2
|
White PS, Thompson PM, Gotoh T, Okawa ER, Igarashi J, Kok M, Winter C, Gregory SG, Hogarty MD, Maris JM, Brodeur GM. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 2005; 24:2684-94. [PMID: 15829979 DOI: 10.1038/sj.onc.1208306] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substantial genomic and functional evidence from primary tumors and cell lines indicates that a consistent region of distal chromosome 1p is deleted in a sizable proportion of human neuroblastomas, suggesting that this region contains one or more tumor suppressor genes. To determine systematically and precisely the location and extent of 1p deletion in neuroblastomas, we performed allelic loss studies of 737 primary neuroblastomas and genotype analysis of 46 neuroblastoma cell lines. Together, the results defined a single region within 1p36.3 that was consistently deleted in 25% of tumors and 87% of cell lines. Two neuroblastoma patients had constitutional deletions of distal 1p36 that overlapped the tumor-defined region. The tumor- and constitutionally-derived deletions together defined a smallest region of consistent deletion (SRD) between D1S2795 and D1S253. The 1p36.3 SRD was deleted in all but one of the 184 tumors with 1p deletion. Physical mapping and DNA sequencing determined that the SRD minimally spans an estimated 729 kb. Genomic content and sequence analysis of the SRD identified 15 characterized, nine uncharacterized, and six predicted genes in the region. The RNA expression profiles of 21 of the genes were investigated in a variety of normal tissues. The SHREW1 and KCNAB2 genes both had tissue-restricted expression patterns, including expression in the nervous system. In addition, a novel gene (CHD5) with strong homology to proteins involved in chromatin remodeling was expressed mainly in neural tissues. Together, these results suggest that one or more genes involved in neuroblastoma tumorigenesis or tumor progression are likely contained within this region.
Collapse
Affiliation(s)
- Peter S White
- Division of Oncology, The Children's Hospital of Philadelphia, 3516 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Snelling WM, Gautier M, Keele JW, Smith TPL, Stone RT, Harhay GP, Bennett GL, Ihara N, Takasuga A, Takeda H, Sugimoto Y, Eggen A. Integrating linkage and radiation hybrid mapping data for bovine chromosome 15. BMC Genomics 2004; 5:77. [PMID: 15473903 PMCID: PMC526187 DOI: 10.1186/1471-2164-5-77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 10/08/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bovine chromosome (BTA) 15 contains a quantitative trait loci (QTL) for meat tenderness, as well as several breaks in synteny with human chromosome (HSA) 11. Both linkage and radiation hybrid (RH) maps of BTA 15 are available, but the linkage map lacks gene-specific markers needed to identify genes underlying the QTL, and the gene-rich RH map lacks associations with marker genotypes needed to define the QTL. Integrating the maps will provide information to further explore the QTL as well as refine the comparative map between BTA 15 and HSA 11. A recently developed approach to integrating linkage and RH maps uses both linkage and RH data to resolve a consensus marker order, rather than aligning independently constructed maps. Automated map construction procedures employing this maximum-likelihood approach were developed to integrate BTA RH and linkage data, and establish comparative positions of BTA 15 markers with HSA 11 homologs. RESULTS The integrated BTA 15 map represents 145 markers; 42 shared by both data sets, 36 unique to the linkage data and 67 unique to RH data. Sequence alignment yielded comparative positions for 77 bovine markers with homologs on HSA 11. The map covers approximately 32% of HSA 11 sequence in five segments of conserved synteny, another 15% of HSA 11 is shared with BTA 29. Bovine and human order are consistent in portions of the syntenic segments, but some rearrangement is apparent. Comparative positions of gene markers near the meat tenderness QTL indicate the region includes separate segments of HSA 11. The two microsatellite markers flanking the QTL peak are between defined syntenic segments. CONCLUSIONS Combining data to construct an integrated map not only consolidates information from different sources onto a single map, but information contributed from each data set increases the accuracy of the map. Comparison of bovine maps with well annotated human sequence can provide useful information about genes near mapped bovine markers, but bovine gene order may be different than human. Procedures to connect genetic and physical mapping data, build integrated maps for livestock species, and connect those maps to more fully annotated sequence can be automated, facilitating the maintenance of up-to-date maps, and providing a valuable tool to further explore genetic variation in livestock.
Collapse
Affiliation(s)
- Warren M Snelling
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Mathieu Gautier
- Biochemical Genetics and Cytogenetics Unit, Department of Animal Genetics, Laboratory of Genetics and Biochemistry, INRA-CRJ 78350 Jouy-en-Josas, France
| | - John W Keele
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Timothy PL Smith
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Roger T Stone
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Gregory P Harhay
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Gary L Bennett
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Naoya Ihara
- Shirakawa Institute of Animal Genetics, Livestock Technology Association of Japan, Fukushima, Japan
| | - Akiko Takasuga
- Shirakawa Institute of Animal Genetics, Livestock Technology Association of Japan, Fukushima, Japan
| | - Haruko Takeda
- Shirakawa Institute of Animal Genetics, Livestock Technology Association of Japan, Fukushima, Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Livestock Technology Association of Japan, Fukushima, Japan
| | - André Eggen
- Biochemical Genetics and Cytogenetics Unit, Department of Animal Genetics, Laboratory of Genetics and Biochemistry, INRA-CRJ 78350 Jouy-en-Josas, France
| |
Collapse
|
4
|
Theendakara V, Tromp G, Kuivaniemi H, White PS, Panchal S, Cox J, Winters RS, Riebeling P, Tost F, Hoeltzenbein M, Tervo TM, Henn W, Denniger E, Krause M, Koksal M, Kargi S, Ugurbas SH, Latvala T, Shearman AM, Weiss JS. Fine mapping of the Schnyder's crystalline corneal dystrophy locus. Hum Genet 2004; 114:594-600. [PMID: 15034782 DOI: 10.1007/s00439-004-1110-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 02/20/2004] [Indexed: 11/30/2022]
Abstract
Schnyder's crystalline corneal dystrophy (SCCD) is a rare autosomal dominant eye disease with a spectrum of clinical manifestations that may include bilateral corneal clouding, arcus lipoides, and anterior corneal crystalline cholesterol deposition. We have previously performed a genome-wide linkage analysis on two large Swede-Finn families and mapped the SCCD locus to a 16-cM interval between markers D1S2633 and D1S228 on chromosome 1p36. We have collected 11 additional families from Finland, Germany, Turkey, and USA to narrow the critical region for SCCD. Here, we have used haplotype analysis with densely spaced microsatellite markers in a total of 13 families to refine the candidate interval. A common disease haplotype was observed among the four Swede-Finn families indicating the presence of a founder effect. Recombination results from all 13 families refined the SCCD locus to 2.32 Mbp between markers D1S1160 and D1S1635. Within this interval, identity-by-state was present in all 13 families for two markers D1S244 and D1S3153, further refining the candidate region to 1.58 Mbp.
Collapse
Affiliation(s)
- Veena Theendakara
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sulman EP, White PS, Brodeur GM. Genomic annotation of the meningioma tumor suppressor locus on chromosome 1p34. Oncogene 2004; 23:1014-20. [PMID: 14749765 DOI: 10.1038/sj.onc.1206623] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meningioma is a frequently occurring tumor of the meninges surrounding the central nervous system. Loss of the short arm of chromosome 1 (1p) is the second most frequent chromosomal abnormality observed in these tumors. Previously, we identified a 3.7 megabase (Mb) region of consistent deletion on 1p33-p34 in a panel of 157 tumors. Loss of this region was associated with advanced disease and predictive for tumor relapse. In this report, a high-resolution integrated map of the region was constructed (CompView) to identify all markers in the smallest region of overlapping deletion (SRO). A regional somatic cell hybrid panel was used to more precisely localize those markers identified in CompView as within or overlapping the region. Additional deletion mapping using microsatellites localized to the region narrowed the SRO to approximately 2.8 Mb. The 88 markers remaining in the SRO were used to screen genomic databases to identify large-insert clones. Clones were assembled into a physical map of the region by PCR-based, sequence-tagged site (STS) content mapping. A sequence from clones was used to validate STS content by electronic PCR and to identify transcripts. A minimal tiling path of 43 clones was constructed across the SRO. Sequence data from the most current sequence assembly were used for further validation. A total of 59 genes were ordered within the SRO. In all, 17 of these were selected as likely candidates based on annotation using Gene Ontology Consortium terms, including the MUTYH, PRDX1, FOXD2, FOXE3, PTCH2, and RAD54L genes. This annotation of a putative tumor suppressor locus provides a resource for further analysis of meningioma candidate genes.
Collapse
Affiliation(s)
- Erik P Sulman
- The Fels Institute for Molecular Biology and Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
6
|
Wang ZG, White PS, Ackerman SH. Atp11p and Atp12p are assembly factors for the F(1)-ATPase in human mitochondria. J Biol Chem 2001; 276:30773-8. [PMID: 11410595 DOI: 10.1074/jbc.m104133200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atp11p and Atp12p were first described as proteins required for assembly of the F(1) component of the mitochondrial ATP synthase in Saccharomyces cerevisiae (Ackerman, S. H., and Tzagoloff, A. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 4986-4990). Here we report the isolation of the cDNAs and the characterization of the human genes for Atp11p and Atp12p and show that the human proteins function like their yeast counterparts. Human ATP11 spans 24 kilobase pairs in 9 exons and maps to 1p32.3-p33, while ATP12 contains > or =8 exons and localizes to 17p11.2. Both genes are broadly conserved in eukaryotes and are expressed in a wide range of tissues, which suggests that Atp11p and Atp12p are essential housekeeping proteins of human cells. The information reported herein will be useful in the evaluation of patients with ascertained deficiencies in the ATP synthase, in which the underlying biochemical defect is unknown and may reside in a protein that influences the assembly of the enzyme.
Collapse
Affiliation(s)
- Z G Wang
- Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
7
|
Spotila LD, Rodriguez H, Koch M, Adams K, Caminis J, Tenenhouse HS, Tenenhouse A. Association of a polymorphism in the TNFR2 gene with low bone mineral density. J Bone Miner Res 2000; 15:1376-83. [PMID: 10893687 DOI: 10.1359/jbmr.2000.15.7.1376] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous genetic linkage data suggested that a gene on chromosome 1p36.2-36.3 might be linked to low bone mineral density (BMD). Here, we examine the gene for tumor necrosis factor receptor 2 (TNFR2), a candidate gene within that interval, for association with low BMD in a group of 159 unrelated individuals. We assess two polymorphic sites within the gene, a microsatellite repeat within intron 4, and a three-nucleotide variation in the 3' untranslated region (UTR) of the gene. The latter has five alleles of which the rarest allele is associated with low spinal BMD Z score (p = 0.008). Lowest mean spinal BMD Z scores were observed for individuals having genotypes that were heterozygous for the rarest allele. No homozygotes for the rarest allele were observed. Preliminary analysis suggests that there is a difference in the genotype frequency distribution between the group with low BMD and a control group.
Collapse
Affiliation(s)
- L D Spotila
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|