1
|
MacCallum PE, Cooze JB, Ward J, Moore KA, Blundell J. Evaluating the effects of single, multiple, and delayed systemic rapamycin injections to contextual fear reconsolidation: Implications for the neurobiology of memory and the treatment of PTSD-like re-experiencing. Behav Brain Res 2024; 461:114855. [PMID: 38185381 DOI: 10.1016/j.bbr.2024.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The mechanistic target of rapamycin (mTOR) kinase is known to mediate the formation and persistence of aversive memories. Rapamycin, an mTOR inhibitor, administered around the time of reactivation blocks retrieval-induced mTOR activity and de novo protein synthesis in the brains of rodents, while correspondingly diminishing subsequent fear memory. The goal of the current experiments was to further explore rapamycin's effects on fear memory persistence. First, we examined whether mTOR blockade at different time-points after reactivation attenuates subsequent contextual fear memory. We show that rapamycin treatment 3 or 12 h post-reactivation disrupts memory persistence. Second, we examined whether consecutive days of reactivation paired with rapamycin had additive effects over a single pairing at disrupting a contextual fear memory. We show that additional reactivation-rapamycin pairings exacerbates the reconsolidation impairment. Finally, we examined if impaired reconsolidation of a contextual fear memory from rapamycin treatment had any after-effects on learning and recalling a new fear association. We show that rapamycin-impaired reconsolidation does not affect new learning or recall and protects against fear generalization. Our findings improve our understanding of mTOR- dependent fear memory processes, as well as provide insight into potentially novel treatment options for stress-related psychopathologies such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, Newfoundland and Labrador A1B 3X9, Canada
| | - Jane B Cooze
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, Newfoundland and Labrador A1B 3X9, Canada
| | - Joshua Ward
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, Newfoundland and Labrador A1B 3X9, Canada
| | - Kelsey Am Moore
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, Newfoundland and Labrador A1B 3X9, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, Newfoundland and Labrador A1B 3X9, Canada.
| |
Collapse
|
2
|
Nachtigall EG, de Freitas JDR, Marcondes LA, Furini CRG. Memory persistence induced by environmental enrichment is dependent on different brain structures. Physiol Behav 2023; 272:114375. [PMID: 37806510 DOI: 10.1016/j.physbeh.2023.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Environmental enrichment (EE) has been demonstrated to have a beneficial effect on different functions of the central nervous system in several mammal species, being used to improve behavior and cell damage in various neurological and psychiatric diseases. However, little has been investigated on the effect of EE in healthy animals, particularly regarding its impact on memory persistence and the brain structures involved. Therefore, here we verified in male Wistar rats that contextual fear conditioning (CFC) memory persistence, tested 28 days after the CFC training session, was facilitated by 5 weeks of exposure to EE, with no effect in groups tested 7 or 14 days after CFC training. However, a two-week exposure to EE did not affect memory persistence. Moreover, we investigated the role of specific brain regions in mediating the effect of EE on memory persistence. We conducted inactivation experiments using the GABAergic agonist Muscimol to target the basolateral amygdala (BLA), medial prefrontal cortex (mPFC), and CA1 region of the hippocampus (CA1). Inactivation of the BLA immediately and 12 h after CFC training impaired the effect of EE on memory persistence. Similarly, inactivation of the CA1 region and mPFC 12 h after training, but not immediately, also impaired the effect of EE on memory persistence. These results have important scientific implications as they shed new light on the effect of an enriched environment on memory persistence and the brain structures involved, thereby helping elucidate how an environment rich in experiences can modify the persistence of learned information.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Júlia D R de Freitas
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Lucas Aschidamini Marcondes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Nazari M, Rashidy-Pour A, Ali Vafaei A, Raise-Abdullahi P. Systemic corticosterone administration impairs the late fear memory reconsolidation via basolateral amygdala glucocorticoid receptors: dependence on the time window and memory age. Neurobiol Learn Mem 2023:107797. [PMID: 37385522 DOI: 10.1016/j.nlm.2023.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Glucocorticoid receptors (GRs) of the basolateral amygdala (BLA) play an important role in memory reconsolidation. The present study investigated the role of the BLA GRs in the late reconsolidation of fear memory using an inhibitory avoidance (IA) task in male Wistar rats. Stainless steel cannulae were implanted bilaterally into the BLA of the rats. After 7 days of recovery, the animals were trained in a one-trial IA task (1mA, 3s). In Experiment one, 48h after the training session, the animals received 3 systemic doses of corticosterone (CORT; 1, 3, or 10 mg/kg, i.p.) followed by an intra-BLA microinjection of the vehicle (0.3µl/side) at different time points (immediately, 12, or 24h) after memory reactivation. Memory reactivation was performed by returning the animals to the light compartment while the sliding door was open. No shock was delivered during memory reactivation. CORT (10 mg/kg) injection 12h after memory reactivation most effectively impaired the late memory reconsolidation (LMR). In the second part of Experiment one, immediately, 12, or 24h after memory reactivation, GR antagonist RU38486 (RU; 1ng/0.3µl/side) was injected into BLA following a systemic injection of CORT (10 mg/kg) to examine whether it would block the CORT effect. RU inhibited the impairing effects of CORT on LMR. In Experiment two, the animals received CORT (10 mg/kg) with time windows immediately, 3, 6, 12, and 24h after memory reactivation. Again, CORT (10 mg/kg) injection 12h after MR impaired LMR. Memory reactivation was performed in the third Experiment, 7, 14, 28, or 56 days after the training session. Injection of CORT (10 mg/kg) 12h later had no significant effect on the LMR. The impairing effect of CORT was seen only in 2-day-old but not 7, 14, 28, and 56-day-old memories. GRs located in BLA seem to play an important role in the LMR of young memory, as with increasing the age of memories, they become less sensitive to manipulation.
Collapse
Affiliation(s)
- Maryam Nazari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
4
|
Nomura H. [Histamine signaling restores retrieval of forgotten memories]. Nihon Yakurigaku Zasshi 2021; 156:292-296. [PMID: 34470934 DOI: 10.1254/fpj.21049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Histamine is a biological amine that functions as a neurotransmitter in the brain to regulate arousal, appetite, and cognitive functions. Many pharmacological studies using histamine receptor agonists and antagonists have found that histamine promotes memory consolidation and retrieval. More recently, we have revealed that the activation of the brain histaminergic system by H3R antagonists/inverse agonists restores retrieval of forgotten long-term memory in mice and humans. The recovery of memory retrieval may involve histamine-induced excitatory effects. Histamine may increase neuronal excitability throughout the neural circuit, including both neurons that are and are not recruited into the memory trace, similar to noise added to the neural circuits for memory retrieval. Stochastic resonance can explain how adding noise to the circuit enhances memory retrieval. Memory is processed not only by consolidation and retrieval, but also by various processes such as maintenance, reconsolidation, extinction, and reinstatement. Further studies that separately analyze the memory processes are needed to elucidate the whole picture of the effects of histamine on learning and memory. Regarding the human histaminergic system, alterations in histamine signaling have been reported in several neuropsychiatric disorders, and these changes have been suggested to be involved in cognitive dysfunction in patients with the neuropsychiatric disorders. Therefore, the drugs that modulate histamine signaling, including H3R antagonists/inverse agonists, may be effective in the treatment of cognitive dysfunction, including Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Cognitive Function and Pathology, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
5
|
Nomura H, Shimizume R, Ikegaya Y. Histamine: A Key Neuromodulator of Memory Consolidation and Retrieval. Curr Top Behav Neurosci 2021; 59:329-353. [PMID: 34435342 DOI: 10.1007/7854_2021_253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In pharmacological studies conducted on animals over the last four decades, histamine was determined to be a strong modulator of learning and memory. Activation of histamine signaling enhances memory consolidation and retrieval. Even long after learning and forgetting, it can still restore the retrieval of forgotten memories. These findings based on animal studies led to human clinical trials with histamine H3 receptor antagonists/inverse agonists, which revealed their positive effects on learning and memory. Therefore, histamine signaling is a promising therapeutic target for improving cognitive impairments in patients with various neuropsychiatric disorders, including Alzheimer's disease. While the memory-modulatory effects of histamine receptor agonists and antagonists have been confirmed by several research groups, the underlying mechanisms remain to be elucidated. This review summarizes how the activation and inhibition of histamine signaling influence memory processes, introduces the cellular and circuit mechanisms, and discusses the relationship between the human histaminergic system and learning and memory.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Rintaro Shimizume
- Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
da Silva TR, Sohn JMB, Andreatini R, Stern CA. The role of prelimbic and anterior cingulate cortices in fear memory reconsolidation and persistence depends on the memory age. Learn Mem 2020; 27:292-300. [PMID: 32669384 PMCID: PMC7365014 DOI: 10.1101/lm.051615.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023]
Abstract
Reconsolidation is a time-limited process under which reactivated memory content can be modified. Works focused on studying reconsolidation mainly restrict intervention to the moments immediately after reactivation and to recently acquired memories. However, the brain areas activated during memory retrieval depend on when it was acquired, and it is relatively unknown how different brain sites contribute to reconsolidation and persistence of reactivated recent and remote fear memories. Here, we sought to investigate the participation of prelimbic (PL) and anterior cingulate cortices (ACC) in recent (1 d old) and remote (21 d old) fear memory reconsolidation and persistence. Male Wistar rats were submitted to the contextual fear conditioning protocol. Tamoxifen (TMX), an estrogen receptor modulator known to inhibit protein kinase C activity was used to interfere with these processes. When infused into the PL cortex, but not into the ACC, TMX administration immediately or 6 h after recent fear memory reactivation impaired memory reconsolidation and persistence, respectively. TMX administered immediately after remote memory reactivation impaired memory reconsolidation when infused into the PL cortex and ACC. However, remote memory persistence was only affected when TMX was infused 6 h after memory reactivation into the ACC and no effect was observed when TMX was infused 6 h after memory reactivation into PL cortex. Together, the findings provide further evidence on the participation of PL cortex and ACC in reconsolidation of recent and remote fear memories and suggest that the persistence of a reactivated fear memory becomes independent on the PL cortex with memory age and dependent on the ACC.
Collapse
Affiliation(s)
| | | | - Roberto Andreatini
- Department of Pharmacology, Federal University of Parana, Curitiba 81531-980, Brazil
| | | |
Collapse
|
7
|
Role of prelimbic cortex PKC and PKMζ in fear memory reconsolidation and persistence following reactivation. Sci Rep 2020; 10:4076. [PMID: 32139711 PMCID: PMC7057960 DOI: 10.1038/s41598-020-60046-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
Abstract
The persistence of newly acquired memories is supported by the activity of PKMζ, an atypical isoform of protein kinase C (PKC). Whether the activity of conventional and atypical PKC isoforms contributes to reactivated memories to persist is still unknown. Similarly, whether memory reactivation is a prerequisite for interventions to be able to change memory persistence is scarcely investigated. Based on the above, we examined the role of conventional and atypical PKC isoforms in the prelimbic cortex in reconsolidation and persistence of a reactivated contextual fear memory in male Wistar rats. It is shown that (i) inhibiting the PKC activity with chelerythrine or the PKMζ activity with ZIP impaired the persistence of a reactivated memory for at least 21 days; (ii) ZIP given immediately after memory reactivation affected neither the reconsolidation nor the persistence process. In contrast, when given 1 h later, it impaired the memory persistence; (iii) chelerythrine given immediately after memory reactivation impaired the reconsolidation; (iv) omitting memory reactivation prevented the chelerythrine- and ZIP-induced effects: (v) the ZIP action is independent of the time elapsed between its administration and the initial memory test. The results indicate that prelimbic cortex PKC and PKMζ are involved in memory reconsolidation and persistence.
Collapse
|
8
|
Gerzson MFB, Bona NP, Soares MSP, Teixeira FC, Rahmeier FL, Carvalho FB, da Cruz Fernandes M, Onzi G, Lenz G, Gonçales RA, Spanevello RM, Stefanello FM. Tannic Acid Ameliorates STZ-Induced Alzheimer's Disease-Like Impairment of Memory, Neuroinflammation, Neuronal Death and Modulates Akt Expression. Neurotox Res 2020; 37:1009-1017. [PMID: 31997154 DOI: 10.1007/s12640-020-00167-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Tannic acid (TA) is a hydrolysable glycosidic polyphenol polymer of gallic acid, which possesses neuroprotective properties. The aim of this study was to evaluate the effect of TA treatment on cognitive performance and neurochemical changes in an experimental model of sporadic dementia of Alzheimer's type (SDAT) induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) and to explore the potential cellular and molecular mechanisms underlying these effects. Adult male rats were divided into four groups: control, TA, STZ, and TA + STZ. Animals from TA and TA + STZ groups were treated with TA (30 mg/kg) daily, by gavage, for 21 days; others groups received water (1 mL/kg). Subsequently, an ICV injection of STZ (3 mg/kg) was administered into the lateral ventricles of animals from STZ and TA + STZ groups, while other groups received citrate buffer. Cognitive deficits (short-term memory), neuronal survival, neuroinflammation as well as expression of SNAP-25, Akt, and pAkt were evaluated in the cerebral cortex. TA treatment protected against the impairment of memory in STZ-induced SDAT. STZ promoted an increase in neuronal death and the levels of proinflammatory cytokines (IL-6 and TNF-α) and a decrease in Akt and pAkt expression; TA was able to restore these changes. Neither STZ nor TA altered SNAP-25 expression or the levels of IL-12 and IL-4 in the cerebral cortex. Our study highlights that treatment with TA prevents memory deficits and reestablishes Akt and pAkt expression, protecting against neuronal death and neuroinflammation in STZ-induced SDAT in rats.
Collapse
Affiliation(s)
- Mariana F B Gerzson
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Natália P Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Mayara S P Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Fernanda C Teixeira
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Francine L Rahmeier
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| | - Fabiano B Carvalho
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| | - Giovana Onzi
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul , Porto Alegre, RS, Brazil
| | - Guido Lenz
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul , Porto Alegre, RS, Brazil
| | - Relber A Gonçales
- Laboratório de Biologia Molecular, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Roselia M Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil.
| | - Francieli M Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Krawczyk MC, Millan J, Blake MG, Feld M, Boccia MM. Relevance of ERK1/2 Post-retrieval Participation on Memory Processes: Insights in Their Particular Role on Reconsolidation and Persistence of Memories. Front Mol Neurosci 2019; 12:95. [PMID: 31057366 PMCID: PMC6478671 DOI: 10.3389/fnmol.2019.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Back in 1968, Misanin and his group posited that reactivation of consolidated memories could support changes in that trace, similar to what might happen during the consolidation process. Not until 2000, when Nader et al. (2000) studied the behavioral effect of a protein synthesis inhibitor on retrieved memories, could this previous statement be taken under consideration once again; suggesting that consolidated memories can become labile after reactivation. The process of strengthening after memory labilization was named memory reconsolidation. In recent years, many studies pointed towards a critical participation of the extracellular signal-regulated kinase (ERK)/mitogen activated protein kinases (MAPKs) pathway in different memory processes (e.g., consolidation, extinction, reconsolidation, among others). In this review article, we will focus on how this system might be modulating the processes triggered after retrieval of well-consolidated memories in mice.
Collapse
Affiliation(s)
- Maria C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Julieta Millan
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mariano G Blake
- Instituto de Fisiología y Biofísica (IFIBIO UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mariana Feld
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CABA, Argentina
| | - Mariano M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
10
|
Liu JF, Tian J, Li JX. Modulating reconsolidation and extinction to regulate drug reward memory. Eur J Neurosci 2018; 50:2503-2512. [PMID: 30113098 DOI: 10.1111/ejn.14072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 01/11/2023]
Abstract
Drug addiction is an aberrant memory that shares the same memory processes as other memories. Brief exposure to drug-associated cues could result in reconsolidation, a hypothetical process during which original memory could be updated. In contrast, longer exposure times to drug-associated cues could trigger extinction, a process that decreases the conditioned responding. In this review, we discuss the pharmacological and non-pharmacological manipulations on the reconsolidation and extinction that could be used to interfere with drug reward memories. Pharmacological agents such as β-adrenergic receptor antagonist propranolol can interfere with reconsolidation to disrupt drug reward memory. Pharmacological agents such as the NMDA receptor glycine site agonists d-cycloserine and d-serine can facilitate extinction and then attenuate the expression of drug reward memory. Besides pharmacological interventions, drug-free behavioral approaches by utilizing the reconsolidation and extinction, such as 'post-retrieval extinction' and 'UCS-retrieval extinction', are also effective to erase or inhibit the recall of drug reward memory. Taken together, pharmacological modulation and non-pharmacological modulation of reconsolidation and extinction are promising approaches to regulate drug reward memory and prevent relapse.
Collapse
Affiliation(s)
- Jian-Feng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jingwei Tian
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| |
Collapse
|
11
|
Evidence for an expanded time-window to mitigate a reactivated fear memory by tamoxifen. Eur Neuropsychopharmacol 2016; 26:1601-9. [PMID: 27554635 DOI: 10.1016/j.euroneuro.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
The mechanisms underpinning the persistence of emotional memories are inaccurately understood. Advancing the current level of understanding with regards to this aspect is of potential translational value for the treatment of post-traumatic stress disorder (PTSD), which stems from an abnormal aversive memory formation. Tamoxifen (TMX) is a drug used in chemotherapy for breast cancer and associated with poor cognitive performances. The present study investigated whether the systemic administration of TMX (1.0-50mg/kg) during and/or beyond the reconsolidation time-window could attenuate a reactivated contextual fear memory in laboratory animals. When administered 0, 6 or 9h (but not 12h) post-memory retrieval and reactivation, TMX (50mg/kg) reduced the freezing behavior in male rats re-exposed to the paired context on day 7, but not on day 1, suggesting a specific impairing effect on memory persistence. Importantly, this effect lasts up to 21 days, but it is prevented by omitting the memory retrieval or memory reactivation. When female rats in the diestrous or proestrous phase were used, the administration of TMX 6h after retrieving and reactivating the fear memory also impaired its persistence. Altogether, regardless of the gender, the present results indicate that the TMX is able to disrupt the persistence of reactivated fear memories in an expanded time-window, which could shed light on a new promising therapeutic strategy for PTSD.
Collapse
|
12
|
Late Arc/Arg3.1 expression in the basolateral amygdala is essential for persistence of newly-acquired and reactivated contextual fear memories. Sci Rep 2016; 6:21007. [PMID: 26880136 PMCID: PMC4754630 DOI: 10.1038/srep21007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022] Open
Abstract
A feature of fear memory is its persistence, which could be a factor for affective disorders. Memory retrieval destabilizes consolidated memories, and then rapid molecular cascades contribute to early stabilization of reactivated memories. However, persistence of reactivated memories has been poorly understood. Here, we discover that late Arc (also known as Arg3.1) expression in the mouse basolateral amygdala (BLA) is involved in persistence of newly-acquired and reactivated fear memories. After both fear learning and retrieval, Arc levels increased at 2 h, returned to basal levels at 6 h but increased again at 12 h. Inhibiting late Arc expression impaired memory retention 7 d, but not 2 d, after fear learning and retrieval. Moreover, blockade of NR2B-containing N-methyl-D-aspartate receptors (NMDARs) prevented memory destabilization and inhibited late Arc expression. These findings indicate that NR2B-NMDAR and late Arc expression plays a critical role in the destabilization and persistence of reactivated memories.
Collapse
|
13
|
Canto-de-Souza L, Mattioli R. The consolidation of inhibitory avoidance memory in mice depends on the intensity of the aversive stimulus: The involvement of the amygdala, dorsal hippocampus and medial prefrontal cortex. Neurobiol Learn Mem 2016; 130:44-51. [PMID: 26851130 DOI: 10.1016/j.nlm.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 01/10/2023]
Abstract
Several studies using inhibitory avoidance models have demonstrated the importance of limbic structures, such as the amygdala, dorsal hippocampus and medial prefrontal cortex, in the consolidation of emotional memory. However, we aimed to investigate the role of the amygdala (AMG), dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) of mice in the consolidation of step-down inhibitory avoidance and whether this avoidance would be conditioned relative to the intensity of the aversive stimulus. To test this, we bilaterally infused anisomycin (ANI-40μg/μl, a protein synthesis inhibitor) into one of these three brain areas in mice. These mice were then exposed to one of two different intensities (moderate: 0.5mA or intense: 1.5mA) in a step-down inhibitory avoidance task. We found that consolidation of both of the aversive experiences was mPFC dependent, while the AMG and DH were only required for the consolidation of the intense experience. We suggest that in moderately aversive situations, which do not represent a severe physical risk to the individual, the consolidation of aversive experiences does not depend on protein synthesis in the AMG or the DH, but only the mPFC. However, for intense aversive stimuli all three of these limbic structures are essential for the consolidation of the experience.
Collapse
Affiliation(s)
- L Canto-de-Souza
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, Km 235, 13565-905 São Carlos, Brazil; Programa de Pós-Graduação em Psicobiologia, Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Psicologia, Avenida Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil; INeC, Instituto de Neurociências e Comportamento, Avenida Bandeirantes, 3900, CEP 14040-901, Monte Alegre, Ribeirão Preto, SP, Brazil.
| | - R Mattioli
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, Km 235, 13565-905 São Carlos, Brazil; Programa de Pós-Graduação em Psicobiologia, Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Psicologia, Avenida Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Chai N, Liu JF, Xue YX, Yang C, Yan W, Wang HM, Luo YX, Shi HS, Wang JS, Bao YP, Meng SQ, Ding ZB, Wang XY, Lu L. Delayed noradrenergic activation in the dorsal hippocampus promotes the long-term persistence of extinguished fear. Neuropsychopharmacology 2014; 39:1933-45. [PMID: 24553734 PMCID: PMC4059903 DOI: 10.1038/npp.2014.42] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 01/18/2023]
Abstract
Fear extinction has been extensively studied, but little is known about the molecular processes that underlie the persistence of extinction long-term memory (LTM). We found that microinfusion of norepinephrine (NE) into the CA1 area of the dorsal hippocampus during the early phase (0 h) after extinction enhanced extinction LTM at 2 and 14 days after extinction. Intra-CA1 infusion of NE during the late phase (12 h) after extinction selectively promoted extinction LTM at 14 days after extinction that was blocked by the β-receptor antagonist propranolol, protein kinase A (PKA) inhibitor Rp-cAMPS, and protein synthesis inhibitors anisomycin and emetine. The phosphorylation levels of PKA, cyclic adenosine monophosphate response element-binding protein (CREB), GluR1, and the membrane GluR1 level were increased by NE during the late phase after extinction that was also blocked by propranolol and Rp-cAMPS. These results suggest that the enhancement of extinction LTM persistence induced by NE requires the activation of the β-receptor/PKA/CREB signaling pathway and membrane GluR1 trafficking. Moreover, extinction increased the phosphorylation levels of Erk1/2, CREB, and GluR1, and the membrane GluR1 level during the late phase, and anisomycin/emetine alone disrupted the persistence of extinction LTM, indicating that the persistence of extinction LTM requires late-phase protein synthesis in the CA1. Propranolol and Rp-cAMPS did not completely disrupt the persistence of extinction LTM, suggesting that another β-receptor/PKA-independent mechanism underlies the persistence of extinction LTM. Altogether, our results showed that enhancing hippocampal noradrenergic activity during the late phase after extinction selectively promotes the persistence of extinction LTM.
Collapse
Affiliation(s)
- Ning Chai
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Beijing, China,Institute of Mental Health and Hebei Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, Shijiazhuang, China
| | - Jian-Feng Liu
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Beijing, China,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Chang Yang
- Affiliated Hospital and School of Pharmacy of Guiyang Medical University, Guiyang, China
| | - Wei Yan
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Beijing, China,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Hui-Min Wang
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Beijing, China,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yi-Xiao Luo
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Beijing, China,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Hai-Shui Shi
- Department of Biochemistry and Molecular Biology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Ji-Shi Wang
- Affiliated Hospital and School of Pharmacy of Guiyang Medical University, Guiyang, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Shi-Qiu Meng
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Beijing, China,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Zeng-Bo Ding
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xue-Yi Wang
- Institute of Mental Health and Hebei Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, Shijiazhuang, China,Institute of Mental Health Hebei Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, Shijiazhuang 050031, China, E-mail:
| | - Lin Lu
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Beijing, China,National Institute on Drug Dependence, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Institute of Mental Health and National Institute on Drug Dependence, Peking University, 51 Huayuanbei Road, Beijing 100191, China, Tel: +86 10 82802459, Fax: +86 10 62032624, E-mail:
| |
Collapse
|
15
|
Onoue K, Nakayama D, Ikegaya Y, Matsuki N, Nomura H. Fear extinction requires Arc/Arg3.1 expression in the basolateral amygdala. Mol Brain 2014; 7:30. [PMID: 24758170 PMCID: PMC4022082 DOI: 10.1186/1756-6606-7-30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/16/2014] [Indexed: 11/27/2022] Open
Abstract
Background Prolonged re-exposure to a fear-eliciting cue in the absence of an aversive event extinguishes the fear response to the cue, and has been clinically used as an exposure therapy. Arc (also known as Arg3.1) is implicated in synaptic and experience-dependent plasticity. Arc is regulated by the transcription factor cAMP response element binding protein, which is upregulated with and necessary for fear extinction. Because Arc expression is also activated with fear extinction, we hypothesized that Arc expression is required for fear extinction. Findings Extinction training increased the proportion of Arc-labeled cells in the basolateral amygdala (BLA). Arc was transcribed during latter part of extinction training, which is possibly associated with fear extinction, as well as former part of extinction training. Intra-BLA infusions of Arc antisense oligodeoxynucleotide (ODN) before extinction training impaired long-term but not short-term extinction memory. Intra-BLA infusions of Arc antisense ODN 3 h after extinction training had no effect on fear extinction. Conclusion Our findings demonstrate that Arc is required for long-term extinction of conditioned fear and contribute to the understanding of extinction as a therapeutic manner.
Collapse
Affiliation(s)
| | | | | | | | - Hiroshi Nomura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
Mac Callum PE, Hebert M, Adamec RE, Blundell J. Systemic inhibition of mTOR kinase via rapamycin disrupts consolidation and reconsolidation of auditory fear memory. Neurobiol Learn Mem 2013; 112:176-85. [PMID: 24012802 DOI: 10.1016/j.nlm.2013.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022]
Abstract
The mammalian target of rapamycin (mTOR) kinase is a critical regulator of mRNA translation and is known to be involved in various long lasting forms of synaptic and behavioural plasticity. However, information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during both consolidation and reconsolidation of long-term memory (LTM) remains scant. Male C57BL/6 mice were injected systemically with rapamycin at various time points following conditioning or retrieval in an auditory fear conditioning paradigm, and compared to vehicle (and/or anisomycin) controls for subsequent memory recall. Systemic blockade of mTOR with rapamycin immediately or 12h after training or reactivation impairs both consolidation and reconsolidation of an auditory fear memory. Further behavioural analysis revealed that the enduring effects of rapamycin on reconsolidation are dependent upon reactivation of the memory trace. Rapamycin, however, has no effect on short-term memory or the ability to retrieve an established fear memory. Collectively, our data suggest that biphasic mTOR signalling is essential for both consolidation and reconsolidation-like activities that contribute to the formation, re-stabilization, and persistence of long term auditory-fear memories, while not influencing other aspects of the memory trace. These findings also provide evidence for a cogent treatment model for reducing the emotional strength of established, traumatic memories analogous to those observed in acquired anxiety disorders such as posttraumatic stress disorder (PTSD) and specific phobias, through pharmacologic blockade of mTOR using systemic rapamycin following reactivation.
Collapse
Affiliation(s)
- Phillip E Mac Callum
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, Newfoundland A1B 3X9, Canada
| | - Mark Hebert
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, Newfoundland A1B 3X9, Canada
| | - Robert E Adamec
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, Newfoundland A1B 3X9, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, Newfoundland A1B 3X9, Canada.
| |
Collapse
|
17
|
Molecular signatures and mechanisms of long-lasting memory consolidation and storage. Neurobiol Learn Mem 2013; 106:40-7. [PMID: 23831672 DOI: 10.1016/j.nlm.2013.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/27/2022]
Abstract
A body of evidence emerged in the last decade regarding late posttraining memory processing. Most of this new information comes from aversively motivated learning tasks that mainly depend on hippocampus, amygdala and insular cortex, and points to the involvement of long-lasting changes in gene expression and protein synthesis in late stages of memory consolidation and storage. Here, we describe recent advances in this field and discuss how recurrent rounds of macromolecular synthesis and its regulation might impact long-term memory storage.
Collapse
|