1
|
Leeder WM, Kruse E, Göringer HU. Trypanosomatid, fluorescence-based in vitro U-insertion/U-deletion RNA-editing (FIDE). Bio Protoc 2021; 11:e3935. [PMID: 33796609 DOI: 10.21769/bioprotoc.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/02/2022] Open
Abstract
Gene expression within the mitochondria of African trypanosomes and other protozoan organisms relies on a nucleotide-specific RNA-editing reaction. In the process exclusively uridine (U)-nucleotides are site-specifically inserted into and deleted from sequence-deficient primary transcripts to convert them into translatable mRNAs. The reaction is catalyzed by a 0.8 MDa multiprotein complex termed the editosome. Here we describe an improved in vitro test to quantitatively explore the catalytic activity of the editosome. The assay uses synthetic, fluorophore-derivatized oligoribonucleotides as editing substrates, which enable the automated electrophoretic separation of the reaction products by capillary electrophoresis (CE) coupled to laser-induced fluorescence (LIF) detection systems. The assay is robust, it requires only nanogram amounts of materials and by using multicapillary CE/LIF-instruments it can be executed in a highly parallel layout. Further improvements include the usage of phosphorothioate-modified and thus RNase-resistant substrate RNAs as well as multiplex-type fluorophore labeling strategies to monitor the U-insertion and U-deletion reaction simultaneously. The assay is useful for investigating the mechanism and enzymology of the editosome. However, it can also be executed in high-throughput to screen for RNA editing-specific inhibitors. Graphic abstract: Characteristics of the fluorescence-based in vitro U-insertion/U-deletion RNA-editing (FIDE) assay.
Collapse
Affiliation(s)
| | - Elisabeth Kruse
- Molecular Genetics, Technical University Darmstadt, Darmstadt, Germany
| | - H Ulrich Göringer
- Molecular Genetics, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
Anazawa T, Yamazaki M, Yamamoto S, Inaba R. Ultra-small four-emission-point spectral-detection system using seven-dichroic-mirror array. Talanta 2021; 222:121667. [PMID: 33167280 DOI: 10.1016/j.talanta.2020.121667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
An ultra-small and highly efficient spectral-detection system for four emission points was developed by integrating an injection-molded-plastic four-lens array, a seven-dichroic-mirror array, and an image sensor as one device. The seven-dichroic-mirror array was further miniaturized compared to our previous four-dichroic-mirror array by measures including reduction of the thickness of each dichroic mirror from 1.0 to 0.5 mm. As a result, the system enables highly sensitive and low-crosstalk seven-color detection of laser-induced fluorescence from four emission points of a four-capillary array. This capability allows simultaneous quantification of up-to-seven fluorophores concurrently present in each capillary. Sanger DNA sequencing and STR genotyping by four-capillary-array electrophoresis were experimentally demonstrated by the system.
Collapse
Affiliation(s)
- Takashi Anazawa
- Research & Development Group, Hitachi Ltd., 1-280 Higashi-koigakubo Kokubunji, Tokyo, 185-8601, Japan.
| | - Motohiro Yamazaki
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| | - Shuhei Yamamoto
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| | - Ryoji Inaba
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| |
Collapse
|
3
|
Kathuria P, Singh P, Sharma P, Wetmore SD. Replication of the Aristolochic Acid I Adenine Adduct (ALI-N6-A) by a Model Translesion Synthesis DNA Polymerase: Structural Insights on the Induction of Transversion Mutations from Molecular Dynamics Simulations. Chem Res Toxicol 2020; 33:2573-2583. [DOI: 10.1021/acs.chemrestox.0c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Prebhleen Singh
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Han JP, Sun J, Wang L, Liu P, Zhuang B, Zhao L, Liu Y, Li CX. The Optimization of Electrophoresis on a Glass Microfluidic Chip and its Application in Forensic Science. J Forensic Sci 2017; 62:1603-1612. [PMID: 28168694 DOI: 10.1111/1556-4029.13408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 10/23/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
Microfluidic chips offer significant speed, cost, and sensitivity advantages, but numerous parameters must be optimized to provide microchip electrophoresis detection. Experiments were conducted to study the factors, including sieving matrices (the concentration and type), surface modification, analysis temperature, and electric field strengths, which all impact the effectiveness of microchip electrophoresis detection of DNA samples. Our results showed that the best resolution for ssDNA was observed using 4.5% w/v (7 M urea) lab-fabricated LPA gel, dynamic wall coating of the microchannel, electrophoresis temperatures between 55 and 60°C, and electrical fields between 350 and 450 V/cm on the microchip-based capillary electrophoresis (μCE) system. One base-pair resolution could be achieved in the 19-cm-length microchannel. Furthermore, both 9947A standard genomic DNA and DNA extracted from blood spots were demonstrated to be successfully separated with well-resolved DNA peaks in 8 min. Therefore, the microchip electrophoresis system demonstrated good potential for rapid forensic DNA analysis.
Collapse
Affiliation(s)
- Jun P Han
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.,Forensic Science and Technology Department of Chaoyang Sub-bureau, Beijing Public Security Bureau, Beijing, 100102, China
| | - Jing Sun
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Le Wang
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Peng Liu
- Tsinghua University, Beijing, 100084, China
| | - Bin Zhuang
- Tsinghua University, Beijing, 100084, China
| | - Lei Zhao
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Yao Liu
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Cai X Li
- Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| |
Collapse
|
5
|
Lusvarghi S, Sztuba-Solinska J, Purzycka KJ, Rausch JW, Le Grice SFJ. RNA secondary structure prediction using high-throughput SHAPE. J Vis Exp 2013:e50243. [PMID: 23748604 DOI: 10.3791/50243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding the function of RNA involved in biological processes requires a thorough knowledge of RNA structure. Toward this end, the methodology dubbed "high-throughput selective 2' hydroxyl acylation analyzed by primer extension", or SHAPE, allows prediction of RNA secondary structure with single nucleotide resolution. This approach utilizes chemical probing agents that preferentially acylate single stranded or flexible regions of RNA in aqueous solution. Sites of chemical modification are detected by reverse transcription of the modified RNA, and the products of this reaction are fractionated by automated capillary electrophoresis (CE). Since reverse transcriptase pauses at those RNA nucleotides modified by the SHAPE reagents, the resulting cDNA library indirectly maps those ribonucleotides that are single stranded in the context of the folded RNA. Using ShapeFinder software, the electropherograms produced by automated CE are processed and converted into nucleotide reactivity tables that are themselves converted into pseudo-energy constraints used in the RNAStructure (v5.3) prediction algorithm. The two-dimensional RNA structures obtained by combining SHAPE probing with in silico RNA secondary structure prediction have been found to be far more accurate than structures obtained using either method alone.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, USA
| | | | | | | | | |
Collapse
|
6
|
Liu P, Greenspoon SA, Yeung SH, Scherer JR, Mathies RA. Integrated sample cleanup and microchip capillary array electrophoresis for high-performance forensic STR profiling. Methods Mol Biol 2012; 830:351-365. [PMID: 22139672 DOI: 10.1007/978-1-61779-461-2_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Microfluidics has the potential to significantly improve the speed, throughput, and cost performance of electrophoretic short tandem repeat (STR) analysis by translating the process into a miniaturized and integrated format. Current STR analysis bypasses the post-PCR sample cleanup step in order to save time and cost, resulting in poor injection efficiency, bias against larger loci, and delicate injection timing controls. Here we describe the operation of an integrated high-throughput sample cleanup and capillary array electrophoresis microsystem that employs a streptavidin capture gel chemistry coupled to a simple direct-injection geometry for simultaneously analyzing 12 STR samples in less than 30 min with >10-fold improved sensitivity.
Collapse
Affiliation(s)
- Peng Liu
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of California, Berkeley, CA, USA.
| | | | | | | | | |
Collapse
|
7
|
Ferraguti G, Pierandrei S, Bruno SM, Ceci F, Strom R, Lucarelli M. A template for mutational data analysis of the CFTR gene. Clin Chem Lab Med 2011; 49:1447-51. [PMID: 21627495 DOI: 10.1515/cclm.2011.604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Automated DNA sequencing produces large amounts of data that need to be analyzed by appropriate software. Personalization of software can be a difficult and time-consuming task, especially if a large number of mutations have to be analyzed. METHODS The Applied BioSystems SeqScape software, based on the KB basecaller algorithm, is a versatile tool that can be used for mutational analysis and for data quality assessment of sequences belonging to any gene of interest. Using this software we analyzed over 1400 sequences of CFTR exons and adjacent intronic zones, representing over 500,000 bases. RESULTS We present an up to date specific template and a linked set of instructions for automated labeling of all point mutations and polymorphisms of the CFTR gene, whose mutations cause cystic fibrosis (the most common genetic disease among Caucasian individuals). We also describe our refined software settings for mutational analysis, in order to keep to a minimum the need of manual validation. CONCLUSIONS The use of our template greatly simplifies the mutational analysis of the CFTR gene, reducing human intervention. In our opinion, it might not only be useful to researchers that already perform CFTR mutational analysis by sequencing methods but it should also improve the approach in those laboratories that already use ABI PRISM instrumentation for a limited mutational analysis of the CFTR gene. Similar mutational templates can also be used for other disease causing genes, thus improving molecular genetics protocols.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Yeung SHI, Liu P, Del Bueno N, Greenspoon SA, Mathies RA. Integrated Sample Cleanup−Capillary Electrophoresis Microchip for High-Performance Short Tandem Repeat Genetic Analysis. Anal Chem 2008; 81:210-7. [DOI: 10.1021/ac8018685] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie H. I. Yeung
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Peng Liu
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Nadia Del Bueno
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Susan A. Greenspoon
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
9
|
Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC. ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA (NEW YORK, N.Y.) 2008; 14:1979-90. [PMID: 18772246 PMCID: PMC2553743 DOI: 10.1261/rna.1166808] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Analysis of the long-range architecture of RNA is a challenging experimental and computational problem. Local nucleotide flexibility, which directly reports underlying base pairing and tertiary interactions in an RNA, can be comprehensively assessed at single nucleotide resolution using high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE). hSHAPE resolves structure-sensitive chemical modification information by high-resolution capillary electrophoresis and typically yields quantitative nucleotide flexibility information for 300-650 nucleotides (nt) per experiment. The electropherograms generated in hSHAPE experiments provide a wealth of structural information; however, significant algorithmic analysis steps are required to generate quantitative and interpretable data. We have developed a set of software tools called ShapeFinder to make possible rapid analysis of raw sequencer data from hSHAPE, and most other classes of nucleic acid reactivity experiments. The algorithms in ShapeFinder (1) convert measured fluorescence intensity to quantitative cDNA fragment amounts, (2) correct for signal decay over read lengths extending to 600 nts or more, (3) align reactivity data to the known RNA sequence, and (4) quantify per nucleotide reactivities using whole-channel Gaussian integration. The algorithms and user interface tools implemented in ShapeFinder create new opportunities for tackling ambitious problems involving high-throughput analysis of structure-function relationships in large RNAs.
Collapse
Affiliation(s)
- Suzy M Vasa
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
10
|
High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 2008; 6:e96. [PMID: 18447581 PMCID: PMC2689691 DOI: 10.1371/journal.pbio.0060096] [Citation(s) in RCA: 322] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 03/05/2008] [Indexed: 02/04/2023] Open
Abstract
Replication and pathogenesis of the human immunodeficiency virus (HIV) is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001) SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further application of this technology will make possible newly informative analysis of any RNA in a cellular transcriptome. The function of the RNA genome of the human immunodeficiency virus (HIV) is determined both by its sequence and by its ability to fold back on itself to form specific higher-order structures. In order to describe physical structures in a region of the HIV RNA genome known to play multiple, critical roles in viral replication and pathogenesis, we invent a high-throughput, quantitative, and comprehensive structure-mapping approach that locates flexible (unpaired) nucleotides within a folded RNA, assaying hundreds of nucleotides at a time. We find that the first 10% of the HIV-1 genome has a single predominant structure and that regulatory motifs have significantly greater structure than do protein-coding segments. The HIV genome interacts with numerous proteins, including multiple copies of the nucleocapsid protein. We directly map RNA–protein interactions inside virions and discover that the nucleocapsid prottein interacts with viral RNA in at least three distinct ways, depending on the context within the overall genome structure. Further application of the high-throughput RNA-structure analysis tools described here will make it possible to address diverse structure–function relationships in intact cellular and viral RNAs. Development of novel, quantitative, high-throughput RNA structure analysis tools allows the outline of structure-function relationships for the first 10% of an HIV genome, discovery of structural differences between regulatory and coding regions, and analysis of protein-RNA interactions inside authentic virions.
Collapse
|
11
|
Yeung SHI, Seo TS, Crouse CA, Greenspoon SA, Chiesl TN, Ban JD, Mathies RA. Fluorescence energy transfer-labeled primers for high-performance forensic DNA profiling. Electrophoresis 2008; 29:2251-9. [DOI: 10.1002/elps.200700772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Emrich CA, Medintz IL, Chu WK, Mathies RA. Microfabricated Two-Dimensional Electrophoresis Device for Differential Protein Expression Profiling. Anal Chem 2007; 79:7360-6. [PMID: 17822308 DOI: 10.1021/ac0711485] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microfluidic separation system is developed to perform two-dimensional differential gel electrophoretic (DIGE) separations of complex, cellular protein mixtures produced by induced protein expression in E. coli. The micro-DIGE analyzer is a two-layer borosilicate glass microdevice consisting of a single 3.75 cm long channel for isoelectric focusing, which is sampled in parallel by 20 channels effecting a second-dimension separation by native electrophoresis. The connection between the orthogonal separation systems is accomplished by smaller channels comprising a microfluidic interface (MFI) that prevents media leakage between the two dimensions and enables facile loading of discontinuous gel systems in each dimension. Proteins are covalently labeled with Cy2 and Cy3 DIGE and detected simultaneously with a rotary confocal fluorescence scanner. Reproducible two-dimensional separations of both purified proteins and complex protein mixtures are performed with minimal run-to-run variation by including 7 M urea in the second-dimension separation matrix. The capabilities of the micro-DIGE analyzer are demonstrated by following the induced expression of maltose binding protein in E. coli. Although the absence of sodium dodecyl sulfate (SDS) in the second-dimension sizing separation limits the orthogonality and peak capacity of the separation, this analyzer is a significant first step toward the reproducible two-dimensional analysis of complex protein samples in microfabricated devices. Furthermore, the microchannel interface structures developed here will facilitate other multidimensional separations in microdevices.
Collapse
Affiliation(s)
- Charles A Emrich
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
13
|
Blazej RG, Paegel BM, Mathies RA. Polymorphism ratio sequencing: a new approach for single nucleotide polymorphism discovery and genotyping. Genome Res 2003; 13:287-93. [PMID: 12566407 PMCID: PMC420372 DOI: 10.1101/gr.396203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 12/04/2002] [Indexed: 11/25/2022]
Abstract
Polymorphism ratio sequencing (PRS) combines the advantages of high-throughput DNA sequencing with new labeling and pooling schemes to produce a powerful assay for sensitive single nucleotide polymorphism (SNP) discovery, rapid genotyping, and accurate, multiplexed allele frequency determination. In the PRS method, dideoxy-terminator extension ladders generated from a sample and reference template are labeled with different energy-transfer fluorescent dyes and coinjected into a separation capillary for comparison of relative signal intensities. We demonstrate the PRS method by screening two human mitochondrial genomes for sequence variations using a microfabricated capillary array electrophoresis device. A titration of multiplexed DNA samples places the limit of minor allele frequency detection at 5%. PRS is a sensitive and robust polymorphism detection method for the analysis of individual or multiplexed samples that is compatible with any four-color fluorescence DNA sequencer.
Collapse
Affiliation(s)
- Robert G Blazej
- University of California, Berkeley/University of California, San Francisco Joint Bioengineering Graduate Group, Berkeley, California 94720, USA
| | | | | |
Collapse
|
14
|
Paegel BM, Yeung SHI, Mathies RA. Microchip bioprocessor for integrated nanovolume sample purification and DNA sequencing. Anal Chem 2002; 74:5092-8. [PMID: 12380835 DOI: 10.1021/ac0203645] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microfabricated electrophoretic bioprocessor for integrated DNA sequencing sample desalting, template removal, preconcentration, and CE analysis is presented. A low-viscosity gel capture matrix, containing an acrylamide-copolymerized oligonucleotide complementary to the 20-base sequence directly 3' of the M13-40 universal forward priming site, is introduced into the 60-nL capture chamber. Unpurified DNA sequencing reaction products are electrophoretically driven through the chamber; extension products hybridize to the matrix, while contaminating buffering ions, Cl-, excess primer, and template DNA are unretained. Purification under optimized conditions is complete in only 120 s (binding temperature 50 degrees C, driving voltage 250 V). High-speed, integrated sequencing analysis is accomplished by releasing the gel-purified duplex at 67 degrees C and directly injecting onto a 15.9-cm effective length CE microchannel. Electrophoretic resolution of the sequencing products is complete in 32 min, producing a total of 560 bp with phred quality q > or = 20 (accuracy > or = 99%). This fully integrated nanoliter process decreases the purification time approximately 10-fold and the process volume approximately 100-fold while providing state-of-the-art sequencing results.
Collapse
Affiliation(s)
- Brian M Paegel
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
15
|
Paegel BM, Emrich CA, Wedemayer GJ, Scherer JR, Mathies RA. High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc Natl Acad Sci U S A 2002; 99:574-9. [PMID: 11792836 PMCID: PMC117347 DOI: 10.1073/pnas.012608699] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High throughput DNA sequencing has been performed by using a microfabricated 96-channel radial capillary array electrophoresis (microCAE) microchannel plate detected by a 4-color rotary confocal fluorescence scanner. The microchannel plate features a novel injector for uniform sieving matrix loading as well as high resolution, tapered turns that provide an effective separation length of 15.9 cm on a compact 150-mm diameter wafer. Expanded common buffer chambers for the cathode, anode, and waste reservoirs are used to simplify electrode addressing and to counteract buffering capacity depletion arising from the high electrophoretic current. DNA sequencing data from 95 successful lanes out of 96 lanes run in parallel were batch-processed with basefinder, producing an average read length of 430 bp (phred q > or = 20). Phred quality values were found to exceed 40 (0.01% probability of incorrectly calling a base) for over 80% of the read length. The microCAE system demonstrated here produces sequencing data at a rate of 1.7 kbp/min, a 5-fold increase over current commercial capillary array electrophoresis technology. Additionally, this system permits lower reagent volumes and lower sample concentrations, and it presents numerous possibilities for integrated sample preparation and handling. The unique capabilities of microCAE technology should make it the next generation, high performance DNA sequencing platform.
Collapse
Affiliation(s)
- Brian M Paegel
- Department of Chemistry and Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
16
|
Medintz IL, Paegel BM, Blazej RG, Emrich CA, Berti L, Scherer JR, Mathies RA. High-performance genetic analysis using microfabricated capillary array electrophoresis microplates. Electrophoresis 2001; 22:3845-56. [PMID: 11700713 DOI: 10.1002/1522-2683(200110)22:18<3845::aid-elps3845>3.0.co;2-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review focuses on some recent advances in realizing microfabricated capillary array electrophoresis (microCAE). In particular, the development of a novel rotary scanning confocal fluorescence detector has facilitated the high-speed collection of sequencing and genotyping data from radially formatted microCAE devices. The concomitant development of a convenient energy-transfer cassette labeling chemistry allows sensitive multicolor labeling of any DNA genotyping or sequencing analyte. High-performance hereditary haemochromatosis and short tandem repeat genotyping assays are demonstrated on these devices along with rapid mitochondrial DNA sequence polymorphism analysis. Progress in supporting technology such as robotic fluid dispensing and batched data analysis is also presented. The ultimate goal is to develop a parallel analysis platform capable of integrated sample preparation and automated electrophoretic analysis with a throughput 10-100 times that of current technology.
Collapse
Affiliation(s)
- I L Medintz
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Berti L, Xie J, Medintz IL, Glazer AN, Mathies RA. Energy transfer cassettes for facile labeling of sequencing and PCR primers. Anal Biochem 2001; 292:188-97. [PMID: 11355850 DOI: 10.1006/abio.2001.5069] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescence energy transfer (ET) primers and terminators are the reagents of choice for multiplex DNA sequencing and analysis. We present here the design, synthesis and evaluation of a four-color set of ET cassettes, fluorescent labeling reagents that can be quantitatively coupled to a thiol-activated target through a disulfide exchange reaction. The ET cassette consists of a sugar-phosphate spacer with a FAM donor at the 3'-end, an acceptor linked to a modified T-base at the 5'-end of the spacer and a mixed disulfide for coupling to a thiol at the 5'-end. The acceptor dye emission intensities of ET labeled primers produced in this manner are comparable to commercial ET primers. The utility of our ET cassette-labeled primers is demonstrated by performing four-color capillary electrophoresis sequencing with the M13(-21)forward primer and by generating and analyzing a set of single-nucleotide-polymorphism-specific PCR amplicons.
Collapse
Affiliation(s)
- L Berti
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
A pivotal step in electrophoresis sequencing is the conversion of the raw, continuous chromatogram data into the actual sequence of discrete nucleotides, a process referred to as basecalling. We describe a novel algorithm for basecalling implemented in the program LifeTrace. Like Phred, currently the most widely used basecalling software program, LifeTrace takes processed trace data as input. It was designed to be tolerant to variable peak spacing by means of an improved peak-detection algorithm that emphasizes local chromatogram information over global properties. LifeTrace is shown to generate high-quality basecalls and reliable quality scores. It proved particularly effective when applied to MegaBACE capillary sequencing machines. In a benchmark test of 8372 dye-primer MegaBACE chromatograms, LifeTrace generated 17% fewer substitution errors, 16% fewer insertion/deletion errors, and 2.4% more aligned bases to the finished sequence than did Phred. For two sets totaling 6624 dye-terminator chromatograms, the performance improvement was 15% fewer substitution errors, 10% fewer insertion/deletion errors, and 2.1% more aligned bases. The processing time required by LifeTrace is comparable to that of Phred. The predicted quality scores were in line with observed quality scores, permitting direct use for quality clipping and in silico single nucleotide polymorphism (SNP) detection. Furthermore, we introduce a new type of quality score associated with every basecall: the gap-quality. It estimates the probability of a deletion error between the current and the following basecall. This additional quality score improves detection of single basepair deletions when used for locating potential basecalling errors during the alignment. We also describe a new protocol for benchmarking that we believe better discerns basecaller performance differences than methods previously published.
Collapse
Affiliation(s)
- D Walther
- Incyte Genomics, Inc., Palo Alto, California 94304, USA.
| | | | | |
Collapse
|
19
|
Hanning A, Westberg J, Roeraade J. A liquid core waveguide fluorescence detector for multicapillary electrophoresis applied to DNA sequencing in a 91-capillary array. Electrophoresis 2000; 21:3290-304. [PMID: 11001228 DOI: 10.1002/1522-2683(20000901)21:15<3290::aid-elps3290>3.0.co;2-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new laser-induced fluorescence (LIF) detector for multicapillary electrophoresis is presented. The detection principle is based on waveguiding of the emitted fluorescence from the point of illumination to the capillary ends by total internal reflection (TIR) and imaging of the capillary ends. The capillaries themselves thus act as liquid core waveguides (LCWs). At the illumination point, the capillaries are arranged in a planar array, which allows clean and efficient illumination with a line-focused laser beam. The capillary ends are rearranged into a small, densely packed two-dimensional array, which is imaged end-on with high light collection efficiency and excellent image quality. Wavelength dispersion is obtained with a single prism. Intercapillary optical crosstalk is less than 0.5%, and rejection of stray light is very efficient. The detector is applied to four-color DNA sequencing by gel electrophoresis in a 91-capillary array, with simple fluorescein and rhodamine dyes as fluorophores. Since the imaged two-dimensional array is so compact, the detector has a high potential for very large-scale multiplexing.
Collapse
Affiliation(s)
- A Hanning
- Royal Institute of Technology, Department of Analytical Chemistry, Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Brady D, Kocic M, Miller AW, Karger BL. A maximum-likelihood base caller for DNA sequencing. IEEE Trans Biomed Eng 2000; 47:1271-80. [PMID: 11008429 DOI: 10.1109/10.867962] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The procedures used to sequence the human genome involve the electrophoretic separation of mixtures of dioxyribonucleic acid (DNA) fragments tagged with reporting groups, usually fluorescent dyes. Each fluorescent pulse which arrives from an optical detector corresponds to a nucleotide (base) in the DNA sequence, and the subsequent process of base detection is known as base calling. Generating longer and more accurate sequences in the base-calling process will reduce the high cost of DNA sequencing. This paper presents an automated base-calling algorithm, referred to as maximum-likelihood base caller (MLB), which is based on maximum likelihood equalization for digital communication channels. Based on 125 experimental datasets, MLB averaged up to 40% fewer errors than the widely used ABI base caller from the Applied Biosystems Division of PE Corporation. MLB's accuracy rivaled that of another well-known base caller, Phred, surpassing it on datasets with high background noise.
Collapse
Affiliation(s)
- D Brady
- Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
21
|
Li Y, Schwager C, Ansorge W. Using a neural network for lane-tracking of DNA sequencing slab gels. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2000; 45:65-74. [PMID: 10899391 DOI: 10.1016/s0165-022x(00)00099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High quality lane-tracking of gel images is the first task, and thus a prerequisite, for successful trace processing and base-calling of DNA sequencing slab gels. In most approaches, it is based on statistical calculations, for instance variance and co-variance analysis between neighboring pixel columns in the image. On the basis of these statistical calculations, Kohonen's self-organization neural network model was introduced. We have found that, using several well-structured input data, Kohonen's self-organization neural network model can be trained to fulfill our task of lane-tracking. Furthermore, the quality of lane-tracking could be improved compared to algorithmic approaches.
Collapse
Affiliation(s)
- Y Li
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, D-69117, Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Hanning A, Lindberg P, Westberg J, Roeraade J. Laser-induced fluorescence detection by liquid core waveguiding applied to DNA sequencing by capillary electrophoresis. Anal Chem 2000; 72:3423-30. [PMID: 10952522 DOI: 10.1021/ac000326q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new laser-induced fluorescence detector for capillary electrophoresis (CE) is described. The detector is based on transverse illumination and collection of the emitted fluorescent light via total internal reflection along the separation capillary. The capillary is coated with a low refractive index fluoropolymer and serves as a liquid core waveguide (LCW). The emitted light is detected end-on with a CCD camera at the capillary exit. The observed detection limit for fluorescein is 2.7 pM (550 ymol) in the continuous-flow mode and 62 fM in the CE mode. The detector is applied to DNA sequencing. One-color G sequencing is performed with single-base resolution and signal-to-noise ratio approximately 250 for peaks around 500 bases. The signal-to-noise ratio is approximately 50 for peaks around 950 bases. Full four-color DNA sequencing is also demonstrated. The high sensitivity of the detector is suggested to partly be due to the efficient rejection of scattered laser light in the LCW. The concept should be highly suitable for capillary array detection.
Collapse
Affiliation(s)
- A Hanning
- Royal Institute of Technology, Department of Analytical Chemistry, Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Abstract
We have addressed two important issues of nonlinear cross-talk and baseline adjustment in DNA data processing. An important aspect in the processing of the four-dye fluorescence-based data is the cross-talk filtering. Typically, a matrix M, which is a function of the fluorophores and the fluorescence detection system, is used in the multicomponent analysis. In this deconvolution process the matrix is applied directly to the raw signal, on a linear cross-talk assumption. This necessitates the signal to be aligned to the baseline before the filter is applied. The various techniques used for aligning the raw data have the negative effect of adding distortion to the signal. An algorithm for cross-talk removal is presented in this paper. The algorithm uses the intensity difference of the signal rather than the actual value itself, thus making the cross-talk removal possible before the base line adjustment. In addition, a supplementary filtering step is proposed in order to account for the nonlinear nature of the cross-talk. This second step is based on a matrix T that accounts for the correlation of each of the signals with the other three. The overall result is a more precise presentation of the DNA data and less information loss through filtering.
Collapse
Affiliation(s)
- C Domnişoru
- Department of Electrical and Computer Engineering, University of Maine, Orono 04469, USA.
| | | | | |
Collapse
|
24
|
Abstract
A simple base-calling scheme based on four-label multicolor detection is suggested for DNA sequencing. The entire spectra of the dye labels were used for identification. Specifically, the maxima of the emission spectra rather than the intensity ratios at selected wavelengths are used to provide excellent discrimination. Capillary gel electrophoresis was used for the separation of DNA fragments. Data acquisition and analysis compatible with fast and high-throughput imaging detection was accomplished. The accuracy of base calling of PGEM/U DNA from the raw data obtained with 5 nm and 7 nm spectroscopic resolution were 98.4% for 386 bases and 98.4% for 385 bases. Base calling of M13mp18 DNA showed 98.3% accuracy for 420 bases.
Collapse
Affiliation(s)
- J M Song
- USDOE and Department of Chemistry Iowa State University, Ames 50011, USA
| | | |
Collapse
|
25
|
Abstract
Capillary electrophoresis and related techniques on microchips have made great strides in recent years. This review concentrates on progress in capillary zone electrophoresis, but also covers other capillary techniques such as isoelectric focusing, isotachophoresis, free flow electrophoresis, and micellar electrokinetic chromatography. The material and technologies used to prepare microchips, microchip designs, channel geometries, sample manipulation and derivatization, detection, and applications of capillary electrophoresis to microchips are discussed. The progress in separation of nucleic acids and proteins is particularly emphasized.
Collapse
Affiliation(s)
- V Dolník
- Molecular Dynamics, Sunnyvale, CA 94086, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Dolník V. DNA sequencing by capillary electrophoresis (review). JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1999; 41:103-19. [PMID: 10626769 DOI: 10.1016/s0165-022x(99)00041-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
DNA sequencing by capillary electrophoresis has been reviewed with an emphasis on progress during the last four years. The effects of sample purification, composition of sieving matrices, electric field strength, temperature, wall coating and DNA labeling on the DNA sequencing performance are discussed. Multicapillary array instrumentation is compared with one-capillary systems. Integrated systems that perform the whole DNA sequencing operation online starting from the DNA amplification through base calling and data processing are discussed.
Collapse
Affiliation(s)
- V Dolník
- Molecular Dynamics, Sunnyvale, CA 94086, USA.
| |
Collapse
|
28
|
Frangeul L, Nelson KE, Buchrieser C, Danchin A, Glaser P, Kunst F. Cloning and assembly strategies in microbial genome projects. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2625-34. [PMID: 10537184 DOI: 10.1099/00221287-145-10-2625] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- L Frangeul
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Scherer JR, Kheterpal I, Radhakrishnan A, Ja WW, Mathies RA. Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis. Electrophoresis 1999; 20:1508-17. [PMID: 10424474 DOI: 10.1002/(sici)1522-2683(19990601)20:7<1508::aid-elps1508>3.0.co;2-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have constructed a rotary confocal fluorescence scanner and capillary array electrophoresis system that is designed to analyze over 1000 DNA sequencing or fragment sizing separations in parallel. Capillaries are arranged around the surface of a cylinder and a rotating objective in the middle of the cylinder excites and collects fluorescence from labeled DNA fragments as they pass the capillary detection window. The capillaries are pressure-filled with a replaceable matrix and the samples are electrokinetically injected in parallel from a stainless steel microtiter plate at the cathode end. We demonstrate that the instrument is capable of producing four-color data from all capillaries at a scan rate of 4 Hz (corresponding to a linear scan velocity of 121 cm/s). M13 sequencing data were obtained using a 128 capillary array mounted in half of the first quadrant of the scanner. In this initial run, read lengths greater than 500 bases were obtained in over 60% of the capillaries.
Collapse
Affiliation(s)
- J R Scherer
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Color separation is an essential step of the data processing in the four-dye fluorescence detection strategy used in automated DNA sequencing. In this paper, we propose a model to describe the crosstalk phenomenon, and show how the assumptions of the model are supported by experimental data. The crosstalk matrix is estimated via a reparameterization based on a mapping between the distribution of fluorescence intensities and that of dye concentrations. An iterative algorithm is designed to implement the estimation. To evaluate the color-correction quality of a crosstalk matrix, we propose a quantitative measure based on the distribution of the color-corrected data. We illustrate this method by applying it to a sequencing trace of slab gel electrophoresis obtained at the Human Genome Center at Lawrence Berkeley National Laboratory, and that of capillary electrophoresis provided by the Department of Chemistry at UC, Berkeley. The accuracy of this method is also assessed by the bootstrap method.
Collapse
Affiliation(s)
- L Li
- Department of Statistics, Florida State University, Tallahassee 32306, USA.
| | | |
Collapse
|
31
|
Liu S, Shi Y, Ja WW, Mathies RA. Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels. Anal Chem 1999; 71:566-73. [PMID: 9989377 DOI: 10.1021/ac980783v] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA sequencing separations have been performed in microfabricated electrophoresis channels with the goal of determining whether high-quality sequencing is feasible with these microdevices. The separation matrix, separation temperature, channel length and depth, injector size, and injection parameters were optimized. DNA fragment sizing separations demonstrated that 50-micron-deep channels provide the best sensitivity for our detection configuration. One-color sequencing separations of single-stranded M13mp18 DNA on 3% linear polyacrylamide (LPA) were used to optimize the twin-T injector size, injection conditions, and temperature. The best one-color separations were observed with a 250-micron twin-T injector, an injection time of 60 s, and a temperature of 35 degrees C. The first 500 bases appeared in 9.2 min with a resolution of > 0.5, and the separation extended to 700 bases. The best four-color sequencing separations were performed using 4% LPA, a temperature of 40 degrees C, and a 100-micron twin-T injector. These four-color runs were complete in only 20 min, could be automatically base-called using BaseFinder to over 600 bp after the primer, and were 99.4% accurate to 500 bp. These results significantly advance the quality of microchip-based electrophoretic sequencing and indicate the feasibility of performing high-speed genomic sequencing with microfabricated electrophoretic devices.
Collapse
Affiliation(s)
- S Liu
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|