | - Arolyn Conwill
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Lou YC, Chen L, Borges AL, West-Roberts J, Firek BA, Morowitz MJ, Banfield JF. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 2024; 32:35-47.e6. [PMID: 38096814 PMCID: PMC11156429 DOI: 10.1016/j.chom.2023.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Bacteriophages are key components of gut microbiomes, yet the phage colonization process in the infant gut remains uncertain. Here, we establish a large phage sequence database and use strain-resolved analyses to investigate DNA phage succession in infants throughout the first 3 years of life. Analysis of 819 fecal metagenomes collected from 28 full-term and 24 preterm infants and their mothers revealed that early-life phageome richness increases over time and reaches adult-like complexity by age 3. Approximately 9% of early phage colonizers, which are mostly maternally transmitted and infect Bacteroides, persist for 3 years and are more prevalent in full-term than in preterm infants. Although rare, phages with stop codon reassignment are more likely to persist than non-recoded phages and generally display an increase in in-frame reassigned stop codons over 3 years. Overall, maternal seeding, stop codon reassignment, host CRISPR-Cas locus prevalence, and diverse phage populations contribute to stable viral colonization.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian A Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Burz SD, Causevic S, Dal Co A, Dmitrijeva M, Engel P, Garrido-Sanz D, Greub G, Hapfelmeier S, Hardt WD, Hatzimanikatis V, Heiman CM, Herzog MKM, Hockenberry A, Keel C, Keppler A, Lee SJ, Luneau J, Malfertheiner L, Mitri S, Ngyuen B, Oftadeh O, Pacheco AR, Peaudecerf F, Resch G, Ruscheweyh HJ, Sahin A, Sanders IR, Slack E, Sunagawa S, Tackmann J, Tecon R, Ugolini GS, Vacheron J, van der Meer JR, Vayena E, Vonaesch P, Vorholt JA. From microbiome composition to functional engineering, one step at a time. Microbiol Mol Biol Rev 2023; 87:e0006323. [PMID: 37947420 PMCID: PMC10732080 DOI: 10.1128/mmbr.00063-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.
Collapse
Affiliation(s)
- Sebastian Dan Burz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Senka Causevic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Alma Dal Co
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Marija Dmitrijeva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institut de microbiologie, CHUV University Hospital Lausanne, Lausanne, Switzerland
| | | | | | | | - Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Julien Luneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Bidong Ngyuen
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Omid Oftadeh
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | | | | | - Grégory Resch
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, CHUV University Hospital Lausanne, Lausanne, Switzerland
| | | | - Asli Sahin
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | - Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Janko Tackmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Robin Tecon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
9
|
Tisza M, Lloyd R, Hoffman K, Smith D, Rewers M, Cregeen SJ, Petrosino JF. Phage-bacteria dynamics during the first years of life revealed by trans-kingdom marker gene analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559994. [PMID: 37808738 PMCID: PMC10557657 DOI: 10.1101/2023.09.28.559994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Humans are colonized with commensal bacteria soon after birth, and, while this colonization is affected by lifestyle and other factors, bacterial colonization proceeds through well-studied phases. However, less is known about phage communities in early human development due to small study sizes, inability to leverage large databases, and lack of appropriate bioinformatics tools. In this study, whole genome shotgun sequencing data from the TEDDY study, composed of 12,262 longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage and bacterial dynamics simultaneously. Reads from these samples were mapped to marker genes from both bacteria and a new database of tens of thousands of phage taxa from human microbiomes. We uncover that each child is colonized by hundreds of different phages during the early years, and phages are more transitory than bacteria. Participants' samples continually harbor new phage species over time whereas the diversification of bacterial species begins to saturate. Phage data improves the ability for machine learning models to discriminate samples by country. Finally, while phage populations were individual-specific, striking patterns arose from the larger dataset, showing clear trends of ecological succession amongst phages, which correlated well with putative host bacteria. Improved understanding of phage-bacterial relationships may reveal new means by which to shape and modulate the microbiome and its constituents to improve health and reduce disease, particularly in vulnerable populations where antibiotic use and/or other more drastic measures may not be advised.
Collapse
Affiliation(s)
- Michael Tisza
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Richard Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kristi Hoffman
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Smith
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Sara Javornik Cregeen
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Abstract
A massive number of microorganisms, belonging to different species, continuously divide inside the guts of animals and humans. The large size of these communities and their rapid division times imply that we should be able to watch microbial evolution in the gut in real time, in a similar manner to what has been done in vitro. Here, we review recent findings on how natural selection shapes intrahost evolution (also known as within-host evolution), with a focus on the intestines of mice and humans. The microbiota of a healthy host is not as static as initially thought from the information measured at only one genomic marker. Rather, the genomes of each gut-colonizing species can be highly dynamic, and such dynamism seems to be related to the microbiota species diversity. Genetic and bioinformatic tools, and analysis of time series data, allow quantification of the selection strength on emerging mutations and horizontal transfer events in gut ecosystems. The drivers and functional consequences of gut evolution can now begin to be grasped. The rules of this intrahost microbiota evolution, and how they depend on the biology of each species, need to be understood for more effective development of microbiota therapies to help maintain or restore host health.
Collapse
Affiliation(s)
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
11
|
Fiedler AW, Drågen MKR, Lorentsen ED, Vadstein O, Bakke I. The stability and composition of the gut and skin microbiota of Atlantic salmon throughout the yolk sac stage. Front Microbiol 2023; 14:1177972. [PMID: 37485532 PMCID: PMC10358989 DOI: 10.3389/fmicb.2023.1177972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
The bacterial colonization of newly hatched fish is important for the larval development and health. Still, little is known about the ontogeny of the early microbiota of fish. Here, we conducted two independent experiments with yolk sac fry of Atlantic salmon that were (1) either reared conventionally, with the eggs as the only source for bacteria (egg-derived microbiota; EDM) or (2) hatched germ-free and re-colonized using lake water (lake-derived microbiota; LDM). First, we characterized the gut and skin microbiota at 6, 9, and 13 weeks post hatching based on extracted RNA. In the second experiment, we exposed fry to high doses of either a fish pathogen or a commensal bacterial isolate and sampled the microbiota based on extracted DNA. The fish microbiota differed strongly between EDM and LDM treatments. The phyla Proteobacteria, Bacteroidetes, and Actinobacteria dominated the fry microbiota, which was found temporarily dynamic. Interestingly, the microbiota of EDM fry was more stable, both between replicate rearing flasks, and over time. Although similar, the skin and gut microbiota started to differentiate during the yolk sac stage, several weeks before the yolk was consumed. Addition of high doses of bacterial isolates to fish flasks had only minor effects on the microbiota.
Collapse
|
12
|
Briscoe L, Halperin E, Garud NR. SNV-FEAST: microbial source tracking with single nucleotide variants. Genome Biol 2023; 24:101. [PMID: 37121994 PMCID: PMC10150486 DOI: 10.1186/s13059-023-02927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Elucidating the sources of a microbiome can provide insight into the ecological dynamics responsible for the formation of these communities. Source tracking approaches to date leverage species abundance information; however, single nucleotide variants (SNVs) may be more informative because of their high specificity to certain sources. To overcome the computational burden of utilizing all SNVs for a given sample, we introduce a novel method to identify signature SNVs for source tracking. Signature SNVs used as input into a previously designed source tracking algorithm, FEAST, can more accurately estimate contributions than species and provide novel insights, demonstrated in three case studies.
Collapse
Affiliation(s)
- Leah Briscoe
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA.
| | - Eran Halperin
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Nandita R Garud
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Dutton CL, Maisha FM, Quinn EB, Morales KL, Moore JM, Mulligan CJ. Maternal Psychosocial Stress Is Associated with Reduced Diversity in the Early Infant Gut Microbiome. Microorganisms 2023; 11:microorganisms11040975. [PMID: 37110398 PMCID: PMC10142543 DOI: 10.3390/microorganisms11040975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The developing infant gut microbiome is highly sensitive to environmental exposures, enabling its evolution into an organ that supports the immune system, confers protection from infection, and facilitates optimal gut and central nervous system function. In this study, we focus on the impact of maternal psychosocial stress on the infant gut microbiome. Forty-seven mother-infant dyads were recruited at the HEAL Africa Hospital in Goma, Democratic Republic of Congo. Extensive medical, demographic, and psychosocial stress data were collected at birth, and infant stool samples were collected at six weeks, three months, and six months. A composite maternal psychosocial stress score was created, based on eight questionnaires to capture a diverse range of stress exposures. Full-length 16S rRNA gene sequences were generated. Infants of mothers with high composite stress scores showed lower levels of gut microbiome beta diversity at six weeks and three months, as well as higher levels of alpha diversity at six months compared to infants of low stress mothers. Longitudinal analyses showed that infants of high stress mothers had lower levels of health-promoting Lactobacillus gasseri and Bifidobacterium pseudocatenulatum at six weeks compared to infants of low stress mothers, but the differences largely disappeared by three to six months. Previous research has shown that L. gasseri can be used as a probiotic to reduce inflammation, stress, and fatigue, as well as to improve mental state, while B. pseudocatenulatum is important in modulating the gut-brain axis in early development and in preventing mood disorders. Our finding of reduced levels of these health-promoting bacteria in infants of high stress mothers suggests that the infant gut microbiome may help mediate the effect of maternal stress on infant health and development.
Collapse
Affiliation(s)
- Christopher L Dutton
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
- Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Felicien Masanga Maisha
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
- HEAL Africa Hospital, Rue Lyn Lusi No. 111, Goma BP 319, Democratic Republic of the Congo
| | - Edward B Quinn
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| | - Katherine Liceth Morales
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| | - Julie M Moore
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Room V3-111B, P.O. Box 110880, Gainesville, FL 32611-4111, USA
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
14
|
Dapa T, Wong DP, Vasquez KS, Xavier KB, Huang KC, Good BH. Within-host evolution of the gut microbiome. Curr Opin Microbiol 2023; 71:102258. [PMID: 36608574 PMCID: PMC9993085 DOI: 10.1016/j.mib.2022.102258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Gut bacteria inhabit a complex environment that is shaped by interactions with their host and the other members of the community. While these ecological interactions have evolved over millions of years, mounting evidence suggests that gut commensals can evolve on much shorter timescales as well, by acquiring new mutations within individual hosts. In this review, we highlight recent progress in understanding the causes and consequences of short-term evolution in the mammalian gut, from experimental evolution in murine hosts to longitudinal tracking of human cohorts. We also discuss new opportunities for future progress by expanding the repertoire of focal species, hosts, and surrounding communities, and by combining deep-sequencing technologies with quantitative frameworks from population genetics.
Collapse
Affiliation(s)
- Tanja Dapa
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Daniel Pgh Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Kimberly S Vasquez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Zhao C, Goldman M, Smith BJ, Pollard KS. Genotyping Microbial Communities with MIDAS2: From Metagenomic Reads to Allele Tables. Curr Protoc 2022; 2:e604. [PMID: 36469554 PMCID: PMC9907011 DOI: 10.1002/cpz1.604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Metagenomic Intra-Species Diversity Analysis System 2 (MIDAS2) is a scalable pipeline that identifies single nucleotide variants and gene copy number variants in metagenomes using comprehensive reference databases built from public microbial genome collections (metagenotyping). MIDAS2 is the first metagenotyping tool with functionality to control metagenomic read mapping filters and to customize the reference database to the microbial community, features that improve the precision and recall of detected variants. In this article we present four basic protocols for the most common use cases of MIDAS2, along with supporting protocols for installation and use. In addition, we provide in-depth guidance on adjusting command line parameters, editing the reference database, optimizing hardware utilization, and understanding the metagenotyping results. All the steps of metagenotyping, from raw sequencing reads to population genetic analysis, are demonstrated with example data in two downloadable sequencing libraries of single-end metagenomic reads representing a mixture of multiple bacterial species. This set of protocols empowers users to accurately genotype hundreds of species in thousands of samples, providing rich genetic data for studying the evolution and strain-level ecology of microbial communities. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Species prescreening Basic Protocol 2: Download MIDAS reference database Basic Protocol 3: Population single nucleotide variant calling Basic Protocol 4: Pan-genome copy number variant calling Support Protocol 1: Installing MIDAS2 Support Protocol 2: Command line inputs Support Protocol 3: Metagenotyping with a custom collection of genomes Support Protocol 4: Metagenotyping with advanced parameters.
Collapse
Affiliation(s)
- Chunyu Zhao
- Data Science, Chan Zuckerberg Biohub, San Francisco, California
- Data Science and Biotechnology, Gladstone Institutes, San Francisco, California
- These authors contributed equally to this work
| | - Miriam Goldman
- Data Science and Biotechnology, Gladstone Institutes, San Francisco, California
- Biomedical Informatics, University of California San Francisco, San Francisco, California
- These authors contributed equally to this work
| | - Byron J. Smith
- Data Science and Biotechnology, Gladstone Institutes, San Francisco, California
- Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Katherine S. Pollard
- Data Science, Chan Zuckerberg Biohub, San Francisco, California
- Data Science and Biotechnology, Gladstone Institutes, San Francisco, California
- Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|