1
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
2
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
3
|
Fernandez-Martinez D, Kong Y, Goussard S, Zavala A, Gastineau P, Rey M, Ayme G, Chamot-Rooke J, Lafaye P, Vos M, Mechaly A, Duménil G. Cryo-EM structures of type IV pili complexed with nanobodies reveal immune escape mechanisms. Nat Commun 2024; 15:2414. [PMID: 38499587 PMCID: PMC10948894 DOI: 10.1038/s41467-024-46677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.
Collapse
Affiliation(s)
- David Fernandez-Martinez
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Youxin Kong
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403, Vitry-sur-Seine, France
| | - Sylvie Goussard
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Agustin Zavala
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Pauline Gastineau
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Martial Rey
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Gabriel Ayme
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Matthijn Vos
- NanoImaging Core Facility, Center for Technological Resources and Research, Institut Pasteur, 75015, Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Crystallography Platform-C2RT, CNRS-UMR 3528, Université Paris Cité, Paris, France
| | - Guillaume Duménil
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
| |
Collapse
|
4
|
Ershov D, Phan MS, Pylvänäinen JW, Rigaud SU, Le Blanc L, Charles-Orszag A, Conway JRW, Laine RF, Roy NH, Bonazzi D, Duménil G, Jacquemet G, Tinevez JY. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat Methods 2022; 19:829-832. [PMID: 35654950 DOI: 10.1038/s41592-022-01507-1] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022]
Abstract
TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.
Collapse
Affiliation(s)
- Dmitry Ershov
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.,Institut Pasteur, Université de Paris Cité, Biostatistics and Bioinformatic Hub, Paris, France
| | - Minh-Son Phan
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France
| | - Joanna W Pylvänäinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Stéphane U Rigaud
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France
| | - Laure Le Blanc
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Arthur Charles-Orszag
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Romain F Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Micrographia Bio, Translation and Innovation Hub, London, UK
| | - Nathan H Roy
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daria Bonazzi
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Guillaume Duménil
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland. .,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Jean-Yves Tinevez
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.
| |
Collapse
|
5
|
Antibody-Dependent Enhancement of Bacterial Disease: Prevalence, Mechanisms, and Treatment. Infect Immun 2021; 89:IAI.00054-21. [PMID: 33558319 DOI: 10.1128/iai.00054-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement (ADE) of viral disease has been demonstrated for infections caused by flaviviruses and influenza viruses; however, antibodies that enhance bacterial disease are relatively unknown. In recent years, a few studies have directly linked antibodies with exacerbation of bacterial disease. This ADE of bacterial disease has been observed in mouse models and human patients with bacterial infections. This antibody-mediated enhancement of bacterial infection is driven by various mechanisms that are disparate from those found in viral ADE. This review aims to highlight and discuss historic evidence, potential molecular mechanisms, and current therapies for ADE of bacterial infection. Based on specific case studies, we report how plasmapheresis has been successfully used in patients to ameliorate infection-related symptomatology associated with bacterial ADE. A greater understanding and appreciation of bacterial ADE of infection and disease could lead to better management of infections and inform current vaccine development efforts.
Collapse
|
6
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
7
|
Muir A, Gurung I, Cehovin A, Bazin A, Vallenet D, Pelicic V. Construction of a complete set of Neisseria meningitidis mutants and its use for the phenotypic profiling of this human pathogen. Nat Commun 2020; 11:5541. [PMID: 33139723 PMCID: PMC7606547 DOI: 10.1038/s41467-020-19347-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023] Open
Abstract
The bacterium Neisseria meningitidis causes life-threatening meningitis and sepsis. Here, we construct a complete collection of defined mutants in protein-coding genes of this organism, identifying all genes that are essential under laboratory conditions. The collection, named NeMeSys 2.0, consists of individual mutants in 1584 non-essential genes. We identify 391 essential genes, which are associated with basic functions such as expression and preservation of genome information, cell membrane structure and function, and metabolism. We use this collection to shed light on the functions of diverse genes, including a gene encoding a member of a previously unrecognised class of histidinol-phosphatases; a set of 20 genes required for type IV pili function; and several conditionally essential genes encoding antitoxins and/or immunity proteins. We expect that NeMeSys 2.0 will facilitate the phenotypic profiling of a major human bacterial pathogen.
Collapse
Affiliation(s)
- Alastair Muir
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Ishwori Gurung
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Ana Cehovin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Adelme Bazin
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Evry, Université Paris-Saclay, CNRS, Evry, France
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Evry, Université Paris-Saclay, CNRS, Evry, France
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
8
|
Bacterial killing by complement requires direct anchoring of membrane attack complex precursor C5b-7. PLoS Pathog 2020; 16:e1008606. [PMID: 32569291 PMCID: PMC7351214 DOI: 10.1371/journal.ppat.1008606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/10/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
An important effector function of the human complement system is to directly kill Gram-negative bacteria via Membrane Attack Complex (MAC) pores. MAC pores are assembled when surface-bound convertase enzymes convert C5 into C5b, which together with C6, C7, C8 and multiple copies of C9 forms a transmembrane pore that damages the bacterial cell envelope. Recently, we found that bacterial killing by MAC pores requires local conversion of C5 by surface-bound convertases. In this study we aimed to understand why local assembly of MAC pores is essential for bacterial killing. Here, we show that rapid interaction of C7 with C5b6 is required to form bactericidal MAC pores on Escherichia coli. Binding experiments with fluorescently labelled C6 show that C7 prevents release of C5b6 from the bacterial surface. Moreover, trypsin shaving experiments and atomic force microscopy revealed that this rapid interaction between C7 and C5b6 is crucial to efficiently anchor C5b-7 to the bacterial cell envelope and form complete MAC pores. Using complement-resistant clinical E. coli strains, we show that bacterial pathogens can prevent complement-dependent killing by interfering with the anchoring of C5b-7. While C5 convertase assembly was unaffected, these resistant strains blocked efficient anchoring of C5b-7 and thus prevented stable insertion of MAC pores into the bacterial cell envelope. Altogether, these findings provide basic molecular insights into how bactericidal MAC pores are assembled and how bacteria evade MAC-dependent killing. In this paper we focus on how the complement system, an essential part of the immune system, kills bacteria via so-called membrane attack complex (MAC) pores. The MAC is a large, ring-shaped pore that consists of five different proteins, which is assembled when the complement system is activated on the bacterial surface. Here, we aimed to better understand how MAC pores are assembled on Escherichia coli and how clinical E. coli strains resist killing by MAC pores. We uncover that rapid recruitment of one of the MAC proteins, namely C7, is crucial to efficiently anchor the MAC precursor to the bacterial surface and ensure killing of a variety of E. coli strains via MAC pores. Furthermore, we reveal that some clinical E. coli strains prevent this efficient anchoring of MAC precursors and thereby resist bacterial killing. These insights help us to better understand how the immune system kills bacteria and how pathogenic bacteria evade this.
Collapse
|
9
|
Muñoz VL, Porsch EA, St Geme JW. Kingella kingae Surface Polysaccharides Promote Resistance to Neutrophil Phagocytosis and Killing. mBio 2019; 10:e00631-19. [PMID: 31239373 PMCID: PMC6593399 DOI: 10.1128/mbio.00631-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022] Open
Abstract
Bacterial pathogens have evolved strategies that enable them to evade neutrophil-mediated killing. The Gram-negative coccobacillus Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a common etiological agent of osteoarticular infections and bacteremia in young children. K. kingae produces a polysaccharide capsule and an exopolysaccharide, both of which are important for protection against complement-mediated lysis and are required for full virulence in an infant rat model of infection. In this study, we examined the role of the K. kingae polysaccharide capsule and exopolysaccharide in protection against neutrophil killing. In experiments with primary human neutrophils, we found that the capsule interfered with the neutrophil oxidative burst response and prevented neutrophil binding of K. kingae but had no effect on neutrophil internalization of K. kingae In contrast, the exopolysaccharide resisted the bactericidal effects of antimicrobial peptides and efficiently blocked neutrophil phagocytosis of K. kingae This work demonstrates that the K. kingae polysaccharide capsule and exopolysaccharide promote evasion of neutrophil-mediated killing through distinct yet complementary mechanisms, providing additional support for the K. kingae surface polysaccharides as potential vaccine antigens. In addition, these studies highlight a novel interplay between a bacterial capsule and a bacterial exopolysaccharide and reveal new properties for a bacterial exopolysaccharide, with potential applicability to other bacterial pathogens.IMPORTANCEKingella kingae is a Gram-negative commensal in the oropharynx and represents a leading cause of joint and bone infections in young children. The mechanisms by which K. kingae evades host innate immunity during pathogenesis of disease remain poorly understood. In this study, we established that the K. kingae polysaccharide capsule and exopolysaccharide function independently to protect K. kingae against reactive oxygen species (ROS) production, neutrophil phagocytosis, and antimicrobial peptides. These results demonstrate the intricacies of K. kingae innate immune evasion and provide valuable information that may facilitate development of a polysaccharide-based vaccine against K. kingae.
Collapse
Affiliation(s)
- Vanessa L Muñoz
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eric A Porsch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph W St Geme
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Denis K, Le Bris M, Le Guennec L, Barnier JP, Faure C, Gouge A, Bouzinba-Ségard H, Jamet A, Euphrasie D, Durel B, Barois N, Pelissier P, Morand PC, Coureuil M, Lafont F, Join-Lambert O, Nassif X, Bourdoulous S. Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease. Nat Microbiol 2019; 4:972-984. [PMID: 30911127 DOI: 10.1038/s41564-019-0395-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/30/2019] [Indexed: 11/09/2022]
Abstract
Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH-ubiquinone oxidoreductase (Na+-NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.
Collapse
Affiliation(s)
- Kevin Denis
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marion Le Bris
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Loic Le Guennec
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Philippe Barnier
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Camille Faure
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Gouge
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Haniaa Bouzinba-Ségard
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Jamet
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Daniel Euphrasie
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Beatrice Durel
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nicolas Barois
- Cellular Microbiology and Physics of Infection Group, Centre for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,UMR 8204, CNRS, Lille, France.,U1019, Inserm, Lille, France.,Université de Lille, Lille, France
| | - Philippe Pelissier
- Service de Chirurgie Reconstructrice et Plastique, Fondation Hôpital Saint Joseph, Paris, France
| | - Philippe C Morand
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group, Centre for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,UMR 8204, CNRS, Lille, France.,U1019, Inserm, Lille, France.,Université de Lille, Lille, France
| | - Olivier Join-Lambert
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Xavier Nassif
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sandrine Bourdoulous
- U1016, Institut Cochin, Inserm, Paris, France. .,UMR8104, CNRS, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
11
|
Kingella kingae Surface Polysaccharides Promote Resistance to Human Serum and Virulence in a Juvenile Rat Model. Infect Immun 2018; 86:IAI.00100-18. [PMID: 29581191 DOI: 10.1128/iai.00100-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Kingella kingae is a Gram-negative coccobacillus that is increasingly being recognized as an important cause of invasive disease in young children. The pathogenesis of K. kingae disease begins with colonization of the oropharynx, followed by invasion of the bloodstream, survival in the intravascular space, and dissemination to distant sites. Recent studies have revealed that K. kingae produces a number of surface factors that may contribute to the pathogenic process, including a polysaccharide capsule and an exopolysaccharide. In this study, we observed that K. kingae was highly resistant to the bactericidal effects of human serum complement. Using mutant strains deficient in expression of capsule, exopolysaccharide, or both in assays with human serum, we found that elimination of both capsule and exopolysaccharide was required for efficient binding of IgG, IgM, C4b, and C3b to the bacterial surface and for complement-mediated killing. Abrogation of the classical complement pathway using EGTA-treated human serum restored survival to wild-type levels by the mutant lacking both capsule and exopolysaccharide, demonstrating that capsule and exopolysaccharide promote resistance to the classical complement pathway. Consistent with these results, loss of both capsule and exopolysaccharide eliminated invasive disease in juvenile rats with an intact complement system but not in rats lacking complement. Based on these observations, we conclude that the capsule and the exopolysaccharide have important redundant roles in promoting survival of K. kingae in human serum. Each of these surface factors is sufficient by itself to fully prevent serum opsonin deposition and complement-mediated killing of K. kingae, ultimately facilitating intravascular survival and promoting K. kingae invasive disease.
Collapse
|
12
|
Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine. mBio 2018. [PMID: 29535195 PMCID: PMC5850321 DOI: 10.1128/mbio.00036-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bivalent rLP2086 (Trumenba), a vaccine for prevention of Neisseria meningitidis serogroup B (NmB) disease, was licensed for use in adolescents and young adults after it was demonstrated that it elicits antibodies that initiate complement-mediated killing of invasive NmB isolates in a serum bactericidal assay with human complement (hSBA). The vaccine consists of two factor H binding proteins (fHBPs) representing divergent subfamilies to ensure broad coverage. Although it is the surrogate of efficacy, an hSBA is not suitable for testing large numbers of strains in local laboratories. Previously, an association between the in vitro fHBP surface expression level and the susceptibility of NmB isolates to killing was observed. Therefore, a flow cytometric meningococcal antigen surface expression (MEASURE) assay was developed and validated by using an antibody that binds to all fHBP variants from both fHBP subfamilies and accurately quantitates the level of fHBP expressed on the cell surface of NmB isolates with mean fluorescence intensity as the readout. Two collections of invasive NmB isolates (n = 1,814, n = 109) were evaluated in the assay, with the smaller set also tested in hSBAs using individual and pooled human serum samples from young adults vaccinated with bivalent rLP2086. From these data, an analysis based on fHBP variant prevalence in the larger 1,814-isolate set showed that >91% of all meningococcal serogroup B isolates expressed sufficient levels of fHBP to be susceptible to bactericidal killing by vaccine-induced antibodies.IMPORTANCE Bivalent rLP2086 (Trumenba) vaccine, composed of two factor H binding proteins (fHBPs), was recently licensed for the prevention of N. meningitidis serogroup B (NmB) disease in individuals 10 to 25 years old in the United States. This study evaluated a large collection of NmB isolates from the United States and Europe by using a flow cytometric MEASURE assay to quantitate the surface expression of the vaccine antigen fHBP. We find that expression levels and the proportion of strains above the level associated with susceptibility in an hSBA are generally consistent across these geographic regions. Thus, the assay can be used to predict which NmB isolates are susceptible to killing in the hSBA and therefore is able to demonstrate an fHBP vaccine-induced bactericidal response. This work significantly advances our understanding of the potential for bivalent rLP2086 to provide broad coverage against diverse invasive-disease-causing NmB isolates.
Collapse
|
13
|
Capel E, Barnier JP, Zomer AL, Bole-Feysot C, Nussbaumer T, Jamet A, Lécuyer H, Euphrasie D, Virion Z, Frapy E, Pélissier P, Join-Lambert O, Rattei T, Bourdoulous S, Nassif X, Coureuil M. Peripheral blood vessels are a niche for blood-borne meningococci. Virulence 2017; 8:1808-1819. [PMID: 29099305 DOI: 10.1080/21505594.2017.1391446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Neisseria meningitidis is the causative agent of cerebrospinal meningitis and that of a rapidly progressing fatal septic shock known as purpura fulminans. Meningococcemia is characterized by bacterial adhesion to human endothelial cells of the microvessels. Host specificity has hampered studies on the role of blood vessels colonization in N. meningitidis associated pathogenesis. In this work, using a humanized model of SCID mice allowing the study of bacterial adhesion to human cells in an in vivo context we demonstrate that meningococcal colonization of human blood vessels is a prerequisite to the establishment of sepsis and lethality. To identify the molecular pathways involved in bacterial virulence, we performed transposon insertion site sequencing (Tn-seq) in vivo. Our results demonstrate that 36% of the genes that are important for growth in the blood of mice are dispensable when bacteria colonize human blood vessels, suggesting that human endothelial cells lining the blood vessels are feeding niches for N. meningitidis in vivo. Altogether, our work proposes a new paradigm for meningococcal virulence in which colonization of blood vessels is associated with metabolic adaptation and sustained bacteremia responsible for sepsis and subsequent lethality.
Collapse
Affiliation(s)
- Elena Capel
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Jean-Philippe Barnier
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Aldert L Zomer
- d Department of Infectious Diseases and Immunology , Faculty of Veterinary Medicine, Utrecht University , Utrecht , The Netherlands
| | - Christine Bole-Feysot
- e Plateforme génomique de l'Institut Imagine, INSERM UMR 1163, Paris Descartes Sorbonne Université Paris Cité , Paris , France
| | - Thomas Nussbaumer
- f CUBE - Division of Computational Systems Biology, Dept. of Microbiology and Ecosystem Science , University of Vienna , Vienna , Austria
| | - Anne Jamet
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Hervé Lécuyer
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Daniel Euphrasie
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Zoé Virion
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Eric Frapy
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Philippe Pélissier
- g Service de Chirurgie Plastique Reconstructrice et Esthétique, Groupe Hospitalier Paris Saint Joseph , Paris , France
| | - Olivier Join-Lambert
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Thomas Rattei
- f CUBE - Division of Computational Systems Biology, Dept. of Microbiology and Ecosystem Science , University of Vienna , Vienna , Austria
| | - Sandrine Bourdoulous
- b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,h INSERM U1016, Institut Cochin , Paris , France.,i CNRS UMR8104 , Paris , France
| | - Xavier Nassif
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Mathieu Coureuil
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| |
Collapse
|
14
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Bille E, Meyer J, Jamet A, Euphrasie D, Barnier JP, Brissac T, Larsen A, Pelissier P, Nassif X. A virulence-associated filamentous bacteriophage of Neisseria meningitidis increases host-cell colonisation. PLoS Pathog 2017; 13:e1006495. [PMID: 28704569 PMCID: PMC5526601 DOI: 10.1371/journal.ppat.1006495] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 06/27/2017] [Indexed: 01/31/2023] Open
Abstract
Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΦ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i) form bundles of filaments, and/or (ii) are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΦ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases. Bacteriophages are bacterial viruses, which in some cases encode for virulence factors and increase bacterial virulence. Comparative genomic of several strains of Neisseria meningitidis, a major human pathogen, identified the presence of an 8kb prophage in strains belonging to invasive clonal complexes. The analysis of this filamentous bacteriophage, designated MDA for Meningococcal Disease Associated (MDAΦ) did not reveal any obvious virulence factors responsible for an increase invasiveness of strains carrying this prophage. Using our animal model mimicking the septicemic phase of the neisserial invasive diseases, we demonstrate that the presence of the MDAΦ is not associated with a higher virulence, but we show that the bacteriophage particles, by promoting bacteria-bacteria interactions, increase the biomass of bacteria colonizing a monolayer of epithelial cells. These data suggest that the increased invasiveness mediated by the MDAΦ bacteriophage is likely to be due to a better ability of the bacteria to colonize the nasopharyngeal mucosa.
Collapse
Affiliation(s)
- Emmanuelle Bille
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
- Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- * E-mail:
| | - Julie Meyer
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Anne Jamet
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
- Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Daniel Euphrasie
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Jean-Philippe Barnier
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
- Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Terry Brissac
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Anna Larsen
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Philippe Pelissier
- Service de Chirurgie Reconstructrice et Plastique, Fondation Hôpital Saint Joseph, Paris, France
| | - Xavier Nassif
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
- Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
16
|
Milivojevic M, Dangeard AS, Kasper CA, Tschon T, Emmenlauer M, Pique C, Schnupf P, Guignot J, Arrieumerlou C. ALPK1 controls TIFA/TRAF6-dependent innate immunity against heptose-1,7-bisphosphate of gram-negative bacteria. PLoS Pathog 2017; 13:e1006224. [PMID: 28222186 PMCID: PMC5336308 DOI: 10.1371/journal.ppat.1006224] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/03/2017] [Accepted: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
During infection by invasive bacteria, epithelial cells contribute to innate immunity via the local secretion of inflammatory cytokines. These are directly produced by infected cells or by uninfected bystanders via connexin-dependent cell-cell communication. However, the cellular pathways underlying this process remain largely unknown. Here we perform a genome-wide RNA interference screen and identify TIFA and TRAF6 as central players of Shigella flexneri and Salmonella typhimurium-induced interleukin-8 expression. We show that threonine 9 and the forkhead-associated domain of TIFA are necessary for the oligomerization of TIFA in both infected and bystander cells. Subsequently, this process triggers TRAF6 oligomerization and NF-κB activation. We demonstrate that TIFA/TRAF6-dependent cytokine expression is induced by the bacterial metabolite heptose-1,7-bisphosphate (HBP). In addition, we identify alpha-kinase 1 (ALPK1) as the critical kinase responsible for TIFA oligomerization and IL-8 expression in response to infection with S. flexneri and S. typhimurium but also to Neisseria meningitidis. Altogether, these results clearly show that ALPK1 is a master regulator of innate immunity against both invasive and extracellular gram-negative bacteria. Epithelial cells line internal body cavities of multicellular organisms. They represent the first line of defense against various pathogens including bacteria and viruses. They can sense the presence of invasive pathogens and initiate the recruitment of immune cells to infected tissues via the local secretion of soluble factors, called chemokines. Although this phenomenon is essential for the development of an efficient immune response, the molecular mechanism underlying this process remains largely unknown. Here we demonstrate that the host proteins ALPK1, TIFA and TRAF6 act sequentially to activate the transcription factor NF-κB and regulate the production of chemokines in response to infection by the pathogens Shigella flexneri, Salmonella typhimurium and Neisseria meningitidis. In addition, we show that the production of chemokines is triggered after detection of the bacterial monosaccharide heptose-1,7-bisphosphate, found in gram-negative bacteria. In conclusion, our study uncovers a new molecular mechanism controlling inflammation during infection by gram-negative bacteria and identifies potential targets for treatments aiming at modulating inflammation during infection.
Collapse
Affiliation(s)
- Milica Milivojevic
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | - Anne-Sophie Dangeard
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | | | | | | | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | | | - Julie Guignot
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
- * E-mail:
| |
Collapse
|
17
|
Antunes A, Derkaoui M, Terrade A, Denizon M, Deghmane AE, Deutscher J, Delany I, Taha MK. The Phosphocarrier Protein HPr Contributes to Meningococcal Survival during Infection. PLoS One 2016; 11:e0162434. [PMID: 27655040 PMCID: PMC5031443 DOI: 10.1371/journal.pone.0162434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
Neisseria meningitidis is an exclusively human pathogen frequently carried asymptomatically in the nasopharynx but it can also provoke invasive infections such as meningitis and septicemia. N. meningitidis uses a limited range of carbon sources during infection, such as glucose, that is usually transported into bacteria via the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), in which the phosphocarrier protein HPr (encoded by the ptsH gene) plays a central role. Although N. meningitidis possesses an incomplete PTS, HPr was found to be required for its virulence. We explored the role of HPr using bioluminescent wild-type and ΔptsH strains in experimental infection in transgenic mice expressing the human transferrin. The wild-type MC58 strain was recovered at higher levels from the peritoneal cavity and particularly from blood compared to the ΔptsH strain. The ΔptsH strain provoked lower levels of septicemia in mice and was more susceptible to complement-mediated killing than the wild-type strain. We tested whether meningococcal structures impacted complement resistance and observed that only the capsule level was decreased in the ΔptsH mutant. We therefore compared the transcriptomic profiles of wild-type and ΔptsH strains and identified 49 differentially expressed genes. The HPr regulon contains mainly hypothetical proteins (43%) and several membrane-associated proteins that could play a role during host interaction. Some other genes of the HPr regulon are involved in stress response. Indeed, the ΔptsH strain showed increased susceptibility to environmental stress conditions. Our data suggest that HPr plays a pleiotropic role in host-bacteria interactions most likely through the innate immune response that may be responsible for the enhanced clearance of the ΔptsH strain from blood.
Collapse
Affiliation(s)
- Ana Antunes
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
- * E-mail: (AA); (MKT)
| | - Meriem Derkaoui
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Aude Terrade
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Mélanie Denizon
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Ala-Eddine Deghmane
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Centre National de la Recherche Scientifique, UMR8261 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Isabel Delany
- Novartis Vaccines and Diagnostics s.r.l. (a GSK company), Via Fiorentina 1, 53100, Siena, Italy
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
- * E-mail: (AA); (MKT)
| |
Collapse
|
18
|
Liu R, Zhang P, Su Y, Lin H, Zhang H, Yu L, Ma Z, Fan H. A novel suicide shuttle plasmid for Streptococcus suis serotype 2 and Streptococcus equi ssp. zooepidemicus gene mutation. Sci Rep 2016; 6:27133. [PMID: 27256117 PMCID: PMC4891806 DOI: 10.1038/srep27133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/13/2016] [Indexed: 01/30/2023] Open
Abstract
The mariner-based Himar1 system has been utilized for creating mutant libraries of many Gram-positive bacteria. Streptococcus suis serotype 2 (SS2) and Streptococcus equi ssp. zooepidemicus (SEZ) are primary pathogens of swine that threaten the swine industry in China. To provide a forward-genetics technology for finding virulent phenotype-related genes in these two pathogens, we constructed a novel temperature-sensitive suicide shuttle plasmid, pMar4s, which contains the Himar1 system transposon, TnYLB-1, and the Himar1 C9 transposase from pMarA and the repTAs temperature-sensitive fragment from pSET4s. The kanamycin (Kan) resistance gene was in the TnYLB-1 transposon. Temperature sensitivity and Kan resistance allowed the selection of mutant strains and construction of the mutant library. The SS2 and SEZ mutant libraries were successfully constructed using the pMar4s plasmid. Inverse-Polymerase Chain Reaction (Inverse-PCR) results revealed large variability in transposon insertion sites and that the library could be used for phenotype alteration screening. The thiamine biosynthesis gene apbE was screened for its influence on SS2 anti-phagocytosis; likewise, the sagF gene was identified to be a hemolytic activity-related gene in SEZ. pMar4s was suitable for mutant library construction, providing more information regarding SS2 and SEZ virulence factors and illustrating the pathogenesis of swine streptococcosis.
Collapse
Affiliation(s)
- Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqi Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, Qingdao, 266000, China
| | - Lei Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
19
|
Zheng W, Mutha NVR, Heydari H, Dutta A, Siow CC, Jakubovics NS, Wee WY, Tan SY, Ang MY, Wong GJ, Choo SW. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform. PeerJ 2016; 4:e1698. [PMID: 27017950 PMCID: PMC4806638 DOI: 10.7717/peerj.1698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 01/27/2023] Open
Abstract
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.
Collapse
Affiliation(s)
- Wenning Zheng
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Naresh V R Mutha
- Genome Informatics Research Laboratory, HIR Building, University of Malaya , Kuala Lumpur , Malaysia
| | - Hamed Heydari
- Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia; Computer Science and Engineering Department, University of NE-Lincoln, Lincoln NE, United States of America
| | - Avirup Dutta
- Genome Informatics Research Laboratory, HIR Building, University of Malaya , Kuala Lumpur , Malaysia
| | - Cheuk Chuen Siow
- Genome Informatics Research Laboratory, HIR Building, University of Malaya , Kuala Lumpur , Malaysia
| | - Nicholas S Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University , Newcastle upon Tyne , United Kingdom
| | - Wei Yee Wee
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Shi Yang Tan
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Mia Yang Ang
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Guat Jah Wong
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia; Genome Solutions Sdn Bhd, Suite 8, Innovation Incubator UM, Level 5, Research Management & Innovation Complex, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Meyer J, Brissac T, Frapy E, Omer H, Euphrasie D, Bonavita A, Nassif X, Bille E. Characterization of MDAΦ, a temperate filamentous bacteriophage of Neisseria meningitidis. MICROBIOLOGY-SGM 2015; 162:268-282. [PMID: 26602366 DOI: 10.1099/mic.0.000215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism by which Neisseria meningitidis becomes invasive is not well understood. Comparative genomics identified the presence of an 8 kb island in strains belonging to invasive clonal complexes. This island was designated MDA for meningococcal disease associated. MDA is highly conserved among meningococcal isolates and its analysis revealed a genomic organization similar to that of a filamentous prophage such as CTXΦ of Vibrio cholerae. Subsequent molecular investigations showed that the MDA island has indeed the characteristics of a filamentous prophage, which can enter into a productive cycle and is secreted using the type IV pilus (tfp) secretin PilQ. At least three genes of the prophage are necessary for the formation of the replicative cytoplasmic form (orf1, orf2 and orf9). Immunolabelling of the phage with antibodies against the major capsid protein, ORF4, confirmed that filamentous particles, about 1200 nm long, covered with ORF4 are present at the bacterial surface forming bundles in some places and interacting with pili. The MDA bacteriophage is able to infect different N. meningitidis strains, using the type IV pili as a receptor via an interaction with the adsorption protein ORF6. Altogether, these data demonstrate that the MDA island encodes a functional prophage able to produce infectious filamentous phage particles.
Collapse
Affiliation(s)
- Julie Meyer
- Institut Necker-Enfants Malades, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014, Paris, France.,CNRS UMR 8253, Paris, France.,INSERM U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Terry Brissac
- Institut Necker-Enfants Malades, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Paris, France.,CNRS UMR 8253, Paris, France
| | - Eric Frapy
- Institut Necker-Enfants Malades, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Paris, France.,CNRS UMR 8253, Paris, France
| | - Hélène Omer
- Institut Necker-Enfants Malades, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Paris, France.,CNRS UMR 8253, Paris, France
| | - Daniel Euphrasie
- Institut Necker-Enfants Malades, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Paris, France.,CNRS UMR 8253, Paris, France
| | - Adrien Bonavita
- CNRS UMR 8253, Paris, France.,Institut Necker-Enfants Malades, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014, Paris, France.,INSERM U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xavier Nassif
- INSERM U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service de Microbiologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,CNRS UMR 8253, Paris, France.,Institut Necker-Enfants Malades, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014, Paris, France
| | - Emmanuelle Bille
- Service de Microbiologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,CNRS UMR 8253, Paris, France.,Institut Necker-Enfants Malades, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014, Paris, France.,INSERM U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
21
|
Gault J, Ferber M, Machata S, Imhaus AF, Malosse C, Charles-Orszag A, Millien C, Bouvier G, Bardiaux B, Péhau-Arnaudet G, Klinge K, Podglajen I, Ploy MC, Seifert HS, Nilges M, Chamot-Rooke J, Duménil G. Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation. PLoS Pathog 2015; 11:e1005162. [PMID: 26367394 PMCID: PMC4569582 DOI: 10.1371/journal.ppat.1005162] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences. During infection pathogens and their host engage in a series of measures and counter-measures to promote their own survival: pathogens express virulence factors, the immune system targets these surface structures and pathogens modify them to evade detection. Like numerous bacterial pathogens, Neisseria meningitidis express type IV pili, long filamentous adhesive structures composed of pilins. Intriguingly the amino acid sequences of pilins from most hypervirulent strains do not vary, raising the question of how they evade the immune system. This study shows that the pilus structure is completely coated with sugars thus limiting access of antibodies to the pilin polypeptide chain. We propose that multisite glycosylation and thus variation in the type of sugar mediates immune evasion in these strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Adhesion
- Cell Line
- Cells, Cultured
- Conserved Sequence
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/pathology
- Fimbriae Proteins/chemistry
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Deletion
- Glycosylation
- Host-Pathogen Interactions
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/microbiology
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Immune Evasion
- Meningococcal Infections/immunology
- Meningococcal Infections/metabolism
- Meningococcal Infections/microbiology
- Meningococcal Infections/pathology
- Microscopy, Electron, Transmission
- Models, Molecular
- Neisseria meningitidis/immunology
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/ultrastructure
- Protein Processing, Post-Translational
- Sequence Homology, Amino Acid
- Species Specificity
- Surface Properties
Collapse
Affiliation(s)
- Joseph Gault
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Mathias Ferber
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Silke Machata
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Anne-Flore Imhaus
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Christian Malosse
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Arthur Charles-Orszag
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Corinne Millien
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Guillaume Bouvier
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | | | - Kelly Klinge
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Isabelle Podglajen
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Marie Cécile Ploy
- INSERM UMR1092, Faculté de Médecine, Université de Limoges, Limoges, France
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Guillaume Duménil
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
22
|
α-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. mBio 2015; 6:mBio.02465-14. [PMID: 25650401 PMCID: PMC4324315 DOI: 10.1128/mbio.02465-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae modify the terminal lacto-N-neotetraose moiety of their lipooligosaccharide (LOS) with sialic acid. N. gonorrhoeae LOS sialylation blocks killing by complement, which is mediated at least in part by enhanced binding of the complement inhibitor factor H (FH). The role of LOS sialylation in resistance of N. meningitidis to serum killing is less well defined. Sialylation in each species is catalyzed by the enzyme LOS α-2,3-sialyltransferase (Lst). Previous studies have shown increased Lst activity in N. gonorrhoeae compared to N. meningitidis due to an ~5-fold increase in lst transcription. Using isogenic N. gonorrhoeae strains engineered to express gonococcal lst from either the N. gonorrhoeae or N. meningitidislst promoter, we show that decreased expression of lst (driven by the N. meningitidis promoter) reduced LOS sialylation as determined by less incorporation of tritium-labeled cytidine monophospho-N-acetylneuraminic acid (CMP-NANA; the donor molecule for sialic acid). Diminished LOS sialylation resulted in reduced rates of FH binding and increased pathway activation compared to N. gonorrhoeae promoter-driven lst expression. The N. meningitidislst promoter generated sufficient Lst to sialylate N. gonorrhoeae LOS in vivo, and the level of sialylation after 24 h in the mouse genital tract was sufficient to mediate resistance to human serum ex vivo. Despite demonstrable LOS sialylation in vivo, gonococci harboring the N. meningitidislst promoter were outcompeted by those with the N. gonorrhoeaelst promoter during coinfection of the vaginal tract of estradiol-treated mice. These data highlight the importance of high lst expression levels for gonococcal pathogenesis. Neisseria gonorrhoeae has become resistant to nearly every therapeutic antibiotic used and is listed as an “urgent threat” by the Centers for Disease Control and Prevention. Novel therapies are needed to combat drug-resistant N. gonorrhoeae. Gonococci express an α-2,3-sialyltransferase (Lst) that can scavenge sialic acid from the host and use it to modify lipooligosaccharide (LOS). Sialylation of gonococcal LOS converts serum-sensitive strains to serum resistance, decreases antibody binding, and combats killing by neutrophils and antimicrobial peptides. Mutant N. gonorrhoeae that lack Lst (cannot sialylate LOS) are attenuated in a mouse model. Lst expression levels differ among N. gonorrhoeae strains, and N. gonorrhoeae typically expresses more Lst than Neisseria meningitidis. Here we examined the significance of differential lst expression levels and determined that the level of LOS sialylation is critical to the ability of N. gonorrhoeae to combat the immune system and survive in an animal model. LOS sialylation may be an ideal target for novel therapies.
Collapse
|
23
|
Imhaus AF, Duménil G. The number of Neisseria meningitidis type IV pili determines host cell interaction. EMBO J 2014; 33:1767-83. [PMID: 24864127 DOI: 10.15252/embj.201488031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
As mediators of adhesion, autoaggregation and bacteria-induced plasma membrane reorganization, type IV pili are at the heart of Neisseria meningitidis infection. Previous studies have proposed that two minor pilins, PilV and PilX, are displayed along the pilus structure and play a direct role in mediating these effects. In contrast with this hypothesis, combining imaging and biochemical approaches we found that PilV and PilX are located in the bacterial periplasm rather than along pilus fibers. Furthermore, preventing exit of these proteins from the periplasm by fusing them to the mCherry protein did not alter their function. Deletion of the pilV and pilX genes led to a decrease in the number, but not length, of pili displayed on the bacterial surface indicating a role in the initiation of pilus biogenesis. By finely regulating the expression of a central component of the piliation machinery, we show that the modest reductions in the number of pili are sufficient to recapitulate the phenotypes of the pilV and pilX mutants. We further show that specific type IV pili-dependent functions require different ranges of pili numbers.
Collapse
Affiliation(s)
- Anne-Flore Imhaus
- INSERM U970 Paris Cardiovascular Research Center, Paris, France Faculté de Médecine Paris Descartes, Université Paris Descartes, Paris, France
| | - Guillaume Duménil
- INSERM U970 Paris Cardiovascular Research Center, Paris, France Faculté de Médecine Paris Descartes, Université Paris Descartes, Paris, France
| |
Collapse
|
24
|
Melican K, Aubey F, Duménil G. Humanized mouse model to study bacterial infections targeting the microvasculature. J Vis Exp 2014. [PMID: 24747976 PMCID: PMC4161007 DOI: 10.3791/51134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream.
Collapse
Affiliation(s)
- Keira Melican
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes
| | - Flore Aubey
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes
| | - Guillaume Duménil
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes;
| |
Collapse
|
25
|
Panatto D, Amicizia D, Lai PL, Gasparini R. Neisseria meningitidisB vaccines. Expert Rev Vaccines 2014; 10:1337-51. [DOI: 10.1586/erv.11.103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Mahdavi J, Royer PJ, Sjölinder HS, Azimi S, Self T, Stoof J, Wheldon LM, Brännström K, Wilson R, Moreton J, Moir JWB, Sihlbom C, Borén T, Jonsson AB, Soultanas P, Ala'Aldeen DAA. Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence. Open Biol 2013; 3:130048. [PMID: 24107297 PMCID: PMC3814720 DOI: 10.1098/rsob.130048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interactions between commensal pathogens and hosts are critical for disease development but the underlying mechanisms for switching between the commensal and virulent states are unknown. We show that the human pathogen Neisseria meningitidis, the leading cause of pyogenic meningitis, can modulate gene expression via uptake of host pro-inflammatory cytokines leading to increased virulence. This uptake is mediated by type IV pili (Tfp) and reliant on the PilT ATPase activity. Two Tfp subunits, PilE and PilQ, are identified as the ligands for TNF-α and IL-8 in a glycan-dependent manner, and their deletion results in decreased virulence and increased survival in a mouse model. We propose a novel mechanism by which pathogens use the twitching motility mode of the Tfp machinery for sensing and importing host elicitors, aligning with the inflamed environment and switching to the virulent state.
Collapse
Affiliation(s)
- Jafar Mahdavi
- School of Life Sciences, Molecular Bacteriology and Immunology Group, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
28
|
Abstract
Neisseria meningitidis is a worldwide cause of meningitis and septicemia leading at least to 50,000 deaths every year. Nevertheless, N. meningitidis is also a commensal bacterium that asymptomatically colonizes the epithelial cells of the nasopharynx of 10 to 30% of healthy individuals. Occasionally, N. meningitidis crosses the nasopharyngeal barrier and enters the bloodstream. During bacteremia, N. meningitidis may adhere to endothelial cells of brain vessels and invade meninges. To identify the genes required for meningococcal host colonization, we screened a signature-tagged transposon mutagenesis library using an innovative in vitro colonization model in order to identify mutants displaying decreased capacity to colonize human epithelial cells. Approximately 1,600 defined insertion mutants of invasive serogroup C strain NEM8013 were screened. Candidate mutants were tested individually for quantification of bacterial biomass with confocal microscope and COMSTAT software. Five mutants were demonstrated to exhibit significantly decreased colonization ability. The identified genes, including narP and estD, appeared to be involved in adaptation to hypoxic conditions and stress resistance. Interestingly, the genes fadD1, nnrS, and NMV_2034 (encoding a putative thioredoxin), prior to this study, had not been shown to be involved in colonization. Therefore, we provide here insights into the meningococcal functions necessary for the bacterium to adapt to growth on host cells.
Collapse
|
29
|
Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X. Pathogenesis of meningococcemia. Cold Spring Harb Perspect Med 2013; 3:3/6/a012393. [PMID: 23732856 DOI: 10.1101/cshperspect.a012393] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neisseria meningitidis is responsible for two major diseases: cerebrospinal meningitis and/or septicemia. The latter can lead to a purpura fulminans, an often-fatal condition owing to the associated septic shock. These two clinical aspects of the meningococcal infection are consequences of a tight interaction of meningococci with host endothelial cells. This interaction, mediated by the type IV pili, is responsible for the formation of microcolonies on the apical surface of the cells. This interaction is followed by the activation of signaling pathways in the host cells leading to the formation of a microbiological synapse. A low level of bacteremia is likely to favor the colonization of brain vessels, leading to bacterial meningitis, whereas the colonization of a large number of vessels by a high number of bacteria is responsible for one of the most severe forms of septic shock observed.
Collapse
|
30
|
Del Tordello E, Serruto D. Functional genomics studies of the human pathogen Neisseria meningitidis. Brief Funct Genomics 2013; 12:328-40. [PMID: 23723380 DOI: 10.1093/bfgp/elt018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is one of the major causes of septicemia and meningitis worldwide. Functional genomics approaches have been extensively applied to study how N. meningitidis adapts to grow and survive in different human niches encountered during the infection. DNA microarrays performed in in vitro and ex vivo conditions have revealed changes in the transcriptome profiles of N. meningitidis upon interaction with human cells and after incubation in human serum and blood. Mutagenesis studies allowed detecting mutants in genes crucial for N. meningitidis colonization and systemic infection. The analysis of N. meningitidis genomes has been also successful in the identification of vaccine candidates used to develop an effective protein-based vaccine. The application of all these approaches revealed the potential to identify new virulence factors and vaccine candidates and to assign functions to previously uncharacterized genes providing new insights in the biology and pathogenesis of N. meningitidis.
Collapse
|
31
|
Abstract
Natural transformation is a dominant force in bacterial evolution by promoting horizontal gene transfer. This process may have devastating consequences, such as the spread of antibiotic resistance or the emergence of highly virulent clones. However, uptake and recombination of foreign DNA are most often deleterious to competent species. Therefore, model naturally transformable gram-negative bacteria, including the human pathogen Neisseria meningitidis, have evolved means to preferentially take up homotypic DNA containing short and genus-specific sequence motifs. Despite decades of intense investigations, the DNA uptake sequence receptor in Neisseria species has remained elusive. We show here, using a multidisciplinary approach combining biochemistry, molecular genetics, and structural biology, that meningococcal type IV pili bind DNA through the minor pilin ComP via an electropositive stripe that is predicted to be exposed on the filaments surface and that ComP displays an exquisite binding preference for DNA uptake sequence. Our findings illuminate the earliest step in natural transformation, reveal an unconventional mechanism for DNA binding, and suggest that selective DNA uptake is more widespread than previously thought.
Collapse
|
32
|
Lee TW, Verhey TB, Antiperovitch PA, Atamanyuk D, Desroy N, Oliveira C, Denis A, Gerusz V, Drocourt E, Loutet SA, Hamad MA, Stanetty C, Andres SN, Sugiman-Marangos S, Kosma P, Valvano MA, Moreau F, Junop MS. Structural-functional studies of Burkholderia cenocepacia D-glycero-β-D-manno-heptose 7-phosphate kinase (HldA) and characterization of inhibitors with antibiotic adjuvant and antivirulence properties. J Med Chem 2013; 56:1405-17. [PMID: 23256532 PMCID: PMC3585733 DOI: 10.1021/jm301483h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of D-glycero-β-D-manno-heptose 7-phosphate kinase (HldA), an absolutely conserved enzyme in this pathway, from Burkholderia cenocepacia. HldA is structurally similar to members of the PfkB carbohydrate kinase family and appears to catalyze heptose phosphorylation via an in-line mechanism mediated mainly by a conserved aspartate, Asp270. Moreover, we report the structures of HldA in complex with two potent inhibitors in which both inhibitors adopt a folded conformation and occupy the nucleotide-binding sites. Together, these results provide important insight into the mechanism of HldA-catalyzed heptose phosphorylation and necessary information for further development of HldA inhibitors.
Collapse
Affiliation(s)
- Ting-Wai Lee
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Melican K, Michea Veloso P, Martin T, Bruneval P, Duménil G. Adhesion of Neisseria meningitidis to dermal vessels leads to local vascular damage and purpura in a humanized mouse model. PLoS Pathog 2013; 9:e1003139. [PMID: 23359320 PMCID: PMC3554624 DOI: 10.1371/journal.ppat.1003139] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022] Open
Abstract
Septic shock caused by Neisseria meningitidis is typically rapidly evolving and often fatal despite antibiotic therapy. Further understanding of the mechanisms underlying the disease is necessary to reduce fatality rates. Postmortem samples from the characteristic purpuric rashes of the infection show bacterial aggregates in close association with microvessel endothelium but the species specificity of N. meningitidis has previously hindered the development of an in vivo model to study the role of adhesion on disease progression. Here we introduced human dermal microvessels into SCID/Beige mice by xenografting human skin. Bacteria injected intravenously exclusively associated with the human vessel endothelium in the skin graft. Infection was accompanied by a potent inflammatory response with the secretion of human inflammatory cytokines and recruitment of inflammatory cells. Importantly, infection also led to local vascular damage with hemostasis, thrombosis, vascular leakage and finally purpura in the grafted skin, replicating the clinical presentation for the first time in an animal model. The adhesive properties of the type IV pili of N. meningitidis were found to be the main mediator of association with the dermal microvessels in vivo. Bacterial mutants with altered type IV pili function also did not trigger inflammation or lead to vascular damage. This work demonstrates that local type IV pili mediated adhesion of N. meningitidis to the vascular wall, as opposed to circulating bacteria, determines vascular dysfunction in meningococcemia.
Collapse
Affiliation(s)
- Keira Melican
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Paula Michea Veloso
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Tiffany Martin
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Patrick Bruneval
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Guillaume Duménil
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
34
|
Miller F, Lécuyer H, Join-Lambert O, Bourdoulous S, Marullo S, Nassif X, Coureuil M. Neisseria meningitidis colonization of the brain endothelium and cerebrospinal fluid invasion. Cell Microbiol 2012. [PMID: 23189983 DOI: 10.1111/cmi.12082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain and meningeal spaces are protected from bacterial invasion by the blood-brain barrier, formed by specialized endothelial cells and tight intercellular junctional complexes. However, once in the bloodstream, Neisseria meningitidis crosses this barrier in about 60% of the cases. This highlights the particular efficacy with which N. meningitidis targets the brain vascular cell wall. The first step of central nervous system invasion is the direct interaction between bacteria and endothelial cells. This step is mediated by the type IV pili, which induce a remodelling of the endothelial monolayer, leading to the opening of the intercellular space. In this review, strategies used by the bacteria to survive in the bloodstream, to colonize the brain vasculature and to cross the blood-brain barrier will be discussed.
Collapse
Affiliation(s)
- Florence Miller
- INSERM, unité U1002, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 2012; 14:1657-75. [PMID: 22827322 PMCID: PMC3749814 DOI: 10.1111/j.1462-5822.2012.01838.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/27/2022]
Abstract
Galectin-3 is expressed and secreted by immune cells and has been implicated in multiple aspects of the inflammatory response. It is a glycan binding protein which can exert its functions within cells or exogenously by binding cell surface ligands, acting as a molecular bridge or activating signalling pathways. In addition, this lectin has been shown to bind to microorganisms. In this study we investigated the interaction between galectin-3 and Neisseria meningitidis, an important extracellular human pathogen, which is a leading cause of septicaemia and meningitis. Immunohistochemical analysis indicated that galectin-3 is expressed during meningococcal disease and colocalizes with bacterial colonies in infected tissues from patients. We show that galectin-3 binds to N. meningitidis and we demonstrate that this interaction requiresfull-length, intact lipopolysaccharide molecules. We found that neither exogenous nor endogenous galectin-3 contributes to phagocytosis of N. meningitidis; instead exogenous galectin-3 increases adhesion to monocytes and macrophages but not epithelial cells. Finally we used galectin-3 deficient (Gal-3(-/-) ) mice to evaluate the contribution of galectin-3 to meningococcal bacteraemia. We found that Gal-3(-/-) mice had significantly lower levels of bacteraemia compared with wild-type mice after challenge with live bacteria, indicating that galectin-3 confers an advantage to N. meningitidis during systemic infection.
Collapse
Affiliation(s)
- Paola Quattroni
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Davide Lucchesi
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Sebastian Lucas
- Department of Histopathology, KCL School of Medicine, North Wing, St. Thomas’s Hospital, Lambeth Palace Road, London SE1 7EH, United Kingdom
| | - Derek W. Hood
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Hans-Joachim Gabius
- Chair of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Hubert K, Pawlik MC, Claus H, Jarva H, Meri S, Vogel U. Opc expression, LPS immunotype switch and pilin conversion contribute to serum resistance of unencapsulated meningococci. PLoS One 2012; 7:e45132. [PMID: 23028802 PMCID: PMC3447861 DOI: 10.1371/journal.pone.0045132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/13/2012] [Indexed: 01/15/2023] Open
Abstract
Neisseria meningitidis employs polysaccharides and outer membrane proteins to cope with human serum complement attack. To screen for factors influencing serum resistance, an assay was developed based on a colorimetric serum bactericidal assay. The screening used a genetically modified sequence type (ST)-41/44 clonal complex (cc) strain lacking LPS sialylation, polysaccharide capsule, the factor H binding protein (fHbp) and MutS, a protein of the DNA repair mechanism. After killing of >99.9% of the bacterial cells by serum treatment, the colorimetric assay was used to screen 1000 colonies, of which 35 showed enhanced serum resistance. Three mutant classes were identified. In the first class of mutants, enhanced expression of Opc was identified. Opc expression was associated with vitronectin binding and reduced membrane attack complex deposition confirming recent observations. Lipopolysaccharide (LPS) immunotype switch from immunotype L3 to L8/L1 by lgtA and lgtC phase variation represented the second class. Isogenic mutant analysis demonstrated that in ST-41/44 cc strains the L8/L1 immunotype was more serum resistant than the L3 immunotype. Consecutive analysis revealed that the immunotypes L8 and L1 were frequently observed in ST-41/44 cc isolates from both carriage and disease. Immunotype switch to L8/L1 is therefore suggested to contribute to the adaptive capacity of this meningococcal lineage. The third mutant class displayed a pilE allelic exchange associated with enhanced autoaggregation. The mutation of the C terminal hypervariable region D of PilE included a residue previously associated with increased pilus bundle formation. We suggest that autoaggregation reduced the surface area accessible to serum complement and protected from killing. The study highlights the ability of meningococci to adapt to environmental stress by phase variation and intrachromosomal recombination affecting subcapsular antigens.
Collapse
Affiliation(s)
- Kerstin Hubert
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany
| | | | - Heike Claus
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany
| | | | | | - Ulrich Vogel
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
37
|
The meningococcal minor pilin PilX is responsible for type IV pilus conformational changes associated with signaling to endothelial cells. Infect Immun 2012; 80:3297-306. [PMID: 22778100 DOI: 10.1128/iai.00369-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis crosses the blood-brain barrier (BBB) following the activation of the β2-adrenergic receptor by the type IV pili (TFP). Two components of the type IV pili recruit the β2-adrenergic receptor, the major pilin PilE and the minor pilin PilV. Here, we report that a strain deleted of PilX, one of the three minor pilins, is defective in endothelial cell signaling. The signaling role of PilX was abolished when pili were not retractable. Purified PilX was unable to recruit the β2-adrenergic receptor, thus suggesting that PilX was playing an indirect role in endothelial cell signaling. Considering the recent finding that type IV pili can transition into a new conformation (N. Biais, D. L. Higashi, J. Brujic, M. So, and M. P. Sheetz, Proc. Natl. Acad. Sci. U. S. A. 107:11358-11363, 2010), we hypothesized that PilX was responsible for a structural modification of the fiber and allowed hidden epitopes to be exposed. To confirm this hypothesis, we showed that a monoclonal antibody which recognizes a linear epitope of PilE bound fibers only when bacteria adhered to endothelial cells. On the other hand, this effect was not observed in PilX-deleted pili. A deletion of a region of PilX exposed on the surface of the fiber had phenotypical consequences identical to those of a PilX deletion. These data support a model in which surface-exposed motifs of PilX use forces generated by pilus retraction to promote conformational changes required for TFP-mediated signaling.
Collapse
|
38
|
Georgiadou M, Castagnini M, Karimova G, Ladant D, Pelicic V. Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol Microbiol 2012; 84:857-73. [DOI: 10.1111/j.1365-2958.2012.08062.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Mendum TA, Newcombe J, Mannan AA, Kierzek AM, McFadden J. Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera. Genome Biol 2011; 12:R127. [PMID: 22208880 PMCID: PMC3334622 DOI: 10.1186/gb-2011-12-12-r127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/26/2011] [Accepted: 12/30/2011] [Indexed: 11/10/2022] Open
Abstract
Background Neisseria meningitidis is an important human commensal and pathogen that causes several thousand deaths each year, mostly in young children. How the pathogen replicates and causes disease in the host is largely unknown, particularly the role of metabolism in colonization and disease. Completed genome sequences are available for several strains but our understanding of how these data relate to phenotype remains limited. Results To investigate the metabolism of N. meningitidis we generated and then selected a representative Tn5 library on rich medium, a minimal defined medium and in human serum to identify genes essential for growth under these conditions. To relate these data to a systems-wide understanding of the pathogen's biology we constructed a genome-scale metabolic network: Nmb_iTM560. This model was able to distinguish essential and non-essential genes as predicted by the global mutagenesis. These essentiality data, the library and the Nmb_iTM560 model are powerful and widely applicable resources for the study of meningococcal metabolism and physiology. We demonstrate the utility of these resources by predicting and demonstrating metabolic requirements on minimal medium, such as a requirement for phosphoenolpyruvate carboxylase, and by describing the nutritional and biochemical status of N. meningitidis when grown in serum, including a requirement for both the synthesis and transport of amino acids. Conclusions This study describes the application of a genome scale transposon library combined with an experimentally validated genome-scale metabolic network of N. meningitidis to identify essential genes and provide novel insight into the pathogen's metabolism both in vitro and during infection.
Collapse
Affiliation(s)
- Tom A Mendum
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | | | | |
Collapse
|
40
|
Katz LS, Humphrey JC, Conley AB, Nelakuditi V, Kislyuk AO, Agrawal S, Jayaraman P, Harcourt BH, Olsen-Rasmussen MA, Frace M, Sharma NV, Mayer LW, Jordan IK. Neisseria Base: a comparative genomics database for Neisseria meningitidis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar035. [PMID: 21930505 PMCID: PMC3263597 DOI: 10.1093/database/bar035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neisseria meningitidis is an important pathogen, causing life-threatening diseases including meningitis, septicemia and in some cases pneumonia. Genomic studies hold great promise for N. meningitidis research, but substantial database resources are needed to deal with the wealth of information that comes with completely sequenced and annotated genomes. To address this need, we developed Neisseria Base (NBase), a comparative genomics database and genome browser that houses and displays publicly available N. meningitidis genomes. In addition to existing N. meningitidis genome sequences, we sequenced and annotated 19 new genomes using 454 pyrosequencing and the CG-Pipeline genome analysis tool. In total, NBase hosts 27 complete N. meningitidis genome sequences along with their associated annotations. The NBase platform is designed to be scalable, via the underlying database schema and modular code architecture, such that it can readily incorporate new genomes and their associated annotations. The front page of NBase provides user access to these genomes through searching, browsing and downloading. NBase search utility includes BLAST-based sequence similarity searches along with a variety of semantic search options. All genomes can be browsed using a modified version of the GBrowse platform, and a plethora of information on each gene can be viewed using a customized details page. NBase also has a whole-genome comparison tool that yields single-nucleotide polymorphism differences between two user-defined groups of genomes. Using the virulent ST-11 lineage as an example, we demonstrate how this comparative genomics utility can be used to identify novel genomic markers for molecular profiling of N. meningitidis. Database URL:http://nbase.biology.gatech.edu
Collapse
Affiliation(s)
- Lee S Katz
- School of Biology, Georgia Institute of Technology, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Talà A, Monaco C, Nagorska K, Exley RM, Corbett A, Zychlinsky A, Alifano P, Tang CM. Glutamate utilization promotes meningococcal survival in vivo through avoidance of the neutrophil oxidative burst. Mol Microbiol 2011; 81:1330-42. [PMID: 21777301 PMCID: PMC3755445 DOI: 10.1111/j.1365-2958.2011.07766.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymorphonuclear neutrophil leucocytes (PMNs) are a critical part of innate immune defence against bacterial pathogens, and only a limited subset of microbes can escape killing by these phagocytic cells. Here we show that Neisseria meningitidis, a leading cause of septicaemia and meningitis, can avoid killing by PMNs and this is dependent on the ability of the bacterium to acquire L-glutamate through its GltT uptake system. We demonstrate that the uptake of available L-glutamate promotes N. meningitidis evasion of PMN reactive oxygen species produced by the oxidative burst. In the meningococcus, L-glutamate is converted to glutathione, a key molecule for maintaining intracellular redox potential, which protects the bacterium from reactive oxygen species such as hydrogen peroxide. We show that this mechanism contributes to the ability of N. meningitidis to cause bacteraemia, a critical step in the disease process during infections caused by this important human pathogen.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Caterina Monaco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Krzysztofa Nagorska
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Rachel M. Exley
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Anne Corbett
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| |
Collapse
|
42
|
Cehovin A, Kroll JS, Pelicic V. Testing the vaccine potential of PilV, PilX and ComP, minor subunits of Neisseria meningitidis type IV pili. Vaccine 2011; 29:6858-65. [PMID: 21803096 DOI: 10.1016/j.vaccine.2011.07.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/12/2011] [Accepted: 07/16/2011] [Indexed: 10/17/2022]
Abstract
Because meningitis and septicaemia caused by Neisseria meningitidis are major public health problems worldwide, the design of a broadly protective vaccine remains a priority. Type IV pili (Tfp) are surface-exposed filaments playing a key role in pathogenesis in a variety of bacterial species, including N. meningitidis, that have demonstrated vaccine potential. Unfortunately, in the meningococcus, the major pilus subunit PilE usually undergoes extensive antigenic variation and is therefore not suitable as a vaccine component. However, we have recently shown that N. meningitidis Tfp contain low abundance subunits PilX, PilV and ComP, collectively called minor pilins, that are highly conserved and modulate Tfp-linked functions key to pathogenesis. This prompted us to examine the vaccine potential of these proteins by assessing whether sera directed against them have bactericidal properties and/or are able to interfere with Tfp-linked functions. Here we show that minor pilin proteins are recognized by sera of patients convalescent from meningococcal disease and that antibodies directed against some of them can selectively interfere with Tfp-linked functions. This shows that, despite their apparent inability to elicit bactericidal antibodies, minor pilins might have vaccine potential.
Collapse
Affiliation(s)
- Ana Cehovin
- Section of Microbiology, Department of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
43
|
Structure/function analysis of Neisseria meningitidis PilW, a conserved protein that plays multiple roles in type IV pilus biology. Infect Immun 2011; 79:3028-35. [PMID: 21646452 DOI: 10.1128/iai.05313-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (Tfp) are widespread filamentous bacterial organelles that mediate multiple functions and play a key role in pathogenesis in several important human pathogens, including Neisseria meningitidis. Tfp biology remains poorly understood at a molecular level because the roles of the numerous proteins that are involved remain mostly obscure. Guided by the high-resolution crystal structure we recently reported for N. meningitidis PilW, a widely conserved protein essential for Tfp biogenesis, we have performed a structure/function analysis by targeting a series of key residues through site-directed mutagenesis and analyzing the corresponding variants using an array of phenotypic assays. Here we show that PilW's involvement in the functionality of Tfp can be genetically uncoupled from its concurrent role in the assembly/stabilization of the secretin channels through which Tfp emerge on the bacterial surface. These findings suggest that PilW is a multifunctional protein.
Collapse
|
44
|
Genotypic and phenotypic modifications of Neisseria meningitidis after an accidental human passage. PLoS One 2011; 6:e17145. [PMID: 21386889 PMCID: PMC3046118 DOI: 10.1371/journal.pone.0017145] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/11/2011] [Indexed: 01/27/2023] Open
Abstract
A scientist in our laboratory was accidentally infected while working with Z5463, a Neisseria meningitidis serogroup A strain. She developed severe symptoms (fever, meningism, purpuric lesions) that fortunately evolved with antibiotic treatment to complete recovery. Pulse-field gel electrophoresis confirmed that the isolate obtained from the blood culture (Z5463BC) was identical to Z5463, more precisely to a fourth subculture of this strain used the week before the contamination (Z5463PI). In order to get some insights into genomic modifications that can occur in vivo, we sequenced these three isolates. All the strains contained a mutated mutS allele and therefore displayed an hypermutator phenotype, consistent with the high number of mutations (SNP, Single Nucleotide Polymorphism) detected in the three strains. By comparing the number of SNP in all three isolates and knowing the number of passages between Z5463 and Z5463PI, we concluded that around 25 bacterial divisions occurred in the human body. As expected, the in vivo passage is responsible for several modifications of phase variable genes. This genomic study has been completed by transcriptomic and phenotypic studies, showing that the blood strain used a different haemoglobin-linked iron receptor (HpuA/B) than the parental strains (HmbR). Different pilin variants were found after the in vivo passage, which expressed different properties of adhesion. Furthermore the deletion of one gene involved in LOS biosynthesis (lgtB) results in Z5463BC expressing a different LOS than the L9 immunotype of Z2491. The in vivo passage, despite the small numbers of divisions, permits the selection of numerous genomic modifications that may account for the high capacity of the strain to disseminate.
Collapse
|
45
|
Zhang Q, Li Y, Tang CM. The role of the exopolyphosphatase PPX in avoidance by Neisseria meningitidis of complement-mediated killing. J Biol Chem 2010; 285:34259-68. [PMID: 20736171 DOI: 10.1074/jbc.m110.154393] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement system is critical for immunity against the important human pathogen Neisseria meningitidis. We describe the isolation of a meningococcal mutant lacking PPX, an exopolyphosphatase responsible for cleaving cellular polyphosphate, a polymer of tens to hundreds of orthophosphate residues found in virtually all living cells. Bacteria lacking PPX exhibit increased resistance to complement-mediated killing. By site directed mutagenesis, we define amino acids necessary for the biochemical activity of meningococcal PPX, including a conserved glutamate (Glu(117)) and residues in the Walker B box predicted to be involved in binding to phosphate. We show that the biochemical activity of PPX is necessary for interactions with the complement. The relative resistance of the ppx mutant does not result from changes in structures (such as capsule, lipopolysaccharide, and factor H-binding protein), which are known to be required for evasion of this key aspect of host immunity. Instead, expression of PPX modifies the interaction of N. meningitidis with the alternative pathway of complement activation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Microbiology, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
46
|
Jamet A, Rousseau C, Monfort JB, Nassif X, Martin P. Identification of a novel transcriptional regulator involved in pilC1 regulation in Neisseria meningitidis. FEMS Microbiol Lett 2010; 304:140-7. [PMID: 20377643 DOI: 10.1111/j.1574-6968.2009.01894.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type IV pili are crucial for the virulence of Neisseria meningitidis. PilC proteins belong to the complex protein machinery required for pili biosynthesis. The expression of the pilC1 gene is known to be induced during host cell contact and to be tightly controlled through four promoters, two transcription factors and a two-component signal transduction system. By screening of an insertional-mutant library, we identified a novel regulatory protein, i.e. NMA1805, involved in the pilC1 complex regulation. Increased transcription of gene NMA1805 was shown to result in augmented expression of the pilC1 gene, whereas abrogated expression of gene NMA1805 was associated with an absence of pilC1 induction upon contact with host cells. Moreover, we demonstrated that the NMA1805 gene displayed two promoters. The NMA1805 regulatory protein was evidenced to interact with one of them.
Collapse
Affiliation(s)
- Anne Jamet
- Institut National de la Santé et de la Recherche Médicale, Paris, France.
| | | | | | | | | |
Collapse
|
47
|
Hobb RI, Tzeng YL, Choudhury BP, Carlson RW, Stephens DS. Requirement of NMB0065 for connecting assembly and export of sialic acid capsular polysaccharides in Neisseria meningitidis. Microbes Infect 2010; 12:476-87. [PMID: 20215001 PMCID: PMC2883662 DOI: 10.1016/j.micinf.2010.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/25/2010] [Accepted: 02/27/2010] [Indexed: 12/20/2022]
Abstract
Capsule expression in Neisseria meningitidis is encoded by the cps locus comprised of genes required for biosynthesis and surface translocation. Located adjacent to the gene encoding the polysialyltransferase in serogroups expressing sialic acid-containing capsule, NMB0065 is likely a member of the cps locus, but it is not found in serogroups A or X that express non-sialic acid capsules. To further understand its role in CPS expression, NMB0065 mutants were created in the serogroups B, C and Y strains. The mutants were as sensitive as unencapsulated strains to killing by normal human serum, despite producing near wild-type levels of CPS. Absence of surface expression of capsule was suggested by increased surface hydrophobicity and confirmed by immunogold electron microscopy, which revealed the presence of large vacuoles containing CPS within the cell. GC-MS and NMR analyses of purified capsule from the mutant revealed no apparent changes in polymer structures and lipid anchors. Mutants of NMB0065 homologues in other sialic acid CPS expressing meningococcal serogroups had similar phenotypes. Thus, NMB0065 (CtrG) is not involved in biosynthesis or lipidation of sialic acid-containing capsule but encodes a protein required for proper coupling of the assembly complex to the membrane transport complex allowing surface expression of CPS.
Collapse
Affiliation(s)
- Rhonda I. Hobb
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yih-Ling Tzeng
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Biswa P. Choudhury
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - David S. Stephens
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University School of Medicine
- Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
48
|
Systematic functional analysis reveals that a set of seven genes is involved in fine-tuning of the multiple functions mediated by type IV pili in Neisseria meningitidis. Infect Immun 2010; 78:3053-63. [PMID: 20439474 DOI: 10.1128/iai.00099-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (Tfp), which mediate multiple phenotypes ranging from adhesion to motility, are one of the most widespread virulence factors in bacteria. However, the molecular mechanisms of Tfp biogenesis and associated functions remain poorly understood. One of the underlying reasons is that the roles played by the numerous genes involved in Tfp biology are unclear because corresponding mutants have been studied on a case-by-case basis, in different species, and using different assays, often generating heterogeneous results. Therefore, we have recently started a systematic functional analysis of the genes involved in Tfp biology in a well-characterized clinical isolate of the human pathogen Neisseria meningitidis. After previously studying 16 genes involved in Tfp biogenesis, here we report the characterization of 7 genes that are dispensable for piliation and potentially involved in Tfp biology. Using a battery of assays, we assessed piliation and each of the Tfp-linked functions in single mutants, double mutants in which filament retraction is abolished by a concurrent mutation in pilT, and strains overexpressing the corresponding proteins. This showed that each of the seven genes actually fine-tunes a Tfp-linked function(s), which brings us one step closer to a global view of Tfp biology in the meningococcus.
Collapse
|
49
|
Ferrero MA, Aparicio LR. Biosynthesis and production of polysialic acids in bacteria. Appl Microbiol Biotechnol 2010; 86:1621-35. [PMID: 20349183 DOI: 10.1007/s00253-010-2531-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 01/30/2023]
Abstract
Polysialic acids (PA) are protective capsular sialohomopolymers present in some bacteria which can invade the mammalian host and cause lethal bacteremia and meningitis. Biosynthesis and translocation of PA to the cell surface are equivalent in different species and bacterial strains which are produced. The diversity in PA structure is derived from the PA linkages and is a consequence of the specific sialyltransferase activities. The monomer acetylation and the polymer length could be important factors in the potential virulence. In vivo PA production is affected by different physical and chemical factors. The temperature of cellular growth strictly regulates PA genesis through a molecular complex and multifactorial mechanism that operate to transcription level.
Collapse
Affiliation(s)
- Miguel Angel Ferrero
- Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain.
| | | |
Collapse
|
50
|
Abstract
The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through the blood to reach the central nervous system.
Collapse
|