1
|
Almojil D, Diawara A, Soulama I, Dieng MM, Manikandan V, Sermé SS, Sombié S, Diarra A, Barry A, Coulibaly SA, Sirima SB, Idaghdour Y. Impact of Plasmodium falciparum infection on DNA methylation of circulating immune cells. Front Genet 2023; 14:1197933. [PMID: 37470040 PMCID: PMC10352500 DOI: 10.3389/fgene.2023.1197933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 07/21/2023] Open
Abstract
The regulation of immune cell responses to infection is a complex process that involves various molecular mechanisms, including epigenetic regulation. DNA methylation has been shown to play central roles in regulating gene expression and modulating cell response during infection. However, the nature and extent to which DNA methylation is involved in the host immune response in human malaria remains largely unknown. Here, we present a longitudinal study investigating the temporal dynamics of genome-wide in vivo DNA methylation profiles using 189 MethylationEPIC 850 K profiles from 66 children in Burkina Faso, West Africa, sampled three times: before infection, during symptomatic parasitemia, and after malaria treatment. The results revealed major changes in the DNA methylation profiles of children in response to both Plasmodium falciparum infection and malaria treatment, with widespread hypomethylation of CpGs upon infection (82% of 6.8 K differentially methylated regions). We document a remarkable reversal of CpG methylation profiles upon treatment to pre-infection states. These changes implicate divergence in core immune processes, including the regulation of lymphocyte, neutrophil, and myeloid leukocyte function. Integrative DNA methylation-mRNA analysis of a top differentially methylated region overlapping the pro-inflammatory gene TNF implicates DNA methylation of TNF cis regulatory elements in the molecular mechanisms of TNF regulation in human malaria. Our results highlight a central role of epigenetic regulation in mounting the host immune response to P. falciparum infection and in response to malaria treatment.
Collapse
Affiliation(s)
- Dareen Almojil
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samuel S. Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Sodiomon B. Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Dulermo T, Lejeune C, Aybeke E, Abreu S, Bleton J, David M, Deniset-Besseau A, Chaminade P, Thibessard A, Leblond P, Virolle MJ. Genome Analysis of a Variant of Streptomyces coelicolor M145 with High Lipid Content and Poor Ability to Synthetize Antibiotics. Microorganisms 2023; 11:1470. [PMID: 37374972 DOI: 10.3390/microorganisms11061470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Streptomyces coelicolor M145 is a model strain extensively studied to elucidate the regulation of antibiotic biosynthesis in Streptomyces species. This strain abundantly produces the blue polyketide antibiotic, actinorhodin (ACT), and has a low lipid content. In a process designed to delete the gene encoding the isocitrate lyase (sco0982) of the glyoxylate cycle, an unexpected variant of S. coelicolor was obtained besides bona fide sco0982 deletion mutants. This variant produces 7- to 15-fold less ACT and has a 3-fold higher triacylglycerol and phosphatidylethanolamine content than the original strain. The genome of this variant was sequenced and revealed that 704 genes were deleted (9% of total number of genes) through deletions of various sizes accompanied by the massive loss of mobile genetic elements. Some deletions include genes whose absence could be related to the high total lipid content of this variant such as those encoding enzymes of the TCA and glyoxylate cycles, enzymes involved in nitrogen assimilation as well as enzymes belonging to some polyketide and possibly trehalose biosynthetic pathways. The characteristics of this deleted variant of S. coelicolor are consistent with the existence of the previously reported negative correlation existing between lipid content and antibiotic production in Streptomyces species.
Collapse
Affiliation(s)
- Thierry Dulermo
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group "Energetic Metabolism of Streptomyces", 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Clara Lejeune
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group "Energetic Metabolism of Streptomyces", 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Ece Aybeke
- Université Paris-Saclay, CNRS, CEA, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Sonia Abreu
- Université Paris-Saclay, CNRS, CEA, Lip(Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, 17 Avenue des Sciences, 91400 Orsay, France
| | - Jean Bleton
- Université Paris-Saclay, CNRS, CEA, Lip(Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, 17 Avenue des Sciences, 91400 Orsay, France
| | - Michelle David
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group "Energetic Metabolism of Streptomyces", 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, CEA, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Pierre Chaminade
- Université Paris-Saclay, CNRS, CEA, Lip(Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, 17 Avenue des Sciences, 91400 Orsay, France
| | | | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Marie-Joelle Virolle
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group "Energetic Metabolism of Streptomyces", 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Calluori S, Stark R, Pearson BL. Gene-Environment Interactions in Repeat Expansion Diseases: Mechanisms of Environmentally Induced Repeat Instability. Biomedicines 2023; 11:515. [PMID: 36831049 PMCID: PMC9953593 DOI: 10.3390/biomedicines11020515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Short tandem repeats (STRs) are units of 1-6 base pairs that occur in tandem repetition to form a repeat tract. STRs exhibit repeat instability, which generates expansions or contractions of the repeat tract. Over 50 diseases, primarily affecting the central nervous system and muscles, are characterized by repeat instability. Longer repeat tracts are typically associated with earlier age of onset and increased disease severity. Environmental exposures are suspected to play a role in the pathogenesis of repeat expansion diseases. Here, we review the current knowledge of mechanisms of environmentally induced repeat instability in repeat expansion diseases. The current evidence demonstrates that environmental factors modulate repeat instability via DNA damage and induction of DNA repair pathways, with distinct mechanisms for repeat expansion and contraction. Of particular note, oxidative stress is a key mediator of environmentally induced repeat instability. The preliminary evidence suggests epigenetic modifications as potential mediators of environmentally induced repeat instability. Future research incorporating an array of environmental exposures, new human cohorts, and improved model systems, with a continued focus on cell-types, tissues, and critical windows, will aid in identifying mechanisms of environmentally induced repeat instability. Identifying environmental modulators of repeat instability and their mechanisms of action will inform preventions, therapies, and public health measures.
Collapse
Affiliation(s)
- Stephanie Calluori
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY 10032, USA
- Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, USA
| | - Rebecca Stark
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY 10032, USA
| | - Brandon L. Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Emiliani FE, Hsu I, McKenna A. Multiplexed Assembly and Annotation of Synthetic Biology Constructs Using Long-Read Nanopore Sequencing. ACS Synth Biol 2022; 11:2238-2246. [PMID: 35695379 PMCID: PMC9295152 DOI: 10.1021/acssynbio.2c00126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Recombinant DNA is
a fundamental tool in biotechnology and medicine.
These DNA sequences are often built, replicated, and delivered in
the form of plasmids. Validation of these plasmid sequences is a critical
and time-consuming step, which has been dominated for the last 35
years by Sanger sequencing. As plasmid sequences grow more complex
with new DNA synthesis and cloning techniques, we need new approaches
that address the corresponding validation challenges at scale. Here
we prototype a high-throughput plasmid sequencing approach using DNA
transposition and Oxford Nanopore sequencing. Our method, Circuit-seq,
creates robust, full-length, and accurate plasmid assemblies without
prior knowledge of the underlying sequence. We demonstrate the power
of Circuit-seq across a wide range of plasmid sizes and complexities,
generating full-length, contiguous plasmid maps. We then leverage
our long-read data to characterize epigenetic marks and estimate plasmid
contamination levels. Circuit-seq scales to large numbers of samples
at a lower per-sample cost than commercial Sanger sequencing, accelerating
a key step in synthetic biology, while low equipment costs make it
practical for individual laboratories.
Collapse
Affiliation(s)
- Francesco E Emiliani
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, United States
| | - Ian Hsu
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, United States
| | - Aaron McKenna
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, United States.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, United States
| |
Collapse
|
5
|
Koehorst E, Odria R, Capó J, Núñez-Manchón J, Arbex A, Almendrote M, Linares-Pardo I, Natera-de Benito D, Saez V, Nascimento A, Ortez C, Rubio MÁ, Díaz-Manera J, Alonso-Pérez J, Lucente G, Rodriguez-Palmero A, Ramos-Fransi A, Martínez-Piñeiro A, Nogales-Gadea G, Suelves M. An Integrative Analysis of DNA Methylation Pattern in Myotonic Dystrophy Type 1 Samples Reveals a Distinct DNA Methylation Profile between Tissues and a Novel Muscle-Associated Epigenetic Dysregulation. Biomedicines 2022; 10:biomedicines10061372. [PMID: 35740394 PMCID: PMC9220235 DOI: 10.3390/biomedicines10061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive, non-treatable, multi-systemic disorder. To investigate the contribution of epigenetics to the complexity of DM1, we compared DNA methylation profiles of four annotated CpG islands (CpGis) in the DMPK locus and neighbouring genes, in distinct DM1 tissues and derived cells, representing six DM1 subtypes, by bisulphite sequencing. In blood, we found no differences in CpGi 74, 43 and 36 in DNA methylation profile. In contrast, a CTCF1 DNA methylation gradient was found with 100% methylation in congenital cases, 50% in childhood cases and 13% in juvenile cases. CTCF1 methylation correlated to disease severity and CTG expansion size. Notably, 50% of CTCF1 methylated cases showed methylation in the CTCF2 regions. Additionally, methylation was associated with maternal transmission. Interestingly, the evaluation of seven families showed that unmethylated mothers passed on an expansion of the CTG repeat, whereas the methylated mothers transmitted a contraction. The analysis of patient-derived cells showed that DNA methylation profiles were highly preserved, validating their use as faithful DM1 cellular models. Importantly, the comparison of DNA methylation levels of distinct DM1 tissues revealed a novel muscle-specific epigenetic signature with methylation of the CTCF1 region accompanied by demethylation of CpGi 43, a region containing an alternative DMPK promoter, which may decrease the canonical promoter activity. Altogether, our results showed a distinct DNA methylation profile across DM1 tissues and uncovered a novel and dual epigenetic signature in DM1 muscle samples, providing novel insights into the epigenetic changes associated with DM1.
Collapse
Affiliation(s)
- Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Renato Odria
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Júlia Capó
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Andrea Arbex
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Ian Linares-Pardo
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Verónica Saez
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Neuropediatric Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, L'Hospitalet de Llobregat, 08950 Barcelona, Spain
| | - Miguel Ángel Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, 08003 Barcelona, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Agustín Rodriguez-Palmero
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mònica Suelves
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
6
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
7
|
Marshall JN, Lopez AI, Pfaff AL, Koks S, Quinn JP, Bubb VJ. Variable number tandem repeats - Their emerging role in sickness and health. Exp Biol Med (Maywood) 2021; 246:1368-1376. [PMID: 33794697 PMCID: PMC8239992 DOI: 10.1177/15353702211003511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms regulating tissue specific and stimulus inducible
regulation is at the heart of understanding human biology and how this
translates to wellbeing, the ageing process, and disease progression.
Polymorphic DNA variation is superimposed as an extra layer of complexity in
such processes which underpin our individuality and are the focus of
personalized medicine. This review focuses on the role and action of repetitive
DNA, specifically variable number tandem repeats and
SINE-VNTR-Alu domains, highlighting their role in
modification of gene structure and gene expression in addition to their
polymorphic nature being a genetic modifier of disease risk and progression.
Although the literature focuses on their role in disease, it illustrates their
potential to be major contributors to normal physiological function. To date,
these elements have been under-reported in genomic analysis due to the
difficulties in their characterization with short read DNA sequencing methods.
However, recent advances in long read sequencing methods should resolve these
problems allowing for a greater understanding of their contribution to a host of
genomic and functional mechanisms underlying physiology and disease.
Collapse
Affiliation(s)
- Jack Ng Marshall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ana Illera Lopez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
8
|
Breton É, Légaré C, Overend G, Guay SP, Monckton D, Mathieu J, Gagnon C, Richer L, Gallais B, Bouchard L. DNA methylation at the DMPK gene locus is associated with cognitive functions in myotonic dystrophy type 1. Epigenomics 2020; 12:2051-2064. [PMID: 33301350 DOI: 10.2217/epi-2020-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Myotonic dystrophy type 1 (DM1) is caused by an unstable trinucleotide (CTG) expansion at the DMPK gene locus. Cognitive dysfunctions are often observed in the condition. We investigated the association between DMPK blood DNA methylation (DNAm) and cognitive functions in DM1, considering expansion length and variant repeats (VRs). Method: Data were obtained from 115 adult-onset DM1 patients. Molecular analyses consisted of pyrosequencing, small pool PCR and Southern blot hybridization. Cognitive functions were assessed by validated neuropsychological tests. Results: For patients without VRs (n = 103), blood DNAm at baseline independently contributed to predict cognitive functions 9 years later. Patients with VRs (n = 12) had different DNAm and cognitive profiles. Conclusion: DNAm allows to better understand DM1-related cognitive dysfunction etiology.
Collapse
Affiliation(s)
- Édith Breton
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Cécilia Légaré
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Gayle Overend
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon-Pierre Guay
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Darren Monckton
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Louis Richer
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Health Sciences, Université du Québec à Chicoutimi (UQAC), Saguenay, Québec G7H 2B1, Canada
| | - Benjamin Gallais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada.,ÉCOBES - Recherche et transfert, Cégep de Jonquière, Saguenay, Québec G7X 7W2, Canada
| | - Luigi Bouchard
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Medical Biology, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec G7H 5H6, Canada
| |
Collapse
|
9
|
Pešović J, Perić S, Brkušanin M, Brajušković G, Rakočević-Stojanović V, Savić-Pavićević D. Repeat Interruptions Modify Age at Onset in Myotonic Dystrophy Type 1 by Stabilizing DMPK Expansions in Somatic Cells. Front Genet 2018; 9:601. [PMID: 30546383 PMCID: PMC6278776 DOI: 10.3389/fgene.2018.00601] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
CTG expansions in DMPK gene, causing myotonic dystrophy type 1 (DM1), are characterized by pronounced somatic instability. A large proportion of variability of somatic instability is explained by expansion size and patient's age at sampling, while individual-specific differences are attributed to additional factors. The age at onset is extremely variable in DM1, and inversely correlates with the expansion size and individual-specific differences in somatic instability. Three to five percent of DM1 patients carry repeat interruptions and some appear with later age at onset than expected for corresponding expansion size. Herein, we characterized somatic instability of interrupted DMPK expansions and the effect on age at onset in our previously described patients. Repeat-primed PCR showed stable structures of different types and patterns of repeat interruptions in blood cells over time and buccal cells. Single-molecule small-pool PCR quantification of somatic instability and mathematical modeling showed that interrupted expansions were characterized by lower level of somatic instability accompanied by slower progression over time. Mathematical modeling demonstrated that individual-specific differences in somatic instability had greater influence on age at onset in patients with interrupted expansions. Therefore, repeat interruptions have clinical importance for disease course in DM1 patients due to stabilizing effect on DMPK expansions in somatic cells.
Collapse
Affiliation(s)
- Jovan Pešović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Stojan Perić
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vidosava Rakočević-Stojanović
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Busch A, Thomas P, Zuchantke E, Brendebach H, Neubert K, Gruetzke J, Al Dahouk S, Peters M, Hotzel H, Neubauer H, Tomaso H. Revisiting Francisella tularensis subsp. holarctica, Causative Agent of Tularemia in Germany With Bioinformatics: New Insights in Genome Structure, DNA Methylation and Comparative Phylogenetic Analysis. Front Microbiol 2018; 9:344. [PMID: 29593661 PMCID: PMC5859110 DOI: 10.3389/fmicb.2018.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/30/2022] Open
Abstract
Francisella (F.) tularensis is a highly virulent, Gram-negative bacterial pathogen and the causative agent of the zoonotic disease tularemia. Here, we generated, analyzed and characterized a high quality circular genome sequence of the F. tularensis subsp. holarctica strain 12T0050 that caused fatal tularemia in a hare. Besides the genomic structure, we focused on the analysis of oriC, unique to the Francisella genus and regulating replication in and outside hosts and the first report on genomic DNA methylation of a Francisella strain. The high quality genome was used to establish and evaluate a diagnostic whole genome sequencing pipeline. A genotyping strategy for F. tularensis was developed using various bioinformatics tools for genotyping. Additionally, whole genome sequences of F. tularensis subsp. holarctica isolates isolated in the years 2008–2015 in Germany were generated. A phylogenetic analysis allowed to determine the genetic relatedness of these isolates and confirmed the highly conserved nature of F. tularensis subsp. holarctica.
Collapse
Affiliation(s)
- Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Eric Zuchantke
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Holger Brendebach
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kerstin Neubert
- Algorithmic Bioinformatics, Department of Mathematics and Computer Science, Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Josephine Gruetzke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin Peters
- Standort Arnsberg, Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
11
|
Wang C, Peng H, Li J, Ding D, Chen Z, Long Z, Peng Y, Zhou X, Ye W, Li K, Xu Q, Ai S, Song C, Weng L, Qiu R, Xia K, Tang B, Jiang H. Alteration of methylation status in the ATXN3 gene promoter region is linked to the SCA3/MJD. Neurobiol Aging 2017; 53:192.e5-192.e10. [DOI: 10.1016/j.neurobiolaging.2016.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
|
12
|
Essebier A, Vera Wolf P, Cao MD, Carroll BJ, Balasubramanian S, Bodén M. Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions. Front Neurosci 2016; 10:92. [PMID: 27013954 PMCID: PMC4782033 DOI: 10.3389/fnins.2016.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions.
Collapse
Affiliation(s)
- Alexandra Essebier
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Patricia Vera Wolf
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Minh Duc Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | | | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| |
Collapse
|
13
|
Cai W, Mao F, Teng H, Cai T, Zhao F, Wu J, Sun ZS. MBRidge: an accurate and cost-effective method for profiling DNA methylome at single-base resolution. J Mol Cell Biol 2015; 7:299-313. [PMID: 26078362 DOI: 10.1093/jmcb/mjv037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/19/2015] [Indexed: 11/14/2022] Open
Abstract
Organisms and cells, in response to environmental influences or during development, undergo considerable changes in DNA methylation on a genome-wide scale, which are linked to a variety of biological processes. Using MethylC-seq to decipher DNA methylome at single-base resolution is prohibitively costly. In this study, we develop a novel approach, named MBRidge, to detect the methylation levels of repertoire CpGs, by innovatively introducing C-hydroxylmethylated adapters and bisulfate treatment into the MeDIP-seq protocol and employing ridge regression in data analysis. A systematic evaluation of DNA methylome in a human ovarian cell line T29 showed that MBRidge achieved high correlation (R > 0.90) with much less cost (∼10%) in comparison with MethylC-seq. We further applied MBRidge to profiling DNA methylome in T29H, an oncogenic counterpart of T29's. By comparing methylomes of T29H and T29, we identified 131790 differential methylation regions (DMRs), which are mainly enriched in carcinogenesis-related pathways. These are substantially different from 7567 DMRs that were obtained by RRBS and related with cell development or differentiation. The integrated analysis of DMRs in the promoter and expression of DMR-corresponding genes revealed that DNA methylation enforced reverse regulation of gene expression, depending on the distance from the proximal DMR to transcription starting sites in both mRNA and lncRNA. Taken together, our results demonstrate that MBRidge is an efficient and cost-effective method that can be widely applied to profiling DNA methylomes.
Collapse
Affiliation(s)
- Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Cai
- Experimental Medicine Section, NIDCR, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyu Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
14
|
|
15
|
Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ. Distribution of a marker of germline methylation differs between major families of transposon-derived repeats in the human genome. Gene 2011; 492:104-9. [PMID: 22093876 DOI: 10.1016/j.gene.2011.10.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022]
Abstract
A potential relationship between transposon-derived repeats (TDR) and human germline methylation is of biological importance since many genes are flanked by TDR and methylation could affect the expression of nearby genes. Furthermore, DNA methylation has been suggested as a global defense mechanism against genome instability threatened by TDR. We studied the correlation between the density of HapMap methyl-associated SNPs (mSNPs), a marker of germline methylation, and proportion of TDR. After correcting for confounding variables, we found a negative correlation between proportion of Alu repeats and mSNP density for 125-1000 kb windows. Similar results were found for the most active subgroup of repeats. In contrast, a negative correlation between proportion of L1 repeats and mSNP density was found only in the larger 1000 kb windows. Using methylation data on germ cells (sperm) from the Human Epigenome Project, we found a lower proportion of Alu repeats adjacent (3-15 kb) to hypermethylated amplicons. On the contrary, there was a higher proportion of L1 repeats in the 3-5 kb of sequence flanking hypermethylated amplicons but not in the 10-15 kb flanks. Our data indicate a differential response to the major repeat families and that DNA methylation is unlikely to be a uniform global defense system against all TDR. It appears to play a role for the L1 subgroup, with sequences adjacent to L1 repeats methylated in response to their proximity. In contrast, sequences adjacent to Alu repeats appear to be hypomethylated, arguing against a role of methylation in germline defense against those elements.
Collapse
Affiliation(s)
- Martin I Sigurdsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, IS-101, and Department of Genetics and Molecular Medicine, Landspitali-University Hospital, Reykjavik, IS-101, Iceland
| | | | | | | |
Collapse
|
16
|
Abstract
Epigenetic marks are well recognized as heritable chemical modifications of DNA and chromatin that induce chromatin structural changes thereby affecting gene activity. A lesser-known phenomenon is the pervasive effects these marks have on genomic integrity. Remarkably, epigenetic marks and the enzymes that establish them are involved in multiple aspects of maintaining genetic content. These aspects include preserving nucleotide sequences such as repetitive elements, preventing DNA damage, functioning in DNA repair mechanisms and chromatin restoration, and defining chromosomal organization through effects on structural elements such as the centromere. This review discusses these functional aspects of epigenetic marks and their effects on human health and disease.
Collapse
|
17
|
López Castel A, Nakamori M, Tomé S, Chitayat D, Gourdon G, Thornton CA, Pearson CE. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet 2010; 20:1-15. [PMID: 21044947 DOI: 10.1093/hmg/ddq427] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40-400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues.
Collapse
Affiliation(s)
- Arturo López Castel
- Genetics and Genome Biology, Department of Pediatrics, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Epigenetic changes and non-coding expanded repeats. Neurobiol Dis 2010; 39:21-7. [PMID: 20171282 DOI: 10.1016/j.nbd.2010.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/31/2022] Open
Abstract
Many neurogenetic disorders are caused by unstable expansions of tandem repeats. Some of the causal mutations are located in non-protein-coding regions of genes. When pathologically expanded, these repeats can trigger focal epigenetic changes that repress the expression of the mutant allele. When the mutant gene is not repressed, the transcripts containing the expanded repeat can give rise to a toxic gain-of-function by the mutant RNA. These two mechanisms, heterochromatin-mediated gene repression and RNA dominance, produce a wide range of neurodevelopmental and neurodegenerative abnormalities. Here we review the mechanisms of gene dysregulation induced by non-coding repeat expansions, and early indications that some of these disorders may prove to be responsive to therapeutic intervention.
Collapse
|
19
|
Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 2009; 25:288-97. [PMID: 19540013 DOI: 10.1016/j.tig.2009.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 12/16/2022]
Abstract
Trinucleotide repeat expansion underlies at least 17 neurological diseases. In affected individuals, the expanded locus is characterized by dramatic changes in chromatin structure and in repeat tract length. Interestingly, recent studies show that several chromatin modifiers, including a histone acetyltransferase, a DNA methyltransferase and the chromatin insulator CTCF can modulate repeat instability. Here, we propose that the unusual chromatin structure of expanded repeats directly impacts their instability. We discuss several potential models for how this might occur, including a role for DNA repair-dependent epigenetic reprogramming in increasing repeat instability, and the capacity of epigenetic marks to alter sense and antisense transcription, thereby affecting repeat instability.
Collapse
|
20
|
Libby RT, Hagerman KA, Pineda VV, Lau R, Cho DH, Baccam SL, Axford MM, Cleary JD, Moore JM, Sopher BL, Tapscott SJ, Filippova GN, Pearson CE, La Spada AR. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet 2008; 4:e1000257. [PMID: 19008940 PMCID: PMC2573955 DOI: 10.1371/journal.pgen.1000257] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 10/07/2008] [Indexed: 12/16/2022] Open
Abstract
At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting “instability elements,” and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF—a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability. The human genome contains many repetitive sequences. In 1991, we discovered that excessive lengthening of a three-nucleotide (trinucleotide) repeat sequence could cause a human genetic disease. We now know that this unique type of genetic mutation, known as a “repeat expansion,” occurs in at least 25 different diseases, including inherited neurological disorders such as the fragile X syndrome of mental retardation, myotonic muscular dystrophy, and Huntington's disease. An interesting feature of repeat expansion mutations is that they are genetically unstable, meaning that the repeat expansion changes in length when transmitted from parent to offspring. Thus, expanded repeats violate one major tenet of genetics—i.e., that any given sequence has a low likelihood for mutation. For expanded repeats, the likelihood of further mutation approaches 100%. Understanding why expanded repeats are so mutable has been a challenging problem for genetics research. In this study, we implicate the CTCF protein in the repeat expansion process by showing that mutation of a CTCF binding site, next to an expanded repeat sequence, increases genetic instability in mice. CTCF is an important regulatory factor that controls the expression of genes. As binding sites for CTCF are associated with many repeat sequences, CTCF may play a role in regulating genetic instability in various repeat diseases—not just the one we studied.
Collapse
Affiliation(s)
- Randell T. Libby
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Katharine A. Hagerman
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Victor V. Pineda
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Rachel Lau
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Diane H. Cho
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sandy L. Baccam
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Michelle M. Axford
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John D. Cleary
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - James M. Moore
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Bryce L. Sopher
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Stephen J. Tapscott
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Neurology (Neurogenetics), University of Washington Medical Center, Seattle, Washington, United States of America
| | - Galina N. Filippova
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Albert R. La Spada
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
- Department of Neurology (Neurogenetics), University of Washington Medical Center, Seattle, Washington, United States of America
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, Washington, United States of America
- Center for Neurogenetics & Neurotherapeutics, University of Washington Medical Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 2008; 51:350-6. [PMID: 18438438 DOI: 10.1139/g08-024] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dioecious plant Silene latifolia possesses evolutionarily young sex chromosomes, and so serves as a model system to study the early stages of sex chromosome evolution. Sex chromosomes often differ distinctly from autosomes in both their structure and their patterns of evolution. The S. latifolia Y chromosome is particularly unique owing to its large size, which contrasts with the size of smaller, degenerate mammalian Y chromosomes. It is thought that the suppression of recombination on the S. latifolia Y chromosome could have resulted in the accumulation of repetitive sequences that account for its large size. Here we used fluorescence in situ hybridization (FISH) to study the chromosomal distribution of various microsatellites in S. latifolia including all possible mono-, di-, and tri-nucleotides. Our results demonstrate that a majority of microsatellites are accumulated on the q arm of the Y chromosome, which stopped recombining relatively recently and has had less time to accumulate repetitive DNA sequences compared with the p arm. Based on these results we can speculate that microsatellites have accumulated in regions that predate the genome expansion, supporting the view that the accumulation of repetitive DNA sequences occurred prior to, not because of, the degeneration of genes.
Collapse
Affiliation(s)
- Zdenek Kubat
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | |
Collapse
|
22
|
Abstract
Unstable repeats are associated with various types of cancer and have been implicated in more than 40 neurodegenerative disorders. Trinucleotide repeats are located in non-coding and coding regions of the genome. Studies of bacteria, yeast, mice and man have helped to unravel some features of the mechanism of trinucleotide expansion. Looped DNA structures comprising trinucleotide repeats are processed during replication and/or repair to generate deletions or expansions. Most in vivo data are consistent with a model in which expansion and deletion occur by different mechanisms. In mammals, microsatellite instability is complex and appears to be influenced by genetic, epigenetic and developmental factors.
Collapse
|
23
|
Dion V, Lin Y, Hubert L, Waterland RA, Wilson JH. Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum Mol Genet 2008; 17:1306-17. [PMID: 18252747 DOI: 10.1093/hmg/ddn019] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Expanded CAG repeat tracts are the cause of at least a dozen neurodegenerative disorders. In humans, long CAG repeats tend to expand during transmissions from parent to offspring, leading to an earlier age of disease onset and more severe symptoms in subsequent generations. Here, we show that the maintenance DNA methyltransferase Dnmt1, which preserves the patterns of CpG methylation, plays a key role in CAG repeat instability in human cells and in the male and female mouse germlines. SiRNA knockdown of Dnmt1 in human cells destabilized CAG triplet repeats, and Dnmt1 deficiency in mice promoted intergenerational expansion of CAG repeats at the murine spinocerebellar ataxia type 1 (Sca1) locus. Importantly, Dnmt1(+/-) SCA1 mice, unlike their Dnmt1(+/+) SCA1 counterparts, closely reproduced the intergenerational instability patterns observed in human SCA1 patients. In addition, we found aberrant DNA and histone methylation at sites within the CpG island that abuts the expanded repeat tract in Dnmt1-deficient mice. These studies suggest that local chromatin structure may play a role in triplet repeat instability. These results are consistent with normal epigenetic changes during germline development contributing to intergenerational instability of CAG repeats in mice and in humans.
Collapse
Affiliation(s)
- Vincent Dion
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, USDA Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
24
|
Pollard LM, Bourn RL, Bidichandani SI. Repair of DNA double-strand breaks within the (GAA*TTC)n sequence results in frequent deletion of the triplet-repeat sequence. Nucleic Acids Res 2008; 36:489-500. [PMID: 18045804 PMCID: PMC2241870 DOI: 10.1093/nar/gkm1066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia is caused by an expanded (GAA*TTC)n sequence, which is unstable during intergenerational transmission and in most patient tissues, where it frequently undergoes large deletions. We investigated the effect of DSB repair on instability of the (GAA*TTC)n sequence. Linear plasmids were transformed into Escherichia coli so that each colony represented an individual DSB repair event. Repair of a DSB within the repeat resulted in a dramatic increase in deletions compared with circular templates, but DSB repair outside the repeat tract did not affect instability. Repair-mediated deletions were independent of the orientation and length of the repeat, the location of the break within the repeat or the RecA status of the strain. Repair at the center of the repeat resulted in deletion of approximately half of the repeat tract, and repair at an off-center location produced deletions that were equivalent in length to the shorter of the two repeats flanking the DSB. This is consistent with a single-strand annealing mechanism of DSB repair, and implicates erroneous DSB repair as a mechanism for genetic instability of the (GAA*TTC)n sequence. Our data contrast significantly with DSB repair within (CTG*CAG)n repeats, indicating that repair-mediated instability is dependent on the sequence of the triplet repeat.
Collapse
Affiliation(s)
- Laura M. Pollard
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecka L. Bourn
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
25
|
Fletcher BS. Development and validation of an approach to produce large-scale quantities of CpG-methylated plasmid DNA. Microb Biotechnol 2008; 1:62-7. [PMID: 21261822 PMCID: PMC3864432 DOI: 10.1111/j.1751-7915.2007.00007.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The prokaryotic CpG‐specific DNA methylase from Spiroplasma, SssI methylase, has been extensively used to methylate plasmid DNA in vitro to investigate the effects of methylation in vertebrate systems. Currently available methods to produce CpG‐methylated plasmid DNA have certain limitations and cannot generate large quantities of methylated DNA without cost or problems of purity. Here we describe an approach in which the SssI methylase gene has been introduced into the Escherichia coli bacterial genome under the control of an inducible promoter. Plasmid DNA propagated in this bacterium under conditions which induce the methylase gene result in significant (> 90%) CpG methylation. Methylated DNA produced by this approach behaves similarly to methylated DNA produced in vitro using the purified methylase. The approach is scalable allowing for the production of milligram quantities of methylated plasmid DNA.
Collapse
Affiliation(s)
- Bradley S Fletcher
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Pollard LM, Chutake YK, Rindler PM, Bidichandani SI. Deficiency of RecA-dependent RecFOR and RecBCD pathways causes increased instability of the (GAA*TTC)n sequence when GAA is the lagging strand template. Nucleic Acids Res 2007; 35:6884-94. [PMID: 17932052 PMCID: PMC2175318 DOI: 10.1093/nar/gkm810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 11/13/2022] Open
Abstract
The most common mutation in Friedreich ataxia is an expanded (GAA*TTC)n sequence, which is highly unstable in human somatic cells and in the germline. The mechanisms responsible for this genetic instability are poorly understood. We previously showed that cloned (GAA*TTC)n sequences replicated in Escherichia coli are more unstable when GAA is the lagging strand template, suggesting erroneous lagging strand synthesis as the likely mechanism for the genetic instability. Here we show that the increase in genetic instability when GAA serves as the lagging strand template is seen in RecA-deficient but not RecA-proficient strains. We also found the same orientation-dependent increase in instability in a RecA+ temperature-sensitive E. coli SSB mutant strain (ssb-1). Since stalling of replication is known to occur within the (GAA*TTC)n sequence when GAA is the lagging strand template, we hypothesized that genetic stability of the (GAA*TTC)n sequence may require efficient RecA-dependent recombinational restart of stalled replication forks. Consistent with this hypothesis, we noted significantly increased instability when GAA was the lagging strand template in strains that were deficient in components of the RecFOR and RecBCD pathways. Our data implicate defective processing of stalled replication forks as a mechanism for genetic instability of the (GAA*TTC)n sequence.
Collapse
Affiliation(s)
- Laura M. Pollard
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yogesh K. Chutake
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul M. Rindler
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
27
|
Zahedi K, Bissler JJ, Wang Z, Josyula A, Lu L, Diegelman P, Kisiel N, Porter CW, Soleimani M. Spermidine/spermine N1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am J Physiol Cell Physiol 2007; 292:C1204-15. [PMID: 17065202 DOI: 10.1152/ajpcell.00451.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Expression of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia-reperfusion injury (IRI). Increased expression of SSAT in vitro leads to alterations in cellular polyamine content, depletion of cofactors and precursors of polyamine synthesis, and reduced cell proliferation. In our model system, a >28-fold increase in SSAT levels in HEK-293 cells leads to depletion of polyamines and elevation in the enzymatic activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, suggestive of a compensatory reaction to increased polyamine catabolism. Increased expression of SSAT also led to DNA damage and G2 arrest. The increased DNA damage was primarily due to the depletion of polyamines. Other factors such as increased production of H2O2 due to polyamine oxidase activity may play a secondary role in the induction of DNA lesions. In response to DNA damage the ATM/ATR → Chk1/2 DNA repair and cell cycle checkpoint pathways were activated, mediating the G2 arrest in SSAT-expressing cells. In addition, the activation of ERK1 and ERK2, which play integral roles in the G2/M transition, is impaired in cells expressing SSAT. These results indicate that the disruption of polyamine homeostasis due to enhanced SSAT activity leads to DNA damage and reduced cell proliferation via activation of DNA repair and cell cycle checkpoint and disruption of Raf → MEK → ERK pathways. We propose that in kidneys subjected to IRI, one mechanism through which increased expression of SSAT may cause cellular injury and organ damage is through induction of DNA damage and the disruption of cell cycle.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gray SJ, Gerhardt J, Doerfler W, Small LE, Fanning E. An origin of DNA replication in the promoter region of the human fragile X mental retardation (FMR1) gene. Mol Cell Biol 2006; 27:426-37. [PMID: 17101793 PMCID: PMC1800797 DOI: 10.1128/mcb.01382-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.
Collapse
Affiliation(s)
- Steven J Gray
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, , Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | |
Collapse
|
29
|
Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta Rev Cancer 2006; 1775:138-62. [PMID: 17045745 DOI: 10.1016/j.bbcan.2006.08.007] [Citation(s) in RCA: 332] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 12/14/2022]
Abstract
Changes in human DNA methylation patterns are an important feature of cancer development and progression and a potential role in other conditions such as atherosclerosis and autoimmune diseases (e.g., multiple sclerosis and lupus) is being recognised. The cancer genome is frequently characterised by hypermethylation of specific genes concurrently with an overall decrease in the level of 5 methyl cytosine. This hypomethylation of the genome largely affects the intergenic and intronic regions of the DNA, particularly repeat sequences and transposable elements, and is believed to result in chromosomal instability and increased mutation events. This review examines our understanding of the patterns of cancer-associated hypomethylation, and how recent advances in understanding of chromatin biology may help elucidate the mechanisms underlying repeat sequence demethylation. It also considers how global demethylation of repeat sequences including transposable elements and the site-specific hypomethylation of certain genes might contribute to the deleterious effects that ultimately result in the initiation and progression of cancer and other diseases. The use of hypomethylation of interspersed repeat sequences and genes as potential biomarkers in the early detection of tumors and their prognostic use in monitoring disease progression are also examined.
Collapse
Affiliation(s)
- Ann S Wilson
- Preventative Health National Research Flagship, North Ryde, NSW, Australia
| | | | | |
Collapse
|
30
|
Kouidou S, Malousi A, Maglaveras N. Methylation and repeats in silent and nonsense mutations of p53. Mutat Res 2006; 599:167-77. [PMID: 16620878 DOI: 10.1016/j.mrfmmm.2006.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/22/2006] [Accepted: 03/01/2006] [Indexed: 12/16/2022]
Abstract
All exonic CG sequences in p53 are methylated; this epigenetic modification is correlated with frequent G:C-->A:T transitions in p53. Recent reports reveal the presence in p53 of non-CG methylation in CC and CCC sequences, complementary to sites of selective guanosine adduct formation (GG and GGG), and the association of genetic instability with methylation at repetitive sequences. We presently investigated the distribution of methylation sites and repetitive elements in silent and nonsense p53 mutations (2051) among the IARC's TP53 somatic mutation database for exons 5-8. Silent mutations are nonrandom, but mostly involve G:C-->A:T transitions (62%); in particular C-->T mutations (39% of all silent mutations) are mostly correlated with CC and CCC sequences, while G-->A mutations with GG sequences. Sequence analysis of all non-G:C-->A:T silent mutations reveals the frequent formation of new methylation sites (CG), new CCC and GGG sequences in the resulting sequence, refinement of symmetry elements at interrupted microsatellite-like sequences and formation of small repeats (55.3%). The G:C-->A:T silent mutations characterize cancers associated with cigarette smoking (e.g. bladder or lung and bronchus cancer versus colorectal cancer); on the contrary, non-G:C-->A:T silent mutations have similar frequencies in most cancers. Nonsense mutations in exons 5-8, all resulting in mutants lacking amino acids 307-393, which are crucial for p53 activity, were also analyzed. The frequency of nonsense mutations is higher at methylated sites or repeats 1-2 nucleotides removed from methylation sites. Frameshift mutations are also more frequent at repeated sequences. The frequent G:C-->A:T silent mutations could indicate that CC and CCC sequences of exons 5-8 are occasionally targets of non-CpG methylation of cytosine. This process of de novo methylation in the presence of microsatellite-like sequences and small repeats might influence the genetic stability of a variety of genes.
Collapse
Affiliation(s)
- Sofia Kouidou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | |
Collapse
|
31
|
Pearson CE, Nichol Edamura K, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 2005; 6:729-42. [PMID: 16205713 DOI: 10.1038/nrg1689] [Citation(s) in RCA: 660] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disease-causing repeat instability is an important and unique form of mutation that is linked to more than 40 neurological, neurodegenerative and neuromuscular disorders. DNA repeat expansion mutations are dynamic and ongoing within tissues and across generations. The patterns of inherited and tissue-specific instability are determined by both gene-specific cis-elements and trans-acting DNA metabolic proteins. Repeat instability probably involves the formation of unusual DNA structures during DNA replication, repair and recombination. Experimental advances towards explaining the mechanisms of repeat instability have broadened our understanding of this mutational process. They have revealed surprising ways in which metabolic pathways can drive or protect from repeat instability.
Collapse
Affiliation(s)
- Christopher E Pearson
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, 15-312, TMDT, 101 College Street, East Tower, Toronto, Ontario M5G 1L7, Canada.
| | | | | |
Collapse
|
32
|
Napierala M, Bacolla A, Wells RD. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences. J Biol Chem 2005; 280:37366-76. [PMID: 16166072 DOI: 10.1074/jbc.m508065200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of negative superhelical density on the genetic instabilities of long GAA.TTC, CGG.CCG, and CTG.CAG repeat sequences was studied in vivo in topologically constrained plasmids in Escherichia coli. These repeat tracts are involved in the etiologies of Friedreich ataxia, fragile X syndrome, and myotonic dystrophy type 1, respectively. The capacity of these DNA tracts to undergo deletions-expansions was explored with three genetic-biochemical approaches including first, the utilization of topoisomerase I and/or DNA gyrase mutants, second, the specific inhibition of DNA gyrase by novobiocin, and third, the genetic removal of the HU protein, thus lowering the negative supercoil density (-sigma). All three strategies revealed that higher -sigma in vivo enhanced the formation of deleted repeat sequences. The effects were most pronounced for the Friedreich ataxia and the fragile X triplet repeat sequences. Higher levels of -sigma stabilize non-B DNA conformations (i.e. triplexes, sticky DNA, flexible and writhed DNA, slipped structures) at appropriate repeat tracts; also, numerous prior genetic instability investigations invoke a role for these structures in promoting the slippage of the DNA complementary strands. Thus, we propose that the in vivo modulation of the DNA structure, localized to the repeat tracts, is responsible for these behaviors. Presuming that these interrelationships are also found in humans, dynamic alterations in the chromosomal nuclear matrix may modulate the -sigma of certain DNA regions and, thus, stabilize/destabilize certain non-B conformations which regulate the genetic expansions-deletions responsible for the diseases.
Collapse
Affiliation(s)
- Marek Napierala
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Houston, 77030-3303, USA
| | | | | |
Collapse
|
33
|
Lin Y, Dion V, Wilson JH. A novel selectable system for detecting expansion of CAG.CTG repeats in mammalian cells. Mutat Res 2005; 572:123-31. [PMID: 15790495 DOI: 10.1016/j.mrfmmm.2005.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 01/05/2005] [Accepted: 01/06/2005] [Indexed: 11/17/2022]
Abstract
CAG.CTG repeat expansions cause more than a dozen neurodegenerative diseases in humans. To define the mechanism of repeat instability in mammalian cells we developed a selectable assay to detect expansions of CAG.CTG triplet repeats in Chinese hamster ovary (CHO) cells. We showed previously that long tracts of CAG.CTG repeats, embedded in an intron of the APRT gene, kill expression of the gene, rendering the cells APRT-. By contrast, tracts with fewer than 34 repeats allow sufficient expression to give APRT+ cells. Although it should be possible to use APRT+ cells with short repeats to assay for expansion events by selecting for APRT- cells, we find that APRT+ cells with 31 repeats are not killed by the standard APRT- selection protocol, most likely because they produce too little Aprt to incorporate sufficient 8-azaadenine into their adenine pool. To overcome this problem, we devised a new selection, which increases the proportion of the adenine pool contributed by the salvage pathway by partially inhibiting the de novo pathway. We show that APRT- CHO cells with 61 or 95 CAG.CTG repeats survive this selection, whereas cells with 31 repeats die. Using this selection system, we can select for expansion to as few as 39 repeats. Thus, this assay can monitor expansions across the critical boundary from the longest lengths of normal alleles to the shortest lengths of disease alleles.
Collapse
Affiliation(s)
- Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Lan MS, Muguira M. An effective alternate cloning strategy for unstable mouse genomic sequences. Biochem Biophys Res Commun 2005; 330:641-4. [PMID: 15809045 DOI: 10.1016/j.bbrc.2005.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Unstable mammalian genomic sequences frequently underwent spontaneous rearrangement during the bacterial cloning process. When the flanking sequences of an INSM1 gene comprised of 3.0 and 4.5 kb were subcloned into a targeting vector for a gene deletion study, both the genomic sequences underwent spontaneous rearrangement. Neither the usage of recombinase-free Escherichia coli competent cells nor lowering the culture incubation temperature averted the recombination events. Co-transformation of a methyltransferase vector, pAIT2, with the targeting vector had little effect in preventing recombination through methylation of the plasmid DNA. Here, we show that a single-copy cloning technique is effective to clone the unstable mouse genomic DNA into the targeting vector.
Collapse
Affiliation(s)
- Michael S Lan
- The Research Institute for Children, Children's Hospital, Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA 70118, USA.
| | | |
Collapse
|
35
|
Pfarr W, Webersinke G, Paar C, Wechselberger C. Immunodetection of 5′-methylcytosine on Giemsa-stained chromosomes. Biotechniques 2005; 38:527-8, 530. [PMID: 15884667 DOI: 10.2144/05384bm01] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Mulvihill DJ, Nichol Edamura K, Hagerman KA, Pearson CE, Wang YH. Effect of CAT or AGG Interruptions and CpG Methylation on Nucleosome Assembly upon Trinucleotide Repeats on Spinocerebellar Ataxia, Type 1 and Fragile X Syndrome*. J Biol Chem 2005; 280:4498-503. [PMID: 15574425 DOI: 10.1074/jbc.m413239200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleosome packaging regulates many aspects of DNA metabolism and is thought to mediate genetic instability and transcription of expanded trinucleotide repeats. Both instability and transcription are sensitive to repeat length, tract purity, and CpG methylation. CAT or AGG interruptions within the (CAG)n or (CGG)n tracts of spinocerebellar ataxia, type 1 or fragile X syndrome, respectively, confer increased genetic stability to the repeats. We report the formation of nucleosomes on sequences containing pure and interrupted (CAG)n and (CGG)n repeats having lengths above and below the genetic stability thresholds. Increased lengths of pure repeats led to increased and decreased propensities for nucleosome assembly on the (CAG)n and (CGG)n repeats, respectively. CpG methylation of the CGG repeat further reduced assembly. CAT interruptions in (CAG)n tracts decreased nucleosome assembly. In contrast, AGG interruptions in (CGG)n tracts did not affect assembly by hypoacetylated histones. The latter observation was unaltered by CpG methylation of the repeats. However, nucleosome assembly by hyperacetylated histones on interrupted CGG tracts was increased relative to pure tracts and this effect was abolished by CpG methylation. Thus, CAT or AGG interruptions can modulate the ability of (CAG)n and (CGG) tracts to assemble into chromatin and the effect of the AGG interruptions is dependent upon both the methylation status of the DNA and the acetylation status of the histones. Compared with the genetically unstable pure repeats, both interruptions permit a propensity of nucleosome assembly closer to that of random (genetically stable) sequences, suggesting an association of nucleosome assembly of trinucleotide repeats and genetic instability.
Collapse
Affiliation(s)
- David J Mulvihill
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
37
|
Nichol Edamura K, Leonard MR, Pearson CE. Role of replication and CpG methylation in fragile X syndrome CGG deletions in primate cells. Am J Hum Genet 2005; 76:302-11. [PMID: 15625623 PMCID: PMC1196375 DOI: 10.1086/427928] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 12/08/2004] [Indexed: 01/22/2023] Open
Abstract
Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation.
Collapse
Affiliation(s)
- Kerrie Nichol Edamura
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, and Program of Molecular and Medical Genetics, University of Toronto, Toronto
| | - Michelle R. Leonard
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, and Program of Molecular and Medical Genetics, University of Toronto, Toronto
| | - Christopher E. Pearson
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, and Program of Molecular and Medical Genetics, University of Toronto, Toronto
| |
Collapse
|
38
|
Gorbunova V, Seluanov A, Mittelman D, Wilson JH. Genome-wide demethylation destabilizes CTG.CAG trinucleotide repeats in mammalian cells. Hum Mol Genet 2004; 13:2979-89. [PMID: 15459182 DOI: 10.1093/hmg/ddh317] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many neurological diseases, including myotonic dystrophy, Huntington's disease and several spinocerebellar ataxias, result from intergenerational increases in the length of a CTG.CAG repeat tract. Although the basis for intergenerational repeat expansion is unclear, repeat tracts are especially unstable during germline development and production of gametes. Mammalian development is characterized by waves of genome-wide demethylation and remethylation. To test whether changes in methylation status might contribute to trinucleotide repeat instability, we examined the effects of DNA methyltransferase inhibitors on trinucleotide repeat stability in mammalian cells. Using a selectable genetic system for detection of repeat contractions in CHO cells, we showed that the rate of contractions increased >1000-fold upon treatment with the DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-CdR). The link between DNA demethylation and repeat instability was strengthened by similar results obtained with hydralazine treatment, which inhibits expression of DNA methyltransferase. In human cells from myotonic dystrophy patients, treatment with 5-aza-CdR strongly destabilized repeat tracts in the DMPK gene, with a clear bias toward expansion. The bias toward expansion events and changes in repeat length that occur in jumps, rather than by accumulation of small changes, are reminiscent of the intergenerational repeat instability observed in human patients. The dramatic destabilizing effect of DNA methyltransferase inhibitors supports the hypothesis that changes in methylation patterns during epigenetic reprogramming may trigger the intergenerational repeat expansions that lead to disease.
Collapse
Affiliation(s)
- Vera Gorbunova
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
39
|
Veeraraghavan J, Rossi ML, Bambara RA. Analysis of DNA replication intermediates suggests mechanisms of repeat sequence expansion. J Biol Chem 2003; 278:42854-66. [PMID: 12902352 DOI: 10.1074/jbc.m305137200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously developed a system to investigate the mechanism of repeat sequence expansion during eukaryotic Okazaki fragment processing. Upstream and downstream primers were annealed to a complementary template to overlap across a CAG repeat region. Annealing by the competing primers lead to structural intermediates that ligated to expand the repeat segment. When an equal number of repeats overlapped on the upstream and downstream primers, a 2-fold expansion was expected, but no expansion occurred. We show here that such substrates do not expand irrespective of their repeat length. To reveal mechanism, we tested different hairpin loop intermediates expected to form and facilitate ligation. Substrates configured to form large loops in either the upstream or downstream primer alone allowed expansion. Large or small fixed position single loops allowed expansion when located at least six nucleotides up- or downstream of the nick. Fixed loops in both primers, simulating a double loop intermediate, allowed expansion as long as each loop was nine nucleotides from the nick. Thus, neither the double loop configuration required to form with equal length overlaps nor the large single loop configuration are fundamental structural impediments to expansion. We propose a model for the expansion mechanism based on the relative stabilities of single loop, double loop, hairpin, and flap intermediates that is consistent with the observed expansion efficiency of equal and unequal overlap substrates. The model suggests that the equilibrium concentration of double loop intermediates is so vanishingly small that they are not likely contributors to sequence expansion.
Collapse
Affiliation(s)
- Janaki Veeraraghavan
- Department of Biochemistry and Biophysics and the Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, New York 14624, USA
| | | | | |
Collapse
|
40
|
Lenzmeier BA, Freudenreich CH. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet Genome Res 2003; 100:7-24. [PMID: 14526162 DOI: 10.1159/000072836] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Accepted: 01/06/2003] [Indexed: 11/19/2022] Open
Abstract
The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo.
Collapse
Affiliation(s)
- B A Lenzmeier
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
41
|
Cleary JD, Pearson CE. The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet Genome Res 2003; 100:25-55. [PMID: 14526163 DOI: 10.1159/000072837] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2002] [Accepted: 02/11/2003] [Indexed: 11/19/2022] Open
Abstract
Alterations in the length (instability) of gene-specific microsatellites and minisatellites are associated with at least 35 human diseases. This review will discuss the various cis-elements that contribute to repeat instability, primarily through examination of the most abundant disease-associated repetitive element, trinucleotide repeats. For the purpose of this review, we define cis-elements to include the sequence of the repeat units, the length and purity of the repeat tracts, the sequences flanking the repeat, as well as the surrounding epigenetic environment, including DNA methylation and chromatin structure. Gender-, tissue-, developmental- and locus-specific cis-elements in conjunction with trans-factors may facilitate instability through the processes of DNA replication, repair and/or recombination. Here we review the available human data that supports the involvement of cis-elements in repeat instability with limited reference to model systems. In diverse tissues at different developmental times and at specific loci, repetitive elements display variable levels of instability, suggesting vastly different mechanisms may be responsible for repeat instability amongst the disease loci and between various tissues.
Collapse
Affiliation(s)
- J D Cleary
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
42
|
Abstract
Foreign DNA injected into mouse embryos integrates into the host chromosomes and is usually transmitted stably to the progeny. Rare cases of transgene instability have been described, and these can help our understanding of the rules that govern the organization and stability of endogenous DNA. We have observed unusual inheritance in three transgenic lines produced with a partially in vitro methylated Igf2 construct. All three founders transmitted to their progeny two different transgene patterns, A and B. Pattern A was inherited in accordance with expectation, whereas pattern B was associated with several abnormal characteristics, including fewer than expected transgenic progeny, evidence for instability and loss from the somatic tissues of some of the progeny, and high incidence of runting and perinatal death that did not appear correlated with transgene retention. The absence of these features in transgenic mice produced with the unmethylated version of the same construct indicated that prior methylation played a role in the unusual behavior of these transgenes. We hypothesize that patterns A and B were formed by transgenes that differed in their methylation, and that pattern B methylation led to instability of the transgene locus. Runting and early lethality in the pattern B sublines may be the result of transgene rearrangements, which result in transgene amplification with adverse effects of increased IGFII dosage, and/or deletions, which may affect endogenous genes required for viability. These findings provide further evidence that DNA methylation plays a role in genome stability and indicate that perturbations in the normal pattern of methylation may have destabilizing effects that extend through several generations.
Collapse
Affiliation(s)
- Dimitrina D Pravtcheva
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | |
Collapse
|
43
|
Fang DC, Wang RQ, Yang SM, Yang JM, Liu HF, Peng GY, Xiao TL, Luo YH. Mutation and methylation of hMLH1 in gastric carcinomas with microsatellite instability. World J Gastroenterol 2003; 9:655-9. [PMID: 12679904 PMCID: PMC4611422 DOI: 10.3748/wjg.v9.i4.655] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To appraise the correlation of mutation and methylation of hMSH1 with microsatellite instability (MSI) in gastric cancers.
METHODS: Mutation of hMLH1 was detected by Two-dimensional electrophoresis (Two-D) and DNA sequencing; Methylation of hMLH1 promoter was measured with methylation-specific PCR; MSI was analyzed by PCR-based methods.
RESULTS: Sixty-eight cases of sporadic gastric carcinoma were studied for mutation and methylation of hMLH1 promoter and MSI. Three mutations were found, two of them were caused by a single bp substitution and one was caused by a 2 bp substitution, which displayed similar Two-D band pattern. Methylation of hMLH1 promoter was detected in 11 (16.2%) gastric cancer. By using five MSI markers, MSI in at least one locus was detected in 17/68 (25%) of the tumors analyzed. Three hMLH1 mutations were all detected in MSI-H (≥ 2 loci, n = 8), but no mutation was found in MSI-L (only one locus, n = 9) or MSS (tumor lacking MSI or stable, n = 51). Methylation frequency of hMLH1 in MSI-H (87.5%, 7/8) was significantly higher than that in MSI-L (11.1%, 1/9) or MSS (5.9%, 3/51) (P < 0.01-0.001), but no difference was found between MSI-L and MSS (P > 0.05).
CONCLUSION: Both mutation and methylation of hMLH1 are involved in the MSI pathway but not related to the LOH pathway in gastric carcinogenesis.
Collapse
Affiliation(s)
- Dian-Chun Fang
- Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | | | | | | | | | | | | | | |
Collapse
|