1
|
Xie B, Chen J, Wang Z, Yin Q, Dai ZM. Sweet enhancers of polymerase chain reaction. PLoS One 2024; 19:e0311939. [PMID: 39471151 PMCID: PMC11521273 DOI: 10.1371/journal.pone.0311939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/28/2024] [Indexed: 11/01/2024] Open
Abstract
Although faster and powerful, polymerase chain reaction (PCR) often failed to amplify targets efficiently. Numerous PCR enhancers have been used to increase the amplification efficiency of difficult DNA targets. However, there is no systematic comparison of their effects in normal and difficult PCR conditions. In this paper, we have selected nine different PCR enhancers that can promote the PCR amplification efficiency. We have compared their effect in Taq DNA polymerase thermostability, inhibitor resistance, and amplification of various DNA targets. Although the PCR enhancers more or less reduced the amplification efficiency of DNA fragments with moderate GC-content, they were able to improve the amplification efficiency and specificity of GC-rich fragments. Betaine outperformed the other enhancers in amplification of GC-rich DNA fragments, thermostabilizing Taq DNA polymerase, and inhibitor tolerance. Sucrose and trehalose showed similar effect in thermostabilizing Taq DNA polymerase and inhibitor tolerance, while they showed mildest inhibitory effect on normal PCR. For GC-rich region-containing long DNA fragment amplification, 1 M betaine, 0.5 M betaine + 0.2 M sucrose, or 1 M betaine + 0.1 M sucrose can be used to effectively promote the amplification, while keep their negative effect in amplification of normal fragment to a minimal level.
Collapse
Affiliation(s)
- Binghua Xie
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, and College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jia Chen
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, and College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhounan Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, and College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qiao Yin
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, and College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhong-Min Dai
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, and College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Divakar S, Dhanalakshmi H, Sandeep N, Isloor S, Rashmi R, Ananda KJ, Reddy M. Dry LAMP: A point of care diagnostics for diagnosis of bovine tropical theileriosis. J Vector Borne Dis 2024; 61:357-363. [PMID: 39374493 DOI: 10.4103/0972-9062.392261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND OBJECTIVES Theileriosis is an important tick-bome hemoprotozoan disease of cattle which causes severe economic loss due to morbidity and mortality. A diagnostic test having high sensitivity, specificity and easy application at the field level is the need of the hour. In this regard Loop-mediated isothermal amplification (LAMP) is proven to be a sensitive, easy and time efficient method. One of the major obstacles for the application of LAMP is the difficulty in maintaining the cold chain to preserve reagents. Thus, the challenge is to develop a LAMP kit in a ready-to-use format with dried reagents useful for quick and simple application in field conditions. METHODS The optimized reaction of wet LAMP was followed for the standardization of dry LAMP with certain modifications which are needful. The major modification is vitrification technology of enzyme using trehalose. RESULTS LAMP assay (dry and wet LAMP) was found to be more sensitive (100%) when compared to microscopy (69.5%) and PCR (86.9%). It was observed that the dry LAMP reaction tubes at room temperature as well as refrigeration temperature provided successful amplification till 7 weeks. INTERPRETATION CONCLUSION The drying conditions of LAMP reagents were optimized, and finally managed to dry them in a single reaction tube without reducing the sensitivity. This technology enables us to transport LAMP kits to areas where the cold chain is not easily available.
Collapse
Affiliation(s)
- Sindhoora Divakar
- Department of Veterinary Parasitology, Veterinary College, Bengaluru, India
| | - H Dhanalakshmi
- Department of Veterinary Parasitology, Veterinary College, Bengaluru, India
| | - N Sandeep
- Department of Veterinary Parasitology, Veterinary College, Bengaluru, India
| | - Shrikrishna Isloor
- Department of Veterinary Microbiology, Veterinary College, Bengaluru, India
| | - R Rashmi
- Department of Veterinary Pharmacology, Veterinary College, Bengaluru, India
| | - K J Ananda
- Department of Veterinary Parasitology, Veterinary College, Shimogga, India
| | - Manjunatha Reddy
- National Institute of Veterinary Epidemiology and Disease Informatics, Yelhanka, Bengaluru, India
| |
Collapse
|
3
|
Yang Z, Yang J, Yue L, Shen B, Wang J, Miao Y, Ouyang R, Hu Y. Enhancement Effects and Mechanism Studies of Two Bismuth-Based Materials Assisted by DMSO and Glycerol in GC-Rich PCR. Molecules 2023; 28:molecules28114515. [PMID: 37298991 DOI: 10.3390/molecules28114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 06/12/2023] Open
Abstract
Polymerase chain reaction (PCR) has extensive bioanalytical applications in molecular diagnostics and genomic research studies for rapid detection and precise genomic amplification. Routine integrations for analytical workflow indicate certain limitations, including low specificity, efficiency, and sensitivity in conventional PCR, particularly towards amplifying high guanine-cytosine (GC) content. Further, there are many ways to enhance the reaction, for example, using different PCR strategies such as hot-start/touchdown PCR or adding some special modifications or additives such as organic solvents or compatible solutes, which can improve PCR yield. Due to the widespread use of bismuth-based materials in biomedicine, which have not yet been used for PCR optimization, this attracts our attention. In this study, two bismuth-based materials that are inexpensive and readily available were used to optimize GC-rich PCR. The results demonstrated that ammonium bismuth citrate and bismuth subcarbonate effectively enhanced PCR amplification of the GNAS1 promoter region (∼84% GC) and APOE (75.5% GC) gene of Homo sapiens mediated by Ex Taq DNA polymerase within the appropriate concentration range. Combining DMSO and glycerol additives was critical in obtaining the target amplicons. Thus, the solvents mixed with 3% DMSO and 5% glycerol were used in bismuth-based materials. That allowed for better dispersion of bismuth subcarbonate. As for the enhanced mechanisms, the surface interaction of PCR components, including Taq polymerase, primer, and products with bismuth-based materials, was maybe the main reason. The addition of materials can reduce the melting temperature (Tm), adsorb polymerase and modulate the amount of active polymerase in PCR, facilize the dissociation of DNA products, and enhance the specificity and efficiency of PCR. This work provided a class of candidate enhancers for PCR, deepened our understanding of the enhancement mechanisms of PCR, and also explored a new application field for bismuth-based materials.
Collapse
Affiliation(s)
- Zhu Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Junlei Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yihong Hu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Zhang J, Tang L, Liu D, Zhang S, Ding X, Gao G, Deng X, Liu Z, Tian X, He W, Hu B, Huang Z. Reducing COVID-19 diagnostic errors with dNTPαSe supplementation. Analyst 2023; 148:1214-1220. [PMID: 36825426 DOI: 10.1039/d2an01698b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Timely and accurate diagnosis of COVID-19 is critical for controlling the pandemic. As the standard method to diagnose SARS-CoV-2, the real-time reverse transcription polymerase chain reaction (RT-qPCR) has good convenience. However, RT-qPCR still has a relatively high false-negative rate, particularly in the case of detecting low viral loads. In this study, using selenium-modified nucleoside triphosphates (dNTPαSe) in the RT-PCR reactions, we successfully increased the detection sensitivity and reduced the false-negative rate in COVID-19 diagnosis. By detecting positive controls, pseudovirus, and clinical samples with the commercial kits, we found that the dNTPαSe supplementation to these kits could generally offer smaller Ct values, permit the viral detection even in single-digit copies, and increase the detection specificity, sensitivity, and accuracy, thereby reducing the false-negative rate. Our experimental results demonstrated that dNTPαSe supplementation can make the commercial kits more specific, sensitive, and accurate, and this method is a convenient and efficient strategy for the disease detection and diagnosis.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064. .,SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, China
| | - Ling Tang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064.
| | - Dan Liu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064.
| | - Shun Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064.
| | - Xiaoling Ding
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064.
| | - Guolong Gao
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), China.
| | - Xiaodong Deng
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), China.
| | - Zhengying Liu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064.
| | - Xi Tian
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064.
| | - Wei He
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), China.
| | - Bei Hu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064.
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China, 610064. .,SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Oligo replication advantage driven by GC content and Gibbs free energy. Biotechnol Lett 2022; 44:1189-1199. [PMID: 36029395 DOI: 10.1007/s10529-022-03295-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Large scale DNA oligo pools are emerging as a novel material in a variety of advanced applications. However, GC content and length cause significant bias in amplification of oligos. We systematically explored the amplification of one oligo pool comprising of over ten thousand distinct strands with moderate GC content in the range of 35-65%. Uniqual amplification of oligos result to the increased Gini index of the oligo distribution while a few oligos greatly increased their proportion after 60 cycles of PCR. However, the significantly enriched oligos all have relatively high GC content. Further thermodynamic analysis demonstrated that a high value of both GC content and Gibbs free energy could improve the replication of specific oligos during biased amplification. Therefore, this double-G (GC content and Gibbs free energy) driven replication advantage can be used as a guiding principle for the sequence design for a variety of applications, particularly for data storage.
Collapse
|
6
|
Su Y, Chu H, Tian J, Du Z, Xu W. Insight into the nanomaterials enhancement mechanism of nucleic acid amplification reactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Integrated and finger-actuated microfluidic chip for point-of-care testing of multiple pathogens. Talanta 2021; 224:121844. [DOI: 10.1016/j.talanta.2020.121844] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
|
8
|
Wibberg D, Price-Carter M, Rückert C, Blom J, Möbius P. Complete Genome Sequence of Ovine Mycobacterium avium subsp. paratuberculosis Strain JIII-386 (MAP-S/type III) and Its Comparison to MAP-S/type I, MAP-C, and M. avium Complex Genomes. Microorganisms 2020; 9:microorganisms9010070. [PMID: 33383865 PMCID: PMC7823733 DOI: 10.3390/microorganisms9010070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP) is a worldwide-distributed obligate pathogen in ruminants causing Johne’s disease. Due to a lack of complete subtype III genome sequences, there is not yet conclusive information about genetic differences between strains of cattle (MAP-C, type II) and sheep (MAP-S) type, and especially between MAP-S subtypes I, and III. Here we present the complete, circular genome of MAP-S/type III strain JIII-386 (DE) closed by Nanopore-technology and its comparison with MAP-S/type I closed genome of strain Telford (AUS), MAP-S/type III draft genome of strain S397 (U.S.), twelve closed MAP-C strains, and eight closed M.-a.-complex-strains. Structural comparative alignments revealed clearly the mosaic nature of MAP, emphasized differences between the subtypes and the higher diversity of MAP-S genomes. The comparison of various genomic elements including transposases and genomic islands provide new insights in MAP genomics. MAP type specific phenotypic features may be attributed to genes of known large sequence polymorphisms (LSPSs) regions I–IV and deletions #1 and #2, confirmed here, but could also result from identified frameshifts or interruptions of various virulence-associated genes (e.g., mbtC in MAP-S). Comprehensive core and pan genome analysis uncovered unique genes (e.g., cytochromes) and genes probably acquired by horizontal gene transfer in different MAP-types and subtypes, but also emphasized the highly conserved and close relationship, and the complex evolution of M.-a.-strains.
Collapse
Affiliation(s)
- Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33501 Bielefeld, Germany; (D.W.); (C.R.)
| | - Marian Price-Carter
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North 4442, New Zealand;
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Bielefeld University, 33501 Bielefeld, Germany; (D.W.); (C.R.)
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Gießen, D-35390 Gießen, Germany;
| | - Petra Möbius
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-(0)3641-8042280
| |
Collapse
|
9
|
Knapp J, Gottstein B, Bretagne S, Bart JM, Umhang G, Richou C, Bresson-Hadni S, Millon L. Genotyping Echinococcus multilocularis in Human Alveolar Echinococcosis Patients: An EmsB Microsatellite Analysis. Pathogens 2020; 9:pathogens9040282. [PMID: 32295095 PMCID: PMC7238142 DOI: 10.3390/pathogens9040282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
For clinical epidemiology specialists, connecting the genetic diversity of Echinococcusmultilocularis to sources of infection or particular sites has become somewhat of a holy grail. It is very difficult to trace the infection history of alveolar echinococcosis (AE) patients as there may be an incubation period of five to 15 years before reliable diagnosis. Moreover, the variability of parasitic manifestations in human patients raises the possibility of genetically different isolates of E. multilocularis having different levels of pathogenicity. Thus, the exposure of human patients to different strains or genotypes circulating in geographically different environments may lead to different disease outcomes. Molecular tools, such as the microsatellite marker EmsB, were required to investigate these aspects. This genetic marker was previously tested on a collection of 1211 European field samples predominantly of animal origin, referenced on a publicly available database. In this study, we investigated a panel of 66 metacestode samples (between 1981 and 2019) recovered surgically from 63 patients diagnosed with alveolar echinococcosis originating from four European countries (France, Switzerland, Germany, Belgium). In this study, we identified nine EmsB profiles, five of which were found in patients located in the same areas of France and Switzerland. One profile was detected on both sides of the French-Swiss border, whereas most patients from non-endemic regions clustered together in another profile. EmsB profiles appeared to remain stable over time because similar profiles were detected in patients who underwent surgery recently and patients who underwent surgery some time ago. This study sheds light on possible pathways of contamination in humans, including proximity contamination in some cases, and the dominant contamination profiles in Europe, particularly for extrahepatic lesions.
Collapse
Affiliation(s)
- Jenny Knapp
- UMR CNRS 6249 Laboratoire Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France; (S.B.-H.); (L.M.)
- Department of Parasitology-Mycology, National Reference Centre for Echinococcoses, University Hospital of Besançon, 25030 Besançon, France
- Correspondence: ; Tel.: +33-370-632-106
| | - Bruno Gottstein
- Institute for Infectious Diseases, Faculty of Medicine, University of Berne, 3001 Berne, Switzerland;
| | - Stéphane Bretagne
- Parasitology-Mycology Laboratory, Lariboisière-Saint Louis-Fernand Widal Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, 75475 Paris, France;
| | - Jean-Mathieu Bart
- UMR INTERTRYP, IRD/CIRAD, University of Montpellier, 34398 Montpellier, France;
| | - Gérald Umhang
- ANSES, Nancy Laboratory for Rabies and Wildlife, Wildlife Surveillance and Eco-Epidemiology Unit, Technopôle Agricole et Vétérinaire, B.P. 40009, 54220 Malzéville, France;
| | - Carine Richou
- Department of Hepatology, University Hospital of Besançon, 25000 Besançon, France;
| | - Solange Bresson-Hadni
- UMR CNRS 6249 Laboratoire Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France; (S.B.-H.); (L.M.)
- Department of Parasitology-Mycology, National Reference Centre for Echinococcoses, University Hospital of Besançon, 25030 Besançon, France
| | - Laurence Millon
- UMR CNRS 6249 Laboratoire Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France; (S.B.-H.); (L.M.)
- Department of Parasitology-Mycology, National Reference Centre for Echinococcoses, University Hospital of Besançon, 25030 Besançon, France
| |
Collapse
|
10
|
|
11
|
Tilak MK, Botero-Castro F, Galtier N, Nabholz B. Illumina Library Preparation for Sequencing the GC-Rich Fraction of Heterogeneous Genomic DNA. Genome Biol Evol 2018; 10:616-622. [PMID: 29385572 PMCID: PMC5808798 DOI: 10.1093/gbe/evy022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
Standard Illumina libraries are biased toward sequences of intermediate GC-content. This results in an underrepresentation of GC-rich regions in sequencing projects of genomes with heterogeneous base composition, such as mammals and birds. We developed a simple, cost-effective protocol to enrich sheared genomic DNA in its GC-rich fraction by subtracting AT-rich DNA. This was achieved by heating DNA up to 90 °C before applying Illumina library preparation. We tested the new approach on chicken DNA and found that heated DNA increased average coverage in the GC-richest chromosomes by a factor up to six. Using a Taq polymerase supposedly appropriate for PCR amplification of GC-rich sequences had a much weaker effect. Our protocol should greatly facilitate sequencing and resequencing of the GC-richest regions of heterogeneous genomes, in combination with standard short-read and long-read technologies.
Collapse
Affiliation(s)
- Marie-Ka Tilak
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Fidel Botero-Castro
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| | - Benoit Nabholz
- Institut des Sciences de l'Evolution, ISEM, Université de Montellier, CNRS, IRD, EPHE, France
| |
Collapse
|
12
|
Nichols RV, Vollmers C, Newsom LA, Wang Y, Heintzman PD, Leighton M, Green RE, Shapiro B. Minimizing polymerase biases in metabarcoding. Mol Ecol Resour 2018; 18:927-939. [PMID: 29797549 DOI: 10.1111/1755-0998.12895] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 01/24/2023]
Abstract
DNA metabarcoding is an increasingly popular method to characterize and quantify biodiversity in environmental samples. Metabarcoding approaches simultaneously amplify a short, variable genomic region, or "barcode," from a broad taxonomic group via the polymerase chain reaction (PCR), using universal primers that anneal to flanking conserved regions. Results of these experiments are reported as occurrence data, which provide a list of taxa amplified from the sample, or relative abundance data, which measure the relative contribution of each taxon to the overall composition of amplified product. The accuracy of both occurrence and relative abundance estimates can be affected by a variety of biological and technical biases. For example, taxa with larger biomass may be better represented in environmental samples than those with smaller biomass. Here, we explore how polymerase choice, a potential source of technical bias, might influence results in metabarcoding experiments. We compared potential biases of six commercially available polymerases using a combination of mixtures of amplifiable synthetic sequences and real sedimentary DNA extracts. We find that polymerase choice can affect both occurrence and relative abundance estimates and that the main source of this bias appears to be polymerase preference for sequences with specific GC contents. We further recommend an experimental approach for metabarcoding based on results of our synthetic experiments.
Collapse
Affiliation(s)
- Ruth V Nichols
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California
| | - Lee A Newsom
- Department of Social Sciences, Flagler College, St. Augustine, Florida
| | - Yue Wang
- Department of Geography, University of Wisconsin-Madison, Madison, Wisconsin
| | - Peter D Heintzman
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
- Tromsø University Museum, UiT - The Arctic University of Norway, Tromsø, Norway
| | - McKenna Leighton
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
13
|
Llerena JPP, Araújo P, Mazzafera P. Optimization of RT-PCR reactions in studies with genes of lignin biosynthetic route in Saccharum spontaneum. AN ACAD BRAS CIENC 2018; 90:509-519. [PMID: 29641770 DOI: 10.1590/0001-3765201820170250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022] Open
Abstract
Saccharum spontaneum has been used for the development of energy cane a crop aimed to be used for the production of second-generation ethanol, or lignocellulosic ethanol. Lignin is a main challenge in the conversion of cell wall sugars into ethanol. In our studies to isolate the genes the lignin biosynthesis in S. spontaneum we have had great difficulty in RT-PCR reactions. Thus, we evaluated the effectiveness of different additives in the amplification of these genes. While COMT and CCoAOMT genes did not need any additives for other genes there was no amplification (HCT, F5H, 4CL and CCR) or the yield was very low (CAD and C4H). The application of supplementary cDNA was enough to overcome the non-specificity and low yield for C4H and C3H, while the addition of 0.04% BSA + 2% formamide was effective to amplify 4CL, CCR, F5H and CCR. HCT was amplified only by addition of 0.04% BSA + 2% formamide + 0.1 M trehalose and amplification of PAL was possible with addition of 2% of DMSO. Besides optimization of expression assays, the results show that additives can act independently or synergistically.
Collapse
Affiliation(s)
- Juan P P Llerena
- Universidade Estadual de Campinas, Laboratório de Fisiologia Molecular das Plantas, Departamento de Biologia Vegetal, Instituto de Biologia, Rua Monteiro Lobato, 255, Caixa Postal 6109, 13083-862 Campinas, SP, Brazil
| | - Pedro Araújo
- Universidade Estadual de Campinas, Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Paulo Mazzafera
- Universidade Estadual de Campinas, Laboratório de Fisiologia Molecular das Plantas, Departamento de Biologia Vegetal, Instituto de Biologia, Rua Monteiro Lobato, 255, Caixa Postal 6109, 13083-862 Campinas, SP, Brazil.,Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Produção Vegetal, Av. Pádua Dias, 11, Caixa Postal 9, 34294-100 Piracicaba, SP, Brazil
| |
Collapse
|
14
|
Hallak LK, Berger K, Kaspar R, Kwilas AR, Montanaro F, Peeples ME. Efficient method for site-directed mutagenesis in large plasmids without subcloning. PLoS One 2017; 12:e0177788. [PMID: 28575024 PMCID: PMC5456045 DOI: 10.1371/journal.pone.0177788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/03/2017] [Indexed: 11/18/2022] Open
Abstract
Commonly used methods for site-directed DNA mutagenesis require copying the entire target plasmid. These methods allow relatively easy modification of DNA sequences in small plasmids but become less efficient and faithful for large plasmids, necessitating full sequence verification. Introduction of mutations in larger plasmids requires subcloning, a slow and labor-intensive process, especially for multiple mutations. We have developed an efficient DNA mutagenesis technique, UnRestricted Mutagenesis and Cloning (URMAC) that replaces subcloning steps with quick biochemical reactions. URMAC does not suffer from plasmid size constraints and allows simultaneous introduction of multiple mutations. URMAC involves manipulation of only the mutagenesis target site(s), not the entire plasmid being mutagenized, therefore only partial sequence verification is required. Basic URMAC requires two PCR reactions, each followed by a ligation reaction to circularize the product, with an optional third enrichment PCR step followed by a traditional cloning step that requires two restriction sites. Here, we demonstrate URMAC’s speed, accuracy, and efficiency through several examples, creating insertions, deletions or substitutions in plasmids ranging from 2.6 kb to 17 kb without subcloning.
Collapse
Affiliation(s)
- Louay K. Hallak
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- First Biotech Inc., Athens, Ohio, United States of America
- * E-mail:
| | - Kelly Berger
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heidelberg College, Tiffin, Ohio, United States of America
| | - Rita Kaspar
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Anna R. Kwilas
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Integrated Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Federica Montanaro
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
15
|
Byrne AQ, Rothstein AP, Poorten TJ, Erens J, Settles ML, Rosenblum EB. Unlocking the story in the swab: A new genotyping assay for the amphibian chytrid fungus
Batrachochytrium dendrobatidis. Mol Ecol Resour 2017; 17:1283-1292. [DOI: 10.1111/1755-0998.12675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/26/2016] [Accepted: 03/15/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Allison Q. Byrne
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
| | - Andrew P. Rothstein
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
| | - Thomas J. Poorten
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
| | - Jesse Erens
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
- Wageningen University Wageningen The Netherlands
| | | | - Erica Bree Rosenblum
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
| |
Collapse
|
16
|
Flores-Juárez CR, González-Jasso E, Antaramian A, Pless RC. PCR amplification of GC-rich DNA regions using the nucleotide analog N4-methyl-2'-deoxycytidine 5'-triphosphate. Biotechniques 2016; 61:175-182. [PMID: 27712580 DOI: 10.2144/000114457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/06/2016] [Indexed: 11/23/2022] Open
Abstract
GC-rich DNA regions were PCR-amplified with Taq DNA polymerase using either the canonical set of deoxynucleoside triphosphates or mixtures in which the dCTP had been partially or completely replaced by its N4-methylated analog, N4-methyl-2'-deoxycytidine 5'-triphosphate (N4me-dCTP). In the case of a particularly GC-rich region (78.9% GC), the PCR mixtures containing N4me-dCTP produced the expected amplicon in high yield, while mixtures containing the canonical set of nucleotides produced numerous alternative amplicons. For another GC-rich DNA region (80.6% GC), the target amplicon was only generated by re-amplifying a gel-purified sample of the original amplicon with N4me-dCTP-containing PCR mixtures. In a direct PCR comparison on a highly GC-rich template, mixtures containing N4me-dCTP clearly performed better than did solutions containing the canonical set of nucleotides mixed with various organic additives (DMSO, betaine, or ethylene glycol) that have been reported to resolve or alleviate problems caused by secondary structures in the DNA. This nucleotide analog was also tested in PCR amplification of DNA regions with intermediate GC content, producing the expected amplicon in each case with a melting temperature (Tm) clearly below the Tm of the same amplicon synthesized exclusively with the canonical bases.
Collapse
Affiliation(s)
| | - Eva González-Jasso
- CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro, 76090, Mexico
| | - Anaid Antaramian
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, 76230, Mexico
| | - Reynaldo C Pless
- CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro, 76090, Mexico
| |
Collapse
|
17
|
Guido N, Starostina E, Leake D, Saaem I. Improved PCR Amplification of Broad Spectrum GC DNA Templates. PLoS One 2016; 11:e0156478. [PMID: 27271574 PMCID: PMC4896431 DOI: 10.1371/journal.pone.0156478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10-90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content.
Collapse
Affiliation(s)
- Nicholas Guido
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Elena Starostina
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Devin Leake
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Ishtiaq Saaem
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
18
|
Molecular characterization of X chromosome fragility in idiopathic mental retardation. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
ALPER M, TOKAY E, KÖÇKAR F. Amplification of GC-rich ADAMTS-2 and URG4/URGCP promoter regions with optimized combination of PCR enhancers. Turk J Biol 2016. [DOI: 10.3906/biy-1502-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
20
|
Ingr M, Dostál J, Majerová T. Enzymological description of multitemplate PCR-Shrinking amplification bias by optimizing the polymerase-template ratio. J Theor Biol 2015; 382:178-86. [PMID: 26164060 DOI: 10.1016/j.jtbi.2015.06.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/17/2015] [Accepted: 06/28/2015] [Indexed: 11/19/2022]
Abstract
Multitemplate polymerase chain reaction (PCR) is used for preparative and analytical applications in diagnostics and research. Classical PCR and qPCR are two basic setups with many possible experimental modifications. Classical PCR is a method of choice to obtain enough material for subsequent sophisticated applications such as construction of libraries for next-generation sequencing or high-throughput screening. Sequencing and Single Nucleotide Primer Extension (SNuPE) employ one-strand synthesis and represent a distinct variant of analytical DNA synthesis. In all these applications, maintaining the initial ratio of templates and avoiding underestimation of minority templates is desired. Here, we demonstrate that different templates can amplify independently at low template concentrations (typical in qPCR setups, in which the polymerase concentration is usually several orders of magnitude higher than the template concentration). However, rare templates can be diluted in an effort to keep DNA amplification in the exponential phase, or template concentration can be biased by differences in amplification efficiency. Moreover, amplification of templates present in low concentrations is more vulnerable to stochastic events that lead to proportional changes in the product ratio, as well as by incomplete amplification leading to chimera formation. These undesired effects can be compensated for by using highly processive polymerases with high and equal affinity to different primer-template complexes. Novel enhanced polymerases are desired. With increasing concentration of a primer-template of interest, the system becomes more deterministic. Nevertheless, marked deviation from independent exponential amplification occurs when the total template concentration starts to approach the polymerase concentration. The primer-template complexes compete for enzyme molecules, and the amount of products grows arithmetically-the system starts to obey Michaelis-Menten kinetics. Synthesis of rare products in a multitemplate mixture can run more easily under the detection limit in such conditions, although it would be unequivocally detectable in a single template assay. When fishing out rare template variants, the best processive polymerases should be used to decrease both amplification and detection limits. The possibility of stochastic events, should be taken into account to correctly interpret the obtained data.
Collapse
Affiliation(s)
- Marek Ingr
- Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Jiří Dostál
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry of Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Taťána Majerová
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry of Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Prediction of success for polymerase chain reactions using the Markov maximal order model and support vector machine. J Theor Biol 2015; 369:51-8. [DOI: 10.1016/j.jtbi.2015.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/21/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022]
|
22
|
Kalle E, Kubista M, Rensing C. Multi-template polymerase chain reaction. BIOMOLECULAR DETECTION AND QUANTIFICATION 2014; 2:11-29. [PMID: 27896140 PMCID: PMC5121205 DOI: 10.1016/j.bdq.2014.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.
Collapse
Affiliation(s)
- Elena Kalle
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Allmas alle 5, 75007 Uppsala, Sweden
| | - Mikael Kubista
- TATAA Biocenter, Odinsgatan 28, 41103 Göteborg, Sweden; Institute of Biotechnology, Czech Academy of Sciences
| | - Christopher Rensing
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
23
|
Development and evaluation of a one step reverse transcription-loop mediated isothermal amplification assay (RT-LAMP) for rapid detection of foot and mouth disease virus in India. Virusdisease 2014; 25:358-64. [PMID: 25674604 DOI: 10.1007/s13337-014-0211-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/03/2014] [Indexed: 12/27/2022] Open
Abstract
A simple, rapid and sensitive diagnostic assay for Foot-and-mouth disease (FMD) is required for deployment in the field. In this study, development of Reverse Transcription-Loop Mediated Isothermal Amplification (RT-LAMP) assay based on the 3D polymerase gene for specific and rapid detection FMD virus (FMDV) was carried out. The assay was optimised with viral RNA extracted from serotype O, A and Asia 1 FMDV vaccine strains, which resulted a reliable amplification at 65 °C for 60 min. The amplified RT-LAMP products were identified by agarose gel electrophoresis with ethidium bromide staining or observation by naked eye for the presence of turbidity and colour change following the addition of hydroxyl naphthol blue (HNB). The specificity of the assay was demonstrated by the absence of amplification of genome extracted from other viruses or cellular origin. With respect to analytical sensitivity the developed RT-LAMP assay was found more sensitive than routinely used multiplex PCR (mPCR). Further, the assay was evaluated with RNA extracted from cell cultured isolates (n = 50), tongue epithelial samples (n = 150) and semen samples from infected bulls (n = 13). In conclusion, RT-LAMP with HNB dye was shown to be simple, specific and sensitive assay for rapid diagnosis of FMDV infection. Further, the assay has the potential for field deployment and use for rapid FMDV surveillance in India.
Collapse
|
24
|
The detection of T-Nos, a genetic element present in GMOs, by cross-priming isothermal amplification with real-time fluorescence. Anal Bioanal Chem 2014; 406:3069-78. [PMID: 24748469 DOI: 10.1007/s00216-014-7735-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/15/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06 × 10(3) copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.
Collapse
|
25
|
Tan MH, Gécz J, Shoubridge C. PCR amplification and sequence analysis of GC-rich sequences: Aristaless-related homeobox example. Methods Mol Biol 2014; 1017:105-20. [PMID: 23719911 DOI: 10.1007/978-1-62703-438-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
PCR amplification (followed by mutation scanning or direct sequencing) is a technique widely used in mutation detection and molecular studies of disease-causing genes, such as ARX. PCR amplification of high GC-rich regions encounters difficulties using conventional PCR procedures. Here, we present the strategies to amplify and sequence these GC-rich regions for the purposes of mutation screening and other molecular analyses.
Collapse
Affiliation(s)
- May H Tan
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | | | | |
Collapse
|
26
|
Colman DR, Garcia JR, Crossey LJ, Karlstrom K, Jackson-Weaver O, Takacs-Vesbach C. An analysis of geothermal and carbonic springs in the western United States sustained by deep fluid inputs. GEOBIOLOGY 2014; 12:83-98. [PMID: 24286205 DOI: 10.1111/gbi.12070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
Hydrothermal springs harbor unique microbial communities that have provided insight into the early evolution of life, expanded known microbial diversity, and documented a deep Earth biosphere. Mesothermal (cool but above ambient temperature) continental springs, however, have largely been ignored although they may also harbor unique populations of micro-organisms influenced by deep subsurface fluid mixing with near surface fluids. We investigated the microbial communities of 28 mesothermal springs in diverse geologic provinces of the western United States that demonstrate differential mixing of deeply and shallowly circulated water. Culture-independent analysis of the communities yielded 1966 bacterial and 283 archaeal 16S rRNA gene sequences. The springs harbored diverse taxa and shared few operational taxonomic units (OTUs) across sites. The Proteobacteria phylum accounted for most of the dataset (81.2% of all 16S rRNA genes), with 31 other phyla/candidate divisions comprising the remainder. A small percentage (~6%) of bacterial 16S rRNA genes could not be classified at the phylum level, but were mostly distributed in those springs with greatest inputs of deeply sourced fluids. Archaeal diversity was limited to only four springs and was primarily composed of well-characterized Thaumarchaeota. Geochemistry across the dataset was varied, but statistical analyses suggested that greater input of deeply sourced fluids was correlated with community structure. Those with lesser input contained genera typical of surficial waters, while some of the springs with greater input may contain putatively chemolithotrophic communities. The results reported here expand our understanding of microbial diversity of continental geothermal systems and suggest that these communities are influenced by the geochemical and hydrologic characteristics arising from deeply sourced (mantle-derived) fluid mixing. The springs and communities we report here provide evidence for opportunities to understand new dimensions of continental geobiological processes where warm, highly reduced fluids are mixing with more oxidized surficial waters.
Collapse
MESH Headings
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Biota
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Hot Springs/chemistry
- Hot Springs/microbiology
- Molecular Sequence Data
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- United States
Collapse
Affiliation(s)
- D R Colman
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kim RQ, Offen WA, Davies GJ, Stubbs KA. Structural enzymology of Helicobacter pylori methylthioadenosine nucleosidase in the futalosine pathway. ACTA ACUST UNITED AC 2013; 70:177-85. [PMID: 24419390 DOI: 10.1107/s1399004713026655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/26/2013] [Indexed: 11/11/2022]
Abstract
The recently discovered futalosine pathway is a promising target for the development of new antibiotics. The enzymes involved in this pathway are crucial for the biosynthesis of the essential prokaryotic respiratory compound menaquinone, and as the pathway is limited to few bacterial species such as the gastric pathogen Helicobacter pylori it is a potential target for specific antibiotics. In this report, the crystal structure of an H. pylori methylthioadenosine nucleosidase (MTAN; an enzyme with broad specificity and activity towards 6-amino-6-deoxyfutalosine), which is involved in the second step of menaquinone biosynthesis, has been elucidated at a resolution of 1.76 Å and refined with R factors of Rwork = 17% and Rfree = 21%. Activity studies on the wild type and active-site mutants show that the hydrolysis of 6-amino-6-deoxyfutalosine follows a mechanism similar to that of Escherichia coli MTAN. Further evidence for this mode of action is supplied by the crystal structures of active-site mutants. Through the use of reaction intermediates, the structures give additional evidence for the previously proposed nucleosidase mechanism. These structures and the confirmed reaction mechanism will provide a structural basis for the design of new inhibitors targeting the futalosine pathway.
Collapse
Affiliation(s)
- Robbert Q Kim
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Wendy A Offen
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Keith A Stubbs
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
28
|
Kalle E, Gulevich A, Rensing C. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates. J Microbiol Methods 2013; 95:285-94. [PMID: 24076226 DOI: 10.1016/j.mimet.2013.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products.
Collapse
Affiliation(s)
- Elena Kalle
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Allmas alle 5, 75007 Uppsala, Sweden.
| | | | | |
Collapse
|
29
|
Abstract
Researchers face a significant problem in PCR amplification of DNA fragments with high GC contents. Analysis of these regions is of importance since many regulatory regions of different genes and their first exons are GC-rich. There are a large number of protocols for amplification of GC-rich DNA, some of which perform well but are costly. Most of the economical protocols fail to perform consistently, especially on products with >80 % GC contents and a size of >300 bp. One of these protocols requires multiple additions of DNA polymerase during thermal cycling which therefore rules out its utility if a large number of samples have to be amplified. We have established a method for simultaneous amplification of specific PCR products from a large number of human DNA samples using general laboratory reagents. These amplicons have GC contents ranging from 65-85 % and sizes up to 870 bp. The protocol uses a PCR buffer containing co-solvents including 2-mercaptoethanol and bovine serum albumin for amplification of DNA. A specific thermal cycling profile is also used which incorporates a high annealing temperature in the first 7 cycles of the reactions. The PCR products are suitable for different molecular biology applications including sequencing.
Collapse
Affiliation(s)
- Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan.
| | | |
Collapse
|
30
|
Bhagya CHWMRC, Wijesundera Sulochana WS, Hemamali NP. Polymerase chain reaction optimization for amplification of Guanine-Cytosine rich templates using buccal cell DNA. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:78-83. [PMID: 23901197 PMCID: PMC3722634 DOI: 10.4103/0971-6866.112898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CONTEXT Amplification of Guanine-Cytosine (GC) -rich sequences becomes important in screening and diagnosis of certain genetic diseases such as diseases arising due to expansion of GC-rich trinucleotide repeat regions. However, GC-rich sequences in the genome are refractory to standard polymerase chain reaction (PCR) amplification and require a special reaction conditions and/or modified PCR cycle parameters. AIM Optimize a cost effective PCR assay to amplify the GC-rich DNA templates. SETTINGS AND DESIGN Fragile X mental retardation gene (FMR 1) is an ideal candidate for PCR optimization as its GC content is more than 80%. Primers designed to amplify the GC rich 5' untranslated region of the FMR 1 gene, was selected for the optimization of amplification using DNA extracted from buccal mucosal cells. MATERIALS AND METHODS A simple and rapid protocol was used to extract DNA from buccal cells. PCR optimization was carried out using three methods, (a) substituting a substrate analog 7-deaza-dGTP to dGTP (b) in the presence of a single PCR additive and (c) using a combination of PCR additives. All PCR amplifications were carried out using a low-cost thermostable polymerase. RESULTS Optimum PCR conditions were achieved when a combination of 1M betaine and 5% dimethyl sulfoxide (DMSO) was used. CONCLUSIONS It was possible to amplify the GC rich region of FMR 1 gene with reproducibility in the presence of betaine and DMSO as additives without the use of commercially available kits for DNA extraction and the expensive thermostable polymerases.
Collapse
|
31
|
Suebsing R, Prombun P, Srisala J, Kiatpathomchai W. Loop-mediated isothermal amplification combined with colorimetric nanogold for detection of the microsporidian Enterocytozoon hepatopenaei in penaeid shrimp. J Appl Microbiol 2013; 114:1254-63. [PMID: 23387348 DOI: 10.1111/jam.12160] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/01/2022]
Abstract
AIMS Enterocytozoon hepatopenaei is an emerging microsporidian parasite that has been linked to recent losses caused by white faeces syndrome (WFS) in cultivated giant or black tiger shrimp Penaeus (Penaeus) monodon and whiteleg shrimp Penaeus (Litopenaeus) vannamei in Asia. To more accurately assess its impact on shrimp production and to determine reservoir carriers for control measures, our objective was to establish a loop-mediated isothermal amplification (LAMP) assay combined with colorimetric nanogold (AuNP) for rapid, sensitive and inexpensive detection of this parasite. METHODS AND RESULTS A set of six specific primers was designed to successfully detect the SSU rRNA gene of E. hepatopenaei by a LAMP reaction of 45 in at 65°C combined with visual detection of the amplification product via hybridization at 65°C for 5 min with a ssDNA-labelled nanogold probe, followed by salt-induced AuNP aggregation (total assay time, approximately 50 min). This method gave similar results to LAMP followed by electrophoresis or spectrophotometric detection, and it was more sensitive (0·02 fg total DNA) than a conventional nested PCR (0·2 fg total DNA). The new method gave negative results with shrimp DNA templates extracted from diseased shrimp containing other pathogens, indicating that the LAMP-AuNP assay was specific for E. hepatopenaei. CONCLUSIONS Without sacrificing sensitivity or specificity, the new LAMP-AuNP assay significantly reduced the time, ease and cost for molecular detection of E. hepatopenaei in shrimp. SIGNIFICANCE AND IMPACT OF THE STUDY The new method employs simple, inexpensive equipment and involves simple steps making it applicable for small field laboratories. Wider application of the method to screen broodstock before use in a hatchery, to screen postlarvae before stocking shrimp ponds, to test for natural carriers and to monitor shrimp in rearing ponds would help to assess and reduce the negative impact of this parasite in shrimp farming.
Collapse
Affiliation(s)
- R Suebsing
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
32
|
Chooi KM, Cohen D, Pearson MN. Molecular characterisation of two divergent variants of grapevine leafroll-associated virus 3 in New Zealand. Arch Virol 2013; 158:1597-602. [PMID: 23408128 DOI: 10.1007/s00705-013-1631-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Partial genomic sequences of two divergent grapevine leafroll-associated virus 3 (GLRaV-3) variants, NZ1-B and NZ2, from New Zealand were determined and analysed (11,827 nt and 7,612 nt, respectively). At the nucleotide level, both variants are more than 20 % different from the previously published GLRaV-3 sequences, from phylogenetic groups 1 to 5. Phylogenetic analysis indicated that NZ1-B is a variant of the previously identified divergent NZ-1, while NZ2 is a novel sequence with only 76 % nucleotide sequence identity to GLRaV-3 variants NZ-1, GH11, and GH30. Therefore, NZ2 is a new variant of GLRaV-3. Amino acid sequence analysis of the NZ1-B and NZ2 coat proteins indicated significant substitutions that are predicted to alter the coat protein structure, which potentially leads to the observed reduced immunological reactivity of both variants to the Bioreba anti-GLRaV-3 conjugated monoclonal antibody.
Collapse
Affiliation(s)
- Kar Mun Chooi
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
33
|
Veal CD, Freeman PJ, Jacobs K, Lancaster O, Jamain S, Leboyer M, Albanes D, Vaghela RR, Gut I, Chanock SJ, Brookes AJ. A mechanistic basis for amplification differences between samples and between genome regions. BMC Genomics 2012; 13:455. [PMID: 22950736 PMCID: PMC3469336 DOI: 10.1186/1471-2164-13-455] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/28/2012] [Indexed: 11/22/2022] Open
Abstract
Background For many analytical methods the efficiency of DNA amplification varies across the genome and between samples. The most affected genome regions tend to correlate with high C + G content, however this relationship is complex and does not explain why the direction and magnitude of effects varies considerably between samples. Results Here, we provide evidence that sequence elements that are particularly high in C + G content can remain annealed even when aggressive melting conditions are applied. In turn, this behavior creates broader ‘Thermodynamically Ultra-Fastened’ (TUF) regions characterized by incomplete denaturation of the two DNA strands, so reducing amplification efficiency throughout these domains. Conclusions This model provides a mechanistic explanation for why some genome regions are particularly difficult to amplify and assay in many procedures, and importantly it also explains inter-sample variability of this behavior. That is, DNA samples of varying quality will carry more or fewer nicks and breaks, and hence their intact TUF regions will have different lengths and so be differentially affected by this amplification suppression mechanism – with ‘higher’ quality DNAs being the most vulnerable. A major practical consequence of this is that inter-region and inter-sample variability can be largely overcome by employing routine fragmentation methods (e.g. sonication or restriction enzyme digestion) prior to sample amplification.
Collapse
Affiliation(s)
- Colin D Veal
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cao X, Shen M, Zhang X, Hu J, Wang J, Shi X. Effect of the surface functional groups of dendrimer-entrapped gold nanoparticles on the improvement of PCR. Electrophoresis 2012; 33:2598-603. [DOI: 10.1002/elps.201200061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xueyan Cao
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai; People's Republic of China
| | - Mingwu Shen
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai; People's Republic of China
| | - Xiaodong Zhang
- Nanobiology Laboratory,; Bio-X Life Science Research Center; College of Life Science and Biotechnology; Shanghai JiaoTong University; Shanghai; People's Republic of China
| | | | - Jianhua Wang
- Department of Biochemistry and Molecular & Cell Biology; School of Medicine; Shanghai Jiao Tong University; Shanghai; People's Republic of China
| | | |
Collapse
|
35
|
Abstract
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: • Set up reactions and thermal cycling conditions for a conventional PCR experiment • Understand the function of various reaction components and their overall effect on a PCR experiment • Design and optimize a PCR experiment for any DNA template • Troubleshoot failed PCR experiments.
Collapse
Affiliation(s)
- Todd C Lorenz
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA.
| |
Collapse
|
36
|
Birdsell DN, Pearson T, Price EP, Hornstra HM, Nera RD, Stone N, Gruendike J, Kaufman EL, Pettus AH, Hurbon AN, Buchhagen JL, Harms NJ, Chanturia G, Gyuranecz M, Wagner DM, Keim PS. Melt analysis of mismatch amplification mutation assays (Melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models. PLoS One 2012; 7:e32866. [PMID: 22438886 PMCID: PMC3306377 DOI: 10.1371/journal.pone.0032866] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 02/01/2012] [Indexed: 11/18/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA), is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ∼50% to ∼80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (∼100 ng to ∼0.1 pg). Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs) and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of Melt-MAMA, which should prove useful to the wider scientific community.
Collapse
Affiliation(s)
- Dawn N. Birdsell
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Talima Pearson
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Erin P. Price
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Heidie M. Hornstra
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Roxanne D. Nera
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Nathan Stone
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jeffrey Gruendike
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Emily L. Kaufman
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Amanda H. Pettus
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Audriana N. Hurbon
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jordan L. Buchhagen
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - N. Jane Harms
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gvantsa Chanturia
- National Center for Disease Control and Public Health and Ilia State University, Tbilisi, Georgia, United States of America
| | - Miklos Gyuranecz
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - David M. Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Paul S. Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
37
|
Hagihara M, Takei A, Ishii T, Hayashi F, Kubota K, Wakamatsu K, Nameki N. Inhibitory effects of choline-O-sulfate on amyloid formation of human islet amyloid polypeptide. FEBS Open Bio 2012; 2:20-5. [PMID: 23650576 PMCID: PMC3642097 DOI: 10.1016/j.fob.2012.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/11/2012] [Accepted: 02/15/2012] [Indexed: 11/14/2022] Open
Abstract
Choline-O-sulfate (2-(trimethylammonio)ethyl sulfate, COS) is a naturally occurring osmolyte that is synthesized by plants, lichens, algae, fungi, and several bacterial species. We examined the inhibitory effects of COS on amyloid formation of the human islet amyloid polypeptide (hIAPP or amylin) using a thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy and transmission electron microscopy. The results showed that COS suppresses a conformational change of hIAPP from a random coil to a β-sheet structure, resulting in the inhibition of amyloid formation. Comparisons with various structural analogs including carnitine, acetylcholine and non-detergent sulfobetaines (NDSBs) using the ThT fluorescence assay showed that COS is the most effective inhibitor of hIAPP amyloid formation, suggesting that the sulfate group, which is unique to COS, significantly contributes to the inhibition.
Collapse
Key Words
- Aggregation inhibitor
- Amyloid formation
- CD, circular dichroism
- COS, choline-O-sulfate
- Choline-O-sulfate
- HFIP, 1,1,1,3,3,3-hexafluoro-2-propanol
- Islet amyloid polypeptide
- NDSB, non-detergent sulfobetaine
- Osmolyte
- TEM, transmission electron microscopy
- ThT, thioflavin T
- hIAPP, human islet amyloid polypeptide
Collapse
Affiliation(s)
- Mamoru Hagihara
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Multiplex time-reducing quantitative polymerase chain reaction assay for determination of telomere length in blood and tissue DNA. Anal Bioanal Chem 2012; 403:157-66. [PMID: 22327932 DOI: 10.1007/s00216-012-5783-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
In this paper we describe a multiplex time-reducing quantitative polymerase chain reaction (qPCR) method for determination of telomere length. This multiplex qPCR assay enables two pairs of primers to simultaneously amplify telomere and single copy gene (albumin) templates, thus reducing analysis time and labor compared with the previously established singleplex assay. The chemical composition of the master mix and primers for the telomere and albumin were systematically optimized. The thermal cycling program was designed to ensure complete separation of the melting processes of the telomere and albumin. Semi-log standard curves of DNA concentration versus cycle threshold (C (t)) were established, with a linear relationship over an 81-fold DNA concentration range. The well-performed intra-assay (RSD range 2.4-4.7%) and inter-assay (RSD range: 3.1-5.0%) reproducibility were demonstrated to ensure measurement stability. Using wild-type, Lewis lung carcinoma and H22 liver carcinoma C57BL/6 mouse models, significantly different telomere lengths among different DNA samples were not observed in wild-type mice. However, the relative telomere lengths of the tumor DNA in the two strains of tumor-bearing mice were significantly shorter than the lengths in the surrounding non-tumor DNA of tumor-bearing mice and the tissue DNA of wild-type mice. These results suggest that the shortening of telomere lengths may be regarded as an important indicator for cancer control and prevention. Quantification of telomere lengths was further confirmed by the traditional Southern blotting method. This method could be successfully used to reduce the time needed for rapid, precise measurement of telomere lengths in biological samples.
Collapse
|
39
|
Xu G, Hu L, Zhong H, Wang H, Yusa SI, Weiss TC, Romaniuk PJ, Pickerill S, You Q. Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Sci Rep 2012; 2:246. [PMID: 22355758 PMCID: PMC3271364 DOI: 10.1038/srep00246] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/13/2012] [Indexed: 11/09/2022] Open
Abstract
CPA is a class of isothermal amplification reactions that is carried out by a strand displacement DNA polymerase and does not require an initial denaturation step or the addition of a nicking enzyme. At the assay temperature of 63°C, the formation of a primer-template hybrid at transient, spontaneous denaturation bubbles in the DNA template is favored over re-annealing of the template strands by the high concentration of primer relative to template DNA. Strand displacement is encouraged by the annealing of cross primers with 5' ends that are not complementary to the template strand and the binding of a displacement primer upstream of the crossing primer. The resulting exponential amplification of target DNA is highly specific and highly sensitive, producing amplicons from as few as four bacterial cells. Here we report on the basic CPA mechanism - single crossing CPA - and provide details on alternative mechanisms.
Collapse
Affiliation(s)
- Gaolian Xu
- Ustar Biotechnologies (Hangzhou), Ltd., Hangzhou, Zhejiang, 310012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Szymczak-Workman AL, Vignali KM, Vignali DAA. Generation of 2A-linked multicistronic cassettes by recombinant PCR. Cold Spring Harb Protoc 2012; 2012:251-254. [PMID: 22301657 DOI: 10.1101/pdb.prot067884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector. This protocol describes the use of recombinant polymerase chain reaction (PCR) to connect multiple 2A-linked protein sequences. The final construct is subcloned into an expression vector.
Collapse
|
41
|
Orpana AK, Ho TH, Stenman J. Multiple heat pulses during PCR extension enabling amplification of GC-rich sequences and reducing amplification bias. Anal Chem 2012; 84:2081-7. [PMID: 22220596 DOI: 10.1021/ac300040j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PCR amplification over GC-rich and/or long repetitive sequences is challenging because of thermo-stable structures resulting from incomplete denaturation, reannealing, and self-annealing of target sequences. These structures block the DNA polymerase during the extension step, leading to formation of incomplete extension products and favoring amplification of nonspecific products rather than specific ones. We have introduced multiple heat pulses in the extension step of a PCR cycling protocol to temporarily destabilize such blocking structures, in order to enhance DNA polymerase extension over GC-rich sequences. With this novel type of protocol, we were able to amplify all expansions of CGG repeats in five Fragile X cell lines, as well as extremely GC-rich nonrepetitive segments of the GNAQ and GP1BB genes. The longest Fragile X expansion contained 940 CGG repeats, corresponding to about 2.8 kilo bases of 100% GC content. For the GNAQ and GP1BB genes, different length PCR products in the range of 700 bases to 2 kilobases could be amplified without addition of cosolvents. As this technique improves the balance of amplification efficiencies between GC-rich target sequences of different length, we were able to amplify all of the allelic expansions even in the presence of the unexpanded allele.
Collapse
Affiliation(s)
- Arto K Orpana
- HUSLAB, Laboratory of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
42
|
Shi Y, Liu YL, Lai PY, Tseng MC, Tseng MJ, Li Y, Chu YH. Ionic liquids promote PCR amplification of DNA. Chem Commun (Camb) 2012; 48:5325-7. [DOI: 10.1039/c2cc31740k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Liang G, Ma C, Zhu Y, Li S, Shao Y, Wang Y, Xiao Z. Enhanced Specificity of Multiplex Polymerase Chain Reaction via CdTe Quantum Dots. NANOSCALE RESEARCH LETTERS 2011; 6:51. [PMID: 27502673 PMCID: PMC3212025 DOI: 10.1007/s11671-010-9797-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/10/2010] [Indexed: 05/14/2023]
Abstract
Nanoparticles were recently reported to be able to improve both efficiency and specificity in polymerase chain reaction (PCR). Here, CdTe QDs were introduced into multi-PCR systems. It was found that an appropriate concentration of CdTe QDs could enhance the performance of multi-PCR by reducing the formation of nonspecific products in the complex system, but an excessive amount of CdTe QDs could suppress the PCR. The effects of QDs on PCR can be reversed by increasing the polymerase concentration or by adding bovine serum albumin (BSA). The mechanisms underlying these effects were also discussed. The results indicated that CdTe QDs could be used to optimize the amplification products of the PCR, especially in the multi-PCR system with different primers annealing temperatures, which is of great significance for molecular diagnosis.
Collapse
Affiliation(s)
- Gaofeng Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou2#, 210096, Nanjing, China
| | - Chao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou2#, 210096, Nanjing, China
| | - Yanliang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou2#, 210096, Nanjing, China
| | - Shuchun Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou2#, 210096, Nanjing, China
| | - Youhua Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou2#, 210096, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou2#, 210096, Nanjing, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou2#, 210096, Nanjing, China.
| |
Collapse
|
44
|
Mallona I, Weiss J, Egea-Cortines M. pcrEfficiency: a Web tool for PCR amplification efficiency prediction. BMC Bioinformatics 2011; 12:404. [PMID: 22014212 PMCID: PMC3234296 DOI: 10.1186/1471-2105-12-404] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/20/2011] [Indexed: 12/13/2022] Open
Abstract
Background Relative calculation of differential gene expression in quantitative PCR reactions requires comparison between amplification experiments that include reference genes and genes under study. Ignoring the differences between their efficiencies may lead to miscalculation of gene expression even with the same starting amount of template. Although there are several tools performing PCR primer design, there is no tool available that predicts PCR efficiency for a given amplicon and primer pair. Results We have used a statistical approach based on 90 primer pair combinations amplifying templates from bacteria, yeast, plants and humans, ranging in size between 74 and 907 bp to identify the parameters that affect PCR efficiency. We developed a generalized additive model fitting the data and constructed an open source Web interface that allows the obtention of oligonucleotides optimized for PCR with predicted amplification efficiencies starting from a given sequence. Conclusions pcrEfficiency provides an easy-to-use web interface allowing the prediction of PCR efficiencies prior to web lab experiments thus easing quantitative real-time PCR set-up. A web-based service as well the source code are provided freely at http://srvgen.upct.es/efficiency.html under the GPL v2 license.
Collapse
Affiliation(s)
- Izaskun Mallona
- Genetics, Institute of Plant Biotechnology (IBV), Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain.
| | | | | |
Collapse
|
45
|
Michalska B, Sobolewski I, Polska K, Zielonka J, Zylicz-Stachula A, Skowron P, Rak J. PCR synthesis of double stranded DNA labeled with 5-bromouridine. A step towards finding a bromonucleoside for clinical trials. J Pharm Biomed Anal 2011; 56:671-7. [PMID: 21840661 DOI: 10.1016/j.jpba.2011.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/08/2011] [Accepted: 07/22/2011] [Indexed: 11/24/2022]
Abstract
Incorporation of 5-bromouridine (5BrdU) into DNA makes it sensitive to UV and ionizing radiation, which opens up a prospective route for the clinical usage of 5-bromouridine and other halonucleosides. In the present work the polymerase chain reaction (PCR) protocol, which enables a long DNA fragment (resembling DNA synthesized in the cell in the presence of halonucleosides) to be completely substituted with 5BrdU, was optimized. Using HPLC coupled to enzymatic digestion, it was demonstrated that the actual amounts of native nucleosides and 5BrdU correspond very well to those calculated from the sequence of PCR products. The synthesized DNA is photosensitive to photons of 300nm. HPLC analysis demonstrated that the photolysis of labeled PCR products leads to a significant decrease in the 5BrdU signal and the simultaneous occurrence of a uridine peak. Agarose and polyacrylamide gel electrophoresis suggest that single strand breaks and cross-links are formed as a result of UV irradiation. The PCR protocol described in the current paper may be employed for labeling DNA not only with BrdU but also with other halonucleosides.
Collapse
Affiliation(s)
- Barbara Michalska
- Department of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
46
|
Wade WG. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? J Clin Periodontol 2011; 38 Suppl 11:7-16. [PMID: 21323699 DOI: 10.1111/j.1600-051x.2010.01679.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Only around half of oral bacteria can be grown in the laboratory using conventional culture methods. Molecular methods based on 16S rRNA gene sequence are now available and are being used to characterize the periodontal microbiota in its entirety. AIM This review describes the cultural characterization of the oral and periodontal microbiotas and explores the influence of the additional data now available from culture-independent molecular analyses on current thinking on the role of bacteria in periodontitis. RESULTS Culture-independent molecular analysis of the periodontal microbiota has shown it to be far more diverse than previously thought. A number of species including some that have yet to be cultured are as strongly associated with disease as those organisms traditionally regarded as periodontal pathogens. Sequencing of bacterial genomes has revealed a high degree of intra-specific genetic diversity. CONCLUSIONS The use of molecular methods for the characterization of the periodontal microbiome has greatly expanded the range of bacterial species known to colonize this habitat. Understanding the interactions between the human host and its commensal bacterial community at the functional level is a priority.
Collapse
|
47
|
Stengel G, Purse BW, Kuchta RD. Effect of transition metal ions on the fluorescence and Taq-catalyzed polymerase chain reaction of tricyclic cytidine analogs. Anal Biochem 2011; 416:53-60. [PMID: 21600183 DOI: 10.1016/j.ab.2011.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/14/2011] [Accepted: 04/21/2011] [Indexed: 12/11/2022]
Abstract
The cytosine analogs 1,3-diaza-2-oxophenothiazine (tC) and 1,3-diaza-2-oxophenoxazine (tCo) stand out among fluorescent bases due to their unquenched fluorescence emission in double-stranded DNA. Recently, we reported a method for the generation of densely tCo-labeled DNA by polymerase chain reaction (PCR) that relied on the use of the extremely thermostable Deep Vent polymerase. We have now developed a protocol that employs the more commonly used Taq polymerase. Supplementing the PCR with Mn(2+) or Co(2+) ions dramatically increased the amount of tCo triphosphate (dtCoTP) incorporated and, thus, enhanced the brightness of the PCR products. The resulting PCR products could be easily detected in gels based on their intrinsic fluorescence. The Mn(2+) ions modulate the PCR by improving the bypass of template tCo and the overall catalytic efficiency. In contrast to the lower fidelity during tCo bypass, Mn(2+) improved the ability of Taq polymerase to distinguish between dtCoTP and dTTP when copying a template dA. Interestingly, Mn(2+) ions hardly affect the fluorescence emission of tC(o), whereas the coordination of Co(2+) ions with the phosphate groups of DNA and nucleotides statically quenches tC(o) fluorescence with small reciprocal Stern-Vollmer constants of 10-300μM.
Collapse
Affiliation(s)
- Gudrun Stengel
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
48
|
Horáková H, Polakovičová I, Shaik GM, Eitler J, Bugajev V, Dráberová L, Dráber P. 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnol 2011; 11:41. [PMID: 21501492 PMCID: PMC3102612 DOI: 10.1186/1472-6750-11-41] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 04/18/2011] [Indexed: 12/04/2022] Open
Abstract
Background Quantitative real-time PCR (qPCR) is becoming increasingly important for DNA genotyping and gene expression analysis. For continuous monitoring of the production of PCR amplicons DNA-intercalating dyes are widely used. Recently, we have introduced a new qPCR mix which showed improved amplification of medium-size genomic DNA fragments in the presence of DNA dye SYBR green I (SGI). In this study we tested whether the new PCR mix is also suitable for other DNA dyes used for qPCR and whether it can be applied for amplification of DNA fragments which are difficult to amplify. Results We found that several DNA dyes (SGI, SYTO-9, SYTO-13, SYTO-82, EvaGreen, LCGreen or ResoLight) exhibited optimum qPCR performance in buffers of different salt composition. Fidelity assays demonstrated that the observed differences were not caused by changes in Taq DNA polymerase induced mutation frequencies in PCR mixes of different salt composition or containing different DNA dyes. In search for a PCR mix compatible with all the DNA dyes, and suitable for efficient amplification of difficult-to-amplify DNA templates, such as those in whole blood, of medium size and/or GC-rich, we found excellent performance of a PCR mix supplemented with 1 M 1,2-propanediol and 0.2 M trehalose (PT enhancer). These two additives together decreased DNA melting temperature and efficiently neutralized PCR inhibitors present in blood samples. They also made possible more efficient amplification of GC-rich templates than betaine and other previously described additives. Furthermore, amplification in the presence of PT enhancer increased the robustness and performance of routinely used qPCRs with short amplicons. Conclusions The combined data indicate that PCR mixes supplemented with PT enhancer are suitable for DNA amplification in the presence of various DNA dyes and for a variety of templates which otherwise can be amplified with difficulty.
Collapse
Affiliation(s)
- Helena Horáková
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
49
|
Cao X, Chen J, Wen S, Peng C, Shen M, Shi X. Effect of surface charge of polyethyleneimine-modified multiwalled carbon nanotubes on the improvement of polymerase chain reaction. NANOSCALE 2011; 3:1741-1747. [PMID: 21340081 DOI: 10.1039/c0nr00833h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In molecular biology, polymerase chain reaction (PCR) has played an important role but suffers a general problem with low efficiency and specificity. Development of suitable additives to improve the PCR specificity and efficiency and the understanding of the PCR enhancing mechanism still remain a great challenge. Here we report the use of polyethyleneimine (PEI)-modified multiwalled carbon nanotubes (MWCNTs) with different surface charge polarities as a novel class of enhancers to improve the specificity and efficiency of PCR. The materials used included the positively charged PEI-modified MWCNTs (CNT/PEI), the neutral CNT/PEI modified with acetic anhydride (CNT/PEI.Ac), and the negatively charged CNT/PEI modified with succinic anhydride (CNT/PEI.SAH). We show that the specificity and efficiency of an error-prone two-round PCR are greatly impacted by the surface charge polarity of the PEI-modified MWCNTs. Positively charged CNT/PEI could significantly enhance the specificity and efficiency of PCR with an optimum concentration as low as 0.39 mg L(-1), whereas neutral CNT/PEI.Ac had no such effect. Although negatively charged CNT/PEI.SAH could enhance the PCR, the optimum concentration required (630 mg L(-1)) was more than 3 orders of magnitude higher than that of positively charged CNT/PEI. The present study suggests that the PCR enhancing effect may be primarily based on the electrostatic interaction between the positively charged CNT/PEI and the negatively charged PCR components, rather than only on the thermal conductivity of MWCNTs.
Collapse
Affiliation(s)
- Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Suebsing R, Jeon CH, Oh MJ, Kim JH. Reverse transcriptase loop-mediated isothermal amplification assay for infectious hematopoietic necrosis virus in Oncorhynchus keta. DISEASES OF AQUATIC ORGANISMS 2011; 94:1-8. [PMID: 21553563 DOI: 10.3354/dao02310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting infectious hematopoietic necrosis virus (IHNV) from chum salmon Oncorhynchus keta in South Korea with high specificity, sensitivity and rapidity. A set of 6 IHNV-specific primers was designed, based on the G-protein sequence of IHNV (PRT strain), recognizing 8 distinct sequences of the target RNA. The assay was optimized to detect IHNV at 63 degrees C for 30 min. The limit of detection was 0.01 fg of RNA extracted from IHNV-infected CHSE-214 cells, compared with 1.0 fg for nested RT-PCR. The applicability of this RT-LAMP assay was further tested by comparison with nested RT-PCR using field samples. Of 473 samples tested, 191 samples (40.38%) were IHNV-positive by RT-LAMP, whereas 162 samples (34.25%) were IHNV-positive by nested RT-PCR. These results indicate that, because of its high sensitivity and rapidity, the RT-LAMP assay is useful for early diagnosis of IHN.
Collapse
Affiliation(s)
- Rungkarn Suebsing
- Faculty of Marine Bioscience & Technology, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | | | | | | |
Collapse
|