1
|
Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes). Hum Mutat 2006; 25:45-55. [PMID: 15580561 DOI: 10.1002/humu.20116] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study of breakpoints that occurred during primate evolution promises to yield valuable insights into the mechanisms underlying chromosome rearrangements in both evolution and pathology. Karyotypic differences between humans and chimpanzees include nine pericentric inversions, which may have potentiated the parapatric speciation of hominids and chimpanzees 5-6 million years ago. Detailed analysis of the respective chromosomal breakpoints is a prerequisite for any assessment of the genetic consequences of these inversions. The breakpoints of the inversion that distinguishes human chromosome 4 (HSA4) from its chimpanzee counterpart were identified by fluorescence in situ hybridization (FISH) and comparative sequence analysis. These breakpoints, at HSA4p14 and 4q21.3, do not disrupt the protein coding region of a gene, although they occur in regions with an abundance of LINE and LTR-elements. At 30 kb proximal to the breakpoint in 4q21.3, we identified an as yet unannotated gene, C4orf12, that lacks an homologous counterpart in rodents and is expressed at a 33-fold higher level in human fibroblasts as compared to chimpanzee. Seven out of 11 genes that mapped to the breakpoint regions have been previously analyzed using oligonucleotide-microarrays. One of these genes, WDFY3, exhibits a three-fold difference in expression between human and chimpanzee. To investigate whether the genomic architecture might have facilitated the inversion, comparative sequence analysis was used to identify an approximately 5-kb inverted repeat in the breakpoint regions. This inverted repeat is inexact and comprises six subrepeats with 78 to 98% complementarity. (TA)-rich repeats were also noted at the breakpoints. These findings imply that genomic architecture, and specifically high-copy repetitive elements, may have made a significant contribution to hominoid karyotype evolution, predisposing specific genomic regions to rearrangements.
Collapse
|
2
|
Horvath JE, Gulden CL, Vallente RU, Eichler MY, Ventura M, McPherson JD, Graves TA, Wilson RK, Schwartz S, Rocchi M, Eichler EE. Punctuated duplication seeding events during the evolution of human chromosome 2p11. Genome Res 2005; 15:914-27. [PMID: 15965031 PMCID: PMC1172035 DOI: 10.1101/gr.3916405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primate genomic sequence comparisons are becoming increasingly useful for elucidating the evolutionary history and organization of our own genome. Such studies are particularly informative within human pericentromeric regions--areas of particularly rapid change in genomic structure. Here, we present a systematic analysis of the evolutionary history of one approximately 700-kb region of 2p11, including the first autosomal transition from pericentromeric sequence to higher-order alpha-satellite DNA. We show that this region is composed of segmental duplications corresponding to 14 ancestral segments ranging in size from 4 kb to approximately 115 kb. These duplicons show 94%-98.5% sequence identity to their ancestral loci. Comparative FISH and phylogenetic analysis indicate that these duplicons are differentially distributed in human, chimpanzee, and gorilla genomes, whereas baboon has a single putative ancestral locus for all but one of the duplications. Our analysis supports a model where duplicative transposition events occurred during a narrow window of evolution after the separation of the human/ape lineage from the Old World monkeys (10-20 million years ago). Although dramatic secondary dispersal events occurred during the radiation of the human, chimpanzee, and gorilla lineages, duplicative transposition seeding events of new material to this particular pericentromeric region abruptly ceased after this time period. The multiplicity of initial duplicative transpositions prior to the separation of humans and great-apes suggests a punctuated model for the formation of highly duplicated pericentromeric regions within the human genome. The data further indicate that factors other than sequence are important determinants for such bursts of duplicative transposition from the euchromatin to pericentromeric regions.
Collapse
Affiliation(s)
- Julie E Horvath
- Department of Genetics and Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Eichler EE, Clark RA, She X. An assessment of the sequence gaps: Unfinished business in a finished human genome. Nat Rev Genet 2004; 5:345-54. [PMID: 15143317 DOI: 10.1038/nrg1322] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Evan E Eichler
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, BRB720, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
4
|
Cserpán I, Katona R, Praznovszky T, Novák E, Rózsavölgyi M, Csonka E, Mórocz M, Fodor K, Hadlaczky G. The chAB4 and NF1-related long-range multisequence DNA families are contiguous in the centromeric heterochromatin of several human chromosomes. Nucleic Acids Res 2002; 30:2899-905. [PMID: 12087175 PMCID: PMC117038 DOI: 10.1093/nar/gkf382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the large-scale organization of the human chAB4-related long-range multisequence family, a low copy-number repetitive DNA located in the pericentromeric heterochromatin of several human chromosomes. Analysis of genomic clones revealed large-scale ( approximately 100 kb or more) sequence conservation in the region flanking the prototype chAB4 element. We demonstrated that this low copy-number family is connected to another long-range repeat, the NF1-related (PsiNF1) multisequence. The two DNA types are joined by an approximately 2 kb-long tandem repeat of a 48-bp satellite. Although the chAB4- and NF1-like sequences were known to have essentially the same chromosomal localization, their close association is reported here for the first time. It indicates that they are not two independent long-range DNA families, but are parts of a single element spanning approximately 200 kb or more. This view is consistent both with their similar chromosomal localizations and the high levels of sequence conservation among copies found on different chromosomes. We suggest that the master copy of the linked chAB4-PsiNF1 DNA segment appeared first on the ancestor of human chromosome 17.
Collapse
Affiliation(s)
- Imre Cserpán
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6701 Szeged, P.O.B. 521, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stoilov P, Castren E, Stamm S. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun 2002; 290:1054-65. [PMID: 11798182 DOI: 10.1006/bbrc.2001.6301] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We determined the gene structure of the human TrkB gene. The gene is unusually large and spans at least 590 kbp. It contains 24 exons. Using alternative promoters, splicing, and polyadenylation sites, the gene can create at least 100 isoforms, that can encode 10 proteins. RT-PCR and Northern blot analysis reveals that only three major protein isoforms are generated by the gene: the full length receptor, an isoform lacking the tyrosine kinase domain, and a novel isoform lacking the tyrosine kinase domain but containing a Shc binding site. This novel isoform, TrkB-T-Shc is generated by the use of a new alternative exon 19. It is expressed only in brain. TrkB-T-Shc protein is located in the plasma membrane. Coimmunoprecipitation experiments show that TrkB-T-Shc is not phosphorylated by the full length receptor, indicating that it could be a negative regulator of TrkB signaling in the brain.
Collapse
Affiliation(s)
- Peter Stoilov
- Friedrich-Alexander-University Erlangen, Institute for Biochemistry, Fahrstrasse 17, Erlangen, 91054, Germany
| | | | | |
Collapse
|
6
|
Padilla-Nash HM, Heselmeyer-Haddad K, Wangsa D, Zhang H, Ghadimi BM, Macville M, Augustus M, Schröck E, Hilgenfeld E, Ried T. Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosomes Cancer 2001; 30:349-63. [PMID: 11241788 DOI: 10.1002/gcc.1101] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Jumping translocations (JTs) and segmental jumping translocations (SJTs) are unbalanced translocations involving a donor chromosome arm or chromosome segment that has fused to multiple recipient chromosomes. In leukemia, where JTs have been predominantly observed, the donor segment (usually 1q) preferentially fuses to the telomere regions of recipient chromosomes. In this study, spectral karyotyping (SKY) and FISH analysis revealed 188 JTs and SJTs in 10 cell lines derived from carcinomas of the bladder, prostate, breast, cervix, and pancreas. Multiple JTs and SJTs were detected in each cell line and contributed to recurrent unbalanced whole-arm translocations involving chromosome arms 5p, 14q, 15q, 20q, and 21q. Sixty percent (113/188) of JT breakpoints occurred within centromere or pericentromeric regions of the recipient chromosomes, whereas only 12% of the breakpoints were located in the telomere regions. JT breakpoints of both donor and recipient chromosomes coincided with numerous fragile sites as well as viral integration sites for human DNA viruses. The JTs within each tumor cell line promoted clonal progression, leading to the acquisition of extra copies of the donated chromosome segments that often contained oncogenes (MYC, ABL, HER2/NEU, etc.), consequently resulting in tumor-specific genomic imbalances. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- H M Padilla-Nash
- Genetics Department, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Giorgi D, Friedman C, Trask BJ, Rouquier S. Characterization of Nonfunctional V1R-like Pheromone Receptor Sequences in Human. Genome Res 2000. [DOI: 10.1101/gr.146700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vomeronasal organ (VNO) or Jacobson's organ is responsible in terrestrial vertebrates for the sensory perception of pheromones, chemicals that elicit stereotyped behaviors among individuals of the same species. Pheromone-induced behaviors and a functional VNO have been described in a number of mammals, but the existence of this sensory system in human is still debated. Recently, two nonhomologous gene families, V1R and V2R, encoding pheromone receptors have been identified in rat. These receptors belong to the seven-transmembrane domain G-protein-coupled receptor superfamily. We sought to characterize V1R-like genes in the human genome. We have identified seven different human sequences by PCR and library screening with rodent sequences. These human sequences exhibit characteristic features of V1R receptors and show 52%–59% of amino acid sequence identity with the rat sequences. Using PCR on a monochromosomal somatic cell hybrid panel and/or FISH, we demonstrate that these V1R-like sequences are distributed on chromosomes 7, 16, 20, 13, 14, 15, 21, and 22 and possibly on additional chromosomes. One sequence hybridizes to pericentromeric locations on all the acrocentric chromosomes (13, 14, 15, 21, and 22). All of the seven V1R-like sequences analyzed show interrupted reading frames, indicating that they represent nonfunctional pseudogenes. The preponderence of pseudogenes among human V1R sequences and the striking anatomical differences between rodent and human VNO raise the possibility that humans may have lost the V1R/VNO-mediated sensory functions of rodents.[Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under accession nos. U73852–73853 andAF253312–253316.]
Collapse
|
8
|
Giorgi D, Friedman C, Trask BJ, Rouquier S. Characterization of nonfunctional V1R-like pheromone receptor sequences in human. Genome Res 2000; 10:1979-85. [PMID: 11116092 PMCID: PMC313059 DOI: 10.1101/gr.10.12.1979] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The vomeronasal organ (VNO) or Jacobson's organ is responsible in terrestrial vertebrates for the sensory perception of pheromones, chemicals that elicit stereotyped behaviors among individuals of the same species. Pheromone-induced behaviors and a functional VNO have been described in a number of mammals, but the existence of this sensory system in human is still debated. Recently, two nonhomologous gene families, V1R and V2R, encoding pheromone receptors have been identified in rat. These receptors belong to the seven-transmembrane domain G-protein-coupled receptor superfamily. We sought to characterize V1R-like genes in the human genome. We have identified seven different human sequences by PCR and library screening with rodent sequences. These human sequences exhibit characteristic features of V1R receptors and show 52%-59% of amino acid sequence identity with the rat sequences. Using PCR on a monochromosomal somatic cell hybrid panel and/or FISH, we demonstrate that these V1R-like sequences are distributed on chromosomes 7, 16, 20, 13, 14, 15, 21, and 22 and possibly on additional chromosomes. One sequence hybridizes to pericentromeric locations on all the acrocentric chromosomes (13, 14, 15, 21, and 22). All of the seven V1R-like sequences analyzed show interrupted reading frames, indicating that they represent nonfunctional pseudogenes. The preponderence of pseudogenes among human V1R sequences and the striking anatomical differences between rodent and human VNO raise the possibility that humans may have lost the V1R/VNO-mediated sensory functions of rodents.
Collapse
Affiliation(s)
- D Giorgi
- Institut de Génétique Humaine, Centre Nationale de la Recherche Scientifique, Unité Propre de Recherche 1142, 34396 Montpellier, CEDEX 5, France
| | | | | | | |
Collapse
|
9
|
Eisenbarth I, König-Greger D, Wöhr G, Kehrer-Sawatzki H, Assum G. Characterization of an alphoid subfamily located near p-arm sequences on human chromosome 22. Chromosome Res 1999; 7:65-9. [PMID: 10219734 DOI: 10.1023/a:1009279412797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The centromeric heterochromatin of all human chromosomes is composed of tandemly repeated alpha satellite DNA. Here we describe another alphoid subfamily that maps to human chromosome 22 as determined by FISH. The alphoid sequences were isolated from three YAC-clones carrying DNA from the pericentromeric region of the short arm of human chromosome 22 and limited amounts of alphoid DNA. This property enabled us to map the members of the subfamily to the border of the centromeric region and the short arm of the chromosome. The new alphoid subfamily may contribute to the closure of the gap remaining between the centromeric and short-arm maps of human chromosome 22.
Collapse
Affiliation(s)
- I Eisenbarth
- Abteilung Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, Germany
| | | | | | | | | |
Collapse
|
10
|
Puechberty J, Laurent AM, Gimenez S, Billault A, Brun-Laurent ME, Calenda A, Marçais B, Prades C, Ioannou P, Yurov Y, Roizès G. Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. Genomics 1999; 56:274-87. [PMID: 10087194 DOI: 10.1006/geno.1999.5742] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human centromeres are poorly understood at both the genetic and the physical level. In this paper, we have been able to distinguish the alphoid centromeric sequences of chromosome 5 from those of chromosome 19. This result was obtained by pulsed-field gel electrophoresis after cutting genomic DNA with restriction endonucleases NcoI (chromosome 5) and BamHI (chromosome 19). We could thus define a highly polymorphic marker, representing length variations of the D5Z1 domain located at the q arm boundary of the chromosome 5 centromere. The centromeric region of chromosome 5 was then analyzed in full detail. We established an approximately 4.6-Mb physical map of the whole region with five rare-cutting enzymes by using nonchimeric YACs, two of which were shown to contain the very ends of 5cen on both sides. The p-arm side of 5cen was shown to contain an alphoid subset (D5Z12) different from those described thus far. Two genes and several putative cDNAs could be precisely located close to the centromere. Several L1 elements were shown to be present within alpha satellites at the boundary between alphoid and nonalphoid sequences on both sides of 5cen. They were used to define STSs that could serve as physical anchor points at the junction of 5cen with the p and q arms. Some STSs were placed on a radiation hybrid map. One was polymorphic and could therefore be used as a second centromeric genetic marker at the p arm boundary of 5cen. We could thus estimate recombination rates within and around the centromeric region of chromosome 5. Recombination is highly reduced within 5cen, with zero recombinants in 58 meioses being detected between the two markers located at the two extremities of the centromere. In its immediate vicinity, 5cen indeed exerts a direct negative effect on meiotic recombination within the proximal chromosomal DNA. This effect is, however, less important than expected and is polarized, as different rates are observed on both arms if one compares the 0 cM/Mb of the p proximal first 5.5 Mb and the 0.64 cM/Mb of the q proximal first 5 Mb to the sex-average 1.02 cM/Mb found throughout the entire chromosome 5. Rates then become close to the average when one goes further within the arms. Finally, most recombinants (21/22), irrespective of the arm, are of female origin, thus showing that recombination around 5cen is essentially occurring in the female lineage.
Collapse
MESH Headings
- Blotting, Southern
- Centromere/genetics
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 5/genetics
- Contig Mapping
- Electrophoresis, Gel, Pulsed-Field
- Humans
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Oligonucleotide Probes
- Pedigree
- Physical Chromosome Mapping
- Recombination, Genetic
- Restriction Mapping
- Sequence Analysis, DNA
- Sequence Tagged Sites
- Temperature
Collapse
Affiliation(s)
- J Puechberty
- Institut de Génétique Humaine, CNRS UPR 1142, Institut de Biologie, 4 Boulevard Henri IV, Montpellier Cedex, 34060, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kehrer-Sawatzki H, Wöhr G, Schempp W, Eisenbarth I, Barbi G, Assum G. Mapping of members of the low-copy-number repetitive DNA sequence family chAB4 within the p arms of human acrocentric chromosomes: characterization of Robertsonian translocations. Chromosome Res 1998; 6:429-35. [PMID: 9865780 DOI: 10.1023/a:1009287223826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Members of the long-range, low-copy-number repetitive DNA sequence family chAB4 are located on nine different human chromosome pairs and the Y chromosome, i.e. on the short arms of all the acrocentrics. To localize the chAB4 sequences more precisely on the acrocentrics, chAB4-specific probes together with rDNA and a number of satellite sequences were hybridized to metaphase chromosomes of normal probands and of carriers of Robertsonian translocations of the frequent types rob(13q14q) and rob(14q21q). The results demonstrate that chAB4 is located on both sides of the rDNA on all the acrocentrics; the exact location, however, may be chromosome specific. Chromosome 22, most probably, is the only chromosome where chAB4 is found in the direct neighbourhood of the centromere. Fluorescence in situ hybridization analyses of metaphase chromosomes of carriers of rob(21q22q) revealed breakpoint diversity for this rare type of Robertsonian translocation chromosome. A direct involvement of chAB4 sequences in recombination processes leading to the Robertsonian translocations analysed in this study can be excluded.
Collapse
|
12
|
Eichler EE, Hoffman SM, Adamson AA, Gordon LA, McCready P, Lamerdin JE, Mohrenweiser HW. Complex beta-satellite repeat structures and the expansion of the zinc finger gene cluster in 19p12. Genome Res 1998; 8:791-808. [PMID: 9724325 DOI: 10.1101/gr.8.8.791] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the organization, architecture, and evolution of the largest cluster ( approximately 4 Mb) of Krüppel-associated box zinc finger (KRAB-ZNF) genes located in cytogenetic band interval 19p12. A highly integrated physical map ( approximately 700 kb) of overlapping cosmid and BAC clones was developed between genetic STS markers D19S454 and D19S269. Using ZNF91 exon-specific probes to interrogate a detailed EcoRI restriction map of the region, ZNF genes were found to be distributed in a head-to-tail fashion throughout the region with an average density of one ZNF duplicon every 150-180 kb of genomic distance. Sequence analysis of 208,967 bp of this region indicated the presence of two putative ZNF genes: one consisting of a novel member of this gene family (ZNF208) expressed ubiquitously in all tissues examined and the other representing a nonprocessed pseudogene (ZNF209), located 450 kb proximal to ZNF208. Large blocks of ( approximately 25-kb) inverted beta-satellite repeats with a remarkably symmetrical higher order repeat structure were found to bracket the functional ZNF gene. Hybridization analysis using the beta-satellite repeat as a probe indicates that beta-satellite interspersion between ZNF gene cassettes is a general property for 1.5 Mb of the ZNF gene cluster in 19p12. Both molecular clock data as well as a retroposon-mapping molecular fossil approach indicate that this ZNF cluster arose early during primate evolution (approximately 50 million years ago). We propose an evolutionary model in which heteromorphic pericentromeric repeat structures such as the beta satellites have been coopted to accommodate rapid expansion of a large gene family over a short period of evolutionary time. [The sequence data described in this paper have been submitted to GenBank under accession nos. AC003973 and AC004004.]
Collapse
Affiliation(s)
- E E Eichler
- Human Genome Center, BBRP, L-452, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Mahtani MM, Willard HF. Physical and genetic mapping of the human X chromosome centromere: repression of recombination. Genome Res 1998; 8:100-10. [PMID: 9477338 DOI: 10.1101/gr.8.2.100] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Classical genetic studies in Drosophila and yeast have shown that chromosome centromeres have a cis-acting ability to repress meiotic exchange in adjacent DNA. To determine whether a similar phenomenon exists at human centromeres, we measured the rate of meiotic recombination across the centromere of the human X chromosome. We have constructed a long-range physical map of centromeric alpha-satellite DNA (DXZ1) by pulsed-field gel analysis, as well as detailed meiotic maps of the pericentromeric region of the X chromosome in the CEPH family panel. By comparing these two maps, we determined that, in the proximal region of the X chromosome, a genetic distance of 0.57 cM exists between markers that span the centromere and are separated by at least the average 3600 kb physical distance mapped across the DXZ1 array. Therefore, the rate of meiotic exchange across the X chromosome centromere is <1 cM/6300 kb (and perhaps as low as 1 cM/17,000 kb on the basis of other physical mapping data), at least eightfold lower than the average rate of female recombination on the X chromosome and one of the lowest rates of exchange yet observed in the human genome.
Collapse
Affiliation(s)
- M M Mahtani
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | |
Collapse
|
14
|
Assum G, Pasantes J, Gläser B, Schempp W, Wöhr G. Concerted evolution of members of the multisequence family chAB4 located on various nonhomologous chromosomes. Mamm Genome 1998; 9:58-63. [PMID: 9434947 DOI: 10.1007/s003359900680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the last years it became obvious that a lot of families of long-range repetitive DNA elements are located within the genomes of mammals. The principles underlying the evolution of such families, therefore, may have a greater impact than anticipated on the evolution of the mammalian genome as a whole. One of these families, called chAB4, is represented with about 50 copies within the human and the chimpanzee genomes and with only a few copies in the genomes of gorilla, orang-utan, and gibbon. Members of chAB4 are located on 10 different human chromosomes. FISH of chAB4-specific probes to chromosome preparations of the great apes showed that chAB4 is located, with only one exception, at orthologous places in the human and the chimpanzee genome. About half the copies in the human genome belong to two species-specific subfamilies that evolved after the divergence of the human and the chimpanzee lineages. The analysis of chAB4-specific PCR-products derived from DNA of rodent/human cell hybrids showed that members of the two human-specific subfamilies can be found on 9 of the 10 chAB4-carrying chromosomes. Taken together, these results demonstrate that the members of DNA sequence families can evolve as a unit despite their location at multiple sites on different chromosomes. The concerted evolution of the family members is a result of frequent exchanges of DNA sequences between copies located on different chromosomes. Interchromosomal exchanges apparently take place without greater alterations in chromosome structure.
Collapse
Affiliation(s)
- G Assum
- Abteilung Humangenetik, Universität Ulm, Germany
| | | | | | | | | |
Collapse
|
15
|
Shiels C, Coutelle C, Huxley C. Contiguous arrays of satellites 1, 3, and beta form a 1.5-Mb domain on chromosome 22p. Genomics 1997; 44:35-44. [PMID: 9286698 DOI: 10.1006/geno.1997.4817] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The centromeric heterochromatin of all the human chromosomes is composed of megabases of tandemly repeated satellite DNA. Some of these sequences have been implicated in centromere formation and/or segregation but the arrangement of most of them on a large scale remains largely uncharacterized because of the difficulties in analyzing repetitive DNA. The alpha satellite is the best studied and is present in large tandem arrays at all centromeres, but satellites 1, 3, and beta have also been detected on a number of chromosomes. Here we have used FISH to extended DNA fibers to analyze these satellites on the short arm of the acrocentric chromosome 22. The satellite sequences were found to form a continuous domain spanning about 1.5 Mb and consisting of a major block of satellite 1 flanked by two blocks of beta satellite and three blocks of satellite 3. These six blocks of satellite DNA appear to form contiguous arrays with little intervening DNA.
Collapse
Affiliation(s)
- C Shiels
- Department of Biochemistry and Molecular Genetics, Imperial College School of Medicine at St. Mary's, London, United Kingdom
| | | | | |
Collapse
|
16
|
De Sario A, Roizes G, Allegre N, Bernardi G. A compositional map of the cen-q21 region of human chromosome 21. Gene 1997; 194:107-13. [PMID: 9266679 DOI: 10.1016/s0378-1119(97)00177-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A compositional map of the centromere and of the subcentromeric region of the long arm of human chromosome 21 was established by determining the GC levels (GC is the molar fraction of guanine+cytosine in DNA) of 11 YACs (yeast artificial chromosomes) covering this 13-14 Mb region which extends from the alpha-satellite sequences of the C(entromeric) band q11.1, through R(everse) band q11.2, to the proximal part of G(iemsa) band q21. The entire region is made up of GC-poor, or L, isochores with only one GC-rich H1 isochore, at least 2 Mb in size, located in band q21. The almost identical GC levels of the centromeric alpha-satellite repeats (38.5%), of R band q11.2 (39%), and of G bands (38-40%) provide a direct demonstration that base composition cannot be the only cause of the cytogenetic differences between C, G, and the majority of R bands, namely the H3- R bands (which do not contain the GC-richest H3 isochores). The results obtained also show that isochores may be as long as 6 Mb, at least in the GC-poor regions of the genome, and support previous observations suggesting that YACs from isochore borders are unstable and/or difficult to clone. Genes and CpG islands are very rare in the GC-poor region investigated, as expected from the fact that their concentration is proportional to the GC levels of the isochores in which they are contained.
Collapse
Affiliation(s)
- A De Sario
- Laboratoire de Structure, Fonction et Evolution du Genome Eucaryote, Institut de Biologie, Montpellier, France
| | | | | | | |
Collapse
|