1
|
Coutinho JVP, Rosa-Fernandes L, Mule SN, de Oliveira GS, Manchola NC, Santiago VF, Colli W, Wrenger C, Alves MJM, Palmisano G. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages. J Proteomics 2021; 248:104339. [PMID: 34352427 DOI: 10.1016/j.jprot.2021.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi is a flagellate protozoa being the etiological agent of Chagas disease, a neglected tropical disease, which still poses a public health problem worldwide. The intricate molecular changes during T. cruzi-host interaction have been explored using different largescale omics techniques. However, protein stability is largely unknown. Thermal proteome profiling (TPP) methodology has the potential to characterize proteome-wide stability highlighting key proteins during T. cruzi infection and life stage transition from the invertebrate to the mammalian host. In the present work, T. cruzi epimastigotes and trypomastigotes cell lysates were subjected to TPP workflow and analyzed by quantitative large-scale mass spectrometry-based proteomics to fit a melting profile for each protein. A total of 2884 proteins were identified and associated to 1741 melting curves being 1370 in trypomastigotes (TmAVG 53.53 °C) and 1279 in epimastigotes (TmAVG 50.89 °C). A total of 453 proteins were identified with statistically different melting profiles between the two life stages. Proteins associated to pathogenesis and intracellular transport had regulated melting temperatures. Membrane and glycosylated proteins had a higher average Tm in trypomastigotes compared to epimastigotes. This study represents the first large-scale comparison of parasite protein stability between life stages. SIGNIFICANCE: Trypanosoma cruzi, a unicellular flagellate parasite, is the etiological agent of Chagas disease, endemic in South America and affecting more that 7 million people worldwide. There is an intense research to identify novel chemotherapeutic and diagnostic targets of Chagas disease. Proteomic approaches have helped in elucidating the quantitative proteome and PTMs changes of T. cruzi during life cycle transition and upon different biotic and abiotic stimuli. However, a comprehensive knowledge of the protein-protein interaction and protein conformation is still missing. In order to fill this gap, this manuscript elucidates the T. cruzi Y strain proteome-wide thermal stability map in the epimastigote and trypomastigote life stages. Comparison between life stages showed a higher average melting temperature stability for trypomastigotes than epimastigotes indicating a host temperature adaptation. Both presented a selective thermal stability shift for cellular compartments, molecular functions and biological processes based on the T. cruzi life stage. Membrane and glycosylated proteins presented a higher thermal stability in trypomastigotes when compared to the epimastigotes.
Collapse
Affiliation(s)
- Joao V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Veronica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
2
|
Panunzi LG, Agüero F. A genome-wide analysis of genetic diversity in Trypanosoma cruzi intergenic regions. PLoS Negl Trop Dis 2014; 8:e2839. [PMID: 24784238 PMCID: PMC4006747 DOI: 10.1371/journal.pntd.0002839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/20/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is the causal agent of Chagas Disease. Recently, the genomes of representative strains from two major evolutionary lineages were sequenced, allowing the construction of a detailed genetic diversity map for this important parasite. However this map is focused on coding regions of the genome, leaving a vast space of regulatory regions uncharacterized in terms of their evolutionary conservation and/or divergence. METHODOLOGY Using data from the hybrid CL Brener and Sylvio X10 genomes (from the TcVI and TcI Discrete Typing Units, respectively), we identified intergenic regions that share a common evolutionary ancestry, and are present in both CL Brener haplotypes (TcII-like and TcIII-like) and in the TcI genome; as well as intergenic regions that were conserved in only two of the three genomes/haplotypes analyzed. The genetic diversity in these regions was characterized in terms of the accumulation of indels and nucleotide changes. PRINCIPAL FINDINGS Based on this analysis we have identified i) a core of highly conserved intergenic regions, which remained essentially unchanged in independently evolving lineages; ii) intergenic regions that show high diversity in spite of still retaining their corresponding upstream and downstream coding sequences; iii) a number of defined sequence motifs that are shared by a number of unrelated intergenic regions. A fraction of indels explains the diversification of some intergenic regions by the expansion/contraction of microsatellite-like repeats.
Collapse
Affiliation(s)
- Leonardo G. Panunzi
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús, Universidad de San Martín – CONICET, Sede San Marítn, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús, Universidad de San Martín – CONICET, Sede San Marítn, Buenos Aires, Argentina
- * E-mail: ;
| |
Collapse
|
3
|
Huete-Pérez JA, Flores-Obando RE, Ghedin E, Caffrey CR. Genomic and proteomic approaches for Chagas’ disease: critical analysis of diagnostic methods. Expert Rev Mol Diagn 2014; 5:521-30. [PMID: 16013970 DOI: 10.1586/14737159.5.4.521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, a chronic inflammatory condition that results in heart and digestive complications. The first draft of the parasite genome is now complete and it is expected that, along with the published genomic and proteomic analyses discussed herein, it will lead to the identification of crucial genes and proteins directly associated with disease. This article reviews the current research trends addressing host-parasite interaction, parasite genetic variability and diagnosis. These advances will certainly bring about major developments not only in our understanding of Trypanosoma cruzi biology, but also in the application of new technologies to disease prevention and control.
Collapse
Affiliation(s)
- Jorge A Huete-Pérez
- Sandler Center for Basic Research in Parasitic Diseases, University of California, QB3 Building, Box 2550, 1700 4 Street, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
4
|
Rashmi M, Swati D. Comparative Genomics of Trypanosomatid Pathogens using Codon Usage Bias. Bioinformation 2013; 9:912-8. [PMID: 24307769 PMCID: PMC3842577 DOI: 10.6026/97320630009912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/19/2013] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED It is well known that an amino acid can be encoded by more than one codon, called synonymous codons. The preferential use of one particular codon for coding an amino acid is referred to as codon usage bias (CUB). A quantitative analytical method, CUB and a related tool, Codon Adaptative Index have been applied to comparatively study whole genomes of a few pathogenic Trypanosomatid species. This quantitative attempt is of direct help in the comparison of qualitative features like mutational and translational selection. Pathogens of the Leishmania and Trypanosoma genus cause debilitating disease and suffering in human beings and animals. Of these, whole genome sequences are available for only five species. The complete coding sequences (CDS), highly expressed, essential and low expressed genes have all been studied for their CUB signature. The codon usage bias of essential genes and highly expressed genes show distribution similar to codon usage bias of all CDSs in Trypanosomatids. Translational selection is the dominant force selecting the preferred codon, and selection due to mutation is negligible. In contrast to an earlier study done on these pathogens, it is found in this work that CUB and CAI may be used to distinguish the Trypanosomatid genomes at the sub-genus level. Further, CUB may effectively be used as a signature of the species differentiation by using Principal Component Analysis (PCA). ABBREVIATIONS CUB - Codon Usage Bias, CAI - Codon Adaptative Index, CDS - Coding sequences, t-RNA - Transfer RNA, PCA - Principal Component Analysis.
Collapse
Affiliation(s)
- Mayank Rashmi
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi-221005, India
| | - D Swati
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi-221005, India
- Department of Physics, MMV, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Ackermann AA, Panunzi LG, Cosentino RO, Sánchez DO, Agüero F. A genomic scale map of genetic diversity in Trypanosoma cruzi. BMC Genomics 2012; 13:736. [PMID: 23270511 PMCID: PMC3545726 DOI: 10.1186/1471-2164-13-736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 12/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. RESULTS Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs): TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. CONCLUSIONS This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the population, providing an essential resource for future studies on the development of new drugs and diagnostics, for Chagas Disease. These data is available through the TcSNP database (http://snps.tcruzi.org).
Collapse
Affiliation(s)
- Alejandro A Ackermann
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
6
|
Comparative genomic analysis of dinucleotide repeats in Tritryps. Gene 2011; 487:29-37. [PMID: 21824509 DOI: 10.1016/j.gene.2011.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 12/29/2022]
Abstract
The protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major (Tritryps), are evolutionarily ancient eukaryotes which cause worldwide human parasitosis. They present unique biological features. Indeed, canonical DNA/RNA cis-acting elements remain mostly elusive. Repetitive sequences, originally considered as selfish DNA, have been lately recognized as potentially important functional sequence elements in cell biology. In particular, the dinucleotide patterns have been related to genome compartmentalization, gene evolution and gene expression regulation. Thus, we perform a comparative analysis of the occurrence, length and location of dinucleotide repeats (DRs) in the Tritryp genomes and their putative associations with known biological processes. We observe that most types of DRs are more abundant than would be expected by chance. Complementary DRs usually display asymmetrical strand distribution, favoring TT and GT repeats in the coding strands. In addition, we find that GT repeats are among the longest DRs in the three genomes. We also show that specific DRs are non-uniformly distributed along the polycistronic unit, decreasing toward its boundaries. Distinctive non-uniform density patterns were also found in the intergenic regions, with predominance at the vicinity of the ORFs. These findings further support that DRs may control genome structure and gene expression.
Collapse
|
7
|
García EA, Ziliani M, Agüero F, Bernabó G, Sánchez DO, Tekiel V. TcTASV: a novel protein family in trypanosoma cruzi identified from a subtractive trypomastigote cDNA library. PLoS Negl Trop Dis 2010; 4. [PMID: 20957201 PMCID: PMC2950142 DOI: 10.1371/journal.pntd.0000841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The identification and characterization of antigens expressed in Trypanosoma cruzi stages that parasitize mammals are essential steps for the development of new vaccines and diagnostics. Genes that are preferentially expressed in trypomastigotes may be involved in key processes that define the biology of trypomastigotes, like cell invasion and immune system evasion. METHODOLOGY/PRINCIPAL FINDINGS With the initial aim of identifying trypomastigote-specific expressed tags, we constructed and sequenced an epimastigote-subtracted trypomastigote cDNA library (library TcT-E). More than 45% of the sequenced clones of the library could not be mapped to previously annotated mRNAs or proteins. We validated the presence of these transcripts by reverse northern blot and northern blot experiments, therefore providing novel information about the mRNA expression of these genes in trypomastigotes. A 280-bp consensus element (TcT-E element, TcT-Eelem) located at the 3' untranslated region (3' UTR) of many different open reading frames (ORFs) was identified after clustering the TcT-E dataset. Using an RT-PCR approach, we were able to amplify different mature mRNAs containing the same TcT-Eelem in the 3' UTR. The proteins encoded by these ORFs are members of a novel surface protein family in T. cruzi, (which we named TcTASV for T. cruzi Trypomastigote, Alanine, Serine and Valine rich proteins). All members of the TcTASV family have conserved coding amino- and carboxy-termini, and a central variable core that allows partitioning of TcTASV proteins into three subfamilies. Analysis of the T. cruzi genome database resulted in the identification of 38 genes/ORFs for the whole TcTASV family in the reference CL-Brener strain (lineage II). Because this protein family was not found in other trypanosomatids, we also looked for the presence of TcTASV genes in other evolutionary lineages of T. cruzi, sequencing 48 and 28 TcTASVs members from the RA (lineage II) and Dm28 (lineage I) T. cruzi strains respectively. Detailed phylogenetic analyses of TcTASV gene products show that this gene family is different from previously characterized mucin (TcMUCII), mucin-like, and MASP protein families. CONCLUSIONS/SIGNIFICANCE We identified TcTASV, a new gene family of surface proteins in T. cruzi.
Collapse
Affiliation(s)
- Elizabeth A. García
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - María Ziliani
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - Guillermo Bernabó
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
8
|
Moolhuijzen PM, Lew-Tabor AE, Wlodek BM, Agüero FG, Comerci DJ, Ugalde RA, Sanchez DO, Appels R, Bellgard M. Genomic analysis of Campylobacter fetus subspecies: identification of candidate virulence determinants and diagnostic assay targets. BMC Microbiol 2009; 9:86. [PMID: 19422718 PMCID: PMC2685401 DOI: 10.1186/1471-2180-9-86] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 05/08/2009] [Indexed: 11/23/2022] Open
Abstract
Background Campylobacter fetus subspecies venerealis is the causative agent of bovine genital campylobacteriosis, asymptomatic in bulls the disease is spread to female cattle causing extensive reproductive loss. The microbiological and molecular differentiation of C. fetus subsp. venerealis from C. fetus subsp. fetus is extremely difficult. This study describes the analysis of the available C. fetus subsp. venerealis AZUL-94 strain genome (~75–80%) to identify elements exclusively found in C. fetus subsp. venerealis strains as potential diagnostic targets and the characterisation of subspecies virulence genes. Results Eighty Kb of genomic sequence (22 contigs) was identified as unique to C. fetus subsp. venerealis AZUL-94 and consisted of type IV secretory pathway components, putative plasmid genes and hypothetical proteins. Of the 9 PCR assays developed to target C. fetus subsp. venerealis type IV secretion system genes, 4 of these were specific for C. fetus subsp. venerealis biovar venerealis and did not detect C. fetus subsp. venerealis biovar intermedius. Two assays were specific for C. fetus subsp. venerealis AZUL-94 strain, with a further single assay specific for the AZUL-94 strain and C. fetus subsp. venerealis biovar intermedius (and not the remaining C. fetus subsp. venerealis biovar venerealis strains tested). C. fetus subsp. fetus and C. fetus subsp. venerealis were found to share most common Campylobacter virulence factors such as SAP, chemotaxis, flagellar biosynthesis, 2-component systems and cytolethal distending toxin subunits (A, B, C). We did not however, identify in C. fetus the full complement of bacterial adherence candidates commonly found in other Campylobacter spp. Conclusion The comparison of the available C. fetus subsp. venerealis genome sequence with the C. fetus subsp. fetus genome identified 80 kb of unique C. fetus subsp. venerealis AZUL94 sequence, with subsequent PCR confirmation demonstrating inconsistent amplification of these targets in all other C. fetus subsp. venerealis strains and biovars tested. The assays developed here highlight the complexity of targeting strain specific virulence genes for field studies for the molecular identification and epidemiology of C. fetus.
Collapse
Affiliation(s)
- Paula M Moolhuijzen
- Centre for Comparative Genomics, School for Information Technology, Murdoch University, Murdoch, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bartholomeu DC, Cerqueira GC, Leão ACA, daRocha WD, Pais FS, Macedo C, Djikeng A, Teixeira SMR, El-Sayed NM. Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Res 2009; 37:3407-17. [PMID: 19336417 PMCID: PMC2691823 DOI: 10.1093/nar/gkp172] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel large multigene family was recently identified in the human pathogen Trypanosoma cruzi, causative agent of Chagas disease, and corresponds to ∼6% of the parasite diploid genome. The predicted gene products, mucin-associated surface proteins (MASPs), are characterized by highly conserved N- and C-terminal domains and a strikingly variable and repetitive central region. We report here an analysis of the genomic organization and expression profile of masp genes. Masps are not randomly distributed throughout the genome but instead are clustered with genes encoding mucin and other surface protein families. Masp transcripts vary in size, are preferentially expressed during the trypomastigote stage and contain highly conserved 5′ and 3′ untranslated regions. A sequence analysis of a trypomastigote cDNA library reveals the expression of multiple masp variants with a bias towards a particular masp subgroup. Immunofluorescence assays using antibodies generated against a MASP peptide reveals that the expression of particular MASPs at the cell membrane is limited to subsets of the parasite population. Western blots of phosphatidylinositol-specific phospholipase C (PI-PLC)-treated parasites suggest that MASP may be GPI-anchored and shed into the medium culture, thus contributing to the large repertoire of parasite polypeptides that are exposed to the host immune system.
Collapse
Affiliation(s)
- Daniella C Bartholomeu
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ackermann AA, Carmona SJ, Agüero F. TcSNP: a database of genetic variation in Trypanosoma cruzi. Nucleic Acids Res 2008; 37:D544-9. [PMID: 18974180 PMCID: PMC2686512 DOI: 10.1093/nar/gkn874] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The TcSNP database (http://snps.tcruzi.org) integrates information on genetic variation (polymorphisms and mutations) for different stocks, strains and isolates of Trypanosoma cruzi, the causative agent of Chagas disease. The database incorporates sequences (genes from the T. cruzi reference genome, mRNAs, ESTs and genomic sequences); multiple sequence alignments obtained from these sequences; and single-nucleotide polymorphisms and small indels identified by scanning these multiple sequence alignments. Information in TcSNP can be readily interrogated to arrive at gene sets, or SNP sets of interest based on a number of attributes. Sequence similarity searches using BLAST are also supported. This first release of TcSNP contains nearly 170 000 high-confidence candidate SNPs, derived from the analysis of annotated coding sequences. As new sequence data become available, TcSNP will incorporate these data, mapping new candidate SNPs onto the reference genome sequences.
Collapse
Affiliation(s)
- Alejandro A Ackermann
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín - CONICET, San Martín, 1650, Argentina
| | | | | |
Collapse
|
11
|
Cerqueira GC, Bartholomeu DC, DaRocha WD, Hou L, Freitas-Silva DM, Machado CR, El-Sayed NM, Teixeira SMR. Sequence diversity and evolution of multigene families in Trypanosoma cruzi. Mol Biochem Parasitol 2007; 157:65-72. [PMID: 18023889 DOI: 10.1016/j.molbiopara.2007.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Several copies of genes belonging to three multigene families present in the genome of Trypanosoma cruzi were sequenced and comparatively analyzed across six different strains of the parasite belonging to the T. cruzi I lineage (Colombiana, Silvio X10 and Dm28c), the T. cruzi II lineage (Esmeraldo and JG) and a hybrid strain (CL Brener). For all three gene families analyzed, our results support the division in T. cruzi I and II lineages. Furthermore, in agreement with its hybrid nature, sequences derived from the CL Brener clone clustered together with T. cruzi II sequences as well as with a third group of sequences. Paralogous sequences encoding Amastin, an amastigote surface glycoprotein and TcAG48, an antigenic RNA binding protein, which are clustered in the parasite genome, present higher intragenomic variability in T. cruzi II and CL Brener strains, when compared to T. cruzi I strains. Paralogous sequences derived from the TcADC gene family, which encode various isoforms of adenylyl cyclases and are dispersed throughout the T. cruzi genome, exhibit similar degree of variability in all strains, except in the CL Brener strain, in which the sequences were more divergent. Several factors including mutation rates and gene conversion mechanisms, acting differently within the T. cruzi population, may contribute to create such distinct levels of sequence diversity in multigene families that are clustered in the T. cruzi genome.
Collapse
Affiliation(s)
- Gustavo C Cerqueira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Souza RT, Santos MRM, Lima FM, El-Sayed NM, Myler PJ, Ruiz JC, da Silveira JF. New Trypanosoma cruzi repeated element that shows site specificity for insertion. EUKARYOTIC CELL 2007; 6:1228-38. [PMID: 17526721 PMCID: PMC1951114 DOI: 10.1128/ec.00036-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new family of site-specific repeated elements identified in Trypanosoma cruzi, which we named TcTREZO, is described here. TcTREZO appears to be a composite repeated element, since three subregions may be defined within it on the basis of sequence similarities with other T. cruzi sequences. Analysis of the distribution of TcTREZO in the genome clearly indicates that it displays site specificity for insertion. Most TcTREZO elements are flanked by conserved sequences. There is a highly conserved 68-bp sequence at the 5' end of the element and a sequence domain of approximately 500 bp without a well-defined borderline at the 3' end. Northern blot hybridization and reverse transcriptase PCR analyses showed that TcTREZO transcripts are expressed as oligo(A)-terminated transcripts whose length corresponds to the unit size of the element (1.6 kb). Transcripts of approximately 0.2 kb derived from a small part of TcTREZO are also detected in steady-state RNA. TcTREZO transcripts are unspliced and not translated. The copy number of TcTREZO sequences was estimated to be approximately 173 copies per haploid genome. TcTREZO appears to have been assembled by insertions of sequences into a progenitor element. Once associated with each other, these subunits were amplified as a new transposable element. TcTREZO shows site specificity for insertion, suggesting that a sequence-specific endonuclease could be responsible for its insertion at a unique site.
Collapse
Affiliation(s)
- Renata T Souza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Buscaglia CA, Campo VA, Frasch ACC, Di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 2006; 4:229-36. [PMID: 16489349 DOI: 10.1038/nrmicro1351] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The surface of the protozoan parasite Trypanosoma cruzi is covered in mucins, which contribute to parasite protection and to the establishment of a persistent infection. Their importance is highlighted by the fact that the approximately 850 mucin-encoding genes comprise approximately 1% of the parasite genome and approximately 6% of all predicted T. cruzi genes. The coordinate expression of a large repertoire of mucins containing variable regions in the mammal-dwelling stages of the T. cruzi life cycle suggests a possible strategy to thwart the host immune response. Here, we discuss the expression profiling of T. cruzi mucins, the mechanisms leading to the acquisition of mucin diversity and the possible consequences of a mosaic surface coat in the interplay between parasite and host.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de General San Martn-CONICET, San Martín (1650), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Campo VA, Buscaglia CA, Di Noia JM, Frasch ACC. Immunocharacterization of the mucin-type proteins from the intracellular stage of Trypanosoma cruzi. Microbes Infect 2006; 8:401-9. [PMID: 16253534 DOI: 10.1016/j.micinf.2005.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/05/2005] [Accepted: 07/06/2005] [Indexed: 11/27/2022]
Abstract
The surface of Trypanosoma cruzi is covered by different groups of mucins that are differentially expressed during the parasite life cycle. We have previously identified the major mucins from the bloodstream trypomastigote stage. Here, we present additional evidence that together with our previous observations allows for the identification of a second mucin group also expressed in the mammal-dwelling stages, but predominant in the intracellular amastigote. These mucins are encoded by many genes, are mostly composed of tandem repeats and are highly conserved except for an exposed hypervariable (HV) N-terminal peptide. Antibodies against HV-peptides are restricted to approximately 50% of the chronically infected human population, are monospecific (i.e. directed towards a single HV), and display low-avidity. In contrast, immunization with a single HV-peptide triggers high-avidity, cross-reacting humoral responses against multiple HV sequences, but not against other T. cruzi surface antigens. The diversity present in the HV regions and the characteristics of the antibody response against them suggest a role of these molecules in eluding and/or modulating the mammalian host immune system.
Collapse
Affiliation(s)
- Vanina A Campo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín-CONICET, Av. General Paz 5445 edificio 24, San Martín (1650), Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
15
|
Kosec G, Alvarez VE, Agüero F, Sánchez D, Dolinar M, Turk B, Turk V, Cazzulo JJ. Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol Biochem Parasitol 2005; 145:18-28. [PMID: 16213036 DOI: 10.1016/j.molbiopara.2005.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/01/2005] [Accepted: 09/06/2005] [Indexed: 01/07/2023]
Abstract
The genome of Trypanosoma cruzi, the Protozoan parasite causing the American Trypanosomiasis, Chagas disease, contains two genes, TcMCA3 and TcMCA5, with homology to those encoding metacaspases, distantly related to the caspases involved in programmed cell death (PCD) in higher eukaryotes. TcMCA3 is present in the CL Brener clone at 16 copies per haploid genome, arrayed in two tandems located in chromosomes of 0.54 and 0.98 Mbp. TcMCA5, on the other hand, is present as a single copy gene. The proteins encoded were expressed in Escherichia coli BL21 [DE3] cells, and used to generate antibodies, which allowed demonstrating that TcMCA3 is expressed in the four major developmental stages of the parasite, whereas TcMCA5 is expressed only in the epimastigote form. Moreover, recombinant TcMCA3, but not TcMCA5, was recognized by most sera from chronic Chagasic patients, showing that the protein is expressed during natural infections. All attempts to show processing and enzyme activity in the recombinant proteins have been unsuccessful so far; however, indirect evidence suggests that the metacaspases might be involved in PCD of the parasite. (1) Immunofluorescence experiments showed that both proteins change their subcellular localization during fresh human serum (FHS)-induced PCD migrating into the nucleus. (2) Epimastigotes over-expressing TcMCA5 were more sensitive to FHS-induced PCD than the controls. (3) PCD was parallelled by an increase in peptidase activity against Z-YVAD-AFC, a typical caspase substrate, and the apoptotic nuclei cells were labeled in vivo with the pan-caspase fluorescent inhibitor SR-VAD-FMK. Further experiments will be required to complete the characterization of these proteins and elucidate their role in the parasite.
Collapse
Affiliation(s)
- Gregor Kosec
- Jozef Stefan Institute, Jamova 39, SI 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abate T, Rincón M, Díaz-Bello Z, Spencer L, Rodríguez-Acosta A. A mucin like gene different from the previously reported members of the mucin like gene families is transcribed in Trypanosoma cruzi but not in Trypanosoma rangeli. Mem Inst Oswaldo Cruz 2005; 100:391-5. [PMID: 16113887 DOI: 10.1590/s0074-02762005000400009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trypanosoma cruzi expresses mucin like glycoproteins encoded by a complex multigene family. In this work, we report the transcription in T. cruzi but not in T. rangeli of a mucin type gene automatically annotated by the T. cruzi genome project. The gene showed no nucleotide similarities with the previously reported T. cruzi mucin like genes, although the computational analysis of the deduced protein showed that it has the characteristic features of mucins: a signal peptide sequence, O-glycosylation sites, and glycosylphosphatidylinositol (GPI) anchor sequence. The presence in this gene of N-terminal and C-terminal coding sequences common to other annotated mucin like genes suggests the existence of a new mucin like gene family.
Collapse
Affiliation(s)
- Teresa Abate
- Instituto de Medicina Tropical Dr. Félix Pifano, Caracas 1041-A, DF, Venezuela.
| | | | | | | | | |
Collapse
|
17
|
Guerreiro LTA, Souza SS, Wagner G, De Souza EA, Mendes PN, Campos LM, Barros L, Pires PF, Campos MLM, Grisard EC, Dávila AMR. Exploring the Genome of Trypanosoma vivax through GSS and In Silico Comparative Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:116-28. [PMID: 15805782 DOI: 10.1089/omi.2005.9.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A survey of the Trypanosoma vivax genome was carried out by the genome sequence survey (GSS) approach resulting in 1,086 genomic sequences. A total of 455 high-quality GSS sequences were generated, consisting of 331 non-redundant sequences distributed in 264 singlets and 67 clusters in a total of 135.5 Kb of the T. vivax genome. The estimation of the overall G+C content, and the prediction of the presence of ORFs and putative genes were carried out using the Glimmer and Jemboss packages. Analysis of the obtained sequences was carried out by BLAST programs against 12 different databases and also using the Conserved Domain Database, InterProScan, and tRNAscan-SE. Along with the existing 23 T. vivax entries in the GenBank, the 32 putative genes predicted and the 331 non-redundant GSS sequences reported herein represent new potential markers for the development of PCRbased assays for specific diagnosis and typing of Trypanosoma vivax.
Collapse
Affiliation(s)
- Luana Tatiana A Guerreiro
- Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Obado SO, Taylor MC, Wilkinson SR, Bromley EV, Kelly JM. Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16-kb GC-rich transcriptional "strand-switch" domain as a major feature. Genome Res 2005; 15:36-43. [PMID: 15632088 PMCID: PMC540271 DOI: 10.1101/gr.2895105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 10/21/2004] [Indexed: 11/25/2022]
Abstract
Trypanosomatids are an ancient family that diverged from the main eukaryotic lineage early in evolution, which display several unique features of gene organization and expression. Although genome sequencing is now complete, the nature of centromeres in these and other parasitic protozoa has not been resolved. Here, we report the functional mapping of a centromere in the American trypanosome, Trypanosoma cruzi, a parasite with an unusual mechanism of genetic exchange that involves the generation of aneuploidy by nuclear hybridization. Using a telomere-associated chromosome fragmentation approach, we show that the region required for the mitotic stability of chromosome 3 encompasses a transcriptional "strand-switch" domain constituted by a 16-kb GC-rich island. The domain contains several degenerate retrotransposon-like insertions, but atypically, lacks the arrays of satellite repeats normally associated with centromeric regions. This unusual type of organization may represent a paradigm for centromeres in T. cruzi and other primitive eukaryotes.
Collapse
Affiliation(s)
- Samson O Obado
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Alfonso J, Agüero F, Sanchez DO, Flugge G, Fuchs E, Frasch ACC, Pollevick GD. Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol. J Neurosci Res 2004; 78:702-10. [PMID: 15505804 DOI: 10.1002/jnr.20328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adrenal corticosteroids influence the function of the hippocampus, the brain structure in which the highest expression of glucocorticoid receptors is found. Chronic high levels of cortisol elicited by stress or through exogenous administration can cause irreversible damage and cognitive deficits. In this study, we searched for genes expressed in the hippocampal formation after chronic cortisol treatment in male tree shrews. Animals were treated orally with cortisol for 28 days. At the end of the experiments, we generated two subtractive hippocampal hybridization libraries from which we sequenced 2,246 expressed sequenced tags (ESTs) potentially regulated by cortisol. To validate this approach further, we selected some of the candidate clones to measure mRNA expression levels in hippocampus using real-time PCR. We found that 66% of the sequences tested (10 of 15) were differentially represented between cortisol-treated and control animals. The complete set of clones was subjected to a bioinformatic analysis, which allowed classification of the ESTs into four different main categories: 1) known proteins or genes (approximately 28%), 2) ESTs previously published in the database (approximately 16%), 3) novel ESTs matching only the reference human or mouse genome (approximately 5%), and 4) sequences that do not match any public database (50%). Interestingly, the last category was the most abundant. Hybridization assays revealed that several of these clones are indeed expressed in hippocampal tissue from tree shrew, human, and/or rat. Therefore, we discovered an extensive inventory of new molecular targets in the hippocampus that serves as a reference for hippocampal transcriptional responses under various conditions. Finally, a detailed analysis of the genomic localization in human and mouse genomes revealed a survey of putative novel splicing variants for several genes of the nervous system.
Collapse
Affiliation(s)
- Julieta Alfonso
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús-CONICET, Universidad Nacional de General San Martín, San Martín, Argentina
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
CD8(+) T cells are crucial to the control of Trypanosoma cruzi infection and probably act via multiple mechanisms, the most important being the production of interferon-gamma (IFN-gamma). In the absence of CD8(+) T cells, mice quickly succumb to the infection or develop a more severe chronic disease. Reduced production of IFN-gamma by CD8(+) T cells is also associated with increased severity of chagasic disease in humans. CD8(+) T cells in chronic T. cruzi infection are maintained as effector memory cells, undergo rapid expansion, and demonstrate effector functions following re-exposure to antigen. However, the initial generation of T. cruzi-specific CD8(+) T-cell responses appears to be relatively slow to develop. In addition, the expression of the effector function of the CD8(+) T cells is compromised in some tissues, particularly in muscle. The targets of effective CD8(+) T-cell responses in T. cruzi infection are multiple and varied, and they represent some of the best vaccine candidates described to date. Further analysis of CD8(+) T cells will provide insight into the disease process in T. cruzi infection and should identify methods to assess and enhance immunity to T. cruzi infection and protection from the symptoms of Chagas' disease.
Collapse
Affiliation(s)
- Diana Martin
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
21
|
Buscaglia CA, Campo VA, Di Noia JM, Torrecilhas ACT, De Marchi CR, Ferguson MAJ, Frasch ACC, Almeida IC. The Surface Coat of the Mammal-dwelling Infective Trypomastigote Stage of Trypanosoma cruzi Is Formed by Highly Diverse Immunogenic Mucins. J Biol Chem 2004; 279:15860-9. [PMID: 14749325 DOI: 10.1074/jbc.m314051200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A thick coat of mucin-like glycoproteins covers the surface of Trypanosoma cruzi and plays a crucial role in parasite protection and infectivity and host immunomodulation. The appealing candidate genes coding for the mucins of the mammal-dwelling stages define a heterogeneous family termed TcMUC, which comprises up to 700 members, thus precluding a genetic approach to address the protein core identity. Here, we demonstrate by multiple approaches that the TcMUC II genes code for the majority of trypomastigote mucins. These molecules display a variable, non-repetitive, highly O-glycosylated central domain, followed by a short conserved C terminus and a glycosylphosphatidylinositol anchor. A simultaneous expression of multiple TcMUC II gene products was observed. Moreover, the C terminus of TcMUC II mucins, but not their central domain, elicited strong antibody responses in patients with Chagas' disease and T. crusi infected animals. This highly diverse coat of mucins may represent a refined parasite strategy to elude the mammalian host immune system.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Alfonso J, Pollevick GD, Van Der Hart MG, Flügge G, Fuchs E, Frasch ACC. Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. Eur J Neurosci 2004; 19:659-66. [PMID: 14984416 DOI: 10.1111/j.1460-9568.2004.03178.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analysis of differentially expressed genes in the brain is a promising tool for elucidating pathological mechanisms that lead to central nervous disorders. Stress is known to be involved in the development of psychopathologies such as depression. In the present study, we searched for differentially expressed genes in the hippocampal formation after chronic psychosocial stress and after treatment with the antidepressant clomipramine. Experiments were conducted in male tree shrews, a valid psychosocial stress model in which antidepressant drugs prevent diverse effects of stress. Because many effects of stress have been attributed to the stress-induced elevation in glucocorticoids, we screened two subtractive hippocampal cDNA libraries generated from RNA of chronic cortisol-treated animals. Using real-time PCR to measure mRNA amounts, we identified five sequences whose expression levels differed between stressed animals and controls. Transcript levels of four of them, nerve growth factor (NGF), membrane glycoprotein 6a (M6a), CDC-like kinase 1 (CLK-1) and G-protein alpha q (GNAQ) were reduced by chronic psychosocial stress. Reduced amounts of these genes, which are all related to processes of cell differentiation, is in agreement with previous findings showing a retraction of dendrites and an impairment of neurogenesis in the hippocampal formation after chronic stress. An additional expressed sequence that was also regulated by stress could not be assigned to any known gene. Treatment with the antidepressant clomipramine prevented stress effects on expression of M6a, CLK-1, GNAQ and the novel sequence, but showed no effect on NGF stress-induced down-regulation. These findings support the concept that depressive disorders are accompanied by processes of neuronal dedifferentiation, at least in the hippocampal formation, and that antidepressants prevent these processes.
Collapse
Affiliation(s)
- Julieta Alfonso
- IIB-INTECH-CONICET-UNSAM, Avenida Gral Paz 5445, INTI, edificio 24 (1650) San Martin, Argentina.
| | | | | | | | | | | |
Collapse
|
23
|
Luchtan M, Warade C, Weatherly DB, Degrave WM, Tarleton RL, Kissinger JC. TcruziDB: an integrated Trypanosoma cruzi genome resource. Nucleic Acids Res 2004; 32:D344-6. [PMID: 14681430 PMCID: PMC308783 DOI: 10.1093/nar/gkh049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TcruziDB (http://TcruziDB.org) is an integrated genome database for the parasitic organism Trypanosoma cruzi, the causative agent of Chagas' disease. The database currently incorporates all available sequence data (Genomic, BAC, EST) in a single user-friendly location. The database contains a variety of tools specifically designed for searching unannotated draft sequence via BLAST, keyword searches of pre-computed BLAST results, and protein motif searches. Release 1.0 of the database contains nearly 730 million bp of genome sequence from 1.1 million sequence reads generated by the TIGR-Karolinska-SBRI Trypanosoma cruzi Genome Consortium and 15 million bp of clustered EST and genomic sequence obtained from other sources. As annotation, microarray and proteomic data become available, the database will incorporate and integrate these data using the GUS (http://www.gusdb. org) relational framework.
Collapse
Affiliation(s)
- Michael Luchtan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-2606, USA
| | | | | | | | | | | |
Collapse
|
24
|
Cuevas IC, Cazzulo JJ, Sánchez DO. gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infect Immun 2003; 71:5739-49. [PMID: 14500495 PMCID: PMC201075 DOI: 10.1128/iai.71.10.5739-5749.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gp63 is a highly abundant glycosylphosphatidylinositol (GPI)-anchored membrane protein expressed predominantly in the promastigote but also in the amastigote stage of Leishmania species. In Leishmania spp., gp63 has been implicated in a number of steps in establishment of infection. Here we demonstrate that Trypanosoma cruzi, the etiological agent of Chagas' disease, has a family of gp63 genes composed of multiple groups. Two of these groups, Tcgp63-I and -II, are present as high-copy-number genes. The genomic organization and mRNA expression pattern were specific for each group. Tcgp63-I was widely expressed, while the Tcgp63-II group was scarcely detected in Northern blots, even though it is well represented in the T. cruzi genome. Western blots using sera directed against a synthetic peptide indicated that the Tcgp63-I group produced proteins of approximately 78 kDa, differentially expressed during the life cycle. Immunofluorescence staining and phosphatidylinositol-specific phospholipase C digestion confirmed that Tcgp63-I group members are surface proteins bound to the membrane by a GPI anchor. We also demonstrate the presence of metalloprotease activity which is attributable, at least in part, to Tcgp63-I group. Since antibodies against Tcgp63-I partially blocked infection of Vero cells by trypomastigotes, a possible role for this group in infection is suggested.
Collapse
Affiliation(s)
- Ileana C Cuevas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín, 1650 San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Provincia de Buenos Aires, Argentina
| | | | | |
Collapse
|
25
|
Wickstead B, Ersfeld K, Gull K. Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev 2003; 67:360-75, table of contents. [PMID: 12966140 PMCID: PMC193867 DOI: 10.1128/mmbr.67.3.360-375.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive DNA elements have been a part of the genomic fauna of eukaryotes perhaps since their very beginnings. Millions of years of coevolution have given repeats central roles in chromosome maintenance and genetic modulation. Here we review the genomes of parasitic protozoa in the context of the current understanding of repetitive elements. Particular reference is made to repeats in five medically important species with ongoing or completed genome sequencing projects: Plasmodium falciparum, Leishmania major, Trypanosoma brucei, Trypanosoma cruzi, and Giardia lamblia. These organisms are used to illustrate five thematic classes of repeats with different structures and genomic locations. We discuss how these repeat classes may interact with parasitic life-style and also how they can be used as experimental tools. The story which emerges is one of opportunism and upheaval which have been employed to add genetic diversity and genomic flexibility.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
26
|
Fralish BH, Tarleton RL. Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine 2003; 21:3070-80. [PMID: 12798651 DOI: 10.1016/s0264-410x(03)00121-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic immunization with a limited set of genes has been demonstrated to be an effective means of protecting mice from a normally lethal challenge of Trypanosoma cruzi. The goal of this study was to expand the diversity of genes assessed as genetic vaccine candidates. Screening a T. cruzi amastigote cDNA expression library with anti-amastigote monoclonal antibodies resulted in the identification of two genes, the previously identified flagellar Ca(2+) binding protein, FCaBP, and a novel homologue of the adaptin AP-3 complex beta3 subunit, Tcbeta3. A third gene, LYT1, recently identified as a secreted T. cruzi protein involved in cell lysis and infectivity, and was selected. Although peptides from all three genes were found to be targets of cytotoxic T cell responses in chronically infected mice, only immunization with LYT1 protected mice from a normally lethal challenge of T. cruzi. As an alternative to testing individual T. cruzi genes as vaccines, pools of genes from the trans-sialidase (TS) and mucin families were assessed in vaccination studies. Immunization with pools of TS but not mucin genes provided protection against a normally lethal challenge of T. cruzi. This study demonstrates that the ability of T. cruzi proteins to elicit immune responses in infected hosts does not necessarily associate with the ability to induce protection and that both the products of single genes and multi-gene families may serve as effective vaccines.
Collapse
Affiliation(s)
- Bolyn H Fralish
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
27
|
Virreira M, Torrico F, Truyens C, Alonso-Vega C, Solano M, Carlier Y, Svoboda M. Comparison of polymerase chain reaction methods for reliable and easy detection of congenital Trypanosoma cruzi infection. Am J Trop Med Hyg 2003; 68:574-82. [PMID: 12812349 DOI: 10.4269/ajtmh.2003.68.574] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The polymerase chain reaction (PCR) is a potentially interesting diagnostic tool for detecting congenital Trypanosoma cruzi infection at birth. We have compared the sensitivity and capacity of a group of T. cruzi PCR primers in detecting the complete spectrum of known T. cruzi lineages, and to improve and simplify the detection of infection in neonatal blood. We found that the two primers, Tcz1/Tcz2 and Diaz1/Diaz2, which target the 195-basepair satellite repeat, detected all parasitic lineages with the same sensitivity. However, the intensity of the amplicon was somewhat higher with Tcz1/Tcz2. For other tested primers (nuclear DNA primers BP1/BP2, O1/O2, Pon1/Pon2, and Tca1/Tca2 and kinetoplast DNA primers S35'/S36' and 121/122), either the intensity of amplicons varied according to T. cruzi lineages or the PCR assay was less sensitive. The use of the Tcz1/Tcz2 primers, which target a tandem repetitive sequence, requires a careful determination of the appropriate amount of Taq polymerase to avoid the formation of smears and multiple amplicon bands. The Tcz1/Tcz2 primers resulted in an intense 200-basepair amplicon with DNA extracted from blood equivalent to 0.02 parasites per assay when used with a simple DNA extraction method and of a low amount of Taq polymerase from a standard PCR kit. To better assess such PCR protocol, we assayed 311 samples of neonatal blood previously tested by parasitologic methods. The reliability of our PCR test was demonstrated, since all the 18 blood samples from newborns with congenital T. cruzi infection were positive, whereas the remaining samples (30 from control newborns of uninfected mothers and 262 of 263 from babies born to infected mothers) were negative. Since our PCR method is simple, reliable, robust, and inexpensive, it appears suitable for the detection of T. cruzi infection in neonatal blood, even in laboratories that are not equipped for performing the PCR.
Collapse
Affiliation(s)
- Myrna Virreira
- Laboratoire de Chimie Biologique, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Porcile PE, Santos MRM, Souza RT, Verbisck NV, Brandão A, Urmenyi T, Silva R, Rondinelli E, Lorenzi H, Levin MJ, Degrave W, Franco da Silveira J. A refined molecular karyotype for the reference strain of the Trypanosoma cruzi genome project (clone CL Brener) by assignment of chromosome markers. Gene 2003; 308:53-65. [PMID: 12711390 DOI: 10.1016/s0378-1119(03)00489-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We present a useful refinement of the molecular karyotype of clone CL Brener, the reference clone of the Trypanosoma cruzi Genome Project. The assignment of 210 genetic markers (142 expressed sequence tags (ESTs), seven cDNAs, 32 protein-coding genes, eight sequence tagged sites (STSs), 21 repetitive sequences) to the chromosomal bands separated by pulsed field gel electrophoresis (PFGE) identified 61 chromosome-specific markers, two size-polymorphic chromosomes and seven linkage groups. Fourteen new repetitive elements were isolated in this work and mapped to the chromosomal bands. We found that at least ten repetitive elements can be mapped to each chromosomal band, which may render the whole genome sequence assembly a difficult task. To construct the integrated map of chromosomal band XX, we used yeast artificial chromosome (YAC) overlapping clones and a variety of probes (i.e. known gene sequences, ESTs, STSs generated from the YAC ends). The total length covered by the YAC contig was approximately 1.3 Mb, covering 37% of the entire chromosome. We found some degree of polymorphism among YACs derived from band XX. These results are in agreement with data from phylogenetic analysis of T. cruzi which suggest that clone CL Brener is a hybrid genotype [Mol. Biochem. Parasitol. 92 (1998) 253; Proc. Natl. Acad. Sci. USA 98 (2001) 7396]. The physical map of the chromosomal bands, together with the isolation of specific chromosomal markers, will contribute in the global effort to sequence the nuclear genome of this parasite.
Collapse
Affiliation(s)
- Patricio E Porcile
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, R. Botucatu 862, CEP 04023-062, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Verbisck NV, dos Santos MRM, Engman DM, Angel Chiurillo M, Ramirez JL, Araya JE, Mortara RA, da Silveira JF. A novel reiterated family of transcribed oligo(A)-terminated, interspersed DNA elements in the genome of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2003; 98:129-33. [PMID: 12700870 DOI: 10.1590/s0074-02762003000100016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the molecular characterization of a novel reiterated family of transcribed oligo(A)-terminated, interspersed DNA elements in the genome of Trypanosoma cruzi. Steady-state level of transcripts of this sequence family appeared to be developmentally regulated, since only in the replicative forms the parasite showed expression of related sequences with a major band around 3 kb. The presence of frame shifts or premature stop codons predicts that transcripts are not translated. The sequence family also contains truncated forms of retrotransposons elements that may become potential hot spots for retroelement insertion. Sequences homologous to this family are interspersed at many chromosomes including the subtelomeric regions.
Collapse
Affiliation(s)
- Newton Valério Verbisck
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, São Paulo, SP, 04023-062, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Agüero F, Campo V, Cremona L, Jäger A, Di Noia JM, Overath P, Sánchez DO, Frasch AC. Gene discovery in the freshwater fish parasite Trypanosoma carassii: identification of trans-sialidase-like and mucin-like genes. Infect Immun 2002; 70:7140-4. [PMID: 12438397 PMCID: PMC133043 DOI: 10.1128/iai.70.12.7140-7144.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 07/27/2002] [Accepted: 09/08/2002] [Indexed: 11/20/2022] Open
Abstract
A total of 1,921 expressed sequence tags (ESTs) were obtained from bloodstream trypomastigotes of Trypanosoma carassii, a parasite of economic importance due to its high prevalence in fish farms. Analysis of the data set allowed us to identify a trans-sialidase (TS)-like gene and three ESTs coding for putative mucin-like genes. TS activity was detected in cell extracts of bloodstream trypomastigotes. We have also used the sequence information obtained to identify genes that have not been previously described in trypanosomatids. (Additional information on these ESTs can be found at http://genoma.unsam.edu.ar/projects/tca.)
Collapse
Affiliation(s)
- Fernán Agüero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín-CONICET, San Martín, 1650 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
31
|
do Carmo MS, dos Santos MRM, Cano MI, Araya JE, Yoshida N, da Silveira JF. Expression and genome-wide distribution of the gene family encoding a 90 kDa surface glycoprotein of metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 2002; 125:201-6. [PMID: 12467988 DOI: 10.1016/s0166-6851(02)00212-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mirian Silva do Carmo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu 862, CEP 04023-062 Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Morales L, Romero I, Diez H, Del Portillo P, Montilla M, Nicholls S, Puerta C. Characterization of a candidate Trypanosoma rangeli small nucleolar RNA gene and its application in a PCR-based parasite detection. Exp Parasitol 2002; 102:72-80. [PMID: 12706742 DOI: 10.1016/s0014-4894(03)00027-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we report the isolation and characterization of a candidate Trypanosoma rangeli small nucleolar RNA (snoRNA) gene, and the development of a PCR assay for detection of the parasite based on its nucleotide sequence. This gene, isolated from a T. rangeli genomic sub-library, was named snoRNA-cl1 and is encoded by a multi-copy gene of 801bp in length. Computer sequence analysis of snoRNA-cl1 showed the presence of two sequence motifs, box C and box D, as well as of two long stretches that perfectly complement the universal core region of the mature rRNA 28S, suggesting that cl1 encodes for a Box C/D snoRNA from the parasite. Hybridization analysis using cl1 as probe, showed a weak hybridization signal with Trypanosoma cruzi DNA, demonstrating the existence of differences in this locus between these two species. Two oligonucleotide primers from this gene, which specifically amplified a 620-bp fragment in KP1 (+) and KP1 (-) strains of T. rangeli, were used in a PCR assay. The amplification allowed the detection of 1pg of DNA in the presence of heterologous DNA and no amplification was observed with different T. cruzi strains (groups I and II). In addition, the PCR assay reported here is able to detect T. rangeli in the presence of T. cruzi DNA, and is useful for detection of the parasite in samples from infected vectors.
Collapse
Affiliation(s)
- Liliana Morales
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Universidad Javeriana, Carrera 7 No 43-82, Lab. 113, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
33
|
Sperling L, Dessen P, Zagulski M, Pearlman RE, Migdalski A, Gromadka R, Froissard M, Keller AM, Cohen J. Random sequencing of Paramecium somatic DNA. EUKARYOTIC CELL 2002; 1:341-52. [PMID: 12455983 PMCID: PMC118014 DOI: 10.1128/ec.1.3.341-352.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Accepted: 02/15/2002] [Indexed: 11/20/2022]
Abstract
We report a random survey of 1 to 2% of the somatic genome of the free-living ciliate Paramecium tetraurelia by single-run sequencing of the ends of plasmid inserts. As in all ciliates, the germ line genome of Paramecium (100 to 200 Mb) is reproducibly rearranged at each sexual cycle to produce a somatic genome of expressed or potentially expressed genes, stripped of repeated sequences, transposons, and AT-rich unique sequence elements limited to the germ line. We found the somatic genome to be compact (>68% coding, estimated from the sequence of several complete library inserts) and to feature uniformly small introns (18 to 35 nucleotides). This facilitated gene discovery: 722 open reading frames (ORFs) were identified by similarity with known proteins, and 119 novel ORFs were tentatively identified by internal comparison of the data set. We determined the phylogenetic position of Paramecium with respect to eukaryotes whose genomes have been sequenced by the distance matrix neighbor-joining method by using random combined protein data from the project. The unrooted tree obtained is very robust and in excellent agreement with accepted topology, providing strong support for the quality and consistency of the data set. Our study demonstrates that a random survey of the somatic genome of Paramecium is a good strategy for gene discovery in this organism.
Collapse
Affiliation(s)
- Linda Sperling
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Di Noia JM, Buscaglia CA, De Marchi CR, Almeida IC, Frasch ACC. A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas' disease is due to a single parasite lineage. J Exp Med 2002; 195:401-13. [PMID: 11854354 PMCID: PMC2193624 DOI: 10.1084/jem.20011433] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chagas' disease is a major health and economic problem caused by the protozoan Trypanosoma cruzi. Multiple independently evolving clones define a complex parasite population that can be arranged into two broad genetic lineages termed T. cruzi I and II. These lineages have different evolutionary origin and display distinct ecological and biological traits. Here we describe a novel molecule termed TSSA for trypomastigote small surface antigen that provides the first immunological marker allowing discrimination between lineages. TSSA is a surface, glycosylphosphatidyl inositol (GPI)-anchored mucin-like protein, highly antigenic during the infection. TSSA sequences from different parasite isolates reveal a population dimorphism that perfectly matches with the two T. cruzi lineages. Interestingly, this dimorphism is restricted to the central region of the molecule, which comprises the immunodominant B cell epitopes. This sequence variability has a major impact on TSSA antigenicity, leading to no immunological cross-reactivity between both isoforms for antibodies present either in immunization or infection sera. Furthermore, the absolute seroprevalence for TSSA in confirmed Chagasic patients is restricted to T. cruzi II isoform, strongly suggesting that human infections are due to this particular subgroup. Even though association of T. cruzi II with Chagas' disease has been proposed based on molecular markers, this is the first immunological evidence supporting this hypothesis. The implications of these results for the future research on Chagas' disease could be envisaged.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Argentina
- Base Sequence
- Blotting, Western
- Brazil
- Chagas Disease/epidemiology
- Chagas Disease/immunology
- Chagas Disease/parasitology
- Chile
- Cloning, Molecular
- Enzyme-Linked Immunosorbent Assay
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Gene Expression Regulation
- Genes, Protozoan/genetics
- Humans
- Immune Sera/immunology
- Mice
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rabbits
- Rats
- Sequence Homology, Amino Acid
- Trypanosoma cruzi/chemistry
- Trypanosoma cruzi/classification
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/immunology
- Variant Surface Glycoproteins, Trypanosoma
Collapse
Affiliation(s)
- Javier M Di Noia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de General San Martín/CONICET, Av. General Paz y Albarellos, San Martin, 1650 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
35
|
Bringaud F, Biteau N, Melville SE, Hez S, El-Sayed NM, Leech V, Berriman M, Hall N, Donelson JE, Baltz T. A new, expressed multigene family containing a hot spot for insertion of retroelements is associated with polymorphic subtelomeric regions of Trypanosoma brucei. EUKARYOTIC CELL 2002; 1:137-51. [PMID: 12455980 PMCID: PMC118050 DOI: 10.1128/ec.1.1.137-151.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a novel gene family that forms clusters in subtelomeric regions of Trypanosoma brucei chromosomes and partially accounts for the observed clustering of retrotransposons. The ingi and ribosomal inserted mobile element (RIME) non-LTR retrotransposons share 250 bp at both extremities and are the most abundant putatively mobile elements, with about 500 copies per haploid genome. From cDNA clones and subsequently in the T. brucei genomic DNA databases, we identified 52 homologous gene and pseudogene sequences, 16 of which contain a RIME and/or ingi retrotransposon inserted at exactly the same relative position. Here these genes are called the RHS family, for retrotransposon hot spot. Comparison of the protein sequences encoded by RHS genes (21 copies) and pseudogenes (24 copies) revealed a conserved central region containing an ATP/GTP-binding motif and the RIME/ingi insertion site. The RHS proteins share between 13 and 96% identity, and six subfamilies, RHS1 to RHS6, can be defined on the basis of their divergent C-terminal domains. Immunofluorescence and Western blot analyses using RHS subfamily-specific immune sera show that RHS proteins are constitutively expressed and occur mainly in the nucleus. Analysis of Genome Survey Sequence databases indicated that the Trypanosoma brucei diploid genome contains about 280 RHS (pseudo)genes. Among the 52 identified RHS (pseudo)genes, 48 copies are in three RHS clusters located in subtelomeric regions of chromosomes Ia and II and adjacent to the active bloodstream form expression site in T. brucei strain TREU927/4 GUTat10.1. RHS genes comprise the remaining sequence of the size-polymorphic "repetitive region" described for T. brucei chromosome I, and a homologous gene family is present in the Trypanosoma cruzi genome.
Collapse
Affiliation(s)
- Frederic Bringaud
- Laboratoire de Parasitologie Moléculaire, Université Victor Segalen Bordeaux II, UMR-5016 CNRS, 33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kelly JM, Obado S. Chromosome fragmentation as an approach to whole-genome analysis in trypanosomes. METHODS IN MICROBIOLOGY 2002. [DOI: 10.1016/s0580-9517(02)33022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
D'Orso I, Frasch AC. TcUBP-1, a developmentally regulated U-rich RNA-binding protein involved in selective mRNA destabilization in trypanosomes. J Biol Chem 2001; 276:34801-9. [PMID: 11435421 DOI: 10.1074/jbc.m102120200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developmental stages of the trypanosome life cycle differ in their morphology, biology, and biochemical properties. Consequently, several proteins have to be tightly regulated in their expression to allow trypanosomes to adapt rapidly to sudden environmental changes, a process that might be of central importance for parasite survival. However, in contrast to higher eukaryotic cells, trypanosomes do not seem to regulate gene expression through regulation of transcription initiation. These parasites make use of post-transcriptional regulatory mechanisms and modification of mRNA half-life is a relevant one. Trans-acting factors binding to cis-elements that affect mRNA stability of mature transcripts have not been identified in these cells. In this work, a novel U-rich RNA-binding protein (TcUBP-1) from Trypanosoma cruzi, the agent of Chagas disease, was identified. Its structure includes an RNA recognition motif, a nuclear export signal, and auxiliary domains with glycine- and glutamine-rich regions. TcUBP-1 recognizes the 44-nucleotide AU-rich RNA instability element located in the 3'-untranslated region of mucin SMUG mRNAs (Di Noia, J. M., D'Orso, I., Sanchez, D. O., and Frasch, A. C. (2000) J. Biol. Chem. 275, 10218-10227) as well as GU-rich sequences. Over-expression of TcUBP-1 in trypanosomes decreases the half-life of SMUG mucin mRNAs in vivo but does not affect the stability of other parasite mRNAs. Because TcUBP-1 is developmentally regulated, it might have a relevant role in regulating protein expression during trypanosome differentiation, allowing a correct expression pattern of U-rich-containing mRNAs.
Collapse
Affiliation(s)
- I D'Orso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad Nacional de General San Martin, 1650 San Martin, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|
38
|
Abstract
The past year has brought great progress in the genome-sequencing efforts on a large number of protozoan and metazoan parasites. Whereas many of these projects are in their initial stages, at least one (for Plasmodium falciparum) is nearing completion. The information released to date has been most revealing with respect to immune evasion mechanisms.
Collapse
Affiliation(s)
- R L Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
39
|
Joubert BM, Buckner FS, Matsuda SP. Trypanosome and animal lanosterol synthases use different catalytic motifs. Org Lett 2001; 3:1957-60. [PMID: 11405754 DOI: 10.1021/ol0160506] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[see reaction]. Animals, fungi, and some protozoa convert oxidosqualene to lanosterol in the ring-forming reaction in sterol biosynthesis. The Trypanosoma cruzi lanosterol synthase has now been cloned. The sequence shares with the T. brucei lanosterol synthase a tyrosine substitution for the catalytically important active-site threonine found in animal and fungal lanosterol synthases.
Collapse
Affiliation(s)
- B M Joubert
- Department of Chemistry, Rice University, 6100 South Main Street, Houston, Texas 77005, USA
| | | | | |
Collapse
|
40
|
Affiliation(s)
- P D Rabinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
41
|
Carmo MS, Santos MR, Cummings LM, Araya JE, Yamauchi LM, Yoshida N, Mortara RA, Franco da Silveira J. Isolation and characterisation of genomic and cDNA clones coding for a serine-, alanine-, and proline-rich protein of Trypanosoma cruzi. Int J Parasitol 2001; 31:259-64. [PMID: 11226452 DOI: 10.1016/s0020-7519(00)00170-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report here the isolation and characterisation of genomic and cDNA clones encoding a Serine-, Alanine-, and Proline-rich protein (SAP) of Trypanosoma cruzi metacyclic trypomastigotes. The deduced peptides translated from these clones were characterised by a high content of residues of alanine, proline, serine, glycine, valine, and threonine distributed in several repeats: P(2-4), S(2-3), A(2-3), AS, SA, PA, AP, SP, PS, and TP. The repeats are partially homologous to the serine-, alanine-, and proline-containing motifs of Leishmania major and Leishmania mexicana proteophosphoglycans. Genes coding for SAP are part of a polymorphic family whose members are linked to members of gp85/sialidase and mucin-like gene families. This is consistent with the hypothesis that this genetic organisation could be a means by which T. cruzi co-ordinates the expression of major surface proteins.
Collapse
Affiliation(s)
- M S Carmo
- Escola Paulista de Medicina, UNIFESP, Departamento de Microbiologia, Imunologia e Parasitologia, R. Botucatu, 862, CEP 04023-062, S. Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447213 DOI: 10.1002/cfg.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|