1
|
García-Roldán A, de la Haba RR, Sánchez-Porro C, Ventosa A. 'Altruistic' cooperation among the prokaryotic community of Atlantic salterns assessed by metagenomics. Microbiol Res 2024; 288:127869. [PMID: 39154602 DOI: 10.1016/j.micres.2024.127869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Hypersaline environments are extreme habitats with a limited prokaryotic diversity, mainly restricted to halophilic or halotolerant archaeal and bacterial taxa adapted to highly saline conditions. This study attempts to analyze the taxonomic and functional diversity of the prokaryotes that inhabit a solar saltern located at the Atlantic Coast, in Isla Cristina (Huelva, Southwest Spain), and the influence of salinity on the diversity and metabolic potential of these prokaryotic communities, as well as the interactions and cooperation among the individuals within that community. Brine samples were obtained from different saltern ponds, with a salinity range between 19.5 % and 39 % (w/v). Total prokaryotic DNA was sequenced using the Illumina shotgun metagenomic strategy and the raw sequence data were analyzed using supercomputing services following the MetaWRAP and SqueezeMeta protocols. The most abundant phyla at moderate salinities (19.5-22 % [w/v]) were Methanobacteriota (formerly "Euryarchaeota"), Pseudomonadota and Bacteroidota, followed by Balneolota and Actinomycetota and Uroviricota in smaller proportions, while at high salinities (36-39 % [w/v]) the most abundant phylum was Methanobacteriota, followed by Bacteroidota. The most abundant genera at intermediate salinities were Halorubrum and the bacterial genus Spiribacter, while the haloarchaeal genera Halorubrum, Halonotius, and Haloquadratum were the main representatives at high salinities. A total of 65 MAGs were reconstructed from the metagenomic datasets and different functions and pathways were identified in them, allowing to find key taxa in the prokaryotic community able to synthesize and supply essential compounds, such as biotin, and precursors of other bioactive molecules, like β-carotene, and bacterioruberin, to other dwellers in this habitat, lacking the required enzymatic machinery to produce them. This work shed light on the ecology of aquatic hypersaline environments, such as the Atlantic Coast salterns, and on the dynamics and factors affecting the microbial populations under such extreme conditions.
Collapse
Affiliation(s)
- Alicia García-Roldán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain.
| |
Collapse
|
2
|
Peeney D, Gurung S, Rich JA, Coates-Park S, Liu Y, Toor J, Jones J, Richie CT, Jenkins LM, Stetler-Stevenson WG. Mapping Extracellular Protein-Protein Interactions Using Extracellular Proximity Labeling (ePL). J Proteome Res 2024; 23:4715-4728. [PMID: 39238192 PMCID: PMC11460327 DOI: 10.1021/acs.jproteome.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Proximity labeling (PL) has given researchers the tools to explore protein-protein interactions (PPIs) in living systems; however, most PL studies are performed on intracellular targets. We have adapted the original PL method to investigate PPIs within the extracellular compartment, which we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigated the interactome of the matrisome protein TIMP2. TIMPs are a family of multifunctional proteins that were initially defined by their ability to inhibit metalloproteinases, the major mediators of extracellular matrix (ECM) turnover. TIMP2 exhibits broad expression and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, such as TIMP2, during disease progression is essential for the development of ECM-targeted therapeutics. Using dual orientation fusion proteins of TIMP2 with BioID2/TurboID, we describe the TIMP2 proximal interactome (MassIVE MSV000095637). We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics, demonstrating the power of this technique versus classical PPI methods. We propose that screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.
Collapse
Affiliation(s)
- David Peeney
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sadeechya Gurung
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joshua A. Rich
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sasha Coates-Park
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Yueqin Liu
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jack Toor
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jane Jones
- Center
for
Cancer Research Protein Expression Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Christopher T. Richie
- Genetic
Engineering
and Viral Vector Core, Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, Maryland 21224, United States
| | - Lisa M. Jenkins
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - William G. Stetler-Stevenson
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Stachura DL, Kalyvas JT, Abell AD. New Potent Sulfonamide-Based Inhibitors of S. aureus Biotin Protein Ligase. ACS Med Chem Lett 2024; 15:1467-1473. [PMID: 39291019 PMCID: PMC11403734 DOI: 10.1021/acsmedchemlett.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
The key regulatory metabolic enzyme, biotin protein ligase (BPL), is an attractive target for the development of novel antibiotics against multi-drug-resistant bacteria, such as Staphylococcus aureus. Here we report the synthesis and assay of a new series of inhibitors (6-9) against S. aureus BPL (SaBPL), where a component sulfonamide linker was used to mimic the acyl-phosphate group of the natural intermediate biotinyl-5'-AMP (1). A pivotal correlation between the acidity of the central NH of the sulfonamide linker of 6-9 and in vitro inhibitory activity against SaBPL was observed. Specifically, sulfonylcarbamate 8, with its highly acidic sulfonyl central NH, as evaluated by 1H NMR spectroscopy, showed exceptional potency (K i = 10.3 ± 3.8 nM). Furthermore, three inhibitors demonstrated minimum inhibitory concentrations of 16-32 μg/mL against clinical methicillin-resistant S. aureus (MRSA) strains.
Collapse
Affiliation(s)
- Damian L Stachura
- Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John T Kalyvas
- Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- Centre for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
4
|
Guo Y, He H, Guan Y, Zhang L. Rad6 Regulates Conidiation by Affecting the Biotin Metabolism in Beauveria bassiana. J Fungi (Basel) 2024; 10:613. [PMID: 39330373 PMCID: PMC11433481 DOI: 10.3390/jof10090613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Rad6 is a canonical ubiquitin-conjugating enzyme known for its role in regulating chromosome-related cellular processes in yeast and has been proven to have multiple functions in Beauveria bassiana, including insect-pathogenic lifestyle, UV damage repair, and conidiation. However, previous studies have only reported the key role of Rad6 in regulating conidial production in a nutrient-rich medium, without any deep mechanism analyses. In this study, we found that the disruption of Rad6 leads to a profound reduction in conidial production, irrespective of whether the fungus is cultivated in nutrient-rich or nutrient-poor environments. The absence of rad6 exerts a suppressive effect on the transcription of essential genes in the central developmental pathway, namely, brlA, abaA, and wetA, resulting in a direct downregulation of conidiation capacity. Additionally, mutant strains exhibited a more pronounced decline in both conidial generation and hyphal development when cultured in nutrient-rich conditions. This observation correlates with the downregulation of the central developmental pathway (CDP) downstream gene vosA and the upregulation of flaA in nutrient-rich cultures. Moreover, single-transcriptomics analyses indicated that irregularities in biotin metabolism, DNA repair, and tryptophan metabolism are the underlying factors contributing to the reduced conidial production. Comprehensive dual transcriptomics analyses pinpointed abnormal biotin metabolism as the primary cause of conidial production decline. Subsequently, we successfully restored conidial production in the Rad6 mutant strain through the supplementation of biotin, further confirming the transcriptomic evidence. Altogether, our findings underscore the pivotal role of Rad6 in influencing biotin metabolism, subsequently impacting the expression of CDP genes and ultimately shaping the asexual life cycle of B. bassiana.
Collapse
Affiliation(s)
- Yuhan Guo
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350108, China
| | - Haomin He
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350108, China
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
5
|
Ma D, Du G, Fang H, Li R, Zhang D. Advances and prospects in microbial production of biotin. Microb Cell Fact 2024; 23:135. [PMID: 38735926 PMCID: PMC11089781 DOI: 10.1186/s12934-024-02413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.
Collapse
Affiliation(s)
- Donghan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Rong Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Cronan JE. Biotin protein ligase as you like it: Either extraordinarily specific or promiscuous protein biotinylation. Proteins 2024; 92:435-448. [PMID: 37997490 PMCID: PMC10932917 DOI: 10.1002/prot.26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
7
|
Peeney D, Gurung S, Rich JA, Coates-Park S, Liu Y, Toor J, Jones J, Richie CT, Jenkins LM, Stetler-Stevenson WG. Extracellular Proximity Labeling Reveals an Expanded Interactome for the Matrisome Protein TIMP2. RESEARCH SQUARE 2024:rs.3.rs-3857263. [PMID: 38313275 PMCID: PMC10836090 DOI: 10.21203/rs.3.rs-3857263/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Classical methods of investigating protein-protein interactions (PPIs) are generally performed in non-living systems, yet in recent years new technologies utilizing proximity labeling (PL) have given researchers the tools to explore proximal PPIs in living systems. PL has distinct advantages over traditional protein interactome studies, such as the ability to identify weak and transient interactions in vitro and in vivo. Most PL studies are performed on targets within the cell or on the cell membrane. We have adapted the original PL method to investigate PPIs within the extracellular compartment, using both BioID2 and TurboID, that we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigate the interactome of the widely expressed matrisome protein tissue inhibitor of metalloproteinases 2 (TIMP2). Tissue inhibitors of metalloproteinases (TIMPs) are a family of multi-functional proteins that were initially defined by their ability to inhibit the enzymatic activity of metalloproteinases (MPs), the major mediators of extracellular matrix (ECM) breakdown and turnover. TIMP2 exhibits a broad expression profile and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, like TIMP2, during the evolution of tissue microenvironments associated with disease progression is essential for the development of ECM-targeted therapeutics. Using carboxyl- and amino-terminal fusion proteins of TIMP2 with BioID2 and TurboID, we describe the TIMP2 proximal interactome. We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics (BioID2 vs. TurboID); demonstrating the power of this technique versus classical PPI methods. We propose that the screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.
Collapse
Affiliation(s)
- David Peeney
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Josh A. Rich
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sasha Coates-Park
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jack Toor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jane Jones
- Center for Cancer Research Protein Expression Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Christopher T. Richie
- Genetic Engineering and Viral Vector Core, Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
8
|
Zhang H, Zhang C, Nie X, Wu Y, Yang C, Jiang W, Gu Y. Pleiotropic Regulator GssR Positively Regulates Autotrophic Growth of Gas-Fermenting Clostridium ljungdahlii. Microorganisms 2023; 11:1968. [PMID: 37630531 PMCID: PMC10458427 DOI: 10.3390/microorganisms11081968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium ljungdahlii is a representative autotrophic acetogen capable of producing multiple chemicals from one-carbon gases (CO2/CO). The metabolic and regulatory networks of this carbon-fixing bacterium are interesting, but still remain minimally explored. Here, based on bioinformatics analysis followed by functional screening, we identified a RpiR family transcription factor (TF) that can regulate the autotrophic growth and carbon fixation of C. ljungdahlii. After deletion of the corresponding gene, the resulting mutant strain exhibited significantly impaired growth in gas fermentation, thus reducing the production of acetic acid and ethanol. In contrast, the overexpression of this TF gene could promote cell growth, indicating a positive regulatory effect of this TF in C. ljungdahlii. Thus, we named the TF as GssR (growth and solvent synthesis regulator). Through the following comparative transcriptomic analysis and biochemical verification, we discovered three important genes (encoding pyruvate carboxylase, carbon hunger protein CstA, and a BlaI family transcription factor) that were directly regulated by GssR. Furthermore, an upstream regulator, BirA, that could directly bind to gssR was found; thus, these two regulators may form a cascade regulation and jointly affect the physiology and metabolism of C. ljungdahlii. These findings substantively expand our understanding on the metabolic regulation of carbon fixation in gas-fermenting Clostridium species.
Collapse
Affiliation(s)
- Huan Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Wu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
9
|
Samanta R, Sanghvi N, Beckett D, Matysiak S. Emergence of allostery through reorganization of protein residue network architecture. J Chem Phys 2023; 158:085104. [PMID: 36859102 PMCID: PMC9974213 DOI: 10.1063/5.0136010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Despite more than a century of study, consensus on the molecular basis of allostery remains elusive. A comparison of allosteric and non-allosteric members of a protein family can shed light on this important regulatory mechanism, and the bacterial biotin protein ligases, which catalyze post-translational biotin addition, provide an ideal system for such comparison. While the Class I bacterial ligases only function as enzymes, the bifunctional Class II ligases use the same structural architecture for an additional transcription repression function. This additional function depends on allosterically activated homodimerization followed by DNA binding. In this work, we used experimental, computational network, and bioinformatics analyses to uncover distinguishing features that enable allostery in the Class II biotin protein ligases. Experimental studies of the Class II Escherichia coli protein indicate that catalytic site residues are critical for both catalysis and allostery. However, allostery also depends on amino acids that are more broadly distributed throughout the protein structure. Energy-based community network analysis of representative Class I and Class II proteins reveals distinct residue community architectures, interactions among the communities, and responses of the network to allosteric effector binding. Bioinformatics mutual information analyses of multiple sequence alignments indicate distinct networks of coevolving residues in the two protein families. The results support the role of divergent local residue community network structures both inside and outside of the conserved enzyme active site combined with distinct inter-community interactions as keys to the emergence of allostery in the Class II biotin protein ligases.
Collapse
Affiliation(s)
- Riya Samanta
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Neel Sanghvi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
10
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. Biotin pathway in novel Fodinibius salsisoli sp. nov., isolated from hypersaline soils and reclassification of the genus Aliifodinibius as Fodinibius. Front Microbiol 2023; 13:1101464. [PMID: 36777031 PMCID: PMC9909488 DOI: 10.3389/fmicb.2022.1101464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hypersaline soils are extreme environments that have received little attention until the last few years. Their halophilic prokaryotic population seems to be more diverse than those of well-known aquatic systems. Among those inhabitants, representatives of the family Balneolaceae (phylum Balneolota) have been described to be abundant, but very few members have been isolated and characterized to date. This family comprises the genera Aliifodinibius and Fodinibius along with four others. A novel strain, designated 1BSP15-2V2T, has been isolated from hypersaline soils located in the Odiel Saltmarshes Natural Area (Southwest Spain), which appears to represent a new species related to the genus Aliifodinibius. However, comparative genomic analyses of members of the family Balneolaceae have revealed that the genera Aliifodinibius and Fodinibius belong to a single genus, hence we propose the reclassification of the species of the genus Aliifodinibius into the genus Fodinibius, which was first described. The novel strain is thus described as Fodinibius salsisoli sp. nov., with 1BSP15-2V2T (=CCM 9117T = CECT 30246T) as the designated type strain. This species and other closely related ones show abundant genomic recruitment within 80-90% identity range when searched against several hypersaline soil metagenomic databases investigated. This might suggest that there are still uncultured, yet abundant closely related representatives to this family present in these environments. In-depth in-silico analysis of the metabolism of Fodinibius showed that the biotin biosynthesis pathway was present in the genomes of strain 1BSP15-2V2T and other species of the family Balneolaceae, which could entail major implications in their community role providing this vitamin to other organisms that depend on an exogenous source of this nutrient.
Collapse
|
11
|
Shi Y, Cao Q, Sun J, Hu X, Su Z, Xu Y, Zhang H, Lan L, Feng Y. The opportunistic pathogen Pseudomonas aeruginosa exploits bacterial biotin synthesis pathway to benefit its infectivity. PLoS Pathog 2023; 19:e1011110. [PMID: 36689471 PMCID: PMC9894557 DOI: 10.1371/journal.ppat.1011110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that predominantly causes nosocomial and community-acquired lung infections. As a member of ESKAPE pathogens, carbapenem-resistant P. aeruginosa (CRPA) compromises the limited therapeutic options, raising an urgent demand for the development of lead compounds against previously-unrecognized drug targets. Biotin is an important cofactor, of which the de novo synthesis is an attractive antimicrobial target in certain recalcitrant infections. Here we report genetic and biochemical definition of P. aeruginosa BioH (PA0502) that functions as a gatekeeper enzyme allowing the product pimeloyl-ACP to exit from fatty acid synthesis cycle and to enter the late stage of biotin synthesis pathway. In relative to Escherichia coli, P. aeruginosa physiologically requires 3-fold higher level of cytosolic biotin, which can be attributed to the occurrence of multiple biotinylated enzymes. The BioH protein enables the in vitro reconstitution of biotin synthesis. The repertoire of biotin abundance is assigned to different mouse tissues and/or organ contents, and the plasma biotin level of mouse is around 6-fold higher than that of human. Removal of bioH renders P. aeruginosa biotin auxotrophic and impairs its intra-phagosome persistence. Based on a model of CD-1 mice mimicking the human environment, lung challenge combined with systemic infection suggested that BioH is necessary for the full virulence of P. aeruginosa. As expected, the biotin synthesis inhibitor MAC13772 is capable of dampening the viability of CRPA. Notably, MAC13772 interferes the production of pyocyanin, an important virulence factor of P. aeruginosa. Our data expands our understanding of P. aeruginosa biotin synthesis relevant to bacterial infectivity. In particular, this study represents the first example of an extracellular pathogen P. aeruginosa that exploits biotin cofactor as a fitness determinant, raising the possibility of biotin synthesis as an anti-CRPA target.
Collapse
Affiliation(s)
- Yu Shi
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jingdu Sun
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofang Hu
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhi Su
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yongchang Xu
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- * E-mail: (LL); (YF)
| | - Youjun Feng
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- * E-mail: (LL); (YF)
| |
Collapse
|
12
|
The inside scoop: Comparative genomics of two intranuclear bacteria, "Candidatus Berkiella cookevillensis" and "Candidatus Berkiella aquae". PLoS One 2022; 17:e0278206. [PMID: 36584052 PMCID: PMC9803151 DOI: 10.1371/journal.pone.0278206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/12/2022] [Indexed: 12/31/2022] Open
Abstract
"Candidatus Berkiella cookevillensis" (strain CC99) and "Candidatus Berkiella aquae" (strain HT99), belonging to the Coxiellaceae family, are gram-negative bacteria isolated from amoebae in biofilms present in human-constructed water systems. Both bacteria are obligately intracellular, requiring host cells for growth and replication. The intracellular bacteria-containing vacuoles of both bacteria closely associate with or enter the nuclei of their host cells. In this study, we analyzed the genome sequences of CC99 and HT99 to better understand their biology and intracellular lifestyles. The CC99 genome has a size of 2.9Mb (37.9% GC) and contains 2,651 protein-encoding genes (PEGs) while the HT99 genome has a size of 3.6Mb (39.4% GC) and contains 3,238 PEGs. Both bacteria encode high proportions of hypothetical proteins (CC99: 46.5%; HT99: 51.3%). The central metabolic pathways of both bacteria appear largely intact. Genes for enzymes involved in the glycolytic pathway, the non-oxidative branch of the phosphate pathway, the tricarboxylic acid pathway, and the respiratory chain were present. Both bacteria, however, are missing genes for the synthesis of several amino acids, suggesting reliance on their host for amino acids and intermediates. Genes for type I and type IV (dot/icm) secretion systems as well as type IV pili were identified in both bacteria. Moreover, both bacteria contain genes encoding large numbers of putative effector proteins, including several with eukaryotic-like domains such as, ankyrin repeats, tetratricopeptide repeats, and leucine-rich repeats, characteristic of other intracellular bacteria.
Collapse
|
13
|
C C, A V, B A, J L, G F, L FO, S M, T C. Nitrogen source as a modulator of the metabolic activity of Pedobacter lusitanus NL19: a transcriptomic approach. Appl Microbiol Biotechnol 2022; 106:1583-1597. [PMID: 35122154 DOI: 10.1007/s00253-022-11796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
Secondary metabolites (SMs) are compounds with relevant biological activities. Their production under laboratory conditions, especially in broth, is still challenging. An example is the pedopeptins, which are nonribosomal peptides active against some bacteria listed by the WHO for which new antibiotics are urgently needed. Their biosynthesis is inhibited by high concentrations of peptone from casein (PC) in tryptic soy broth (TSB), and we applied a RNA-seq approach to identify Pedobacter lusitanus NL19 cellular pathways modulated by this condition. Results were validated by qPCR and revealed 261 differentially expressed genes (DEGs), 46.3% of them with a predicted biological function. Specifically, high concentration of PC significantly repressed the de novo biosynthesis of biotin (- 60X) and the production of nonribosomal peptide synthetases (NRPS) of pedopeptins (about - 14X), but no effect was observed on the expression of other NRPS. Transcription of a L-Dap synthesis operon that includes a protein with a σ70-like domain was also reduced (about - 7X). High concentrations of PC led to a significant overexpression of MFS and RND efflux pumps and a ferrous iron uptake system, suggesting the redirection of cell machinery to export compounds such as amino acids, sugars and metal divalent cations, alongside with a slight increase of iron import. KEY POINTS: • Higher concentrations of phosphate sources highly repress many operons • High concentrations of peptone from casein (PC) cause biotin's operon repression • High concentrations of PC downregulate the production of peptides of unknown function.
Collapse
Affiliation(s)
- Covas C
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Vaz A
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Almeida B
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Lourenço J
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Figueiredo G
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Franco O L
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Mendo S
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| | - Caetano T
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Mair A, Bergmann DC. Advances in enzyme-mediated proximity labeling and its potential for plant research. PLANT PHYSIOLOGY 2022; 188:756-768. [PMID: 34662401 PMCID: PMC8825456 DOI: 10.1093/plphys/kiab479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 06/12/2023]
Abstract
Cellular processes rely on the intimate interplay of different molecules, including DNA, RNA, proteins, and metabolites. Obtaining and integrating data on their abundance and dynamics at high temporal and spatial resolution are essential for our understanding of plant growth and development. In the past decade, enzymatic proximity labeling (PL) has emerged as a powerful tool to study local protein and nucleotide ensembles, discover protein-protein and protein-nucleotide interactions, and resolve questions about protein localization and membrane topology. An ever-growing number and continuous improvement of enzymes and methods keep broadening the spectrum of possible applications for PL and make it more accessible to different organisms, including plants. While initial PL experiments in plants required high expression levels and long labeling times, recently developed faster enzymes now enable PL of proteins on a cell type-specific level, even with low-abundant baits, and in different plant species. Moreover, expanding the use of PL for additional purposes, such as identification of locus-specific gene regulators or high-resolution electron microscopy may now be in reach. In this review, we give an overview of currently available PL enzymes and their applications in mammalian cell culture and plants. We discuss the challenges and limitations of PL methods and highlight open questions and possible future directions for PL in plants.
Collapse
Affiliation(s)
- Andrea Mair
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Dominique C Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
15
|
Song X, Cronan JE. A conserved and seemingly redundant Escherichia coli biotin biosynthesis gene expressed only during anaerobic growth. Mol Microbiol 2021; 116:1315-1327. [PMID: 34597430 PMCID: PMC8599648 DOI: 10.1111/mmi.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Biotin is an essential metabolic cofactor and de novo biotin biosynthetic pathways are widespread in microorganisms and plants. Biotin synthetic genes are generally found clustered into bio operons to facilitate tight regulation since biotin synthesis is a metabolically expensive process. Dethiobiotin synthetase (DTBS) catalyzes the penultimate step of biotin biosynthesis, the formation of 7,8-diaminononanoate (DAPA). In Escherichia coli, DTBS is encoded by the bio operon gene bioD. Several studies have reported transcriptional activation of ynfK a gene of unknown function, under anaerobic conditions. Alignments of YnfK with BioD have led to suggestions that YnfK has DTBS activity. We report that YnfK is a functional DTBS, although an enzyme of poor activity that is poorly expressed. Supplementation of growth medium with DAPA or substitution of BioD active site residues for the corresponding YnfK residues greatly improved the DTBS activity of YnfK. We confirmed that FNR activates transcriptional level of ynfK during anaerobic growth and identified the FNR binding site of ynfK. The ynfK gene is well conserved in γ-proteobacteria.
Collapse
Affiliation(s)
- Xuejiao Song
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
16
|
Wei W, Lan F, Liu Y, Wu L, Hassan BH, Wang S. Characterization of the Bifunctional Enzyme BioDA Involved in Biotin Synthesis and Pathogenicity in Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11971-11981. [PMID: 34591470 DOI: 10.1021/acs.jafc.1c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biotin is an important enzyme cofactor that plays a key role in all three domains. The classical bifunctional enzyme BioDA in eukaryotes (such as Aspergillus flavus and Arabidopsis thaliana) is involved in the antepenultimate and penultimate steps of biotin biosynthesis. In this study, we identified a A. flavus bifunctional gene bioDA which could complement both Escherichia coli ΔEcbioD and ΔEcbioA mutants. Interestingly, the separated domain of AfBioD and AfBioA could, respectively, fuse with EcBioA and EcBioD well and work together. What is more, we found that BioDA was almost localized to the mitochondria in A. flavus, as shown by N-terminal red fluorescent protein tag fusion. Noteworthy, the subcellular localization of AfBioDA is never affected by common environmental stresses (such as hyperosmotic stress or oxidative stress). The knockout strategy demonstrated that the deletion of AfbioDA gene from the chromosome impaired the biotin de novo synthesis pathway in A. flavus. Importantly, this A. flavus mutant blocked biotin production and decreased its pathogenicity to infect peanuts. Based on the structural comparison, we found that two inhibitors (amiclenomycin and gemcitabine) could be candidates for antifungal drugs. Taken together, our findings identified the bifunctional AfbioDA gene and shed light on biotin biosynthesis in A. flavus.
Collapse
Affiliation(s)
- Wenhui Wei
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Faxiu Lan
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinghang Liu
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianghuan Wu
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bachar H Hassan
- Health Sciences Center, Stony Brook University, Stony Brook, New York, New York 11794, United States
| | - Shihua Wang
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Mishra A, Gupta J, Kumari T, Pal R, Thakur IS. Unravelling the attributes of novel cyanobacteria Jacksonvillea sp. ISTCYN1 by draft genome sequencing. BIORESOURCE TECHNOLOGY 2021; 337:125473. [PMID: 34320753 DOI: 10.1016/j.biortech.2021.125473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Filamentous cyanobacteria, Jacksonvillea sp. ISTCYN1 was isolated from agriculture field and cultured in BG-11 medium. This study, report the genome sequence of cyanobacteria Jacksonvillea thatto the best of our knowledgeis the firstgenome sequenceof thisgenus. The 5.7 MB draft genome sequence of this cyanobacterium contains 5134 protein-coding genes. The phylogenetic tree was constructed based on genome and Desertifilum sp. IPPAS B-1220 validated the closest relationship with Jacksonvillea sp. ISTCYN1. The growth of strain ISTCYN1 has been reported in the presence of different types of plastic when used as a sole carbon source. SEM analysis revealed biofilm formation by cyanobacterial strain ISTCYN1 on the surface of high and low-density polyethylene and polypropylene. In the presence of these plastics, EPS production has also been reported by this strain. Whole genome sequence analysis reveals the presence of many genes involved in biofilm formation. The presence of key enzymes responsible for plastic degradation laccase, esterase, lipase, thioesterase, and peroxidase have been predicted in the genome analysis. Genome analysis also provides insight into the genes involved in biotin biosynthetic pathways. Furthermore, the presence of many selenoproteins reveals the selenium acquisition by this cyanobacterium.
Collapse
Affiliation(s)
- Arti Mishra
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Sector-125, Noida 201303, India
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Taruna Kumari
- Department of Statistics, University of Delhi, New Delhi 110007, India
| | - Ruchita Pal
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - I S Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India.
| |
Collapse
|
18
|
Zhang C, Nie X, Zhang H, Wu Y, He H, Yang C, Jiang W, Gu Y. Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas-fermenting Clostridium ljungdahlii. Microb Biotechnol 2021; 14:2072-2089. [PMID: 34291572 PMCID: PMC8449670 DOI: 10.1111/1751-7915.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
Gas-fermenting Clostridium species can convert one-carbon gases (CO2 /CO) into a variety of chemicals and fuels, showing excellent application prospects in green biological manufacturing. The discovery of crucial genes and proteins with novel functions is important for understanding and further optimization of these autotrophic bacteria. Here, we report that the Clostridium ljungdahlii BirA protein (ClBirA) plays a pleiotropic regulator role, which, together with its biotin protein ligase (BPL) activity, enables an effective control of autotrophic growth of C. ljungdahlii. The structural modulation of ClBirA, combined with the in vivo and in vitro analyses, further reveals the action mechanism of ClBirA's dual roles as well as their interaction in C. ljungdahlii. Importantly, an atypical, flexible architecture of the binding site was found to be employed by ClBirA in the regulation of a lot of essential pathway genes, thereby expanding BirA's target genes to a broader range in clostridia. Based on these findings, molecular modification of ClBirA was performed, and an improved cellular performance of C. ljungdahlii was achieved in gas fermentation. This work reveals a previously unknown potent role of BirA in gas-fermenting clostridia, providing new perspective for understanding and engineering these autotrophic bacteria.
Collapse
Affiliation(s)
- Can Zhang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoqun Nie
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Huan Zhang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Yuwei Wu
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Huiqi He
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Chen Yang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Weihong Jiang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yang Gu
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
19
|
Psomopoulos FE, van Helden J, Médigue C, Chasapi A, Ouzounis CA. Ancestral state reconstruction of metabolic pathways across pangenome ensembles. Microb Genom 2021; 6. [PMID: 32924924 PMCID: PMC7725326 DOI: 10.1099/mgen.0.000429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As genome sequencing efforts are unveiling the genetic diversity of the biosphere with an unprecedented speed, there is a need to accurately describe the structural and functional properties of groups of extant species whose genomes have been sequenced, as well as their inferred ancestors, at any given taxonomic level of their phylogeny. Elaborate approaches for the reconstruction of ancestral states at the sequence level have been developed, subsequently augmented by methods based on gene content. While these approaches of sequence or gene-content reconstruction have been successfully deployed, there has been less progress on the explicit inference of functional properties of ancestral genomes, in terms of metabolic pathways and other cellular processes. Herein, we describe PathTrace, an efficient algorithm for parsimony-based reconstructions of the evolutionary history of individual metabolic pathways, pivotal representations of key functional modules of cellular function. The algorithm is implemented as a five-step process through which pathways are represented as fuzzy vectors, where each enzyme is associated with a taxonomic conservation value derived from the phylogenetic profile of its protein sequence. The method is evaluated with a selected benchmark set of pathways against collections of genome sequences from key data resources. By deploying a pangenome-driven approach for pathway sets, we demonstrate that the inferred patterns are largely insensitive to noise, as opposed to gene-content reconstruction methods. In addition, the resulting reconstructions are closely correlated with the evolutionary distance of the taxa under study, suggesting that a diligent selection of target pangenomes is essential for maintaining cohesiveness of the method and consistency of the inference, serving as an internal control for an arbitrary selection of queries. The PathTrace method is a first step towards the large-scale analysis of metabolic pathway evolution and our deeper understanding of functional relationships reflected in emerging pangenome collections.
Collapse
Affiliation(s)
- Fotis E Psomopoulos
- Institute of Applied Biosciences (INAB), Center for Research & Technology Hellas (CERTH), GR-57001 Thessalonica, Greece
| | - Jacques van Helden
- Lab. Technological Advances for Genomics & Clinics (TAGC), Université d'Aix-Marseille (AMU), INSERM Unit U1090, 163, Avenue de Luminy, 13288 Marseille cedex 09, France
| | - Claudine Médigue
- UMR 8030, CNRS, Université Evry-Val-d'Essonne, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Evry, France
| | - Anastasia Chasapi
- Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Center for Research & Technology Hellas (CERTH), GR-57001 Thessalonica, Greece
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Center for Research & Technology Hellas (CERTH), GR-57001 Thessalonica, Greece
| |
Collapse
|
20
|
XRE-Type Regulator BioX Acts as a Negative Transcriptional Factor of Biotin Metabolism in Riemerella anatipestifer. J Bacteriol 2021; 203:e0018121. [PMID: 33972354 DOI: 10.1128/jb.00181-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotin is essential for the growth and pathogenicity of microorganisms. Damage to biotin biosynthesis results in impaired bacterial growth and decreased virulence in vivo. However, the mechanisms of biotin biosynthesis in Riemerella anatipestifer remain unclear. In this study, two R. anatipestifer genes associated with biotin biosynthesis were identified. AS87_RS05840 encoded a BirA protein lacking the N-terminal winged helix-turn-helix DNA binding domain, identifying it as a group I biotin protein ligase, and AS87_RS09325 encoded a BioX protein, which was in the helix-turn-helix xenobiotic response element family of transcription factors. Electrophoretic mobility shift assays demonstrated that BioX bound to the promoter region of bioF. In addition, the R. anatipestifer genes bioF (encoding 7-keto-8-aminopelargonic acid synthase), bioD (encoding dethiobiotin synthase), and bioA (encoding 7,8-diaminopelargonic acid synthase) were in an operon and were regulated by BioX. Quantitative reverse transcription-PCR showed that transcription of the bioFDA operon increased in the mutant Yb2ΔbioX in the presence of excessive biotin, compared with that in the wild-type strain Yb2, suggesting that BioX acted as a repressor of biotin biosynthesis. Streptavidin blot analysis showed that BirA caused biotinylation of BioX, indicating that biotinylated BioX was involved in metabolic pathways. Moreover, as determined by the median lethal dose, the virulence of Yb2ΔbioX was attenuated 500-fold compared with that of Yb2. To summarize, the genes birA and bioX were identified in R. anatipestifer, and BioX was found to act as a repressor of the bioFDA operon involved in the biotin biosynthesis pathway and identified as a bacterial virulence factor. IMPORTANCE Riemerella anatipestifer is a causative agent of diseases in ducks, geese, turkeys, and various other domestic and wild birds. Our study reveals that biotin synthesis of R. anatipestifer is regulated by the BioX through binding to the promoter region of the bioF gene to inhibit transcription of the bioFDA operon. Moreover, bioX is required for R. anatipestifer pathogenicity, suggesting that BioX is a potential target for treatment of the pathogen. R. anatipestifer BioX has thus been identified as a novel negative regulator involved in biotin metabolism and associated with bacterial virulence in this study.
Collapse
|
21
|
Song X, Henke SK, Cronan JE. A division of labor between two biotin protein ligase homologs. Mol Microbiol 2021; 116:648-662. [PMID: 34028100 DOI: 10.1111/mmi.14761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023]
Abstract
Group I biotin protein ligases (BPLs) catalyze the covalent attachment of biotin to its cognate acceptor proteins. In contrast, Group II BPLs have an additional N-terminal DNA-binding domain and function not only in biotinylation but also in transcriptional regulation of genes of biotin biosynthesis and transport. Most bacteria contain only a single biotin protein ligase, whereas Clostridium acetobutylicum contains two biotin protein ligase homologs: BplA and BirA'. Sequence alignments showed that BplA is a typical group I BPL, whereas BirA' lacked the C-terminal domain conserved throughout extant BPL proteins. This raised the questions of why two BPL homologs are needed and why the apparently defective BirA' has been retained. We have used in vivo and in vitro assays to show that BplA is a functional BPL whereas BirA' acts as a biotin sensor involved in transcriptional regulation of biotin transport. We also successfully converted BirA' into a functional biotin protein ligase with regulatory activity by fusing it to the C-terminal domain from BplA. Finally, we provide evidence that BplA and BirA' interact in vivo.
Collapse
Affiliation(s)
- Xuejiao Song
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Sarah K Henke
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, IL, USA.,Department of Microbiology, University of Illinois, Urbana, IL, USA
| |
Collapse
|
22
|
Biochemical and structural characterization of the BioZ enzyme engaged in bacterial biotin synthesis pathway. Nat Commun 2021; 12:2056. [PMID: 33824341 PMCID: PMC8024396 DOI: 10.1038/s41467-021-22360-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Biotin is an essential micro-nutrient across the three domains of life. The paradigm earlier step of biotin synthesis denotes "BioC-BioH" pathway in Escherichia coli. Here we report that BioZ bypasses the canonical route to begin biotin synthesis. In addition to its origin of Rhizobiales, protein phylogeny infers that BioZ is domesticated to gain an atypical role of β-ketoacyl-ACP synthase III. Genetic and biochemical characterization demonstrates that BioZ catalyzes the condensation of glutaryl-CoA (or ACP) with malonyl-ACP to give 5'-keto-pimeloyl ACP. This intermediate proceeds via type II fatty acid synthesis (FAS II) pathway, to initiate the formation of pimeloyl-ACP, a precursor of biotin synthesis. To further explore molecular basis of BioZ activity, we determine the crystal structure of Agrobacterium tumefaciens BioZ at 1.99 Å, of which the catalytic triad and the substrate-loading tunnel are functionally defined. In particular, we localize that three residues (S84, R147, and S287) at the distant bottom of the tunnel might neutralize the charge of free C-carboxyl group of the primer glutaryl-CoA. Taken together, this study provides molecular insights into the BioZ biotin synthesis pathway.
Collapse
|
23
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
24
|
Yang CY, Li SW, Chin CY, Hsu CW, Lee CC, Yeh YM, Wu KA. Association of exacerbation phenotype with the sputum microbiome in chronic obstructive pulmonary disease patients during the clinically stable state. J Transl Med 2021; 19:121. [PMID: 33757530 PMCID: PMC7988976 DOI: 10.1186/s12967-021-02788-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a progressive, life-threatening lung disease with increasing prevalence and incidence worldwide. Increasing evidence suggests that lung microbiomes might play a physiological role in acute exacerbations of COPD. The objective of this study was to characterize the association of the microbiota and exacerbation risk or airflow limitation in stable COPD patients. Methods The sputum microbiota from 78 COPD outpatients during periods of clinical stability was investigated using 16S rRNA V3-V4 amplicon sequencing. The microbiome profiles were compared between patients with different risks of exacerbation, i.e., the low risk exacerbator (LRE) or high risk exacerbator (HRE) groups, and with different airflow limitation severity, i.e., mild to moderate (FEV1 ≥ 50; PFT I) or severe to very severe (FEV1 < 50; PFT II). Results The bacterial diversity (Chao1 and observed OTUs) was significantly decreased in the HRE group compared to that in the LRE group. The top 3 dominant phyla in sputum were Firmicutes, Actinobacteria, and Proteobacteria, which were similar in the HRE and LRE groups. At the genus level, compared to that in the LRE group (41.24%), the proportion of Streptococcus was slightly decreased in the HRE group (28.68%) (p = 0.007). However, the bacterial diversity and the proportion of dominant bacteria at the phylum and genus levels were similar between the PFT I and PFT II groups. Furthermore, the relative abundances of Gemella morbillorum, Prevotella histicola, and Streptococcus gordonii were decreased in the HRE group compared to those in the LRE group according to linear discriminant analysis effect size (LEfSe). Microbiome network analysis suggested altered bacterial cooperative regulation in different exacerbation phenotypes. The proportions of Proteobacteria and Neisseria were negatively correlated with the FEV1/FVC value. According to functional prediction of sputum bacterial communities through Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis, genes involved in lipopolysaccharide biosynthesis and energy metabolism were enriched in the HRE group. Conclusion The present study revealed that the sputum microbiome changed in COPD patients with different risks of exacerbation. Additionally, the bacterial cooperative networks were altered in the HRE patients and may contribute to disease exacerbation. Our results provide evidence that sputum microbiome community dysbiosis is associated with different COPD phenotypes, and we hope that by understanding the lung microbiome, a potentially modifiable clinical factor, further targets for improved COPD therapies during the clinically stable state may be elucidated. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02788-4.
Collapse
Affiliation(s)
- Chia-Yu Yang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yin Chin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Wei Hsu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ching Lee
- Department and Graduate Institute of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuo-An Wu
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, No. 168, Zhongxing Rd., Longtan District, Taoyuan, 32551, Taiwan (R.O.C.). .,School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.
| |
Collapse
|
25
|
Sirithanakorn C, Cronan JE. Biotin, a universal and essential cofactor: Synthesis, ligation and regulation. FEMS Microbiol Rev 2021; 45:6081095. [PMID: 33428728 DOI: 10.1093/femsre/fuab003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Biotin is a covalently attached enzyme cofactor required for intermediary metabolism in all three domains of life. Several important human pathogens (e.g. Mycobacterium tuberculosis) require biotin synthesis for pathogenesis. Humans lack a biotin synthetic pathway hence bacterial biotin synthesis is a prime target for new therapeutic agents. The biotin synthetic pathway is readily divided into early and late segments. Although pimelate, a seven carbon α,ω-dicarboxylic acid that contributes seven of the ten biotin carbons atoms, was long known to be a biotin precursor, its biosynthetic pathway was a mystery until the E. coli pathway was discovered in 2010. Since then, diverse bacteria encode evolutionarily distinct enzymes that replace enzymes in the E. coli pathway. Two new bacterial pimelate synthesis pathways have been elucidated. In contrast to the early pathway the late pathway, assembly of the fused rings of the cofactor, was long thought settled. However, a new enzyme that bypasses a canonical enzyme was recently discovered as well as homologs of another canonical enzyme that functions in synthesis of another protein-bound coenzyme, lipoic acid. Most bacteria tightly regulate transcription of the biotin synthetic genes in a biotin-responsive manner. The bifunctional biotin ligases which catalyze attachment of biotin to its cognate enzymes and repress biotin gene transcription are best understood regulatory system.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin. Metab Eng 2020; 61:406-415. [DOI: 10.1016/j.ymben.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
|
27
|
Eggers J, Strittmatter CS, Küsters K, Biller E, Steinbüchel A. Biotin Synthesis in Ralstonia eutropha H16 Utilizes Pimeloyl Coenzyme A and Can Be Regulated by the Amount of Acceptor Protein. Appl Environ Microbiol 2020; 86:e01512-20. [PMID: 32680858 PMCID: PMC7480372 DOI: 10.1128/aem.01512-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Abstract
The biotin metabolism of the Gram-negative facultative chemolithoautotrophic bacterium Ralstonia eutropha (syn. Cupriavidus necator), which is used for biopolymer production in industry, was investigated. A biotin auxotroph mutant lacking bioF was generated, and biotin depletion in the cells and the minimal biotin demand of a biotin-auxotrophic R. eutropha strain were determined. Three consecutive cultivations in biotin-free medium were necessary to prevent growth of the auxotrophic mutant, and 40 ng/ml biotin was sufficient to promote cell growth. Nevertheless, 200 ng/ml biotin was necessary to ensure growth comparable to that of the wild type, which is similar to the demand of biotin-auxotrophic mutants among other prokaryotic and eukaryotic microbes. A phenotypic complementation of the R. eutropha ΔbioF mutant was only achieved by homologous expression of bioF of R. eutropha or heterologous expression of bioF of Bacillus subtilis but not by bioF of Escherichia coli Together with the results from bioinformatic analysis of BioFs, this leads to the assumption that the intermediate of biotin synthesis in R. eutropha is pimeloyl-CoA instead of pimeloyl-acyl carrier protein (ACP) like in the Gram-positive B. subtilis Internal biotin content was enhanced by homologous expression of accB, whereas homologous expression of accB and accC2 in combination led to decreased biotin concentrations in the cells. Although a DNA-binding domain of the regulator protein BirA is missing, biotin synthesis seemed to be influenced by the amount of acceptor protein present.IMPORTANCERalstonia eutropha is applied in industry for the production of biopolymers and serves as a research platform for the production of diverse fine chemicals. Due to its ability to grow on hydrogen and carbon dioxide as the sole carbon and energy source, R. eutropha is often utilized for metabolic engineering to convert inexpensive resources into value-added products. The understanding of the metabolic pathways in this bacterium is mandatory for further bioengineering of the strain and for the development of new strategies for biotechnological production.
Collapse
Affiliation(s)
- Jessica Eggers
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Carl Simon Strittmatter
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kira Küsters
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Emre Biller
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Guyet U, Nguyen NA, Doré H, Haguait J, Pittera J, Conan M, Ratin M, Corre E, Le Corguillé G, Brillet-Guéguen L, Hoebeke M, Six C, Steglich C, Siegel A, Eveillard D, Partensky F, Garczarek L. Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Synechococcus Strain WH7803. Front Microbiol 2020; 11:1707. [PMID: 32793165 PMCID: PMC7393227 DOI: 10.3389/fmicb.2020.01707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Understanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous high-light (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b6/f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria.
Collapse
Affiliation(s)
- Ulysse Guyet
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Ngoc A Nguyen
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Hugo Doré
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Julie Haguait
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Justine Pittera
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Maël Conan
- DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France
| | - Morgane Ratin
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Erwan Corre
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Gildas Le Corguillé
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Loraine Brillet-Guéguen
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France.,CNRS, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Mark Hoebeke
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Christophe Six
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | | | - Anne Siegel
- DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France
| | - Damien Eveillard
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Frédéric Partensky
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Laurence Garczarek
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| |
Collapse
|
29
|
Hayes AJ, Satiaputra J, Sternicki LM, Paparella AS, Feng Z, Lee KJ, Blanco-Rodriguez B, Tieu W, Eijkelkamp BA, Shearwin KE, Pukala TL, Abell AD, Booker GW, Polyak SW. Advanced Resistance Studies Identify Two Discrete Mechanisms in Staphylococcus aureus to Overcome Antibacterial Compounds that Target Biotin Protein Ligase. Antibiotics (Basel) 2020; 9:antibiotics9040165. [PMID: 32268615 PMCID: PMC7235819 DOI: 10.3390/antibiotics9040165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
Biotin protein ligase (BPL) inhibitors are a novel class of antibacterial that target clinically important methicillin-resistant Staphylococcus aureus (S. aureus). In S. aureus, BPL is a bifunctional protein responsible for enzymatic biotinylation of two biotin-dependent enzymes, as well as serving as a transcriptional repressor that controls biotin synthesis and import. In this report, we investigate the mechanisms of action and resistance for a potent anti-BPL, an antibacterial compound, biotinyl-acylsulfamide adenosine (BASA). We show that BASA acts by both inhibiting the enzymatic activity of BPL in vitro, as well as functioning as a transcription co-repressor. A low spontaneous resistance rate was measured for the compound (<10−9) and whole-genome sequencing of strains evolved during serial passaging in the presence of BASA identified two discrete resistance mechanisms. In the first, deletion of the biotin-dependent enzyme pyruvate carboxylase is proposed to prioritize the utilization of bioavailable biotin for the essential enzyme acetyl-CoA carboxylase. In the second, a D200E missense mutation in BPL reduced DNA binding in vitro and transcriptional repression in vivo. We propose that this second resistance mechanism promotes bioavailability of biotin by derepressing its synthesis and import, such that free biotin may outcompete the inhibitor for binding BPL. This study provides new insights into the molecular mechanisms governing antibacterial activity and resistance of BPL inhibitors in S. aureus.
Collapse
Affiliation(s)
- Andrew J. Hayes
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
| | - Jiulia Satiaputra
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
| | - Louise M. Sternicki
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
| | - Ashleigh S. Paparella
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
| | - Zikai Feng
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
| | - Kwang J. Lee
- School of Physical Sciences, University of Adelaide, South Australia 5005, Australia; (K.J.L.); (B.B.-R.); (W.T.); (T.L.P.); (A.D.A.)
| | - Beatriz Blanco-Rodriguez
- School of Physical Sciences, University of Adelaide, South Australia 5005, Australia; (K.J.L.); (B.B.-R.); (W.T.); (T.L.P.); (A.D.A.)
| | - William Tieu
- School of Physical Sciences, University of Adelaide, South Australia 5005, Australia; (K.J.L.); (B.B.-R.); (W.T.); (T.L.P.); (A.D.A.)
| | - Bart A. Eijkelkamp
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
| | - Keith E. Shearwin
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
| | - Tara L. Pukala
- School of Physical Sciences, University of Adelaide, South Australia 5005, Australia; (K.J.L.); (B.B.-R.); (W.T.); (T.L.P.); (A.D.A.)
| | - Andrew D. Abell
- School of Physical Sciences, University of Adelaide, South Australia 5005, Australia; (K.J.L.); (B.B.-R.); (W.T.); (T.L.P.); (A.D.A.)
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Grant W. Booker
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
| | - Steven W. Polyak
- School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; (A.J.H.); (J.S.); (L.M.S.); (A.S.P.); (Z.F.); (B.A.E.); (K.E.S.); (G.W.B.)
- Correspondence: ; Tel.: +61883021603
| |
Collapse
|
30
|
Zeng Q, Yang Q, Jia J, Bi H. A Moraxella Virulence Factor Catalyzes an Essential Esterase Reaction of Biotin Biosynthesis. Front Microbiol 2020; 11:148. [PMID: 32117167 PMCID: PMC7026016 DOI: 10.3389/fmicb.2020.00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Pimeloyl-acyl carrier protein (ACP) methyl ester esterase catalyzes the last biosynthetic step of the pimelate moiety of biotin, a key intermediate in biotin biosynthesis. The paradigm pimeloyl-ACP methyl ester esterase is the BioH protein of Escherichia coli that hydrolyses the ester bond of pimeloyl-ACP methyl ester. Biotin synthesis in E. coli also requires the function of the malonyl-ACP methyltransferase gene (bioC) to employ a methylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. However, bioinformatics analyses of the extant bacterial genomes showed that bioH is absent in many bioC-containing bacteria. The genome of the Gram-negative bacterium, Moraxella catarrhalis lacks a gene encoding a homolog of any of the six known pimeloyl-ACP methyl ester esterase isozymes suggesting that this organism encodes a novel pimeloyl-ACP methyl ester esterase isoform. We report that this is the case. The gene encoding the new isoform, called btsA, was isolated by complementation of an E. coli bioH deletion strain. The requirement of BtsA for the biotin biosynthesis in M. catarrhalis was confirmed by a biotin auxotrophic phenotype caused by deletion of btsA in vivo and a reconstituted in vitro desthiobiotin synthesis system. Purified BtsA was shown to cleave the physiological substrate pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a Ser117-His254-Asp287 catalytic triad. The lack of sequence alignment with other isozymes together with phylogenetic analyses revealed BtsA as a new class of pimeloyl-ACP methyl ester esterase. The involvement of BtsA in M. catarrhalis virulence was confirmed by the defect of bacterial invasion to lung epithelial cells and survival within macrophages in the ΔbtsA strains. Identification of the new esterase gene btsA exclusive in Moraxella species that links biotin biosynthesis to bacterial virulence, can reveal a new valuable target for development of drugs against M. catarrhalis.
Collapse
Affiliation(s)
- Qi Zeng
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Qi Yang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jia Jia
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hongkai Bi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Lee KJ, Tieu W, Blanco-Rodriguez B, Paparella AS, Yu J, Hayes A, Feng J, Marshall AC, Noll B, Milne R, Cini D, Wilce MCJ, Booker GW, Bruning JB, Polyak SW, Abell AD. Sulfonamide-Based Inhibitors of Biotin Protein Ligase as New Antibiotic Leads. ACS Chem Biol 2019; 14:1990-1997. [PMID: 31407891 DOI: 10.1021/acschembio.9b00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report the design, synthesis, and evaluation of a series of inhibitors of Staphylococcus aureus BPL (SaBPL), where the central acyl phosphate of the natural intermediate biotinyl-5'-AMP (1) is replaced by a sulfonamide isostere. Acylsulfamide (6) and amino sulfonylurea (7) showed potent in vitro inhibitory activity (Ki = 0.007 ± 0.003 and 0.065 ± 0.03 μM, respectively) and antibacterial activity against S. aureus ATCC49775 with minimum inhibitory concentrations of 0.25 and 4 μg/mL, respectively. Additionally, the bimolecular interactions between the BPL and inhibitors 6 and 7 were defined by X-ray crystallography and molecular dynamics simulations. The high acidity of the sulfonamide linkers of 6 and 7 likely contributes to the enhanced in vitro inhibitory activities by promoting interaction with SaBPL Lys187. Analogues with alkylsulfamide (8), β-ketosulfonamide (9), and β-hydroxysulfonamide (10) isosteres were devoid of significant activity. Binding free energy estimation using computational methods suggests deprotonated 6 and 7 to be the best binders, which is consistent with enzyme assay results. Compound 6 was unstable in whole blood, leading to poor pharmacokinetics. Importantly, 7 has a vastly improved pharmacokinetic profile compared to that of 6 presumably due to the enhanced metabolic stability of the sulfonamide linker moiety.
Collapse
Affiliation(s)
- Kwang Jun Lee
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | - William Tieu
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Beatriz Blanco-Rodriguez
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ashleigh S. Paparella
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxian Yu
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew Hayes
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jiage Feng
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew C. Marshall
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Benjamin Noll
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Robert Milne
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Danielle Cini
- Department of Biochemistry, School of Biomedical Science, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew C. J. Wilce
- Department of Biochemistry, School of Biomedical Science, Monash University, Clayton, Victoria 3800, Australia
| | - Grant W. Booker
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
32
|
Molecular Basis of BioJ, a Unique Gatekeeper in Bacterial Biotin Synthesis. iScience 2019; 19:796-808. [PMID: 31494495 PMCID: PMC6733898 DOI: 10.1016/j.isci.2019.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
Biotin is an indispensable cofactor in the three domains of life. The unusual virulence factor BioJ of Francisella catalyzes the formation of pimeloyl-ACP, an intermediate in biotin synthesis. Here, we report the 1.58 Å crystal structure of BioJ, the enzymatic activity of which is determined with the in vitro reconstituted reaction and biotin bioassay in vivo. Unlike the paradigm BioH, BioJ displays an atypical α/β-hydrolase fold. A structurally conserved catalytic triad (S151, D248, and H278) of BioJ is functionally defined. A proposed model for BioJ catalysis involves two basic residues-rich cavities, of which cavity-1, rather than cavity-2, binds to the ACP moiety of its physiological substrate, pimeloyl-ACP methyl ester. In summary, this finding provides molecular insights into the BioJ gatekeeper of biotin synthesis.
Collapse
|
33
|
Rodionov DA, Arzamasov AA, Khoroshkin MS, Iablokov SN, Leyn SA, Peterson SN, Novichkov PS, Osterman AL. Micronutrient Requirements and Sharing Capabilities of the Human Gut Microbiome. Front Microbiol 2019; 10:1316. [PMID: 31275260 PMCID: PMC6593275 DOI: 10.3389/fmicb.2019.01316] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023] Open
Abstract
The human gut microbiome harbors a diverse array of metabolic pathways contributing to its development and homeostasis via a complex web of diet-dependent metabolic interactions within the microbial community and host. Genomics-based reconstruction and predictive modeling of these interactions would provide a framework for diagnostics and treatment of dysbiosis-related syndromes via rational selection of therapeutic prebiotics and dietary nutrients. Of particular interest are micronutrients, such as B-group vitamins, precursors of indispensable metabolic cofactors, that are produced de novo by some gut bacteria (prototrophs) but must be provided exogenously in the diet for many other bacterial species (auxotrophs) as well as for the mammalian host. Cross-feeding of B vitamins between prototrophic and auxotrophic species is expected to strongly contribute to the homeostasis of microbial communities in the distal gut given the efficient absorption of dietary vitamins in the upper gastrointestinal tract. To confidently estimate the balance of microbiome micronutrient biosynthetic capabilities and requirements using available genomic data, we have performed a subsystems-based reconstruction of biogenesis, salvage and uptake for eight B vitamins (B1, B2, B3, B5, B6, B7, B9, and B12) and queuosine (essential factor in tRNA modification) over a reference set of 2,228 bacterial genomes representing 690 cultured species of the human gastrointestinal microbiota. This allowed us to classify the studied organisms with respect to their pathway variants and infer their prototrophic vs. auxotrophic phenotypes. In addition to canonical vitamin pathways, several conserved partial pathways were identified pointing to alternative routes of syntrophic metabolism and expanding a microbial vitamin "menu" by several pathway intermediates (vitamers) such as thiazole, quinolinate, dethiobiotin, pantoate. A cross-species comparison was applied to assess the extent of conservation of vitamin phenotypes at distinct taxonomic levels (from strains to families). The obtained reference collection combined with 16S rRNA gene-based phylogenetic profiles was used to deduce phenotype profiles of the human gut microbiota across in two large cohorts. This analysis provided the first estimate of B-vitamin requirements, production and sharing capabilities in the human gut microbiome establishing predictive phenotype profiling as a new approach to classification of microbiome samples. Future expansion of our reference genomic collection of metabolic phenotypes will allow further improvement in coverage and accuracy of predictive phenotype profiling of the human microbiome.
Collapse
Affiliation(s)
- Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr A. Arzamasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Matvei S. Khoroshkin
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Department of Physics, P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Semen A. Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Scott N. Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
34
|
Functional Replacement of the BioC and BioH Proteins of Escherichia coli Biotin Precursor Biosynthesis by Ehrlichia chaffeensis Novel Proteins. Curr Microbiol 2019; 76:626-636. [PMID: 30915508 DOI: 10.1007/s00284-019-01669-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 01/22/2023]
Abstract
The biosynthesis of the pimelate moiety of biotin in Escherichia coli requires two specialized proteins, BioC and BioH. However, the enzymes that have BioC- or BioH-like activities show remarkable sequence diversity among biotin-producing bacteria. Here, we report that the intracellular rickettsial pathogen Ehrlichia chaffeensis encodes two novel proteins, BioT and BioU, which functionally replace the E. coli BioC and BioH proteins, respectively. The desthiobiotin assays demonstrated that these two proteins make pimeloyl-acyl carrier protein (ACP) from the substrate malonyl-ACP with the aid of the FAS II pathway, through the expected pimeloyl-ACP methyl ester intermediate. BioT and BioU homologues seem restricted to the species of Ehrlichia and its close relative, Anaplasma. Taken together, the synthesis of the biotin precursor in E. chaffeensis appears to be catalyzed by two novel BioC- and BioH-like proteins.
Collapse
|
35
|
Satiaputra J, Sternicki LM, Hayes AJ, Pukala TL, Booker GW, Shearwin KE, Polyak SW. Native mass spectrometry identifies an alternative DNA-binding pathway for BirA from Staphylococcus aureus. Sci Rep 2019; 9:2767. [PMID: 30808984 PMCID: PMC6391492 DOI: 10.1038/s41598-019-39398-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
An adequate supply of biotin is vital for the survival and pathogenesis of Staphylococcus aureus. The key protein responsible for maintaining biotin homeostasis in bacteria is the biotin retention protein A (BirA, also known as biotin protein ligase). BirA is a bi-functional protein that serves both as a ligase to catalyse the biotinylation of important metabolic enzymes, as well as a transcriptional repressor that regulates biotin biosynthesis, biotin transport and fatty acid elongation. The mechanism of BirA regulated transcription has been extensively characterized in Escherichia coli, but less so in other bacteria. Biotin-induced homodimerization of E. coli BirA (EcBirA) is a necessary prerequisite for stable DNA binding and transcriptional repression. Here, we employ a combination of native mass spectrometry, in vivo gene expression assays, site-directed mutagenesis and electrophoretic mobility shift assays to elucidate the DNA binding pathway for S. aureus BirA (SaBirA). We identify a mechanism that differs from that of EcBirA, wherein SaBirA is competent to bind DNA as a monomer both in the presence and absence of biotin and/or MgATP, allowing homodimerization on the DNA. Bioinformatic analysis demonstrated the SaBirA sequence used here is highly conserved amongst other S. aureus strains, implying this DNA-binding mechanism is widely employed.
Collapse
Affiliation(s)
- Jiulia Satiaputra
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Harry Perkins Institute of Medical Research, Shenton Park, Western Australia, 6008, Australia
| | - Louise M Sternicki
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Andrew J Hayes
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Faculty of Health and Medical Sciences, Adelaide, South Australia, 5005, Australia
| | - Tara L Pukala
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Grant W Booker
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Keith E Shearwin
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Steven W Polyak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
36
|
Morrison MD, Fajardo-Cavazos P, Nicholson WL. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. NPJ Microgravity 2019; 5:1. [PMID: 30623021 PMCID: PMC6323116 DOI: 10.1038/s41526-018-0061-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
The human spaceflight environment is notable for the unique factor of microgravity, which exerts numerous physiologic effects on macroscopic organisms, but how this environment may affect single-celled microbes is less clear. In an effort to understand how the microbial transcriptome responds to the unique environment of spaceflight, the model Gram-positive bacterium Bacillus subtilis was flown on two separate missions to the International Space Station in experiments dubbed BRIC-21 and BRIC-23. Cells were grown to late-exponential/early stationary phase, frozen, then returned to Earth for RNA-seq analysis in parallel with matched ground control samples. A total of 91 genes were significantly differentially expressed in both experiments; 55 exhibiting higher transcript levels in flight samples and 36 showing higher transcript levels in ground control samples. Genes upregulated in flight samples notably included those involved in biofilm formation, biotin and arginine biosynthesis, siderophores, manganese transport, toxin production and resistance, and sporulation inhibition. Genes preferentially upregulated in ground control samples notably included those responding to oxygen limitation, e.g., fermentation, anaerobic respiration, subtilosin biosynthesis, and anaerobic regulatory genes. The results indicated differences in oxygen availability between flight and ground control samples, likely due to differences in cell sedimentation and the toroidal shape assumed by the liquid cultures in microgravity.
Collapse
Affiliation(s)
- Michael D. Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| | | | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| |
Collapse
|
37
|
Specificity and selectivity in post-translational biotin addition. Biochem Soc Trans 2018; 46:1577-1591. [PMID: 30381340 DOI: 10.1042/bst20180425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 11/17/2022]
Abstract
Biotin, which serves as a carboxyl group carrier in reactions catalyzed by biotin-dependent carboxylases, is essential for life in most organisms. To function in carboxylate transfer, the vitamin must be post-translationally linked to a specific lysine residue on the biotin carboxyl carrier (BCC) of a carboxylase in a reaction catalyzed by biotin protein ligases. Although biotin addition is highly selective for any single carboxylase substrate, observations of interspecies biotinylation suggested little discrimination among the BCCs derived from the carboxylases of a broad range of organisms. Application of single turnover kinetic techniques to measurements of post-translational biotin addition reveals previously unappreciated selectivity that may be of physiological significance.
Collapse
|
38
|
Chow J, Danso D, Ferrer M, Streit WR. The Thaumarchaeon N. gargensis carries functional bioABD genes and has a promiscuous E. coli ΔbioH-complementing esterase EstN1. Sci Rep 2018; 8:13823. [PMID: 30218044 PMCID: PMC6138646 DOI: 10.1038/s41598-018-32059-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biotin is an essential cofactor required for carboxylation and decarboxylation reactions in all domains of life. While biotin biosynthesis in most Bacteria and Eukarya is well studied, the complete pathway for this vitamer in Archaea is still not known. Detailed genome searches indicated the presence of possible bio gene clusters only in Methanococcales and Thaumarchaeota. Therefore, we analysed the functionality of the predicted genes bioA, bioB, bioD and bioF in the Thaumarchaeon Nitrososphaera gargensis Ga2.9 which are essential for the later steps of biotin synthesis. In complementation tests, the gene cluster-encoded N. gargensis bioABD genes except bioF restored growth of corresponding E. coli Rosetta-gami 2 (DE3) deletion mutants. To find out how biotin biosynthesis is initiated, we searched the genome for a possible bioH analogue encoding a pimeloyl-ACP-methylester carboxylesterase. The respective amino acid sequence of the ORF estN1 showed weak conserved domain similarity to this class of enzymes (e-value 3.70e-42). Remarkably, EstN1 is a promiscuous carboxylesterase that complements E. coli ΔbioH and Mesorhizobium loti ΔbioZ mutants for growth on biotin-free minimal medium. Additional 3D-structural models support the hypothesis that EstN1 is a BioH analogue. Thus, this is the first report providing experimental evidence that Archaea carry functional bio genes.
Collapse
Affiliation(s)
- Jennifer Chow
- Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany
| | - Dominik Danso
- Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Wolfgang R Streit
- Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany.
| |
Collapse
|
39
|
Wei W, Zhang Y, Gao R, Li J, Xu Y, Wang S, Ji Q, Feng Y. Crystal structure and acetylation of BioQ suggests a novel regulatory switch for biotin biosynthesis in Mycobacterium smegmatis. Mol Microbiol 2018; 109:642-662. [PMID: 29995988 DOI: 10.1111/mmi.14066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/24/2022]
Abstract
Biotin (vitamin B7), a sulfur-containing fatty acid derivative, is a nutritional virulence factor in certain mycobacterial species. Tight regulation of biotin biosynthesis is important because production of biotin is an energetically expensive process requiring 15-20 equivalents of ATP. The Escherichia coli bifunctional BirA is a prototypical biotin regulatory system. In contrast, mycobacterial BirA is an unusual biotin protein ligase without DNA-binding domain. Recently, we established a novel two-protein paradigm of BioQ-BirA. However, structural and molecular mechanism for BioQ is poorly understood. Here, we report crystal structure of the M. smegmatis BioQ at 1.9 Å resolution. Structure-guided functional mapping defined a seven residues-requiring motif for DNA-binding activity. Western blot and MALDI-TOF MS allowed us to unexpectedly discover that the K47 acetylation activates crosstalking of BioQ to its cognate DNA. More intriguingly, excess of biotin augments the acetylation status of BioQ in M. smegmatis. It seems likely that BioQ acetylation proceeds via a non-enzymatic mechanism. Mutation of this acetylation site K47 in BioQ significantly impairs its regulatory role in vivo. This explains in part (if not all) why BioQ has no detectable requirement of the presumable bio-5'-AMP effecter, which is a well-known ligand for the paradigm E. coli BirA regulator system. Unlike the scenario seen with E. coli carrying a single biotinylated protein, AccB, genome-wide search and Streptavidin blot revealed that no less than seven proteins require the rare post-translational modification, biotinylation in M. smegmatis, validating its physiological demand for biotin at relatively high level. Taken together, our finding defines a novel biotin regulatory machinery by BioQ, posing a possibility that development of new antibiotics targets biotin, the limited nutritional virulence factor in certain pathogenic mycobacterial species.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yifei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rongsui Gao
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yongchang Xu
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Shihua Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, School of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
40
|
Yang B, Jiang L, Wang S, Wang L. Global transcriptional regulation by BirA in enterohemorrhagic Escherichia coli O157:H7. Future Microbiol 2018; 13:757-769. [PMID: 29848069 DOI: 10.2217/fmb-2017-0256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM Determination of the effects of BirA on transcription and virulence in enterohemorrhagic Escherichia coli (EHEC) O157:H7. MATERIALS & METHODS The effect of BirA on EHEC O157:H7 gene expression and phenotypes was assessed by RNA-seq combined with adherence, quantitative biofilm and survival assays. RESULTS Many genes associated with virulence, amino acid synthesis and transport, and zinc transport were upregulated, whereas genes encoding stress proteins were downregulated in ΔbirA::km+Ac_birA. Accordingly, ΔbirA::km+Ac_birA adhesion to Caco-2 cells, biofilm formation and survival during oxidative stress were higher, whereas its survival during heat shock was lower than that of the wild-type. CONCLUSION This study demonstrates the wide-ranging regulatory functions of BirA, especially its role in controlling virulence and stress responses in EHEC O157:H7. [Formula: see text].
Collapse
Affiliation(s)
- Bin Yang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Shaomeng Wang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China
| | - Lei Wang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
41
|
Yan L, Tang Q, Guan Z, Pei K, Zou T, He J. Structural insights into operator recognition by BioQ in the Mycobacterium smegmatis biotin synthesis pathway. Biochim Biophys Acta Gen Subj 2018; 1862:1843-1851. [PMID: 29852200 DOI: 10.1016/j.bbagen.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/18/2018] [Accepted: 05/19/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Biotin is an essential cofactor in living organisms. The TetR family transcriptional regulator (TFTR) BioQ is the main regulator of biotin synthesis in Mycobacterium smegmatis. BioQ represses the expression of its target genes by binding to a conserved palindromic DNA sequence (the BioQ operator). However, the mechanism by which BioQ recognizes this DNA element has not yet been fully elucidated. METHODS/RESULTS We solved the crystal structures of the BioQ homodimer in its apo-form and in complex with its specific operator at 2.26 Å and 2.69 Å resolution, respectively. BioQ inserts the N-terminal recognition helix of each protomer into the corresponding major grooves of its operator and stabilizes the formation of the complex via electrostatic interactions and hydrogen bonding to induce conformational changes in both the DNA and BioQ. The DNA interface of BioQ is rich in positively charged residues, which help BioQ stabilize DNA binding. We elucidated the structural basis of DNA recognition by BioQ for the first time and identified the amino acid residues responsible for DNA binding via further site-directed mutagenesis. GENERAL SIGNIFICANCE Our findings clearly elucidate the mechanism by which BioQ recognizes its operator in the biotin synthesis pathway and reveal the unique structural characteristics of BioQ that are distinct from other TFTR members.
Collapse
Affiliation(s)
- Ling Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zeyuan Guan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kai Pei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tingting Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
42
|
Biotin-mediated growth and gene expression in Staphylococcus aureus is highly responsive to environmental biotin. Appl Microbiol Biotechnol 2018; 102:3793-3803. [PMID: 29508030 DOI: 10.1007/s00253-018-8866-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
Biotin (Vitamin B7) is a critical enzyme co-factor in metabolic pathways important for bacterial survival. Biotin is obtained either from the environment or by de novo synthesis, with some bacteria capable of both. In certain species, the bifunctional protein BirA plays a key role in biotin homeostasis as it regulates expression of biotin biosynthetic enzymes in response to biotin demand and supply. Here, we compare the effect of biotin on the growth of two bacteria that possess a bifunctional BirA, namely Escherichia coli and Staphylococcus aureus. Unlike E. coli that could fulfill its biotin requirements through de novo synthesis, S. aureus showed improved growth rates in media supplemented with 10 nM biotin. S. aureus also accumulated more radiolabeled biotin from the media highlighting its ability to efficiently scavenge exogenous material. These data are consistent with S. aureus colonizing low biotin microhabitats. We also demonstrate that the S. aureus BirA protein is a transcriptional repressor of BioY, a subunit of the biotin transporter, and an operon containing yhfT and yhfS, the products of which have a putative role in fatty acid homeostasis. Increased expression of bioY is proposed to help cue S. aureus for efficient scavenging in low biotin environments.
Collapse
|
43
|
Blötz C, Stülke J. Glycerol metabolism and its implication in virulence in Mycoplasma. FEMS Microbiol Rev 2017; 41:640-652. [PMID: 28961963 DOI: 10.1093/femsre/fux033] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Glycerol and glycerol-containing compounds such as lipids belong to the most abundant organic compounds that may serve as nutrient for many bacteria. For the cell wall-less bacteria of the genus Mycoplasma, glycerol derived from phospholipids of their human or animal hosts is the major source of carbon and energy. The lipids are first degraded by lipases, and the resulting glycerophosphodiesters are transported into the cell and cleaved to release glycerol-3-phosphate. Alternatively, free glycerol can be transported, and then become phosphorylated. The oxidation of glycerol-3-phosphate in Mycoplasma spp. as well as in related firmicutes involves a hydrogen peroxide-generating glycerol-3-phosphate oxidase. This enzyme is a key player in the virulence of Mycoplasma spp. as the produced hydrogen peroxide is one of the major virulence factors of these bacteria. In this review, the different components involved in the utilization of lipids and glycerol in Mycoplasma pneumoniae and related bacteria are discussed.
Collapse
Affiliation(s)
- Cedric Blötz
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
44
|
Rodionova IA, Vetting MW, Li X, Almo SC, Osterman AL, Rodionov DA. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea. Nucleic Acids Res 2017; 45:3785-3799. [PMID: 28073944 PMCID: PMC5397151 DOI: 10.1093/nar/gkw1331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro. The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.
Collapse
Affiliation(s)
- Irina A Rodionova
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoqing Li
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei L Osterman
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
| |
Collapse
|
45
|
Wang J, Custer G, Beckett D, Matysiak S. Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery. Biochemistry 2017; 56:4478-4488. [PMID: 28718281 DOI: 10.1021/acs.biochem.7b00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.
Collapse
Affiliation(s)
- Jingheng Wang
- Fischell Department of Bioengineering and ‡Department of Chemistry & Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Gregory Custer
- Fischell Department of Bioengineering and ‡Department of Chemistry & Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Dorothy Beckett
- Fischell Department of Bioengineering and ‡Department of Chemistry & Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Fischell Department of Bioengineering and ‡Department of Chemistry & Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
46
|
Kar R, Nangpal P, Mathur S, Singh S, Tyagi AK. bioA mutant of Mycobacterium tuberculosis shows severe growth defect and imparts protection against tuberculosis in guinea pigs. PLoS One 2017; 12:e0179513. [PMID: 28658275 PMCID: PMC5489182 DOI: 10.1371/journal.pone.0179513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023] Open
Abstract
Owing to the devastation caused by tuberculosis along with the unsatisfactory performance of the Bacillus Calmette–Guérin (BCG) vaccine, a more efficient vaccine than BCG is required for the global control of tuberculosis. A number of studies have demonstrated an essential role of biotin biosynthesis in the growth and survival of several microorganisms, including mycobacteria, through deletion of the genes involved in de novo biotin biosynthesis. In this study, we demonstrate that a bioA mutant of Mycobacterium tuberculosis (MtbΔbioA) is highly attenuated in the guinea pig model of tuberculosis when administered aerogenically as well as intradermally. Immunization with MtbΔbioA conferred significant protection in guinea pigs against an aerosol challenge with virulent M. tuberculosis, when compared with the unvaccinated animals. Booster immunization with MtbΔbioA offered no advantage over a single immunization. These experiments demonstrate the vaccinogenic potential of the attenuated M. tuberculosis bioA mutant against tuberculosis.
Collapse
Affiliation(s)
- Ritika Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Prachi Nangpal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Shubhita Mathur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Swati Singh
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- Vice Chancellor, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
- * E-mail:
| |
Collapse
|
47
|
Expression and Activity of the BioH Esterase of Biotin Synthesis is Independent of Genome Context. Sci Rep 2017; 7:2141. [PMID: 28526858 PMCID: PMC5438404 DOI: 10.1038/s41598-017-01490-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023] Open
Abstract
BioH is an α/β-hydrolase required for synthesis of the pimelate moiety of biotin in diverse bacteria. The bioH gene is found in different genomic contexts. In some cases (e.g., Escherichia coli) the gene is not located within a biotin synthetic operon and its transcription is not coregulated with the other biotin synthesis genes. In other genomes such as Pseudomonas aeruginosa the bioH gene is within a biotin synthesis operon and its transcription is coregulated with the other biotin operon genes. The esterases of pimelate moiety synthesis show remarkable genomic plasticity in that in some biotin operons bioH is replaced by other α/ß hydrolases of diverse sequence. The “wild card” nature of these enzymes led us to compare the paradigm “freestanding” E. coli BioH with the operon-encoded P. aeruginosa BioH. We hypothesized that the operon-encoded BioH might differ in its expression level and/or activity from the freestanding BioH gene. We report this is not the case. The two BioH proteins show remarkably similar hydrolase activities and substrate specificity. Moreover, Pseudomonas aeruginosa BioH is more highly expressed than E. coli BioH. Despite the enzymatic similarities of the two BioH proteins, bioinformatics analysis places the freestanding and operon-encoded BioH proteins into distinct clades.
Collapse
|
48
|
Wang J, Beckett D. A conserved regulatory mechanism in bifunctional biotin protein ligases. Protein Sci 2017; 26:1564-1573. [PMID: 28466579 DOI: 10.1002/pro.3182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/10/2022]
Abstract
Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
49
|
Manandhar M, Cronan JE. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis. Mol Microbiol 2017; 104:595-607. [PMID: 28196402 PMCID: PMC5426962 DOI: 10.1111/mmi.13648] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis.
Collapse
Affiliation(s)
- Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
50
|
Bond TEH, Sorenson AE, Schaeffer PM. Functional characterisation of Burkholderia pseudomallei biotin protein ligase: A toolkit for anti-melioidosis drug development. Microbiol Res 2017; 199:40-48. [PMID: 28454708 DOI: 10.1016/j.micres.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 01/17/2023]
Abstract
Burkholderia pseudomallei (Bp) is the causative agent of melioidosis. The bacterium is responsible for 20% of community-acquired sepsis cases and 40% of sepsis-related mortalities in northeast Thailand, and is intrinsically resistant to aminoglycosides, macrolides, rifamycins, cephalosporins, and nonureidopenicillins. There is no vaccine and its diagnosis is problematic. Biotin protein ligase (BirA) which is essential for fatty acid synthesis has been proposed as a drug target in bacteria. Very few bacterial BirA have been characterized, and a better understanding of these enzymes is necessary to further assess their value as drug targets. BirA within the Burkholderia genus have not yet been investigated. We present for the first time the cloning, expression, purification and functional characterisation of the putative Bp BirA and orthologous B. thailandensis (Bt) biotin carboxyl carrier protein (BCCP) substrate. A GFP-tagged Bp BirA was produced and applied for the development of a high-throughput (HT) assay based on our differential scanning fluorimetry of GFP-tagged proteins (DSF-GTP) principle as well as an electrophoretic mobility shift assay. Our biochemical data in combination with the new HT DSF-GTP and biotinylation activity assay could facilitate future drug screening efforts against this drug-resistant organism.
Collapse
Affiliation(s)
- Thomas E H Bond
- Comparative Genomics Centre, James Cook University, DB21, James Cook Drive, Townsville, QLD 4811, Australia
| | - Alanna E Sorenson
- Comparative Genomics Centre, James Cook University, DB21, James Cook Drive, Townsville, QLD 4811, Australia
| | - Patrick M Schaeffer
- Comparative Genomics Centre, James Cook University, DB21, James Cook Drive, Townsville, QLD 4811, Australia.
| |
Collapse
|