1
|
Fettiplace MR, Vincent KF, Cho A, Dillon E, Stapley BM, Stewart V, Solt K. Dopaminergic psychostimulants cause arousal from isoflurane-induced sedation without reversing memory impairment in rats. Br J Anaesth 2024; 133:793-803. [PMID: 38965013 PMCID: PMC11443133 DOI: 10.1016/j.bja.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Dopaminergic psychostimulants can restore arousal in anaesthetised animals, and dopaminergic signalling contributes to hippocampal-dependent memory formation. We tested the hypothesis that dopaminergic psychostimulants can antagonise the amnestic effects of isoflurane on visuospatial working memory. METHODS Sixteen adult Sprague-Dawley rats were trained on a trial-unique nonmatching-to-location (TUNL) task which assessed the ability to identify a novel touchscreen location after a fixed delay. Once trained, the effects of low-dose isoflurane (0.3 vol%) on task performance and activity, assessed by infrared beam breaks, were assessed. We attempted to rescue deficits in performance and activity with a dopamine D1 receptor agonist (chloro-APB), a noradrenergic reuptake inhibitor (atomoxetine), and a mixed dopamine/norepinephrine releasing agent (dextroamphetamine). Anaesthetic induction, emergence, and recovery from anaesthesia were also investigated. RESULTS Low-dose isoflurane impaired working memory in a sex-independent and intra-trial delay-independent manner as assessed by task performance, and caused an overall reduction in activity. Administration of chloro-APB, atomoxetine, or dextroamphetamine did not restore visuospatial working memory, but chloro-APB and dextroamphetamine recovered arousal to levels observed in the baseline awake state. Performance did not differ between induction and emergence. Animals recovered to baseline performance within 15 min of discontinuing isoflurane. CONCLUSIONS Low-dose isoflurane impairs visuospatial working memory in a nondurable and delay-independent manner that potentially implicates non-hippocampal structures in isoflurane-induced memory deficits. Dopaminergic psychostimulants counteracted sedation but did not reverse memory impairments, suggesting that isoflurane-induced amnesia and isoflurane-induced sedation have distinct underlying mechanisms that can be antagonised independently.
Collapse
Affiliation(s)
- Michael R Fettiplace
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| | - Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Angel Cho
- Touro College of Osteopathic Medicine, New York, NY, USA
| | - Emmaline Dillon
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Brendan M Stapley
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Victoria Stewart
- University of California Irvine School of Medicine, Irvine, CA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
McElroy DL, Sabir H, Glass AE, Greba Q, Howland JG. The anterior retrosplenial cortex is required for short-term object in place recognition memory retrieval: Role of ionotropic glutamate receptors in male and female Long-Evans rats. Eur J Neurosci 2024; 59:2260-2275. [PMID: 38411499 DOI: 10.1111/ejn.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
The anterior retrosplenial cortex (aRSC) integrates multimodal sensory information into cohesive associative recognition memories. Little is known about how information is integrated during different learning phases (i.e., encoding and retrieval). Additionally, sex differences are observed in performance of some visuospatial memory tasks; however, inconsistent findings warrant more research. We conducted three experiments using the 1-h delay object-in-place (1-h OiP) test to assess recognition memory retrieval in male and female Long-Evans rats. (i) We found both sexes performed equally in three repeated 1-h OiP test sessions. (ii) We showed infusions of a mixture of muscimol/baclofen (GABAA/B receptor agonists) into the aRSC ~15-min prior to the test phase disrupted 1-h OiP in both sexes. (iii) We assessed the role of aRSC ionotropic glutamate receptors in 1-h OiP retrieval using another squad of cannulated rats and confirmed that infusions of either the competitive AMPA/Kainate receptor antagonist CNQX (3 mM) or competitive NMDA receptor antagonist AP-5 (30 mM) (volumes = 0.50 uL/side) significantly impaired 1-h OiP retrieval in both sexes compared to controls. Taken together, findings challenge reported sex differences and clearly establish a role for aRSC ionotropic glutamate receptors in short-term visuospatial recognition memory retrieval. Thus, modulating neural activity in the aRSC may alleviate some memory processing impairments in related disorders.
Collapse
Affiliation(s)
- Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hassaan Sabir
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aiden E Glass
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Harde E, Hierl M, Weber M, Waiz D, Wyler R, Wach JY, Haab R, Gundlfinger A, He W, Schnider P, Paina M, Rolland JF, Greiter-Wilke A, Gasser R, Reutlinger M, Dupont A, Roberts S, O'Connor EC, Bartels B, Hall BJ. Selective and brain-penetrant HCN1 inhibitors reveal links between synaptic integration, cortical function, and working memory. Cell Chem Biol 2024; 31:577-592.e23. [PMID: 38042151 DOI: 10.1016/j.chembiol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) ion channels are proposed to be critical for cognitive function through regulation of synaptic integration. However, resolving the precise role of HCN1 in neurophysiology and exploiting its therapeutic potential has been hampered by minimally selective antagonists with poor potency and limited in vivo efficiency. Using automated electrophysiology in a small-molecule library screen and chemical optimization, we identified a primary carboxamide series of potent and selective HCN1 inhibitors with a distinct mode of action. In cognition-relevant brain circuits, selective inhibition of native HCN1 produced on-target effects, including enhanced excitatory postsynaptic potential summation, while administration of a selective HCN1 inhibitor to rats recovered decrement working memory. Unlike prior non-selective HCN antagonists, selective HCN1 inhibition did not alter cardiac physiology in human atrial cardiomyocytes or in rats. Collectively, selective HCN1 inhibitors described herein unmask HCN1 as a potential target for the treatment of cognitive dysfunction in brain disorders.
Collapse
Affiliation(s)
- Eva Harde
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Markus Hierl
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Weber
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Waiz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger Wyler
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jean-Yves Wach
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rachel Haab
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anja Gundlfinger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weiping He
- WuXi AppTec (Wuhan) Co., Ltd, 666 Gaoxin Road, Wuhan East Lake High-Tech Development Zone, Wuhan, Huibei, China
| | - Patrick Schnider
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Andrea Greiter-Wilke
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rodolfo Gasser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Reutlinger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Dupont
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Björn Bartels
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Benjamin J Hall
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
4
|
Amer T, Davachi L. Extra-hippocampal contributions to pattern separation. eLife 2023; 12:e82250. [PMID: 36972123 PMCID: PMC10042541 DOI: 10.7554/elife.82250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pattern separation, or the process by which highly similar stimuli or experiences in memory are represented by non-overlapping neural ensembles, has typically been ascribed to processes supported by the hippocampus. Converging evidence from a wide range of studies, however, suggests that pattern separation is a multistage process supported by a network of brain regions. Based on this evidence, considered together with related findings from the interference resolution literature, we propose the 'cortico-hippocampal pattern separation' (CHiPS) framework, which asserts that brain regions involved in cognitive control play a significant role in pattern separation. Particularly, these regions may contribute to pattern separation by (1) resolving interference in sensory regions that project to the hippocampus, thus regulating its cortical input, or (2) directly modulating hippocampal processes in accordance with task demands. Considering recent interest in how hippocampal operations are modulated by goal states likely represented and regulated by extra-hippocampal regions, we argue that pattern separation is similarly supported by neocortical-hippocampal interactions.
Collapse
Affiliation(s)
- Tarek Amer
- Department of Psychology, University of VictoriaVictoriaCanada
| | - Lila Davachi
- Department of Psychology, Columbia UniversityNew YorkUnited States
- Nathan Kline Research InstituteOrangeburgUnited States
| |
Collapse
|
5
|
Dexter TD, Palmer D, Hashad AM, Saksida LM, Bussey TJ. Decision Making in Mice During an Optimized Touchscreen Spatial Working Memory Task Sensitive to Medial Prefrontal Cortex Inactivation and NMDA Receptor Hypofunction. Front Neurosci 2022; 16:905736. [PMID: 35655752 PMCID: PMC9152442 DOI: 10.3389/fnins.2022.905736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Working memory is a fundamental cognitive process for decision-making and is a hallmark impairment in a variety of neuropsychiatric and neurodegenerative diseases. Spatial working memory paradigms are a valuable tool to assess these processes in rodents and dissect the neurobiology underlying working memory. The trial unique non-match to location (TUNL) task is an automated touchscreen paradigm used to study spatial working memory and pattern separation processes in rodents. Here, animals must remember the spatial location of a stimulus presented on the screen over a delay period; and use this representation to respond to the novel location when the two are presented together. Because stimuli can be presented in a variety of spatial configurations, TUNL offers a trial-unique paradigm, which can aid in combating the development of unwanted mediating strategies. Here, we have optimized the TUNL protocol for mice to reduce training time and further reduce the potential development of mediating strategies. As a result, mice are able to accurately perform an enhanced trial-unique paradigm, where the locations of the sample and choice stimuli can be presented in any configuration on the screen during a single session. We also aimed to pharmacologically characterize this updated protocol, by assessing the roles of the medial prefrontal cortex (mPFC) and N-methyl-D-aspartate (NMDA) receptor (NMDAr) functioning during TUNL. Temporary inactivation of the medial prefrontal cortex (mPFC) was accomplished by directly infusing a mixture of GABA agonists muscimol and baclofen into the mPFC. We found that mPFC inactivation significantly impaired TUNL performance in a delay-dependent manner. In addition, mPFC inactivation significantly increased the susceptibility of mice to proactive interference. Mice were then challenged with acute systemic injections of the NMDAr antagonist ketamine, which resulted in a dose-dependent, delay-dependent working memory impairment. Together, we describe an optimized automated touchscreen task of working memory, which is dependent on the intact functioning of the mPFC and sensitive to acute NMDAr hypofunction. With the vast genetic toolbox available for modeling disease and probing neural circuit functioning in mice, the TUNL task offers a valuable paradigm to pair with these technologies to further investigate the processes underlying spatial working memory.
Collapse
Affiliation(s)
- Tyler D. Dexter
- Graduate Program in Neuroscience, Western University, London, ON, Canada
| | - Daniel Palmer
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Ahmed M. Hashad
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- BrainsCAN, Western University, London, ON, Canada
| | - Lisa M. Saksida
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Tim J. Bussey
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
| |
Collapse
|
6
|
The effects of acute Cannabis smoke or Δ9-THC injections on the trial-unique, nonmatching-to- location and five-choice serial reaction time tasks in male Long-Evans rats. Neurobiol Learn Mem 2022; 192:107624. [DOI: 10.1016/j.nlm.2022.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022]
|
7
|
Barnard IL, Onofrychuk TJ, McElroy DL, Howland JG. The Touchscreen-Based Trial-Unique, Nonmatching-To-Location (TUNL) Task as a Measure of Working Memory and Pattern Separation in Rats and Mice. Curr Protoc 2021; 1:e238. [PMID: 34570962 DOI: 10.1002/cpz1.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The TUNL task is an automated touchscreen task used to evaluate the cognitive processes involved in working memory (WM) and spatial pattern separation in rodents. Both rats and mice can be used. To elicit working memory processes, the rodent must distinguish between a sample (familiar) light stimulus and a novel light stimulus after a delay. With a correct selection, the rodent will receive a food reward. A major benefit of TUNL compared to other similar tasks is the circumvention of spatial "mediating strategies" that the rodent may use to supplement or replace working memory processes to complete the task successfully. Each trial is 'unique', as the stimuli are pseudo-randomized between trials in an array of spatial locations. The TUNL task uses a progression of six training steps to teach the rodent the associated rules necessary to complete the full task. Task performance is typically measured by trials completed and by accuracy. Task accuracy can be evaluated across various spatial separations to engage hippocampal-dependent processes involved in spatial pattern separation. The latency between trial responses can also be evaluated, with food reward collection latency as a measure of motivation. The TUNL task can be used to assess working memory and cognitive deficits in rodent models with neurodegenerative and neurological disorders, providing a valuable tool to screen for new treatment options, in addition to assessing basic neurobiology. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Handling and habituation prior to training Basic Protocol 2: Initial Touch Training Basic Protocol 3: Must Touch Training Basic Protocol 4: Must Initiate Training Basic Protocol 5: Punish Incorrect Training Basic Protocol 6: Initial TUNL Training Basic Protocol 7: Full TUNL Training Support Protocol 1: Using ABET II touch program Support Protocol 2: Preparation of touchscreen chambers prior to training sessions.
Collapse
Affiliation(s)
- Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
Johnson SA, Zequeira S, Turner SM, Maurer AP, Bizon JL, Burke SN. Rodent mnemonic similarity task performance requires the prefrontal cortex. Hippocampus 2021; 31:701-716. [PMID: 33606338 PMCID: PMC9343235 DOI: 10.1002/hipo.23316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 11/07/2023]
Abstract
Mnemonic similarity task performance, in which a known target stimulus must be distinguished from similar lures, is supported by the hippocampus and perirhinal cortex. Impairments on this task are known to manifest with advancing age. Interestingly, disrupting hippocampal activity leads to mnemonic discrimination impairments when lures are novel, but not when they are familiar. This observation suggests that other brain structures support discrimination abilities as stimuli are learned. The prefrontal cortex (PFC) is critical for retrieval of remote events and executive functions, such as working memory, and is also particularly vulnerable to dysfunction in aging. Importantly, the medial PFC is reciprocally connected to the perirhinal cortex and neuron firing in this region coordinates communication between lateral entorhinal and perirhinal cortices to presumably modulate hippocampal activity. This anatomical organization and function of the medial PFC suggests that it contributes to mnemonic discrimination; however, this notion has not been empirically tested. In the current study, rats were trained on a LEGO object-based mnemonic similarity task adapted for rodents, and surgically implanted with guide cannulae targeting prelimbic and infralimbic regions of the medial PFC. Prior to mnemonic discrimination tests, rats received PFC infusions of the GABAA agonist muscimol. Analyses of expression of the neuronal activity-dependent immediate-early gene Arc in medial PFC and adjacent cortical regions confirmed muscimol infusions led to neuronal inactivation in the infralimbic and prelimbic cortices. Moreover, muscimol infusions in PFC impaired mnemonic discrimination performance relative to the vehicle control across all testing blocks when lures shared 50-90% feature overlap with the target. Thus, in contrast hippocampal infusions, PFC inactivation impaired target-lure discrimination regardless of the novelty or familiarity of the lures. These findings indicate the PFC plays a critical role in mnemonic similarity task performance, but the time course of PFC involvement is dissociable from that of the hippocampus.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sabrina Zequeira
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sean M. Turner
- Department of Clinical Health Psychology, University of Florida, Gainesville, Florida
| | - Andrew P. Maurer
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Jennifer L. Bizon
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sara N. Burke
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Institute on Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
9
|
Contributions of animal models of cognitive disorders to neuropsychopharmacology. Therapie 2021; 76:87-99. [PMID: 33589315 DOI: 10.1016/j.therap.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Cognitive disorders and symptoms are key features of many mental and neurological diseases, with a large spectrum of impaired domains. Because of their possible evolution and detrimental functioning impact, they are a major pharmacological target for both symptomatic and disease-modifier drugs, while few cognitive enhancers have been marketed with an insufficient efficiency. It explains the need to model these cognitive disorders beyond the modelization of mental or neurological diseases themselves. According to the experimental strategy used to induce cognitive impairment, three categories of models have been identified: neurotransmission-driven models; pathophysiology-driven models; environment-driven models. These three categories of models reflect different levels of integration of endogenous and exogenous mechanisms underlying cognitive disorders in humans. Their comprehensive knowledge and illustration of their pharmacological modulation could help to propose a renewing strategy of drug development in central nervous system (CNS) field at a time when the academic and industrial invest seems to be declining despite the medical and social burden of brain diseases.
Collapse
|
10
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
11
|
Houlton J, Barwick D, Clarkson AN. Frontal cortex stroke-induced impairment in spatial working memory on the trial-unique nonmatching-to-location task in mice. Neurobiol Learn Mem 2020; 177:107355. [PMID: 33276070 DOI: 10.1016/j.nlm.2020.107355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/27/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022]
Abstract
Stroke-induced cognitive impairments are of significant concern, however mechanisms that underpin these impairments remain poorly understood and researched. To further characterise cognitive impairments in our frontal cortex stroke model, and to align our assessments with what is used clinically, we tested young C57BL/6J mice trained in operant touchscreen chambers to complete the trial-unique nonmatched-to-location (TUNL) task. Based on baseline performance, animals were given either stroke (n = 12) or sham (n = 12) surgery using a photothrombosis model, bilaterally targeting the frontal cortex. Upon recovery, post-stroke spatial working memory was assessed by varying the degree of separation and delay within TUNL trials. Seven weeks after surgery, animals received a prelimbic injection of the retrograde tracer cholera toxin B (CTB) to access thalamo-PFC connectivity. Tissue was then processed histologically and immunohistochemically to assess infarct volume, astrogliosis and thalamocortical connectivity. Assessment of TUNL probes revealed sensitivity to a frontal cortex stroke (separation: p = 0.0003, delay: p < 0.0001), with stroke animals taking significantly longer (p = 0.0170) during reacquisition of the TUNL task, relative to shams. CTB-positive cell counts revealed a stroke-induced loss of thalamo-PFC connectivity. In addition, quantification of reactive astrogliosis revealed a positive correlation between the degree of astrogliosis expanding into white matter tracts and the development of cognitive impairments. This study reveals a stroke-induced impairment in mice completing the TUNL task. Our findings also demonstrate a significant loss of thalamo-PFC connections and a correlation between white matter reactive astrogliosis and cognitive impairment. Future experiments will investigate therapeutic interventions in the hope of promoting functional improvement in cognition.
Collapse
Affiliation(s)
- Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Deanna Barwick
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
12
|
Sandini TM, Marks WN, Tahir NB, Song Y, Greba Q, Howland JG. NMDA Receptors in Visual and Olfactory Sensory Integration in Male Long Evans Rats: A Role for the Orbitofrontal Cortex. Neuroscience 2020; 440:230-238. [PMID: 32497759 DOI: 10.1016/j.neuroscience.2020.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 11/28/2022]
Abstract
Sensory integration (SI) is a cognitive process whereby the brain uses unimodal or multimodal sensory features to create a comprehensive representation of the environment. Integration of sensory input is necessary to achieve a coherent perception of the environment, and to subsequently plan and coordinate action. The neural mechanisms mediating SI are poorly understood; however, recent studies suggest that the regulation of SI involves N-methyl-d-aspartate receptors (NMDARs) in orbitofrontal cortex (OFC). Thus, we tested this hypothesis directly in two experiments using object oddity tests that require SI for visual and olfactory stimuli. First, we blocked NMDARs with acute CPP treatment (i.p., 10 mg/kg) and tested rats in unimodal visual and olfactory SI tests, and respective control unimodal oddity tests that do not require SI. Second, we used intra-OFC infusions of AP5 (30 mM) to examine the role of NMDARs in the OFC in the oddity tests requiring SI. Systemic blockade of NMDARs impaired performance on the visual tests regardless of whether SI was required for determining oddity. In the olfactory tests, systemic treatment with CPP impaired the test requiring SI while sparing olfactory oddity, demonstrating a selective impairment in the olfactory SI. Intra-OFC blockade of NMDARs impaired olfactory SI, without effect on visual SI, demonstrating that intra-OFC NMDARs are essential for olfactory, but not visual SI. The present results are discussed in the context of the function of the OFC and its associated circuitry.
Collapse
Affiliation(s)
- Thaísa M Sandini
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Wendie N Marks
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nimra B Tahir
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuanyi Song
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
13
|
Sokolenko E, Nithianantharajah J, Jones NC. MK-801 impairs working memory on the Trial-Unique Nonmatch-to-Location test in mice, but this is not exclusively mediated by NMDA receptors on PV+ interneurons or forebrain pyramidal cells. Neuropharmacology 2020; 171:108103. [DOI: 10.1016/j.neuropharm.2020.108103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 01/13/2023]
|
14
|
Anderson MD, Paylor JW, Scott GA, Greba Q, Winship IR, Howland JG. ChABC infusions into medial prefrontal cortex, but not posterior parietal cortex, improve the performance of rats tested on a novel, challenging delay in the touchscreen TUNL task. ACTA ACUST UNITED AC 2020; 27:222-235. [PMID: 32414940 PMCID: PMC7233150 DOI: 10.1101/lm.050245.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 02/27/2020] [Indexed: 01/04/2023]
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround subsets of neurons throughout the central nervous system (CNS). They are made up of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, tenascin-R, and many other link proteins that together make up their rigid and lattice-like structure. Modulation of PNNs can alter synaptic plasticity and thereby affect learning, memory, and cognition. In the present study, we degraded PNNs in the medial prefrontal (mPFC) and posterior parietal (PPC) cortices of Long–Evans rats using the enzyme chondroitinase ABC (ChABC), which cleaves apart CSPGs. We then measured the consequences of PNN degradation on spatial working memory (WM) with a trial-unique, non-matching-to location (TUNL) automated touchscreen task. All rats were trained with a standard 6 sec delay and 20 sec inter-trial interval (ITI) and then tested under four different conditions: a 6 sec delay, a variable 2 or 6 sec delay, a 2 sec delay with a 1 sec ITI (interference condition), and a 20 sec delay. Rats that received mPFC ChABC treatment initially performed TUNL with higher accuracy, more selection trials completed, and fewer correction trials completed compared to controls in the 20 sec delay condition but did not perform differently from controls in any other condition. Rats that received PPC ChABC treatment did not perform significantly differently from controls in any condition. Posthumous immunohistochemistry confirmed an increase in CSPG degradation products (C4S stain) in the mPFC and PPC following ChABC infusions while WFA staining intensity and parvalbumin positive neuron number were decreased following mPFC, but not PPC, ChABC infusions. These findings suggest that PNNs in the mPFC play a subtle role in spatial WM, but PNNs in the PPC do not. Furthermore, it appears that PNNs in the mPFC are involved in adapting to a challenging novel delay, but that they do not play an essential role in spatial WM function.
Collapse
Affiliation(s)
- Michael D Anderson
- Department of Anatomy, Physiology and Pharmacology University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - John W Paylor
- Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Gavin A Scott
- Department of Anatomy, Physiology and Pharmacology University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology and Pharmacology University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ian R Winship
- Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - John G Howland
- Department of Anatomy, Physiology and Pharmacology University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
15
|
Scott GA, Cai S, Song Y, Liu MC, Greba Q, Howland JG. Task phase-specific involvement of the rat posterior parietal cortex in performance of the TUNL task. GENES BRAIN AND BEHAVIOR 2020; 20:e12659. [PMID: 32348610 DOI: 10.1111/gbb.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
The posterior parietal cortex (PPC) participates in cognitive processes including working memory (WM), sensory evidence accumulation, and perceptually guided decision making. However, surprisingly little work has used temporally precise manipulations to dissect its role in different epochs of behavior taking place over short timespans, such as WM tasks. As a result, a consistent view of the temporally precise role of the PPC in these processes has not been described. In the present study, we investigated the temporally specific role of the PPC in the Trial-Unique, Nonmatching-to-Location (TUNL) task, a touchscreen-based, visuospatial WM task that relies on the PPC. To disrupt PPC activity in a temporally precise manner, we applied mild intracranial electrical stimulation (ICES). We found that intra-PPC ICES (100 μA) significantly impaired accuracy in TUNL without significantly altering response latency. Moreover, we found that the impairment was specific to ICES applied during the delay and test phases of TUNL. Consistent with previous reports showing delay- and choice-specific neuronal activity in the PPC, the results provide evidence that the rat PPC is required for maintaining memory representations of stimuli over a delay period as well as for making successful comparisons and choices between test stimuli. In contrast, the PPC appears not to be critical for initial encoding of sample stimuli. This pattern of results may indicate that early encoding of visual stimuli is independent of the PPC or that the PPC becomes engaged only when visual stimuli are spatially complex or involve memory or decision making.
Collapse
Affiliation(s)
- Gavin A Scott
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shuang Cai
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuanyi Song
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Max C Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
Rahman T, Weickert CS, Harms L, Meehan C, Schall U, Todd J, Hodgson DM, Michie PT, Purves-Tyson T. Effect of Immune Activation during Early Gestation or Late Gestation on Inhibitory Markers in Adult Male Rats. Sci Rep 2020; 10:1982. [PMID: 32029751 PMCID: PMC7004984 DOI: 10.1038/s41598-020-58449-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
People with schizophrenia exhibit deficits in inhibitory neurons and cognition. The timing of maternal immune activation (MIA) may present distinct schizophrenia-like phenotypes in progeny. We investigated whether early gestation [gestational day (GD) 10] or late gestation (GD19) MIA, via viral mimetic polyI:C, produces deficits in inhibitory neuron indices (GAD1, PVALB, SST, SSTR2 mRNAs) within cortical, striatal, and hippocampal subregions of male adult rat offspring. In situ hybridisation revealed that polyI:C offspring had: (1) SST mRNA reductions in the cingulate cortex and nucleus accumbens shell, regardless of MIA timing; (2) SSTR2 mRNA reductions in the cortex and striatum of GD19, but not GD10, MIA; (3) no alterations in cortical or striatal GAD1 mRNA of polyI:C offspring, but an expected reduction of PVALB mRNA in the infralimbic cortex, and; (4) no alterations in inhibitory markers in hippocampus. Maternal IL-6 response negatively correlated with adult offspring SST mRNA in cortex and striatum, but not hippocampus. These results show lasting inhibitory-related deficits in cortex and striatum in adult offspring from MIA. SST downregulation in specific cortical and striatal subregions, with additional deficits in somatostatin-related signalling through SSTR2, may contribute to some of the adult behavioural changes resulting from MIA and its timing.
Collapse
Affiliation(s)
- Tasnim Rahman
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Lauren Harms
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Crystal Meehan
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Juanita Todd
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Deborah M Hodgson
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Patricia T Michie
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Tertia Purves-Tyson
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. .,Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Scott GA, Liu MC, Tahir NB, Zabder NK, Song Y, Greba Q, Howland JG. Roles of the medial prefrontal cortex, mediodorsal thalamus, and their combined circuit for performance of the odor span task in rats: analysis of memory capacity and foraging behavior. ACTA ACUST UNITED AC 2020; 27:67-77. [PMID: 31949038 PMCID: PMC6970426 DOI: 10.1101/lm.050195.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
Abstract
Working memory (WM), the capacity for short-term storage of small quantities of information for immediate use, is thought to depend on activity within the prefrontal cortex. Recent evidence indicates that the prefrontal neuronal activity supporting WM is driven by thalamocortical connections arising in mediodorsal thalamus (mdThal). However, the role of these connections has not been studied using olfactory stimuli leaving open the question of whether this circuit extends to all sensory modalities. Additionally, manipulations of the mdThal in olfactory memory tasks have yielded mixed results. In the present experiment, we investigated the role of connections between the rat medial prefrontal cortex (mPFC) and mdThal in the odor span task (OST) using a pharmacological contralateral disconnection technique. Inactivation of either the mPFC or mdThal alone both significantly impaired memory performance in the OST, replicating previous findings with the mPFC and confirming that the mdThal plays an essential role in intact OST performance. Contralateral disconnection of the two structures impaired OST performance in support of the idea that the OST relies on mPFC-mdThal connections, but ipsilateral control infusions also impaired performance, complicating this interpretation. We also performed a detailed analysis of rats’ errors and foraging behavior and found a dissociation between mPFC and mdThal inactivation conditions. Inactivation of the mdThal and mPFC caused a significant reduction in the number of approaches rats made per odor, whereas only mdThal inactivation or mPFC-mdThal disconnection caused significant increases in choice latency. Our results confirm that the mdThal is necessary for performance of the OST and that it may critically interact with the mPFC to mediate OST performance. Additionally, we have provided evidence that the mPFC and mdThal play dissociable roles in mediating foraging behavior.
Collapse
Affiliation(s)
- Gavin A Scott
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Max C Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Nimra B Tahir
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Nadine K Zabder
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yuanyi Song
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
18
|
Sokolenko E, Hudson MR, Nithianantharajah J, Jones NC. The mGluR 2/3 agonist LY379268 reverses NMDA receptor antagonist effects on cortical gamma oscillations and phase coherence, but not working memory impairments, in mice. J Psychopharmacol 2019; 33:1588-1599. [PMID: 31580222 DOI: 10.1177/0269881119875976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Abnormalities in neural oscillations that occur in the gamma frequency range (30-80 Hz) may underlie cognitive deficits in schizophrenia. Both cognitive impairments and gamma oscillatory disturbances can be induced in healthy people and rodents by administration of N-methyl-D-aspartate receptor (NMDAr) antagonists. AIMS We studied relationships between cognitive impairment and gamma abnormalities following NMDAr antagonism, and attempted to reverse deficits with the metabotropic glutamate receptor type 2/3 (mGluR2/3) agonist LY379268. METHODS C57/Bl6 mice were trained to perform the Trial-Unique Nonmatching to Location (TUNL) touchscreen test for working memory. They were then implanted with local field potential (LFP) recording electrodes in prefrontal cortex and dorsal hippocampus. Mice were administered either LY379268 (3 mg/kg) or vehicle followed by the NMDAr antagonist MK-801 (0.3 or 1 mg/kg) or vehicle prior to testing on the TUNL task, or recording LFPs during the presentation of an auditory stimulus. RESULTS MK-801 impaired working memory and increased perseveration, but these behaviours were not improved by LY379268 treatment. MK-81 increased the power of ongoing gamma and high gamma (130-180 Hz) oscillations in both brain regions and regional coherence between regions, and these signatures were augmented by LY379268. However, auditory-evoked gamma oscillation deficits caused by MK-801 were not affected by LY379268 pretreatment. CONCLUSIONS NMDA receptor antagonism impairs working memory in mice, but this is not reversed by stimulation of mGluR2/3. Since elevations in ongoing gamma power and regional coherence caused by MK-801 were improved by LY379268, it appears unlikely that these specific oscillatory abnormalities underlie the working memory impairment caused by NMDAr antagonism.
Collapse
Affiliation(s)
- Elysia Sokolenko
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia
| | - Matthew R Hudson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Scott GA, Roebuck AJ, Greba Q, Howland JG. Performance of the trial-unique, delayed non-matching-to-location (TUNL) task depends on AMPA/Kainate, but not NMDA, ionotropic glutamate receptors in the rat posterior parietal cortex. Neurobiol Learn Mem 2019; 159:16-23. [DOI: 10.1016/j.nlm.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/04/2018] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
|
20
|
Burke SN, Turner SM, Desrosiers CL, Johnson SA, Maurer AP. Perforant Path Fiber Loss Results in Mnemonic Discrimination Task Deficits in Young Rats. Front Syst Neurosci 2018; 12:61. [PMID: 30618655 PMCID: PMC6297719 DOI: 10.3389/fnsys.2018.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
The observation that entorhinal input to the hippocampus declines in old age is well established across human studies and in animal models. This loss of perforant path fibers is exaggerated in individuals with episodic memory deficits and Mild Cognitive Impairment, suggesting that perforant path integrity is associated with progression to Alzheimer's Disease. During normal aging, behaviors that measure the ability of a study participant to discriminate between stimuli that share features is particularly sensitive to perforant fiber loss. Evidence linking perforant path changes to cognitive decline, however, has been largely correlational. Thus, the current study tested the causative role of perforant path fiber loss in behavioral decline by performing a unilateral knife cut to disconnect the entorhinal cortex from the hippocampus in the right hemisphere in young male and female rats. This approach does not completely disconnect the hippocampus from the entorhinal cortex but rather reduces the effective connectivity between these two structures. Male and female rats were then tested on the rodent variant of the mnemonic discrimination task, which is believed to critically rely on perforant path fiber integrity. Right hemisphere perforant path transections produced a significant impairment in the abilities of lesioned animals to discriminate between objects with high levels of feature overlap. This deficit was not observed in the male and female sham groups that received a cut to cortex above the white matter. Together these data support the view that, across species, age-related perforant path fiber loss produces behavioral deficits in the ability to discriminate between stimuli with perceptual overlap.
Collapse
Affiliation(s)
- Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Institute on Aging, University of Florida, Gainesville, FL, United States
| | - Sean M. Turner
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Courtney L. Desrosiers
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah A. Johnson
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P. Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018; 142:41-62. [DOI: 10.1016/j.neuropharm.2017.11.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
|