1
|
Santos TB, Kramer-Soares JC, de Oliveira Coelho CA, Oliveira MGM. Functional network of contextual and temporal memory has increased amygdala centrality and connectivity with the retrosplenial cortex, thalamus, and hippocampus. Sci Rep 2023; 13:13087. [PMID: 37567967 PMCID: PMC10421896 DOI: 10.1038/s41598-023-39946-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In fear conditioning with time intervals between the conditioned (CS) and unconditioned (US) stimuli, a neural representation of the CS must be maintained over time to be associated with the later US. Usually, temporal associations are studied by investigating individual brain regions. It remains unknown, however, the effect of the interval at the network level, uncovering functional connections cooperating for the CS transient memory and its fear association. We investigated the functional network supporting temporal associations using a task in which a 5-s interval separates the contextual CS from the US (CFC-5s). We quantified c-Fos expression in forty-nine brain regions of male rats following the CFC-5s training, used c-Fos correlations to generate functional networks, and analyzed them by graph theory. Control groups were trained in contextual fear conditioning, in which CS and US overlap. The CFC-5s training additionally activated subdivisions of the basolateral, lateral, and medial amygdala; prelimbic, infralimbic, perirhinal, postrhinal, and intermediate entorhinal cortices; ventral CA1 and subiculum. The CFC-5s network had increased amygdala centrality and higher amygdala internal and external connectivity with the retrosplenial cortex, thalamus, and hippocampus. Amygdala and thalamic nuclei were network hubs. Functional connectivity among these brain regions could support CS transient memories and their association.
Collapse
Affiliation(s)
- Thays Brenner Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
| | - Juliana Carlota Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
- Universidade Cruzeiro do Sul - UNICSUL, São Paulo, 08060-070, Brazil
| | | | | |
Collapse
|
2
|
Zbozinek TD, Perez OD, Wise T, Fanselow M, Mobbs D. Ambiguity drives higher-order Pavlovian learning. PLoS Comput Biol 2022; 18:e1010410. [PMID: 36084131 PMCID: PMC9491594 DOI: 10.1371/journal.pcbi.1010410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/21/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
In the natural world, stimulus-outcome associations are often ambiguous, and most associations are highly complex and situation-dependent. Learning to disambiguate these complex associations to identify which specific outcomes will occur in which situations is critical for survival. Pavlovian occasion setters are stimuli that determine whether other stimuli will result in a specific outcome. Occasion setting is a well-established phenomenon, but very little investigation has been conducted on how occasion setters are disambiguated when they themselves are ambiguous (i.e., when they do not consistently signal whether another stimulus will be reinforced). In two preregistered studies, we investigated the role of higher-order Pavlovian occasion setting in humans. We developed and tested the first computational model predicting direct associative learning, traditional occasion setting (i.e., 1st-order occasion setting), and 2nd-order occasion setting. This model operationalizes stimulus ambiguity as a mechanism to engage in higher-order Pavlovian learning. Both behavioral and computational modeling results suggest that 2nd-order occasion setting was learned, as evidenced by lack and presence of transfer of occasion setting properties when expected and the superior fit of our 2nd-order occasion setting model compared to the 1st-order occasion setting or direct associations models. These results provide a controlled investigation into highly complex associative learning and may ultimately lead to improvements in the treatment of Pavlovian-based mental health disorders (e.g., anxiety disorders, substance use).
Collapse
Affiliation(s)
- Tomislav D. Zbozinek
- California Institute of Technology, Humanities and Social Sciences, Pasadena, California, United States of America
| | - Omar D. Perez
- California Institute of Technology, Humanities and Social Sciences, Pasadena, California, United States of America
- University of Santiago, CESS-Santiago, Faculty of Business and Economics, Santiago, Chile
- University of Chile, Department of Industrial Engineering, Santiago, Chile
| | - Toby Wise
- California Institute of Technology, Humanities and Social Sciences, Pasadena, California, United States of America
| | - Michael Fanselow
- University of California, Los Angeles, Department of Psychology, Los Angeles, California, United States of America
- University of California, Los Angeles, Department of Psychiatry & Biobehavioral Sciences, Los Angeles, California, United States of America
- University of California, Los Angeles, Staglin Center for Brain and Behavioral Health, Los Angeles, California, United States of America
- University of California, Los Angeles, Brain Research Institute, Los Angeles, California, United States of America
| | - Dean Mobbs
- California Institute of Technology, Humanities and Social Sciences, Pasadena, California, United States of America
- California Institute of Technology, Computation and Neural Systems Program, Pasadena, California, United States of America
| |
Collapse
|
3
|
Sethumadhavan N, Strauch C, Hoang TH, Manahan-Vaughan D. The Perirhinal Cortex Engages in Area and Layer-Specific Encoding of Item Dimensions. Front Behav Neurosci 2022; 15:744669. [PMID: 35058755 PMCID: PMC8763964 DOI: 10.3389/fnbeh.2021.744669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The perirhinal cortex (PRC), subdivided into areas 35 and 36, belongs to the parahippocampal regions that provide polysensory input to the hippocampus. Efferent and afferent connections along its rostro-caudal axis, and of areas 35 and 36, are extremely diverse. Correspondingly functional tasks in which the PRC participates are manifold. The PRC engages, for example, in sensory information processing, object recognition, and attentional processes. It was previously reported that layer II of the caudal area 35 may be critically involved in the encoding of large-scale objects. In the present study we aimed to disambiguate the roles of the different PRC layers, along with areas 35 and 36, and the rostro-caudal compartments of the PRC, in processing information about objects of different dimensions. Here, we compared effects on information encoding triggered by learning about subtle and discretely visible (microscale) object information and overt, highly visible landmark (macroscale) information. To this end, nuclear expression of the immediate early gene Arc was evaluated using fluorescence in situ hybridization. Increased nuclear Arc expression occurred in layers III and V-VI of the middle and caudal parts of area 35 in response to both novel microscale and macroscale object exposure. By contrast, a significant increase in Arc expression occurred in area 36 only in response to microscale objects. These results indicate that area 36 is specifically involved in the encoding of small and less prominently visible items. In contrast, area 35 engages globally (layer III to VI) in the encoding of object information independent of item dimensions.
Collapse
Affiliation(s)
- Nithya Sethumadhavan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christina Strauch
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | - Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Denise Manahan-Vaughan
| |
Collapse
|
4
|
Differential Effects of Lateral and Medial Entorhinal Cortex Lesions on Trace, Delay and Contextual Fear Memories. Brain Sci 2021; 12:brainsci12010034. [PMID: 35053778 PMCID: PMC8773659 DOI: 10.3390/brainsci12010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
The entorhinal cortex (EC), with connections to the hippocampus, amygdala, and neocortex, is a critical, yet still underexplored, contributor to fear memory. Previous research suggests possible heterogeneity of function among its lateral (LEC) and medial (MEC) subregions. However, it is not well established what unique roles these subregions serve as the literature has shown mixed results depending on target of manipulation and type of conditioning used. Few studies have manipulated both the LEC and MEC within the same experiment. The present experiment systematically manipulated LEC and MEC function to examine their potential roles in fear memory expression. Long-Evans rats were trained using either trace or delay fear conditioning. The following day, rats received an N-methyl-D-aspartate (NMDA)-induced lesion to the LEC or MEC or received a sham surgery. Following recovery, rats were given an 8-min context test in the original context. The next day, rats were tested for tone freezing in a novel context with three discrete tone presentations. Further, rats were tested for hyperactivity in an open field under both dark and bright light gradient conditions. Results: Following either LEC or MEC lesion, freezing to context was significantly reduced in both trace and delay conditioned rats. LEC-lesioned rats consistently showed significantly less freezing following tone-offset (trace interval, or equivalent, and intertrial interval) in both trace and delay fear conditioned rats. Conclusions: These data suggest that the LEC may play a role in the expression of a conjunctive representation between the tone and context that mediates the maintenance of post-tone freezing.
Collapse
|
5
|
Peng X, Burwell RD. Beyond the hippocampus: The role of parahippocampal-prefrontal communication in context-modulated behavior. Neurobiol Learn Mem 2021; 185:107520. [PMID: 34537379 DOI: 10.1016/j.nlm.2021.107520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023]
Abstract
Multiple paradigms indicate that the physical environment can influence spontaneous and learned behavior. In rodents, context-dependent behavior is putatively supported by the prefrontal cortex and the medial temporal lobe. A preponderance of the literature has targeted the role of the hippocampus. In addition to the hippocampus proper, the medial temporal lobe also comprises parahippocampal areas, including the perirhinal and postrhinal cortices. These parahippocampal areas directly connect with multiple regions in the prefrontal cortex. The function of these connections, however, is not well understood. This article first reviews the involvement of the perirhinal, postrhinal, and prefrontal cortices in context-dependent behavior in rodents. Then, based on functional and anatomical evidence, we suggest that perirhinal and postrhinal contributions to context-dependent behavior go beyond supporting context representation in the hippocampus. Specifically, we propose that the perirhinal and postrhinal cortices act as a contextual-support network that directly provides contextual and spatial information to the prefrontal cortex. In turn, the perirhinal and postrhinal cortices modulate prefrontal input to the hippocampus in the service of context-guided behavior.
Collapse
Affiliation(s)
- Xiangyuan Peng
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Rebecca D Burwell
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
6
|
Yokose J, Marks WD, Yamamoto N, Ogawa SK, Kitamura T. Entorhinal cortical Island cells regulate temporal association learning with long trace period. ACTA ACUST UNITED AC 2021; 28:319-328. [PMID: 34400533 PMCID: PMC8372565 DOI: 10.1101/lm.052589.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial for TAL. Successful TAL depends on the strength of event stimuli and the duration of the temporal gap between events. Whereas it has been demonstrated that the neural input from pyramidal cells in layer II of MEC, referred to as Island cells, to inhibitory neurons in dorsal hippocampal CA1 controls TAL when the strength of event stimuli is weak, it remains unknown whether Island cells regulate TAL with long trace periods as well. To understand the role of Island cells in regulating the duration of the learnable trace period in TAL, we used Pavlovian trace fear conditioning (TFC) with a 60-sec long trace period (long trace fear conditioning [L-TFC]) coupled with optogenetic and chemogenetic neural activity manipulations as well as cell type-specific neural ablation. We found that ablation of Island cells in MECII partially increases L-TFC performance. Chemogenetic manipulation of Island cells causes differential effectiveness in Island cell activity and leads to a circuit imbalance that disrupts L-TFC. However, optogenetic terminal inhibition of Island cell input to dorsal hippocampal CA1 during the temporal association period allows for long trace intervals to be learned in TFC. These results demonstrate that Island cells have a critical role in regulating the duration of time bridgeable between associated events in TAL.
Collapse
Affiliation(s)
| | | | | | | | - Takashi Kitamura
- Department of Psychiatry.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
7
|
Jayachandran M, Linley SB, Schlecht M, Mahler SV, Vertes RP, Allen TA. Prefrontal Pathways Provide Top-Down Control of Memory for Sequences of Events. Cell Rep 2019; 28:640-654.e6. [PMID: 31315044 PMCID: PMC6662648 DOI: 10.1016/j.celrep.2019.06.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/19/2019] [Accepted: 06/14/2019] [Indexed: 11/30/2022] Open
Abstract
We remember our lives as sequences of events, but it is unclear how these memories are controlled during retrieval. In rats, the medial prefrontal cortex (mPFC) is positioned to influence sequence memory through extensive top-down inputs to regions heavily interconnected with the hippocampus, notably the nucleus reuniens of the thalamus (RE) and perirhinal cortex (PER). Here, we used an hM4Di synaptic-silencing approach to test our hypothesis that specific mPFC→RE and mPFC→PER projections regulate sequence memory retrieval. First, we found non-overlapping populations of mPFC cells project to RE and PER. Second, suppressing mPFC activity impaired sequence memory. Third, inhibiting mPFC→RE and mPFC→PER pathways effectively abolished sequence memory. Finally, a sequential lag analysis showed that the mPFC→RE pathway contributes to a working memory retrieval strategy, whereas the mPFC→PER pathway supports a temporal context memory retrieval strategy. These findings demonstrate that mPFC→RE and mPFC→PER pathways serve as top-down mechanisms that control distinct sequence memory retrieval strategies.
Collapse
Affiliation(s)
- Maanasa Jayachandran
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Maximilian Schlecht
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
8
|
Suter EE, Weiss C, Disterhoft JF. Differential responsivity of neurons in perirhinal cortex, lateral entorhinal cortex, and dentate gyrus during time-bridging learning. Hippocampus 2019; 29:511-526. [PMID: 30311282 PMCID: PMC6615905 DOI: 10.1002/hipo.23041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Many studies have focused on the function of hippocampal region CA1 as a critical site for associative memory, but much less is known about changes in the afferents to CA1. Here we report the activity of multiple single neurons from perirhinal and entorhinal cortex and from dentate gyrus during trace eyeblink conditioning as well as consolidated recall, and in pseudo-conditioned control rabbits. We also report an analysis of theta activity filtered from the local field potential (LFP). Our results show early associative changes in single-neuron firing rate as well as theta oscillations in lateral entorhinal cortex (EC) and dentate gyrus (DG), and increases in the number of responsive neurons in perirhinal cortex. In both EC and DG, a subset of neurons from conditioned animals exhibited an elevated baseline firing rate and large responses to the conditioned stimulus and trace period. A similar population of cells has been seen in DG and in medial, but not lateral, EC during spatial tasks, suggesting that lateral EC contains cells responsive to a temporal associative task. In contrast to recent studies in our laboratory that found significant CA1 contributions to long-term memory, the activity profiles of neurons within EC and DG were similar for conditioned and pseudoconditioned rabbits during post-consolidation sessions. Collectively these results demonstrate that individual subregions of medial temporal lobe differentially support new and remotely acquired memories. Neuron firing profiles were similar on training trials when conditioned responses were and were not exhibited, demonstrating that these temporal lobe regions represent the CS-US association and do not control the behavioral response. The analysis of theta activity revealed that theta power was modulated by the conditioning stimuli in both the conditioned and pseudoconditioned groups and that although both groups exhibited a resetting of phase to the corneal airpuff, only the conditioned group exhibited a resetting of phase to the whisker conditioned stimulus.
Collapse
Affiliation(s)
- Eugénie E Suter
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Craig Weiss
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
9
|
Qi X, Du ZJ, Zhu L, Liu X, Xu H, Zhou Z, Zhong C, Li S, Wang L, Zhang Z. The Glutamatergic Postrhinal Cortex-Ventrolateral Orbitofrontal Cortex Pathway Regulates Spatial Memory Retrieval. Neurosci Bull 2019; 35:447-460. [PMID: 30604280 DOI: 10.1007/s12264-018-0325-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
A deficit in spatial memory has been taken as an early predictor of Alzheimer's disease (AD) or mild cognitive impairment (MCI). The uncinate fasciculus (UF) is a long-range white-matter tract that connects the anterior temporal lobe with the orbitofrontal cortex (OFC) in primates. Previous studies have shown that the UF impairment associated with spatial memory deficits may be an important pathological change in aging and AD, but its exact role in spatial memory is not well understood. The pathway arising from the postrhinal cortex (POR) and projecting to the ventrolateral orbitofrontal cortex (vlOFC) performs most of the functions of the UF in rodents. Although the literature suggests an association between spatial memory and the regions connected by the POR-vlOFC pathway, the function of the pathway in spatial memory is relatively unknown. To further illuminate the function of the UF in spatial memory, we dissected the POR-vlOFC pathway in mice. We determined that the POR-vlOFC pathway is a glutamatergic structure, and that glutamatergic neurons in the POR regulate spatial memory retrieval. We also demonstrated that the POR-vlOFC pathway specifically transmits spatial information to participate in memory retrieval. These findings provide a deeper understanding of UF function and dysfunction related to disorders of memory, as in MCI and AD.
Collapse
Affiliation(s)
- Xinyang Qi
- Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhanhong Jeff Du
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute for Collaboration Research of the Shenzhen Institutes of Advanced Technology at the CAS and the McGovern Institute at Massachusetts Institute of Technology, Shenzhen, 518055, China
| | - Lin Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xuemei Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute for Collaboration Research of the Shenzhen Institutes of Advanced Technology at the CAS and the McGovern Institute at Massachusetts Institute of Technology, Shenzhen, 518055, China
| | - Hua Xu
- Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zheng Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute for Collaboration Research of the Shenzhen Institutes of Advanced Technology at the CAS and the McGovern Institute at Massachusetts Institute of Technology, Shenzhen, 518055, China
| | - Cheng Zhong
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute for Collaboration Research of the Shenzhen Institutes of Advanced Technology at the CAS and the McGovern Institute at Massachusetts Institute of Technology, Shenzhen, 518055, China
| | - Shijiang Li
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute for Collaboration Research of the Shenzhen Institutes of Advanced Technology at the CAS and the McGovern Institute at Massachusetts Institute of Technology, Shenzhen, 518055, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, China. .,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute for Collaboration Research of the Shenzhen Institutes of Advanced Technology at the CAS and the McGovern Institute at Massachusetts Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Sakimoto Y, Sakata S. The role of the hippocampal theta rhythm in non-spatial discrimination and associative learning task. Neurosci Biobehav Rev 2018; 110:92-99. [PMID: 30261198 DOI: 10.1016/j.neubiorev.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/24/2018] [Accepted: 09/22/2018] [Indexed: 01/18/2023]
Abstract
The configural association theory and the conflict resolution model propose that hippocampal function is involved in learning negative patterning tasks (A+, B+, AB-). The first theory suggests a critical role of the hippocampus in the formation of configural representations of compound stimuli, in which stimuli A and B are presented simultaneously. The second theory hypothesizes that the hippocampus is important for inhibiting the response to a stimulus that is in conflict with response tendencies. Although these theories propose different interpretations of the link between hippocampal function and non-spatial discrimination tasks, they both predict that the hippocampus is involved in the information processing of compound stimuli in negative patterning tasks. Recently, our electrophysiological approach has shown that the hippocampal theta power correlate with response inhibition in a negative patterning task, positive patterning, simultaneous/serial feature negative task. These findings provide strong support for the assumption of the conflict resolution model that the role of the hippocampus in learning is to inhibit responses to conflicting stimuli during non-spatial stimulus discrimination tasks.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan.
| | - Shogo Sakata
- Department of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
11
|
Pilkiw M, Takehara-Nishiuchi K. Neural representations of time-linked memory. Neurobiol Learn Mem 2018; 153:57-70. [PMID: 29614377 DOI: 10.1016/j.nlm.2018.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Many cognitive processes, such as episodic memory and decision making, rely on the ability to form associations between two events that occur separately in time. The formation of such temporal associations depends on neural representations of three types of information: what has been presented (trace holding), what will follow (temporal expectation), and when the following event will occur (explicit timing). The present review seeks to link these representations with firing patterns of single neurons recorded while rodents and non-human primates associate stimuli, outcomes, and motor responses over time intervals. Across these studies, two distinct firing patterns were observed in the hippocampus, neocortex, and striatum: some neurons change firing rates during or shortly after the stimulus presentation and sustain the firing rate stably or sidlingly during the subsequent intervals (tonic firings). Other neurons transiently change firing rates during a specific moment within the time intervals (phasic firings), and as a group, they form a sequential firing pattern that covers the entire interval. Clever task designs used in some of these studies collectively provide evidence that both tonic and phasic firing responses represent trace holding, temporal expectation, and explicit timing. Subsequently, we applied machine-learning based classification approaches to the two firing patterns within the same dataset collected from rat medial prefrontal cortex during trace eyeblink conditioning. This quantitative analysis revealed that phasic-firing patterns showed greater selectivity for stimulus identity and temporal position than tonic-firing patterns. Our summary illuminates distributed neural representations of temporal association in the forebrain and generates several ideas for future investigations.
Collapse
Affiliation(s)
- Maryna Pilkiw
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G3, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G3, Canada; Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Neuroscience Program, University of Toronto, Toronto M5S 3G3, Canada.
| |
Collapse
|
12
|
Larra MF, Behrje A, Finke JB, Blumenthal TD, Schächinger H. Filling the gap: Evidence for a spatial differentiation in trace eyeblink conditioning. Neurosci Lett 2017; 654:33-37. [PMID: 28610951 DOI: 10.1016/j.neulet.2017.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/19/2022]
Abstract
Trace eyeblink conditioning is used as a translational model of declarative memory but restricted to the temporal domain. Potential spatial aspects have never been experimentally addressed. We employed a spatiotemporal trace eyeblink conditioning paradigm in which a spatial dimension (application side of the unconditioned stimulus) was differentially coded by tone frequency of the conditioned stimulus and recorded conditioned reactions from both eyes. We found more and stronger conditioned reactions at the side predicted by the conditioned stimulus but only in aware participants. Thus, spatial effects are present in trace eyeblink conditioning and may be differentially conditioned depending on the awareness about the spatial relation between conditioned and unconditioned stimulus.
Collapse
Affiliation(s)
- Mauro F Larra
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany.
| | - Andreas Behrje
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Johannes B Finke
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Terry D Blumenthal
- Department of Psychology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Hartmut Schächinger
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| |
Collapse
|
13
|
Abstract
This chapter reviews the past research toward identifying the brain circuit and its computation underlying the associative memory in eyeblink classical conditioning. In the standard delay eyeblink conditioning paradigm, the conditioned stimulus (CS) and eyeblink-eliciting unconditioned stimulus (US) converge in the cerebellar cortex and interpositus nucleus (IPN) through the pontine nuclei and inferior olivary nucleus. Repeated pairings of CS and US modify synaptic weights in the cerebellar cortex and IPN, enabling IPN neurons to activate the red nucleus and generate the conditioned response (CR). In a variant of the standard paradigm, trace eyeblink conditioning, the CS and US are separated by a brief stimulus-free trace interval. Acquisition in trace eyeblink conditioning depends on several forebrain regions, including the hippocampus and medial prefrontal cortex as well as the cerebellar-brainstem circuit. Details of computations taking place in these regions remain unclear; however, recent evidence supports a view that the forebrain encodes a temporal sequence of the CS, trace interval, and US in a specific environmental context and signals the cerebellar-brainstem circuit to execute the CR when the US is likely to occur. Together, delay eyeblink conditioning represents one of the most successful cases of understanding the neural substrates of long-term memory in mammals, while trace eyeblink conditioning demonstrates its utility for uncovering detailed computations in the whole brain network underlying long-term memory.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, Cell and Systems Biology, Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
14
|
Kitamura T, Macdonald CJ, Tonegawa S. Entorhinal-hippocampal neuronal circuits bridge temporally discontiguous events. ACTA ACUST UNITED AC 2015; 22:438-43. [PMID: 26286654 PMCID: PMC4561404 DOI: 10.1101/lm.038687.115] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/29/2015] [Indexed: 11/24/2022]
Abstract
The entorhinal cortex (EC)-hippocampal (HPC) network plays an essential role for episodic memory, which preserves spatial and temporal information about the occurrence of past events. Although there has been significant progress toward understanding the neural circuits underlying the spatial dimension of episodic memory, the relevant circuits subserving the temporal dimension are just beginning to be understood. In this review, we examine the evidence concerning the role of the EC in associating events separated by time--or temporal associative learning--with emphasis on the function of persistent activity in the medial entorhinal cortex layer III (MECIII) and their direct inputs into the CA1 region of HPC. We also discuss the unique role of Island cells in the medial entorhinal cortex layer II (MECII), which is a newly discovered direct feedforward inhibitory circuit to CA1. Finally, we relate the function of these entorhinal cortical circuits to recent findings concerning hippocampal time cells, which may collectively activate in sequence to bridge temporal gaps between discontiguous events in an episode.
Collapse
Affiliation(s)
- Takashi Kitamura
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Christopher J Macdonald
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Susumu Tonegawa
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Howard Hughes Medical Institute at MIT, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
15
|
Weiss C, Disterhoft JF. The impact of hippocampal lesions on trace-eyeblink conditioning and forebrain-cerebellar interactions. Behav Neurosci 2015; 129:512-22. [PMID: 26214216 PMCID: PMC4518454 DOI: 10.1037/bne0000061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Behavioral Neuroscience published a pivotal paper by Moyer, Deyo, and Disterhoft (1990) 25 years ago that described the impaired acquisition of trace-eyeblink conditioning in rabbits with complete removal of the hippocampus. As part of the Behavioral Neuroscience celebration commemorating the 30th anniversary of the journal, we reflect upon the impact of that study on understanding the role of the hippocampus, forebrain, and forebrain-cerebellar interactions that mediate acquisition and retention of trace-conditioned responses, and of declarative memory more globally. We discuss the expansion of the conditioning paradigm to species other than the rabbit, the heterogeneity of responses among hippocampal neurons during trace conditioning, the responsivity of hippocampal neurons following consolidation of conditioning, the role of awareness in conditioning, how blink conditioning can be used as a translational tool by assaying potential therapeutics for cognitive enhancement, how trace and delay classical conditioning may be used to investigate neurological disorders including Alzheimer's disease and schizophrenia, and how the 2 paradigms may be used to understand the relationship between declarative (explicit) and nondeclarative (implicit) memory systems.
Collapse
Affiliation(s)
- Craig Weiss
- Northwestern University Feinberg School of Medicine
| | | |
Collapse
|
16
|
Kotilainen T, Lehto SM, Wikgren J. Effect of transcranial direct current stimulation on semantic discrimination eyeblink conditioning. Behav Brain Res 2015; 292:142-6. [PMID: 26099815 DOI: 10.1016/j.bbr.2015.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a neuromodulation method that has been used to modulate learning. We tested whether anodal tDCS targeted at the left DLPFC could enhance learning in a semantic variant of discrimination eyeblink conditioning, i.e., whether the stimulation would have a specific effect on the discrimination ability, rate of acquisition, amplitude of the conditioned response (CR), or all of these. METHODS Immediately prior to the eyeblink conditioning, the participants received either active stimulation of 1 mA for 10 min or sham stimulation. The anode was placed over F3 and the cathode over the right supraorbital area. The conditioned stimuli (CSs) were common Finnish male and female names that were presented as text. Male names were reinforced with an unconditioned stimulus. RESULTS Stimulation had no effect on the learning rate or discrimination ratio, but the stimulated participants showed steeper CR acquisition in the initial phase of the experiment. Nevertheless, the participants in the stimulation group showed greater eyeblink CRs to the non-reinforced CS. DISCUSSION Contrary to our initial hypothesis, the magnitude and rate of CRs to non-reinforced CS was higher in the active stimulation group than in the sham stimulation group, which may suggest deterioration of discrimination and contingency awareness in the used task. Our observations may suggest a lack of effect on the participants' ability to discriminate between two different types of CS. Furthermore, cathodal modulation of the right prefrontal cortex may explain the change in magnitude and rate of CRs to non-reinforced CS.
Collapse
Affiliation(s)
- Tuukka Kotilainen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland.
| | - Jan Wikgren
- Centre for Interdisciplinary Brain Research, Jyvaskyla, Finland; Department of Psychology, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland.
| |
Collapse
|
17
|
Tanninen SE, Yu X, Giritharan T, Tran L, Bakir R, Volle J, Morrissey MD, Takehara-Nishiuchi K. Cholinergic, but not NMDA, receptors in the lateral entorhinal cortex mediate acquisition in trace eyeblink conditioning. Hippocampus 2015; 25:1456-64. [PMID: 25865030 DOI: 10.1002/hipo.22466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 01/16/2023]
Abstract
Anatomical and electrophysiological studies collectively suggest that the entorhinal cortex consists of several subregions, each of which is involved in the processing of different types of information. Consistent with this idea, we previously reported that the dorsolateral portion of the entorhinal cortex (DLE), but not the caudomedial portion, is necessary for the expression of a memory association between temporally discontiguous stimuli in trace eyeblink conditioning (Morrissey et al. (2012) J Neurosci 32:5356-5361). The present study examined whether memory acquisition depends on the DLE and what types of local neurotransmitter mechanisms are involved in memory acquisition and expression. Male Long-Evans rats experienced trace eyeblink conditioning, in which an auditory conditioned stimulus (CS) was paired with a mildly aversive electric shock to the eyelid (US) with a stimulus-free interval of 500 ms. Immediately before the conditioning, the rats received a microinfusion of neuroreactive substances into the DLE. We found that reversible inactivation of the DLE with GABAA receptor agonist, muscimol impaired memory acquisition. Furthermore, blockade of local muscarinic acetylcholine receptors (mACh) with scopolamine retarded memory acquisition while blockade of local NMDA receptors with APV had no effect. Memory expression was not impaired by either type of receptor blocker. These results suggest that the DLE is necessary for memory acquisition, and that acquisition depends on the integrity of local mACh receptor-dependent firing modulation, but not NMDA receptor-dependent synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | - Lina Tran
- Department of Psychology, Toronto, Canada
| | - Rami Bakir
- Department of Psychology, Toronto, Canada
| | | | - Mark D Morrissey
- Department of Psychology, Toronto, Canada.,Neuroscience Program, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Psychology, Toronto, Canada.,Neuroscience Program, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, Toronto, Canada
| |
Collapse
|
18
|
Hoffmann LC, Cicchese JJ, Berry SD. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning. Front Syst Neurosci 2015; 9:50. [PMID: 25918501 PMCID: PMC4394696 DOI: 10.3389/fnsys.2015.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022] Open
Abstract
Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning.
Collapse
Affiliation(s)
- Loren C Hoffmann
- Center for Learning and Memory, University of Texas Austin, TX, USA
| | - Joseph J Cicchese
- Department of Psychology and Center for Neuroscience, Miami University Oxford, OH, USA
| | - Stephen D Berry
- Department of Psychology and Center for Neuroscience, Miami University Oxford, OH, USA
| |
Collapse
|
19
|
Morrissey MD, Takehara-Nishiuchi K. Diversity of mnemonic function within the entorhinal cortex: A meta-analysis of rodent behavioral studies. Neurobiol Learn Mem 2014; 115:95-107. [DOI: 10.1016/j.nlm.2014.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022]
|
20
|
Tanninen SE, Morrissey MD, Takehara-Nishiuchi K. Unilateral lateral entorhinal inactivation impairs memory expression in trace eyeblink conditioning. PLoS One 2013; 8:e84543. [PMID: 24367674 PMCID: PMC3868607 DOI: 10.1371/journal.pone.0084543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/16/2013] [Indexed: 11/25/2022] Open
Abstract
Memory in trace eyeblink conditioning is mediated by an inter-connected network that involves the hippocampus (HPC), several neocortical regions, and the cerebellum. This network reorganizes after learning as the center of the network shifts from the HPC to the medial prefrontal cortex (mPFC). Despite the network reorganization, the lateral entorhinal cortex (LEC) plays a stable role in expressing recently acquired HPC-dependent memory as well as remotely acquired mPFC-dependent memory. Entorhinal involvement in recent memory expression may be attributed to its previously proposed interactions with the HPC. In contrast, it remains unknown how the LEC participates in memory expression after the network disengages from the HPC. The present study tested the possibility that the LEC and mPFC functionally interact during remote memory expression by examining the impact of pharmacological inactivation of the LEC in one hemisphere and the mPFC in the contralateral hemisphere on memory expression in rats. Memory expression one day and one month after learning was significantly impaired after LEC-mPFC inactivation; however, the degree of impairment was comparable to that after unilateral LEC inactivation. Unilateral mPFC inactivation had no effect on recent or remote memory expression. These results suggest that the integrity of the LEC in both hemispheres is necessary for memory expression. Functional interactions between the LEC and mPFC should therefore be tested with an alternative design.
Collapse
Affiliation(s)
- Stephanie E. Tanninen
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Mark D. Morrissey
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Cholesterol and copper affect learning and memory in the rabbit. Int J Alzheimers Dis 2013; 2013:518780. [PMID: 24073355 PMCID: PMC3773440 DOI: 10.1155/2013/518780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022] Open
Abstract
A rabbit model of Alzheimer's disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease including beta amyloid accumulation and learning and memory changes. Although we have shown that feeding 2% cholesterol and adding copper to the drinking water can retard learning, other studies have shown that feeding dietary cholesterol before learning can improve acquisition and feeding cholesterol after learning can degrade long-term memory. We explore the development of this model, the issues surrounding the role of copper, and the particular contributions of the late D. Larry Sparks.
Collapse
|