1
|
Zhao K, Li X, Liu D, Wang L, Pei Q, Han B, Zhang Z, Tian D, Wang S, Zhao J, Huang B, Zhang F. Genetic Variations of MSTN and Callipyge in Tibetan Sheep: Implications for Early Growth Traits. Genes (Basel) 2024; 15:921. [PMID: 39062700 PMCID: PMC11276372 DOI: 10.3390/genes15070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tibetan sheep are vital to the ecosystem and livelihood of the Tibetan Plateau; however, traditional breeding methods limit their production and growth. Modern molecular breeding techniques are required to improve these traits. This study identified a single nucleotide polymorphism (SNP) in myostatin (MSTN) and Callipyge in Tibetan sheep. The findings indicated notable associations between MSTN genotypes and growth traits including birth weight (BW), body length (BL), chest width (ChW), and chest circumference (ChC), as well as a particularly strong association with cannon circumference (CaC) at 2 months of age. Conversely, Callipyge polymorphisms did not have a significant impact on Tibetan sheep. Moreover, the analyses revealed a significant association between sex and BW or hip width (HW) at 2 months of age and ChW, ChC, and CaC at 4 months of age. Furthermore, the study's results suggested that the genotype of MSTN as a GA was associated with a notable sex effect on BW, while the genotype of Callipyge (CC) showed a significant impact of sex on CaC at 2 months of age. These results indicated that the SNP of MSTN could potentially serve as a molecular marker for early growth traits in Tibetan sheep.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
| | - Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Bin Huang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Fuqiang Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| |
Collapse
|
2
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
3
|
Yuan C, Tang L, Lopdell T, Petrov VA, Oget-Ebrad C, Moreira GCM, Gualdrón Duarte JL, Sartelet A, Cheng Z, Salavati M, Wathes DC, Crowe MA, Coppieters W, Littlejohn M, Charlier C, Druet T, Georges M, Takeda H. An organism-wide ATAC-seq peak catalog for the bovine and its use to identify regulatory variants. Genome Res 2023; 33:1848-1864. [PMID: 37751945 PMCID: PMC10691486 DOI: 10.1101/gr.277947.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
We report the generation of an organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by the assay for transposase accessible chromatin using sequencing (ATAC-seq). We regroup these regulatory elements in 16 components by nonnegative matrix factorization. Correlation between the genome-wide density of peaks and transcription start sites, correlation between peak accessibility and expression of neighboring genes, and enrichment in transcription factor binding motifs support their regulatory potential. Using a previously established catalog of 12,736,643 variants, we show that the proportion of single-nucleotide polymorphisms mapping to ATAC-seq peaks is higher than expected and that this is owing to an approximately 1.3-fold higher mutation rate within peaks. Their site frequency spectrum indicates that variants in ATAC-seq peaks are subject to purifying selection. We generate eQTL data sets for liver and blood and show that variants that drive eQTL fall into liver- and blood-specific ATAC-seq peaks more often than expected by chance. We combine ATAC-seq and eQTL data to estimate that the proportion of regulatory variants mapping to ATAC-seq peaks is approximately one in three and that the proportion of variants mapping to ATAC-seq peaks that are regulatory is approximately one in 25. We discuss the implication of these findings on the utility of ATAC-seq information to improve the accuracy of genomic selection.
Collapse
Affiliation(s)
- Can Yuan
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Lijing Tang
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Thomas Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - Vyacheslav A Petrov
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Claire Oget-Ebrad
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | | | - José Luis Gualdrón Duarte
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Arnaud Sartelet
- Clinical Department of Ruminant, University of Liège, 4000 Liège, Belgium
| | - Zhangrui Cheng
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom
| | - Mazdak Salavati
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom
| | - D Claire Wathes
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom
| | - Mark A Crowe
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Wouter Coppieters
- GIGA Genomics platform, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Mathew Littlejohn
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
4
|
Shiura H, Kitazawa M, Ishino F, Kaneko-Ishino T. Roles of retrovirus-derived PEG10 and PEG11/RTL1 in mammalian development and evolution and their involvement in human disease. Front Cell Dev Biol 2023; 11:1273638. [PMID: 37842090 PMCID: PMC10570562 DOI: 10.3389/fcell.2023.1273638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
PEG10 and PEG11/RTL1 are paternally expressed, imprinted genes that play essential roles in the current eutherian developmental system and are therefore associated with developmental abnormalities caused by aberrant genomic imprinting. They are also presumed to be retrovirus-derived genes with homology to the sushi-ichi retrotransposon GAG and POL, further expanding our comprehension of mammalian evolution via the domestication (exaptation) of retrovirus-derived acquired genes. In this manuscript, we review the importance of PEG10 and PEG11/RTL1 in genomic imprinting research via their functional roles in development and human disease, including neurodevelopmental disorders of genomic imprinting, Angelman, Kagami-Ogata and Temple syndromes, and the impact of newly inserted DNA on the emergence of newly imprinted regions. We also discuss their possible roles as ancestors of other retrovirus-derived RTL/SIRH genes that likewise play important roles in the current mammalian developmental system, such as in the placenta, brain and innate immune system.
Collapse
Affiliation(s)
- Hirosuke Shiura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Fumitoshi Ishino
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| |
Collapse
|
5
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
6
|
MEENA AS, KUMARI R, JYOTSANA B, KUMAR R, PRINCE LLL, KUMAR V, KUMAR S. Absence of overdominace phenotype of Callipyge gene in Indian sheep. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v88i4.78900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Wang J, Wang G, Gong Y, Qiao X, Li X, Wang G, Zheng Y, Lv J, Li X, Liu Z. Screening of three-way crossbred combination and genetic effect analysis of the SNP in the CLPG gene in meat sheep. Arch Anim Breed 2022; 65:417-426. [PMID: 36756164 PMCID: PMC9901518 DOI: 10.5194/aab-65-417-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
In order to promote the rapid development of the meat sheep industry, a three-way crossbred combination experiment was carried out with Australian White, Dorper, and Charollais sheep as terminal male parents and the elite F1 hybrids of Australian White × Small-tailed Han (Han), Dorper × Han, and Charollais × Han as female parents, which was based on the screening of a two-way crossbred combination in meat sheep. The growth performance of six groups of three-way crossbred combinations and Han lambs was measured and analyzed, and the effect of a polymorphism in the CLPG gene on the growth performance of three-way crossbred lambs was also studied. The results showed that under the same rearing conditions, weight at 3 and 6 months of age and average daily gain from birth to 3 months and from 3 to 6 months of age were all the largest for Australian × (Charollais × Han) crossbred lambs. They were significantly or extremely significant different from the other three-way crossbred combinations and Han lambs ( P < 0.05 , P < 0.01 ). The body height, body length, chest girth, and cannon bone circumference at 3 months of age and body length, chest girth, and cannon bone circumference at 6 months of age were also the largest for Australian × (Charollais × Han) crossbred lambs. Among them, body length, chest girth, and cannon bone circumference at 3 months of age were significantly different from the other three-way crossbred combinations and Han lambs ( P < 0.05 ), and body length, chest girth, and cannon bone circumference at 6 months of age were significantly or extremely significant different from the other three-way crossbred combinations and Han lambs ( P < 0.05 , P < 0.01 ). The potential genetic effects of the CLPG gene on the growth performance indicators of three-way crossbred lambs showed that a mutation site ( g .232 C > T ) of this gene had two genotypes: CC and CT. Among them, the data of body weights and body sizes from CT genotype individuals at birth, 3 months old, and 6 months old were significantly higher than those of CC genotype individuals, and some indicators showed significant or extremely significant differences ( P < 0.05 , P < 0.01 ), suggesting that higher growth performance was observed in individuals with T alleles. To sum up, the crossbred combination of Australian × (Charollais × Han) could be suggested as the optimal choice. The T allele of the CLPG gene showed potential advantages in the performance of meat production in meat sheep. Based on the current results, we recommend that the offspring of Australian × (Charollais × Han) with the T allele should be preferentially utilized for meat sheep production.
Collapse
Affiliation(s)
- Jian Tao Wang
- Breeding Livestock and Poultry Management Department, Tangshan Animal Husbandry Technology Promotion Station, Tangshan 063000, China
| | - Guo Sen Wang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources
Exploration and Innovation, College of Animal Science and Technology, Hebei
Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Yuan Fang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources
Exploration and Innovation, College of Animal Science and Technology, Hebei
Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Xian Qiao
- Hebei Key Laboratory of Specialty Animal Germplasm Resources
Exploration and Innovation, College of Animal Science and Technology, Hebei
Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Xiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources
Exploration and Innovation, College of Animal Science and Technology, Hebei
Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Gui Zhu Wang
- Breeding Livestock and Poultry Management Department, Tangshan Animal Husbandry Technology Promotion Station, Tangshan 063000, China
| | - Ying Zhen Zheng
- Tianjin DBN Sci-tech Group, Chang Nong Aquatic Science and Technology Co. Ltd,
Tianjin 301804, China
| | - Jian Guo Lv
- Breeding Livestock and Poultry Management Department, Tangshan Animal Husbandry Technology Promotion Station, Tangshan 063000, China
| | - Xiang Long Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources
Exploration and Innovation, College of Animal Science and Technology, Hebei
Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Zheng Zhu Liu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources
Exploration and Innovation, College of Animal Science and Technology, Hebei
Normal University of Science & Technology, Qinhuangdao 066004, China
| |
Collapse
|
8
|
Talebi R, Ghaffari MR, Zeinalabedini M, Abdoli R, Mardi M. Genetic basis of muscle‐related traits in sheep: A review. Anim Genet 2022; 53:723-739. [DOI: 10.1111/age.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Reza Talebi
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO) Karaj Iran
- Department of Animal Sciences, Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO) Karaj Iran
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO) Karaj Iran
| | - Ramin Abdoli
- Iran Silk Research Center Agricultural Research, Education and Extension Organization (AREEO) Gilan Iran
| | - Mohsen Mardi
- Seed and Plant Certification and Registration Institute of Iran Agricultural Research, Education and Extension Organization (AREEO) Karaj Iran
| |
Collapse
|
9
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
10
|
Hubert JN, Demars J. Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches. Front Genet 2022; 13:838534. [PMID: 35368671 PMCID: PMC8965095 DOI: 10.3389/fgene.2022.838534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.
Collapse
|
11
|
Derks MFL, Steensma M. Review: Balancing Selection for Deleterious Alleles in Livestock. Front Genet 2021; 12:761728. [PMID: 34925454 PMCID: PMC8678120 DOI: 10.3389/fgene.2021.761728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Harmful alleles can be under balancing selection due to an interplay of artificial selection for the variant in heterozygotes and purifying selection against the variant in homozygotes. These pleiotropic variants can remain at moderate to high frequency expressing an advantage for favorable traits in heterozygotes, while harmful in homozygotes. The impact on the population and selection strength depends on the consequence of the variant both in heterozygotes and homozygotes. The deleterious phenotype expressed in homozygotes can range from early lethality to a slightly lower fitness in the population. In this review, we explore a range of causative variants under balancing selection including loss-of-function variation (i.e., frameshift, stop-gained variants) and regulatory variation (affecting gene expression). We report that harmful alleles often affect orthologous genes in different species, often influencing analogous traits. The recent discoveries are mainly driven by the increasing genomic and phenotypic resources in livestock populations. However, the low frequency and sometimes subtle effects in homozygotes prevent accurate mapping of such pleiotropic variants, which requires novel strategies to discover. After discovery, the selection strategy for deleterious variants under balancing selection is under debate, as variants can contribute to the heterosis effect in crossbred animals in various livestock species, compensating for the loss in purebred animals. Nevertheless, gene-assisted selection is a useful tool to decrease the frequency of the harmful allele in the population, if desired. Together, this review marks various deleterious variants under balancing selection and describing the functional consequences at the molecular, phenotypic, and population level, providing a resource for further study.
Collapse
Affiliation(s)
- Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands.,Topigs Norsvin Research Center, Beuningen, Netherlands
| | - Marije Steensma
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
12
|
Kalds P, Luo Q, Sun K, Zhou S, Chen Y, Wang X. Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Anim Genet 2021; 52:799-812. [PMID: 34472112 DOI: 10.1111/age.13133] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Different sheep breeds have evolved after initial domestication, generating various tail phenotypic patterns. The phenotypic diversity of sheep tail patterns offers ideal materials for comparative analysis of its genetic basis. Evolutionary biologists, animal geneticists, breeders, and producers have been curious to clearly understand the underlying genetics behind phenotypic differences in sheep tails. Understanding the causal gene(s) and mutation(s) underlying these differences will help probe an evolutionary riddle, improve animal production performance, promote animal welfare, and provide lessons that help comprehend human diseases related to fat deposition (i.e., obesity). Historically, fat tails have served as an adaptive response to aridification and climate change. However, the fat tail is currently associated with compromised mating and animal locomotion, fat distribution in the animal body, increased raising costs, reduced consumer preference, and other animal welfare issues such as tail docking. The developing genomic approaches provide unprecedented opportunities to determine causal variants underlying phenotypic differences among populations. In the last decade, researchers have performed several genomic investigations to assess the genomic causality underlying phenotypic variations in sheep tails. Various genes have been suggested with the prominence of several potentially significant causatives, including the BMP2 and PDGFD genes associated with the fat tail phenotype and the TBXT gene linked with the caudal vertebrae number and tail length. Although the potential genes related to sheep tail characteristics have been revealed, the causal variant(s) and mutation(s) of these high-ranking candidate genes are still elusive and need further investigation. The review discusses the potential genes, sheds light on a knowledge gap, and provides possible investigative approaches that could help determine the specific genomic causatives of sheep tail patterns. Besides, characterizing and revealing the genetic determinism of sheep tails will help solve issues compromising sheep breeding and welfare in the future.
Collapse
Affiliation(s)
- P Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Q Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - K Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - S Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Y Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - X Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Thorne JW, Murdoch BM, Freking BA, Redden RR, Murphy TW, Taylor JB, Blackburn HD. Evolution of the sheep industry and genetic research in the United States: opportunities for convergence in the twenty-first century. Anim Genet 2021; 52:395-408. [PMID: 33955573 PMCID: PMC8360125 DOI: 10.1111/age.13067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/14/2022]
Abstract
The continuous development and application of technology for genetic improvement is a key element for advancing sheep production in the United States. The US sheep industry has contracted over time but appears to be at a juncture where a greater utilization of technology can facilitate industry expansion to new markets and address inefficiencies in traditional production practices. Significant transformations include the increased value of lamb in relation to wool, and a downtrend in large-scale operations but a simultaneous rise in small flocks. Additionally, popularity of hair breeds not requiring shearing has surged, particularly in semi-arid and subtropical US environments. A variety of domestically developed composite breeds and newly established technological approaches are now widely available for the sheep industry to use as it navigates these ongoing transformations. These genetic resources can also address long-targeted areas of improvement such as growth, reproduction and parasite resistance. Moderate progress in production efficiency has been achieved by producers who have employed estimated breeding values, but widespread adoption of this technology has been limited. Genomic marker panels have recently shown promise for reducing disease susceptibility, identifying parentage and providing a foundation for marker-assisted selection. As the ovine genome is further explored and genomic assemblies are improved, the sheep research community in the USA can capitalize on new-found information to develop and apply genetic technologies to improve the production efficiency and profitability of the sheep industry.
Collapse
Affiliation(s)
- J. W. Thorne
- Texas A&M AgriLife ExtensionTexas A&M UniversitySan AngeloTX76901USA
- Department of Animal, Veterinary and Food ScienceUniversity of IdahoMoscowID83844USA
| | - B. M. Murdoch
- Department of Animal, Veterinary and Food ScienceUniversity of IdahoMoscowID83844USA
| | - B. A. Freking
- United States Meat Animal Research CenterUnited States Department of Agriculture, Agricultural Research ServiceClay CenterNE68933‐0166USA
| | - R. R. Redden
- Texas A&M AgriLife ExtensionTexas A&M UniversitySan AngeloTX76901USA
| | - T. W. Murphy
- United States Meat Animal Research CenterUnited States Department of Agriculture, Agricultural Research ServiceClay CenterNE68933‐0166USA
| | - J. B. Taylor
- United States Sheep Experiment StationUnited States Department of Agriculture, Agricultural Research ServiceDuboisID83423USA
| | - H. D. Blackburn
- National Animal Germplasm ProgramUnited States Department of Agriculture, Agricultural Research ServiceFort CollinsCO80521USA
| |
Collapse
|
14
|
British Sheep Breeds as a Part of World Sheep Gene Pool Landscape: Looking into Genomic Applications. Animals (Basel) 2021; 11:ani11040994. [PMID: 33916207 PMCID: PMC8103502 DOI: 10.3390/ani11040994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
Sheep farming has been an important sector of the UK's economy and rural life for many centuries. It is the favored source of wool, meat and milk products. In the era of exponential progress in genomic technologies, we can now address the questions of what is special about UK sheep breed genotypes and how they differ genetically form one another and from other countries. We can reflect how their natural history has been determined at the level of their genetic code and what traces have been left in their genomes because of selection for phenotypic traits. These include adaptability to certain environmental conditions and management, as well as resistance to disease. Application of these advancements in genetics and genomics to study sheep breeds of British domestic selection has begun and will continue in order to facilitate conservation solutions and production improvement.
Collapse
|
15
|
Ma D, Yu Q, Hedrick VE, Cooper BR, Paschoal Sobreira TJ, Oh JH, Chun H, Kim YHB. Proteomic and metabolomic profiling reveals the involvement of apoptosis in meat quality characteristics of ovine M. longissimus from different callipyge genotypes. Meat Sci 2020; 166:108140. [DOI: 10.1016/j.meatsci.2020.108140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022]
|
16
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Genetics of Omega-3 Long-Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs. Genes (Basel) 2020; 11:E587. [PMID: 32466330 PMCID: PMC7288343 DOI: 10.3390/genes11050587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
Meat eating quality with a healthy composition hinges on intramuscular fat (IMF), fat melting point (FMP), tenderness, juiciness, flavour and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) content. These health-beneficial n-3 LC-PUFA play significant roles in optimal cardiovascular, retinal, maternal and childhood brain functions, and include alpha linolenic (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and docosapentaenoic (DPA) acids. The primary objective of this review was to access, retrieve, synthesise and critically appraise the published literature on the synthesis, metabolism and genetics of n-3 LC-PUFA and meat eating quality. Studies on IMF content, FMP and fatty acid composition were reviewed to identify knowledge gaps that can inform future research with Tattykeel Australian White (TAW) lambs. The TAW is a new sheep breed exclusive to MARGRA brand of lamb with an outstanding low fat melting point (28-39°C), high n-3 LC-PUFA EPA+DHA content (33-69mg/100g), marbling (3.4-8.2%), tenderness (20.0-38.5N) and overall consumer liking (7.9-8.5). However, correlations between n-3 LC-PUFA profile, stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), other lipogenic genes and meat quality traits present major knowledge gaps. The review also identified research opportunities in nutrition-genetics interactions aimed at a greater understanding of the genetics of n-3 LC-PUFA, feedlot finishing performance, carcass traits and eating quality in the TAW sheep. It was concluded that studies on IMF, FMP and n-3 LC-PUFA profiles in parental and progeny generations of TAW sheep will be foundational for the genetic selection of healthy lamb eating qualities and provide useful insights into their correlations with SCD, FASN and FABP4 genes.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01, Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, New South Wales 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| |
Collapse
|
17
|
Gorlov IF, Shirokova NV, Kolosov YA, Kolosov AY, Getmantseva LV, Slozhenkina MI, Mosolova NI, Anisimova EY, Ponomariov VV. Polymorphism of CLPG gene in three sheep breeds grown in the steppe zone of the Russian Federation. J Adv Vet Anim Res 2020; 7:51-55. [PMID: 32219109 PMCID: PMC7096118 DOI: 10.5455/javar.2020.g392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022] Open
Abstract
Objective: This study aims to investigate the callipyge gene (CLPG) polymorphism in sheep of Edilbay, Volgograd, and Kalmyk breeds. Materials and Methods: The analysis was performed by the polymerase chain reaction–restriction fragment length polymorphisms method. The objects of the study were Edilbay fat-tailed sheep (n = 500) at the breeding plant Volgograd-Edilbay (Volgograd region), Volgograd fine-wool sheep (n = 500) at the breeding plant Romashkovskiy (Volgograd region), and Kalmyk fat-tailed sheep (n = 500) at the breeding plant Kirovsky (the Republic of Kalmykia, Yashkul rayon). To conduct the research, tissue samples of 1 cm² from sheep of Kalmyk and Edilbay breeds were taken from the auricle. Results: The allelic CLPG gene variants have been determined and genotypes of representative sampling of the three breeds of livestock grown in the steppe zone of Russia. The presented results of the CLPG gene polymorphism in these sheep breeds grown in Russia were obtained for the first time. The research study has revealed that in terms of the CLPG gene, the Edilbay, Volgograd, and Kalmyk sheep breeds have only a homozygous form. Conclusion: The results obtained expand the current understanding of the molecular markers that characterize the meat qualities of sheep.
Collapse
Affiliation(s)
- Ivan Fiodorovich Gorlov
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, Volgograd 400131, Russian Federation.,Volgograd State Technical University, Volgograd 400005, Russian Federation
| | - Nadezhda Vasilievna Shirokova
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, Volgograd 400131, Russian Federation
| | | | | | | | - Marina Ivanovna Slozhenkina
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, Volgograd 400131, Russian Federation.,Volgograd State Technical University, Volgograd 400005, Russian Federation
| | - Natalia Ivanovna Mosolova
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, Volgograd 400131, Russian Federation.,Volgograd State Technical University, Volgograd 400005, Russian Federation
| | - Elena Yurievna Anisimova
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, Volgograd 400131, Russian Federation.,Volgograd State University, Volgograd 400062, Russian Federation
| | - Viktor Vladimirovich Ponomariov
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, Volgograd 400131, Russian Federation
| |
Collapse
|
18
|
David I, Canario L, Combes S, Demars J. Intergenerational Transmission of Characters Through Genetics, Epigenetics, Microbiota, and Learning in Livestock. Front Genet 2019; 10:1058. [PMID: 31737041 PMCID: PMC6834772 DOI: 10.3389/fgene.2019.01058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Evolutionary biologists studying wild species have demonstrated that genetic and non-genetic sources of information are inherited across generations and are therefore responsible for phenotypic resemblance between relatives. Although it has been postulated that non-genetic sources of inheritance are important in natural selection, they are not taken into account for livestock selection that is based on genetic inheritance only. According to the natural selection theory, the contribution of non-genetic inheritance may be significant for the transmission of characters. If this theory is confirmed in livestock, not considering non-genetic means of transmission in selection schemes might prevent achieving maximum progress in the livestock populations being selected. The present discussion paper reviews the different mechanisms of genetic and non-genetic inheritance reported in the literature as occurring in livestock species. Non-genetic sources of inheritance comprise information transmitted via physical means, such as epigenetic and microbiota inheritance, and those transmitted via learning mechanisms: behavioral, cultural and ecological inheritance. In the first part of this paper we review the evidence that suggests that both genetic and non-genetic information contribute to inheritance in livestock (i.e. transmitted from one generation to the next and causing phenotypic differences between individuals) and discuss how the environment may influence non-genetic inherited factors. Then, in a second step, we consider methods for favoring the transmission of non-genetic inherited factors by estimating and selecting animals on their extended transmissible value and/or introducing favorable non-genetic factors via the animals’ environment.
Collapse
Affiliation(s)
- Ingrid David
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| |
Collapse
|
19
|
Park H, Seo KS, Lee M, Seo S. Identification of meat quality-related differentially methylated regions in the DNA of the longissimus dorsi muscle in pig. Anim Biotechnol 2019; 31:189-194. [PMID: 31060422 DOI: 10.1080/10495398.2019.1604378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objective of this study was to investigate the association of DNA methylation with postmortem energy metabolism and the pH of the porcine longissimus dorsi muscle (LDM). Analysis of the DNA methylome of eight LDM samples (four pairs of the highest and lowest pH among littermates) identified a total of 3468 differentially methylated regions (DMRs) between high and low pH samples (p ≤ 0.001). Of DMRs, 45.3% co-mapped with quantitative trait loci known to be associated with meat pH and postmortem metabolism. Among the DMRs, 203 hyper-methylated regions (HR) and 190 hypo-methylated regions (HO) were identified for the high pH group compared to the low pH. Furthermore, 44 and 21 protein-coding genes contained HR and HO in their gene body, respectively. It was revealed that ENO1, GYS2, SDHC and DERA, which encode core enzymes in postmortem energy metabolism, contained HR or HO in their gene body.
Collapse
Affiliation(s)
- Hyesun Park
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Kang-Seok Seo
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Suncheon National University, Suncheon, Republic of Korea
| | - Mingyung Lee
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Seongwon Seo
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
20
|
Wan Y, Guo R, Deng M, Liu Z, Pang J, Zhang G, Wang Z, Wang F. Efficient generation of CLPG1-edited rabbits using the CRISPR/Cas9 system. Reprod Domest Anim 2018; 54:538-544. [PMID: 30570178 DOI: 10.1111/rda.13394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023]
Abstract
The sheep callipyge (CLPG) phenotype, a well-known muscular hypertrophy syndrome, is caused by an A-to-G transition in the CLPG1 locus. The mechanisms of CLPG phenotype are very complicated and remain to be further studied. Lacking suitable animal models containing CLPG mutations may partially contribute to these unanswered mechanisms. In this study, we confirmed that the CLPG1 locus, especially the 12-bp CLPG1 motif, is conserved in mammalian animals including rabbit. Then, we generated seven CLPG1-edited rabbits with 100% efficiency using CRISPR/Cas9 system combined with cytoplasm injection technology. All the newborn rabbits were mosaicism with numerous kinds of mutations around the target sites. Among the nine screened potential off-target sites (POTs) for the two sgRNAs used in this study, none off-target effect was detected. This indicated that we efficiently and precisely generated CLPG1-edited rabbits, and we believe that these newly generated rabbits will do help to unravel the mechanisms of the CLPG phenotype in the future.
Collapse
Affiliation(s)
- Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Rihong Guo
- Key laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Zhifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
|
22
|
Xiang G, Ren J, Hai T, Fu R, Yu D, Wang J, Li W, Wang H, Zhou Q. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cell Mol Life Sci 2018; 75:4619-4628. [PMID: 30259067 PMCID: PMC11105340 DOI: 10.1007/s00018-018-2917-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
Insulin-like growth factor 2 (IGF2) is an important growth factor, which promotes growth and development in mammals during fetal and postnatal stages. Using CRISPR-Cas9 system, we generated multiple founder pigs containing 12 different mutant alleles around a regulatory element within the intron 3 of IGF2 gene. Crossing two male founders passed four mutant alleles onto F1 generation, and these mutations abolished repressor ZBED6 binding and rendered this regulatory element nonfunctional. Both founders and F1 animals showed significantly faster growth, without affecting meat quality. These results indicated that editing IGF2 intron 3-3072 site using CRISPR-Cas9 technology improved meat production in Bama pigs. This is the first demonstration that editing non-coding region can improve economic traits in livestock.
Collapse
Affiliation(s)
- Guanghai Xiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Fu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Qufu Normal university, Qufu, 273165, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Mikovic J, Sadler K, Butchart L, Voisin S, Gerlinger-Romero F, Della Gatta P, Grounds MD, Lamon S. MicroRNA and Long Non-coding RNA Regulation in Skeletal Muscle From Growth to Old Age Shows Striking Dysregulation of the Callipyge Locus. Front Genet 2018; 9:548. [PMID: 30505320 PMCID: PMC6250799 DOI: 10.3389/fgene.2018.00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) undergo high levels of regulation in skeletal muscle development and control skeletal muscle mass, function and metabolism over the lifespan. More recently, the role of long non-coding RNAs (lncRNAs) in skeletal muscle regulation has started to emerge. Following up on our recent study describing the expression pattern and putative roles of 768 miRNAs in the quadriceps muscle of mice at early life stages, we used a high-throughput miRNA qPCR-based array to assess the expression of the same miRNAs in 28-month old male mouse quadriceps muscle. In addition, we report the expression patterns of lncRNAs playing a putative role in muscle development and adaptation from growth to old age. Twelve miRNAs were significantly downregulated in 28-month old muscle when compared with 12-week old muscle. Ten of them clustered at the Dlk1-Dio3 locus, known as ‘Callipyge,’ which is associated with muscle development and hypertrophy. This collective downregulation was paralleled by decreases in the expression levels of the maternally expressed imprinted LncRNA coding genes Meg3 and Rian stemming from the same chromosomal region. In contrast, the paternally expressed imprinted Dlk1-Dio3 locus members Rtl1, Dio3, and Dlk1 and the muscle related lncRNAs lncMyoD1, Neat_v1, Neat_v2, and Malat1 underwent significant changes during growth, but their expression levels were not altered past the age of 12 weeks, suggesting roles limited to hyperplasia and early hypertrophy. In conclusion, collective muscle miRNA expression gradually decreases over the lifespan and a cluster of miRNAs and maternally expressed lncRNAs stemming from the Callipyge locus is significantly dysregulated in aging muscle. The Dlk1-Dio3 locus therefore represents a potential new mechanism for age-related muscle decline.
Collapse
Affiliation(s)
- Jasmine Mikovic
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Kate Sadler
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Lauren Butchart
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Sarah Voisin
- Institute of Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Frederico Gerlinger-Romero
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Paul Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Miranda D Grounds
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
24
|
Duan J(E, Zhang M, Flock K, Seesi SA, Mandoiu I, Jones A, Johnson E, Pillai S, Hoffman M, McFadden K, Jiang H, Reed S, Govoni K, Zinn S, Jiang Z, Tian X(C. Effects of maternal nutrition on the expression of genomic imprinted genes in ovine fetuses. Epigenetics 2018; 13:793-807. [PMID: 30051747 PMCID: PMC6224220 DOI: 10.1080/15592294.2018.1503489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon of differential allelic expression based on parental origin. To date, 263 imprinted genes have been identified among all investigated mammalian species. However, only 21 have been described in sheep, of which 11 are annotated in the current ovine genome. Here, we aim to i) use DNA/RNA high throughput sequencing to identify new monoallelically expressed and imprinted genes in day 135 ovine fetuses and ii) determine whether maternal diet (100%, 60%, or 140% of National Research Council Total Digestible Nutrients) influences expression of imprinted genes. We also reported strategies to solve technical challenges in the data analysis pipeline. We identified 80 monoallelically expressed, 13 new putative imprinted genes, and five known imprinted genes in sheep using the 263 genes stated above as a guide. Sanger sequencing confirmed allelic expression of seven genes, CASD1, COPG2, DIRAS3, INPP5F, PLAGL1, PPP1R9A, and SLC22A18. Among the 13 putative imprinted genes, five were localized in the known sheep imprinting domains of MEST on chromosome 4, DLK1/GTL2 on chromosome 18 and KCNQ1 on chromosome 21, and three were in a novel sheep imprinted cluster on chromosome 4, known in other species as PEG10/SGCE. The expression of DIRAS3, IGF2, PHLDA2, and SLC22A18 was altered by maternal diet, albeit without allelic expression reversal. Together, our results expanded the list of sheep imprinted genes to 34 and demonstrated that while the expression levels of four imprinted genes were changed by maternal diet, the allelic expression patterns were un-changed for all imprinted genes studied.
Collapse
Affiliation(s)
| | - Mingyuan Zhang
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaleigh Flock
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Sahar Al Seesi
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | - Ion Mandoiu
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | - Amanda Jones
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Elizabeth Johnson
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Sambhu Pillai
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Maria Hoffman
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Katelyn McFadden
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sarah Reed
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Kristen Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Steve Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Zongliang Jiang
- School of Animal Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | | |
Collapse
|
25
|
|
26
|
Mackin SJ, Thakur A, Walsh CP. Imprint stability and plasticity during development. Reproduction 2018; 156:R43-R55. [PMID: 29743259 DOI: 10.1530/rep-18-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
There have been a number of recent insights in the area of genomic imprinting, the phenomenon whereby one of two autosomal alleles is selected for expression based on the parent of origin. This is due in part to a proliferation of new techniques for interrogating the genome that are leading researchers working on organisms other than mouse and human, where imprinting has been most studied, to become interested in looking for potential imprinting effects. Here, we recap what is known about the importance of imprints for growth and body size, as well as the main types of locus control. Interestingly, work from a number of labs has now shown that maintenance of the imprint post implantation appears to be a more crucial step than previously appreciated. We ask whether imprints can be reprogrammed somatically, how many loci there are and how conserved imprinted regions are in other species. Finally, we survey some of the methods available for examining DNA methylation genome-wide and look to the future of this burgeoning field.
Collapse
Affiliation(s)
- Sarah-Jayne Mackin
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Avinash Thakur
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| |
Collapse
|
27
|
Yu H, Waddell JN, Kuang S, Tellam RL, Cockett NE, Bidwell CA. Identification of genes directly responding to DLK1 signaling in Callipyge sheep. BMC Genomics 2018; 19:283. [PMID: 29690867 PMCID: PMC5937834 DOI: 10.1186/s12864-018-4682-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In food animal agriculture, there is a need to identify the mechanisms that can improve the efficiency of muscle growth and protein accretion. Callipyge sheep provide excellent machinery since the up-regulation of DLK1 and RTL1 results in extreme postnatal muscle hypertrophy in distinct muscles. The aim of this study is to distinguish the genes that directly respond to DLK1 and RTL1 signaling from the genes that change as the result of muscle specific effects. RESULTS The quantitative PCR results indicated that DLK1 expression was significantly increased in hypertrophied muscles but not in non-hypertrophied muscles. However, RTL1 was up-regulated in both hypertrophied and non-hypertrophied muscles. Five genes, including PARK7, DNTTIP1, SLC22A3, METTL21E and PDE4D, were consistently co-expressed with DLK1, and therefore were possible transcriptional target genes responding to DLK1 signaling. Treatment of myoblast and myotubes with DLK1 protein induced an average of 1.6-fold and 1.4-fold increase in Dnttip1 and Pde4d expression respectively. Myh4 expression was significantly elevated in DLK1-treated myotubes, whereas the expression of Mettl21e was significantly increased in the DLK1-treated myoblasts but reduced in DLK1-treated myotubes. DLK1 treatment had no impact on Park7 expression. In addition, Park7 and Dnttip1 increased Myh4 and decreased Myh7 promoter activity, resemble to the effects of Dlk1. In contrast, expression of Mettl21e increased Myh7 and decreased Myh4 luciferase activity. CONCLUSION The study provided additional supports that RTL1 alone was insufficient to induce muscle hypertrophy and concluded that DLK1 was likely the primary effector of the hypertrophy phenotype. The results also suggested that DNTTIP1 and PDE4D were secondary effector genes responding to DLK1 signaling resulting in muscle fiber switch and muscular hypertrophy in callipyge lamb.
Collapse
Affiliation(s)
- Hui Yu
- Department of Animal Sciences, Purdue University, 270 South Russell Street, West Lafayette, IN, 47907, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| | - Jolena N Waddell
- Department of Animal Sciences, Purdue University, 270 South Russell Street, West Lafayette, IN, 47907, USA.,Department of Animal Science & Veterinary Technology, Tarleton State University, Stephenville, TX, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, 270 South Russell Street, West Lafayette, IN, 47907, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Ross L Tellam
- CSIRO Animal, Food and Health Sciences, St. Lucia, QLD, Australia
| | - Noelle E Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Christopher A Bidwell
- Department of Animal Sciences, Purdue University, 270 South Russell Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
28
|
Freking BA, King DA, Shackelford SD, Wheeler TL, Smith TPL. Effects and interactions of myostatin and callipyge mutations: I. Growth and carcass traits. J Anim Sci 2018; 96:454-461. [PMID: 29401324 DOI: 10.1093/jas/skx055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objectives were to document effects of the Texel myostatin mutation (MSTN) on growth and carcass traits and also test whether or not interactions with the callipyge mutation (CLPG) could be detected. Twelve rams heterozygous at both loci on the two different chromosomes were mated to 215 terminal-sire type composite crossbred ewes genotyped as non-carriers for both loci. A total of 365 lambs were born, 362 of those were genotyped and 236 lambs contributed carcass data to estimate effects and interactions among the four genotype combinations produced. The four genotype combinations were defined as follows: ++/++ for wild-type at both loci; ++/C+ for wild-type at MSTN and heterozygous at CLPG; M+/++ for heterozygous at MSTN and wild-type at CLPG; and M+/C+ for heterozygous at both loci. The two independently segregating sire-derived alleles represent different breed-of-origin contrasts at each locus (Texel vs. composite origin for MSTN and Dorset vs. Texel origin for CLPG). Birth weight was recorded on all lambs, and subsequent body weights were adjusted to 56 (weaning), 70, and 140 d of age. Within sire-sex-genotype subgroups, naturally reared lambs were assigned to one of eight slaughter groups accounting for variation in birth date. Lambs were serially slaughtered at weekly intervals, 30 lambs per group, from roughly 26 to 33 wk of age. In addition to standard carcass traits, subjective leg scores were assigned and widths of carcasses were measured at the widest points of the shoulder and rump. Differences in birth weight were detected (P < 0.01) for the combination of the two loci and birth type, with single-born differences among genotypes exceeding differences among twin born progeny. Those interaction differences among genotypes were not as important at weaning (P = 0.36). Impact on growth rate differences among the genotypes during the post-weaning period were variable and dependent on sex of the lamb (P < 0.01). A synergistic interaction between MSTN and CLPG was observed for leg muscling scores (P < 0.05) but no other measures of carcass shape were affected. One copy of MSTN had a more modest impact on fat deposition and muscle conformation than did CLPG and did not interact (all values P > 0.20). Although some non-additive interactions that vary by trait and sex were detected, in general the data are consistent with the two mutations acting on muscle growth through independent pathways.
Collapse
Affiliation(s)
- Brad A Freking
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE
| | - David A King
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE
| | | | - Tommy L Wheeler
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE
| | - Tim P L Smith
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE
| |
Collapse
|
29
|
Hitachi K, Tsuchida K. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle. Oncotarget 2018; 8:5943-5953. [PMID: 27992376 PMCID: PMC5351603 DOI: 10.18632/oncotarget.13966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
30
|
Ren C, Deng M, Fan Y, Yang H, Zhang G, Feng X, Li F, Wang D, Wang F, Zhang Y. Genome-Wide Analysis Reveals Extensive Changes in LncRNAs during Skeletal Muscle Development in Hu Sheep. Genes (Basel) 2017; 8:genes8080191. [PMID: 28763026 PMCID: PMC5575655 DOI: 10.3390/genes8080191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
As an important type of noncoding RNA molecules, long non-coding RNAs (lncRNAs) act as versatile players in various biological processes. However, little is known about lncRNA regulators during sheep muscle growth. To explore functional lncRNAs during sheep muscle growth, we systematically investigated lncRNAs using strand-specific Ribo-Zero RNA sequencing at three key developmental stages in Hu sheep. A total of 6924 lncRNAs were obtained, and the differentially expressed lncRNAs and genes were screened from (control vs. experiment) fetus vs. lamb, lamb vs. adult, and fetus vs. adult comparisons, respectively. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis results correlated well with the sequencing data. Moreover, functional annotation analysis based on the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases showed that the target genes of the differentially expressed lncRNAs were significantly enriched in organ morphogenesis, skeletal system development as well as response to stimulus and some other terms related to muscle. Furthermore, a co-expression network of the differentially expressed target genes and lncRNAs was constructed and well-known muscle growth regulators such as retrotransposon-like 1 and Junctophilin-2 were included. Finally, we investigated the expression profiles of seven lncRNAs and their target genes, and found that they played vital roles in muscle growth. This study extends the sheep muscle lncRNA database and provides novel candidate regulators for future genetic and molecular studies on sheep muscle growth, which is helpful for optimizing the production of mutton.
Collapse
Affiliation(s)
- Caifang Ren
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingtian Deng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yixuan Fan
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hua Yang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guomin Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xu Feng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fengzhe Li
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dan Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanli Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
31
|
Ji J, Zhou L, Guo Y, Huang L, Ma J. Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F 2 intercross population. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1066-1073. [PMID: 28111436 PMCID: PMC5494478 DOI: 10.5713/ajas.16.0679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/09/2016] [Accepted: 01/08/2017] [Indexed: 02/08/2023]
Abstract
Objective Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White Duroc×Erhualian F2 intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level (5×10−4), three QTLs exceeded the genome-wide significance threshold (1.15×10−6). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes’ role and further identifying causative variants underlying these loci.
Collapse
Affiliation(s)
- Jiuxiu Ji
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lisheng Zhou
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanmei Guo
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lusheng Huang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junwu Ma
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
32
|
The transcription factor ccaat/enhancer binding protein β (C/EBPβ) and miR-27a regulate the expression of porcine Dickkopf2 (DKK2). Sci Rep 2015; 5:17972. [PMID: 26656471 PMCID: PMC4675968 DOI: 10.1038/srep17972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023] Open
Abstract
Using Affymetrix porcine Gene-Chip analyses, we found that Dickkopf2 (DKK2), a WNT antagonist, is differentially expressed in pre-ovulatory follicles between Large White and Chinese Taihu sows. This study aims to identify the regulatory factors responsible for DKK2 expression. Deletion fragment and mutation analyses identified DKK2-D3 as the porcine DKK2 core promoter. There were four C/EBPβ binding sites within the DKK2 core promoter. The C allele that results from a spontaneous alteration (DKK2 c.−1130 T > C) in the core promoter was associated with a higher total number born (TNB) and a higher number born alive (NBA) in all parities in a synthetic pig population. This was possibly the result of a change in C/EBPβ binding ability, which was confirmed using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA). Moreover, C/EBPβ specifically bound to and activated the DKK2 promoter, as revealed by mutation analysis, overexpression and RNA interference (RNAi) experiments. We also confirmed that miR-27a is a negative regulator of the DKK2 gene using miR-27a overexpression and inhibition experiments and mutation analyses. RTCA xCELLigence experiments showed that miR-27a suppressed Chinese hamster ovary (CHO) cell proliferation by down-regulating DKK2 gene expression. Taken together, our findings suggest that C/EBPβ and miR-27a control DKK2 transcription.
Collapse
|
33
|
Gao YQ, Chen X, Wang P, Lu L, Zhao W, Chen C, Chen CP, Tao T, Sun J, Zheng YY, Du J, Li CJ, Gan ZJ, Gao X, Chen HQ, Zhu MS. Regulation of DLK1 by the maternally expressed miR-379/miR-544 cluster may underlie callipyge polar overdominance inheritance. Proc Natl Acad Sci U S A 2015; 112:13627-32. [PMID: 26487685 PMCID: PMC4640741 DOI: 10.1073/pnas.1511448112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Inheritance of the callipyge phenotype in sheep is an example of polar overdominance inheritance, an unusual mode of inheritance. To investigate the underlying molecular mechanism, we profiled the expression of the genes located in the Delta-like 1 homolog (Dlk1)-type III iodothyronine deiodinase (Dio3) imprinting region in mice. We found that the transcripts of the microRNA (miR) 379/miR-544 cluster were highly expressed in neonatal muscle and paralleled the expression of the Dlk1. We then determined the in vivo role of the miR-379/miR-544 cluster by establishing a mouse line in which the cluster was ablated. The maternal heterozygotes of young mutant mice displayed a hypertrophic tibialis anterior muscle, extensor digitorum longus muscle, gastrocnemius muscle, and gluteus maximus muscle and elevated expression of the DLK1 protein. Reduced expression of DLK1 was mediated by miR-329, a member of this cluster. Our results suggest that maternal expression of the imprinted miR-379/miR-544 cluster regulates paternal expression of the Dlk1 gene in mice. We therefore propose a miR-based molecular working model for polar overdominance inheritance.
Collapse
Affiliation(s)
- Yun-Qian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Lei Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Chen Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Cai-Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Yan-Yan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Du
- Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Beijing 100029, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Zhen-Ji Gan
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Hua-Qun Chen
- School of Life Science, Nanjing Normal University, Nanjing 210009, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China; Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Beijing 100029, China;
| |
Collapse
|
34
|
Xu X, Ectors F, Davis EE, Pirottin D, Cheng H, Farnir F, Hadfield T, Cockett N, Charlier C, Georges M, Takeda H. Ectopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy. PLoS One 2015; 10:e0140594. [PMID: 26474044 PMCID: PMC4608697 DOI: 10.1371/journal.pone.0140594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous +Mat/CLPGPat animals receiving the CLPG mutation from their father express the phenotype. +Mat/CLPGPat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep.
Collapse
Affiliation(s)
- Xuewen Xu
- Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l’Hôpital, Liège, Belgium
| | - Fabien Ectors
- Transgenic platform, FARAH and GIGA Research Center, University of Liège, 1 Avenue de l’Hôpital, Liège, Belgium
| | - Erica E. Davis
- Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l’Hôpital, Liège, Belgium
| | - Dimitri Pirottin
- Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l’Hôpital, Liège, Belgium
| | - Huijun Cheng
- Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l’Hôpital, Liège, Belgium
| | - Frédéric Farnir
- Unit of Biostatistics, FARAH and Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster, Liège, Belgium
| | - Tracy Hadfield
- Department of Animal, Dairy and Veterinary sciences, Utah State University, Logan, Utah, United States of America
| | - Noelle Cockett
- Department of Animal, Dairy and Veterinary sciences, Utah State University, Logan, Utah, United States of America
| | - Carole Charlier
- Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l’Hôpital, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l’Hôpital, Liège, Belgium
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l’Hôpital, Liège, Belgium
- * E-mail:
| |
Collapse
|
35
|
O'Doherty AM, MacHugh DE, Spillane C, Magee DA. Genomic imprinting effects on complex traits in domesticated animal species. Front Genet 2015; 6:156. [PMID: 25964798 PMCID: PMC4408863 DOI: 10.3389/fgene.2015.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 11/13/2022] Open
Abstract
Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs.
Collapse
Affiliation(s)
- Alan M O'Doherty
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland
| | - David E MacHugh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland ; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland ; Department of Animal Science, University of Connecticut, Storrs, CT USA
| |
Collapse
|
36
|
Andersson L, Archibald AL, Bottema CD, Brauning R, Burgess SC, Burt DW, Casas E, Cheng HH, Clarke L, Couldrey C, Dalrymple BP, Elsik CG, Foissac S, Giuffra E, Groenen MA, Hayes BJ, Huang LS, Khatib H, Kijas JW, Kim H, Lunney JK, McCarthy FM, McEwan JC, Moore S, Nanduri B, Notredame C, Palti Y, Plastow GS, Reecy JM, Rohrer GA, Sarropoulou E, Schmidt CJ, Silverstein J, Tellam RL, Tixier-Boichard M, Tosser-Klopp G, Tuggle CK, Vilkki J, White SN, Zhao S, Zhou H. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol 2015; 16:57. [PMID: 25854118 PMCID: PMC4373242 DOI: 10.1186/s13059-015-0622-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.
Collapse
|
37
|
Gerber M, Fischer A, Jagannathan V, Drögemüller M, Drögemüller C, Schmidt MJ, Bernardino F, Manz E, Matiasek K, Rentmeister K, Leeb T. A deletion in the VLDLR gene in Eurasier dogs with cerebellar hypoplasia resembling a Dandy-Walker-like malformation (DWLM). PLoS One 2015; 10:e0108917. [PMID: 25668033 PMCID: PMC4323105 DOI: 10.1371/journal.pone.0108917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.
Collapse
Affiliation(s)
- Martina Gerber
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Andrea Fischer
- Section of Neurology, Clinic of Small Animal Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Martin J. Schmidt
- Department of Veterinary Clinical Science, Small Animal Clinic, Justus-Liebig-University, 35392 Giessen, Germany
| | - Filipa Bernardino
- Section of Neurology, Clinic of Small Animal Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany
| | | | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Kai Rentmeister
- Tierärztliche Praxis für Neurologie, 97337 Dettelbach, Germany
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Cheng H, Xu X, Hadfield T, Cockett N, Charlier C, Georges M, Takeda H. Experimental evaluation does not reveal a direct effect of microRNA from the callipyge locus on DLK1 expression. BMC Genomics 2014; 15:944. [PMID: 25359221 PMCID: PMC4226911 DOI: 10.1186/1471-2164-15-944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/16/2014] [Indexed: 01/10/2023] Open
Abstract
Background Polar overdominance at the ovine callipyge (CLPG) locus involves the post-transcriptional trans-inhibition of DLK1 in skeletal muscle of CLPG/CLPG sheep. The abundant maternally expressed microRNAs (miRNAs) mapping to the imprinted DLK1-GTL2 domain are prime candidate mediators of this trans-effect. Results We have tested the affinity of 121 miRNAs processed from this locus for DLK1 by co-transfecting COS1 cells with a vector expressing the full-length ovine DLK1 with corresponding mimic miRNAs. None of the tested miRNAs was able to down regulate DLK1 to the extent observed in vivo. Conclusions This suggests that other factors, with or without these miRNAs, are involved in mediating the observed trans-effect. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-944) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, 4000 Liège, Belgium.
| |
Collapse
|
39
|
Delta-like 1 homolog (DLK1) inhibits proliferation and myotube formation of avian QM7 myoblasts. Comp Biochem Physiol B Biochem Mol Biol 2014; 179:37-43. [PMID: 25250736 DOI: 10.1016/j.cbpb.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 11/23/2022]
Abstract
Delta-like 1 homolog (DLK1) has been implicated as an important regulator in mammalian muscle development. Our previous studies showed that different alternative splicing isoforms have distinct functions in the regulation of myogenesis in mice. Unlike most mammals, including mice, pigs, cattle, and sheep, DLK1 mRNA for avian species has a single form without alternative splicing. In the current study, we have used QM7 cells, a quail myoblast, to study the role of DLK1 in the regulation of avian myogenesis. Overexpression of DLK1 inhibited myogenesis with a lower fusion rate and thinner myotube compared to the control QM7 cells. Comparison of relative levels of protein and mRNA showed down-regulation of PAX7, MYOG, and MHC, and up-regulation of MYOD by DLK1, suggesting that quail DLK1 inhibits myogenesis at later stages of myogenic differentiation and myotube formation. DLK1 reduced the QM7 cell growth rate which is accompanied by a lower percentage of bromodeoxyuridine positive cells, indicating an inhibitory role of DLK1 in proliferation. During the early post-hatch ages, the relatively slower increase in the amount of total DNA mass in breast muscle of the heavy weight quail line, that has been selected for over 40 generations, could be partially explained by the higher expression of DLK1 compared to the control quail. Taken together, DLK1 inhibits myogenic differentiation and proliferation by regulating the expression levels of myogenic factors in quail. In addition, the regulation of expression level and cleavage of full-length DLK1 may be important factors for regulating myogenesis in quail having no splicing variants of DLK1.
Collapse
|
40
|
Dadi H, Kim JJ, Yoon D, Kim KS. Evaluation of Single Nucleotide Polymorphisms (SNPs) Genotyped by the Illumina Bovine SNP50K in Cattle Focusing on Hanwoo Breed. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:28-32. [PMID: 25049474 PMCID: PMC4092922 DOI: 10.5713/ajas.2011.11232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/18/2011] [Indexed: 12/25/2022]
Abstract
In the present study, we evaluated the informativeness of SNPs genotyped by the Illumina Bovine SNP50K assay in different cattle breeds. To investigate these on a genome-wide scale, we considered 52,678 SNPs spanning the whole autosomal and X chromosomes in cattle. Our study samples consists of six different cattle breeds. Across the breeds approximately 72 and 6% SNPs were found polymorphic and fixed or close to fix in all the breeds, respectively. The variations in the average minor allele frequency (MAF) were significantly different between the breeds studied. The level of average MAF observed in Hanwoo was significantly lower than the other breeds. Hanwoo breed also displayed the lowest number of polymorphic SNPs across all the chromosomes. More importantly, this study indicated that the Bovine SNP50K assay will have reduced power for genome-wide association studies in Hanwoo as compared to other cattle breeds. Overall, the Bovine SNP50K assay described in this study offer a useful genotyping platform for mapping quantitative trait loci (QTLs) in the cattle breeds. The assay data represent a vast and generally untapped resource to assist the investigation of the complex production traits and the development of marker-assisted selection programs.
Collapse
Affiliation(s)
- Hailu Dadi
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Jong-Joo Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungbook National University, Sangju, Kyungbook 742-711, Korea
| | - Kwan-Suk Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| |
Collapse
|
41
|
Bidwell CA, Waddell JN, Taxis TM, Yu H, Tellam RL, Neary MK, Cockett NE. New insights into polar overdominance in callipyge sheep. Anim Genet 2014; 45 Suppl 1:51-61. [PMID: 24990181 DOI: 10.1111/age.12132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2013] [Indexed: 01/01/2023]
Abstract
The callipyge phenotype in sheep involves substantial postnatal muscle hypertrophy and other changes to carcass composition. A single nucleotide polymorphism in the DLK1-DIO3 imprinted gene cluster alters gene expression of the paternal allele-specific protein-coding genes and several maternal allele-specific long noncoding RNA and microRNA when the mutation is inherited in cis. The inheritance pattern of the callipyge phenotype is polar overdominant because muscle hypertrophy only occurs in heterozygous animals that inherit a normal maternal allele and the callipyge SNP on the paternal allele (+/C). We examined the changes of gene expression of four major transcripts from the DLK1-DIO3 cluster and four myosin isoforms during the development of muscle hypertrophy in the semimembranosus as well as in the supraspinatus that does not undergo hypertrophy. The homozygous (C/C) animals had an intermediate gene expression pattern for the paternal allele-specific genes and two myosin isoforms, indicating a biological activity that was insufficient to change muscle mass. Transcriptome analysis was conducted by RNA sequencing in the four callipyge genotypes. The data show that homozygous animals (C/C) have lower levels of gene expression at many loci relative to the other three genotypes. A number of the downregulated genes are putative targets of the maternal allele-specific microRNA with gene ontology, indicating regulatory and cell signaling functions. These results suggest that the trans-effect of the maternal noncoding RNA and associated miRNA is to stabilize the expression of a number of regulatory genes at a functional, but low level to make the myofibers of homozygous (C/C) lambs less responsive to hypertrophic stimuli of the paternal allele-specific genes.
Collapse
Affiliation(s)
- C A Bidwell
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Magee DA, Spillane C, Berkowicz EW, Sikora KM, MacHugh DE. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits. Anim Genet 2014; 45 Suppl 1:25-39. [PMID: 24990393 DOI: 10.1111/age.12168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/30/2022]
Abstract
The phenomenon of genomic imprinting, whereby a subset of mammalian genes display parent-of-origin-specific monoallelic expression, is one of the most active areas of epigenetics research. Over the past two decades, more than 100 imprinted mammalian genes have been identified, while considerable advances have been made in elucidating the molecular mechanisms governing imprinting. These studies have helped to unravel the epigenome--a separate layer of regulatory information contained in eukaryotic chromosomes that influences gene expression and phenotypes without involving changes to the underlying DNA sequence. Although most studies of genomic imprinting in mammals have focussed on mouse models or human biomedical disorders, there is burgeoning interest in the phenotypic effects of imprinted genes in domestic livestock species. In particular, research has focused on imprinted genes influencing foetal growth and development, which are associated with economically important production traits in cattle, sheep and pigs. These findings, when coupled with the data emerging from the various different livestock genome projects, have major implications for the future of animal breeding, health and management. Here, we review current scientific knowledge regarding genomic imprinting in livestock species and evaluate how this information can be used in modern livestock improvement programmes.
Collapse
Affiliation(s)
- D A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | | | | | | | | |
Collapse
|
43
|
Li J, Greenwood PL, Cockett NE, Hadfield TS, Vuocolo T, Byrne K, White JD, Tellam RL, Schirra HJ. Impacts of the Callipyge mutation on ovine plasma metabolites and muscle fibre type. PLoS One 2014; 9:e99726. [PMID: 24937646 PMCID: PMC4061035 DOI: 10.1371/journal.pone.0099726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/17/2014] [Indexed: 12/02/2022] Open
Abstract
The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.
Collapse
Affiliation(s)
- Juan Li
- CSIRO Animal, Food and Health Sciences, St Lucia, Brisbane, Australia
| | - Paul L. Greenwood
- CSIRO Animal, Food and Health Sciences, FD McMaster Laboratory, Armidale, Australia
- New South Wales Department of Primary Industries, Beef Industry Centre of Excellence, University of New England, Armidale, Australia
| | - Noelle E. Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Tracy S. Hadfield
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Tony Vuocolo
- CSIRO Animal, Food and Health Sciences, St Lucia, Brisbane, Australia
| | - Keren Byrne
- CSIRO Animal, Food and Health Sciences, St Lucia, Brisbane, Australia
| | - Jason D. White
- The University of Melbourne, School of Veterinary Science, Parkville, Australia
| | - Ross L. Tellam
- CSIRO Animal, Food and Health Sciences, St Lucia, Brisbane, Australia
- * E-mail: (RLT); (HJS)
| | - Horst Joachim Schirra
- The University of Queensland, Centre for Advanced Imaging, Brisbane, Australia
- * E-mail: (RLT); (HJS)
| |
Collapse
|
44
|
Effect and mode of action of the Texel muscling QTL (TM-QTL) on carcass traits in purebred Texel lambs. Animal 2014; 8:1053-61. [PMID: 24804855 DOI: 10.1017/s1751731114001104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
TM-QTL is a quantitative trait locus (QTL) on ovine chromosome 18 (OAR18) known to affect loin muscling in Texel sheep. Previous work suggested that its mode of inheritance is consistent with paternal polar overdominance, but this has yet to be formally demonstrated. This study used purebred Texel sheep segregating for TM-QTL to confirm its presence in the chromosomal region in which it was first reported and to determine its pattern of inheritance. To do so, this study used the first available data from a Texel flock, which included homozygote TM-QTL carriers (TM/TM; n=34) in addition to homozygote non-carriers (+/+; n=40 and, heterozygote TM-QTL-carriers inheriting TM-QTL from their sire (TM/+; n=53) or their dam (+/TM; n=17). Phenotypes included a wide range of loin muscling, carcass composition and tissue distribution traits. The presence of a QTL affecting ultrasound muscle depth on OAR18 was confirmed with a paternal QTL effect ranging from +0.54 to +2.82 mm UMD (s.e. 0.37 to 0.57 mm) across the sires segregating for TM-QTL. Loin muscle width, depth and area, loin muscle volume and dissected M. longissimus lumborum weight were significantly greater for TM/+ than +/+ lambs (+2.9% to +7.9%; P<0.05). There was significant evidence that the effect of TM-QTL on the various loin muscling traits measured was paternally polar overdominant (P<0.05). In contrast, there was an additive effect of TM-QTL on both live weight at 20 weeks and carcass weight; TM/TM animals were significantly (P<0.05) heavier than +/+ (+11.1% and +7.3%, respectively) and +/TM animals (+11.9% and +11.7%, respectively), with TM/+ intermediate. Weights of the leg, saddle and shoulder region (corrected for carcass weight) were similar in the genotypic groups. There was a tendency for lambs inheriting TM-QTL from their sire to be less fat with slightly more muscle than non-carriers. For example, carcass muscle weight measured by live animal CT-scanning was 2.8% higher in TM/TM than +/+ lambs (P<0.05), carcass muscle weight measured by carcass CT-scanning was 1.36% higher in TM/+ than +/+ lambs (P<0.05), and weight of fat trimmed from the carcass cuts was significantly lower for TM/+ than +/+ lambs (-11.2%; P<0.05). No negative effects of TM-QTL on carcass traits were found. Optimal commercial use of TM-QTL within the sheep industry would require some consideration, due to the apparently different mode of action of the two main effects of TM-QTL (on growth and muscling).
Collapse
|
45
|
Neguembor MV, Jothi M, Gabellini D. Long noncoding RNAs, emerging players in muscle differentiation and disease. Skelet Muscle 2014; 4:8. [PMID: 24685002 PMCID: PMC3973619 DOI: 10.1186/2044-5040-4-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
The vast majority of the mammalian genome is transcribed giving rise to many different types of noncoding RNAs. Among them, long noncoding RNAs are the most numerous and functionally versatile class. Indeed, the lncRNA repertoire might be as rich as the proteome. LncRNAs have emerged as key regulators of gene expression at multiple levels. They play important roles in the regulation of development, differentiation and maintenance of cell identity and they also contribute to disease. In this review, we present recent advances in the biology of lncRNAs in muscle development and differentiation. We will also discuss the contribution of lncRNAs to muscle disease with a particular focus on Duchenne and facioscapulohumeral muscular dystrophies.
Collapse
Affiliation(s)
| | | | - Davide Gabellini
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem cells, and Gene therapy, DIBIT2, 5A3, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
46
|
Yu H, Waddell JN, Kuang S, Bidwell CA. Park7 expression influences myotube size and myosin expression in muscle. PLoS One 2014; 9:e92030. [PMID: 24637782 PMCID: PMC3956870 DOI: 10.1371/journal.pone.0092030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/18/2014] [Indexed: 01/16/2023] Open
Abstract
Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+) and Park7 (−/−) mice were used to examine the effect of differential expression of Park7. The Park7 (+/+) myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (−/−) myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+) myotubes relative to Park7 (−/−). The level of AKT phosphorylation was increased in Park7 (+/+) myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+) myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.
Collapse
MESH Headings
- Animals
- Cell Size/drug effects
- Enzyme-Linked Immunosorbent Assay
- Genotype
- Hypertrophy
- Insulin-Like Growth Factor I/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myosins/genetics
- Myosins/metabolism
- Oncogene Proteins/deficiency
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- PTEN Phosphohydrolase/metabolism
- Peroxiredoxins
- Phosphorylation/drug effects
- Protein Deglycase DJ-1
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Sarcomeres/metabolism
- Sheep
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Hui Yu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jolena N. Waddell
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| | - Christopher A. Bidwell
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
47
|
Donaldson CL, Lambe NR, Maltin CA, Knott S, Bünger L. Effect of the Texel muscling QTL (TM-QTL) on spine characteristics in purebred Texel lambs. Small Rumin Res 2014; 117:34-40. [PMID: 25844019 PMCID: PMC4375558 DOI: 10.1016/j.smallrumres.2013.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/02/2022]
Abstract
Previous work showed that the Texel muscling QTL (TM-QTL) results in pronounced hypertrophy in the loin muscle, with the largest phenotypic effects observed in lambs inheriting a single copy of the allele from the sire. As the loin runs parallel to the spinal vertebrae, and the development of muscle and bone are closely linked, the primary aim of this study was to investigate if there were any subsequent associations between TM-QTL inheritance and underlying spine characteristics (vertebrae number, VN; spine region length, SPL; average length of individual vertebrae, VL) of the thoracic, lumbar, and thoracolumbar spine regions. Spine characteristics were measured from X-ray computed tomography (CT) scans for 142 purebred Texel lambs which had been previously genotyped. Least-squares means were significantly different between genotype groups for lumbar and thoracic VN and lumbar SPL. Similarly for these traits, contrasts were shown to be significant for particular modes of gene action but overall were inconclusive. In general, the results showed little evidence that spine trait phenotypes were associated with differences in loin muscling associated with the different TM-QTL genotypes.
Collapse
Affiliation(s)
- C L Donaldson
- Scotland's Rural College, King's Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - N R Lambe
- Scotland's Rural College, King's Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - C A Maltin
- Quality Meat Scotland, Rural Centre, Ingliston, Newbridge EH28 8NZ, United Kingdom
| | - S Knott
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | - L Bünger
- Scotland's Rural College, King's Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| |
Collapse
|
48
|
Nicholas FW, Hobbs M. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012. Anim Genet 2013; 45:157-70. [PMID: 24372556 PMCID: PMC4225684 DOI: 10.1111/age.12103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/21/2023]
Abstract
Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34).
Collapse
Affiliation(s)
- Frank W Nicholas
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia
| | | |
Collapse
|
49
|
Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 2013; 110:16526-31. [PMID: 24014591 DOI: 10.1073/pnas.1310478110] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have expanded the livestock gene editing toolbox to include transcription activator-like (TAL) effector nuclease (TALEN)- and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-stimulated homology-directed repair (HDR) using plasmid, rAAV, and oligonucleotide templates. Toward the genetic dehorning of dairy cattle, we introgressed a bovine POLLED allele into horned bull fibroblasts. Single nucleotide alterations or small indels were introduced into 14 additional genes in pig, goat, and cattle fibroblasts using TALEN mRNA and oligonucleotide transfection with efficiencies of 10-50% in populations. Several of the chosen edits mimic naturally occurring performance-enhancing or disease- resistance alleles, including alteration of single base pairs. Up to 70% of the fibroblast colonies propagated without selection harbored the intended edits, of which more than one-half were homozygous. Edited fibroblasts were used to generate pigs with knockout alleles in the DAZL and APC genes to model infertility and colon cancer. Our methods enable unprecedented meiosis-free intraspecific and interspecific introgression of select alleles in livestock for agricultural and biomedical applications.
Collapse
|
50
|
Kärst S, Strucken EM, Schmitt AO, Weyrich A, de Villena FPM, Yang H, Brockmann GA. Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity. BMC Genomics 2013; 14:16. [PMID: 23324137 PMCID: PMC3626839 DOI: 10.1186/1471-2164-14-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/19/2012] [Indexed: 12/07/2022] Open
Abstract
Background This study is aimed at the analysis of genetic and physiological effects of myostatin on economically relevant meat quality traits in a genetic background of high muscularity. For this purpose, we generated G3 populations of reciprocal crosses between the two hypermuscular mouse lines BMMI866, which carries a myostatin mutation and is lean, and BMMI806, which has high intramuscular and body fat content. To assess the relationship between muscle mass, body composition and muscle quality traits, we also analysed intramuscular fat content (IMF), water holding capacity (WHC), and additional physiological parameters in M. quadriceps and M. longissimus in 308 G3-animals. Results We found that individuals with larger muscles have significantly lower total body fat (r = −0.28) and IMF (r = −0.64), and in females, a lower WHC (r = −0.35). In males, higher muscle mass was also significantly correlated with higher glycogen contents (r = 0.2) and lower carcass pH-values 24 hours after dissection (r = −0.19). Linkage analyses confirmed the influence of the myostatin mutation on higher lean mass (1.35 g), reduced body fat content (−1.15%), and lower IMF in M. longissimus (−0.13%) and M. quadriceps (−0.07%). No effect was found for WHC. A large proportion of variation of intramuscular fat content of the M. longissimus at the myostatin locus could be explained by sex (23%) and direction-of-cross effects (26%). The effects were higher in males (+0.41%). An additional locus with negative over-dominance effects on total fat mass (−0.55 g) was identified on chromosome 16 at 94 Mb (86–94 Mb) which concurs with fat related QTL in syntenic regions on SSC13 in pigs and BTA1 in cattle. Conclusion The data shows QTL effects on mouse muscle that are similar to those previously observed in livestock, supporting the mouse model. New information from the mouse model helps to describe variation in meat quantity and quality, and thus contribute to research in livestock.
Collapse
Affiliation(s)
- Stefan Kärst
- Department for Crop and Animal Sciences, Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|